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a b s t r a c t

Some unified tests have been proposed recently in the literature for testing pre-
dictability of asset returns based on a simple linear predictive regression model, which
has a drawback that predicted variable cannot be stationary if the predicting variable
is nonstationary. To solve this issue, this paper includes the difference of the predicting
variable into the simple linear predictive regression. Furthermore, a unified empirical
likelihood inference is developed to test the predictability regardless of the properties of
the predicting variable. A simulation study is conducted to confirm the efficiency of the
proposed methods before applying to a real example.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Recently, predictive regressionmodels have gainedmuch attention in economics and finance as well as actuarial science;
see the monograph by Frees et al. (2014). Indeed, testing predictability of asset returns based on a simple predictive
regression model has been studied for decades with many financial applications such as the mutual fund performance, the
conditional capital asset pricing, and the optimal asset allocations. A simple linear predictive regression model assumes the
following structural model:

Yt = α + βXt−1 + Ut , Xt = θ + φXt−1 + Vt , 2 ≤ t ≤ n, (1)

where {(Ut , Vt )T } is a sequence of independent and identically distributed random vectors with means zero and finite
variances. Here AT denotes the transpose of matrix or vector A. It is well documented in the literature that the least
squares estimator for β based on the first equation in (1) is biased in finite sample behavior due to the correlation between
Ut and Vt , and hence several bias-corrected estimators and tests for both stationary (e.g., |φ| < 1) and nonstationary
(e.g., φ = 1 − ρ/n for some ρ) for model (1) have been proposed in the literature; see, for example, Cavanagh et al.
(1995), Stambaugh (1999), Amihud and Hurvich (2004), Chen and Deo (2009), Amihud et al. (2009), and references
therein.
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An issue related to the inference of β in model (1) is that the asymptotic distribution of an estimator or a test statistic
depends heavily on whether Xt is stationary or nearly integrated or unit root, and θ is zero or nonzero. In practice, it is
extremely challenging to distinguish between stationary and nearly integrated, and between nearly integrated and unit root
since the level of persistence cannot be estimated consistently. Therefore, it is of importance to have a unified inference
approach to avoid making a mistake in characterizing the predicting variable; see Campbell and Yogo (2006), Chen et al.
(2013), Zhu et al. (2014), and the references therein. Recently, Choi et al. (2016) proposed a test for testing predictability
(e.g., H0 : β = 0) based on a so-called Cauchy estimation, which unifies the cases of nearly integrated and unit root,
whereas Phillips and Lee (2013) andKostakis et al. (2015) developed a new test for testing predictability by using an extended
instrumental variable (dubbed as IVX) based inference. However, the construction of instrumental variables depends heavily
on the persistence level of the predicting variable and the IVX approach reduces the convergence rate of the proposed
estimator so that it might lose the power of the proposed test.

When (Ut , Vt )T has a bivariate normal distribution, one can write Ut = V ∗
t + γVt for some γ (a linear projection), where

V ∗
t and Vt are independent. Therefore, model (1) can be written as

Yt = α + βXt−1 + γVt + V ∗

t , Xt = θ + φXt−1 + Vt . (2)

Now, V ∗
t and Vt become independent so that one could expect an inference based on the first equation in (2) with Vt replaced

by V̂t = Xt − θ̂ − φ̂Xt−1 is preferred to that based on the first equation in (1); see Amihud and Hurvich (2004) and Cai and
Wang (2014) for details. Extension tomodeling β and γ as a smooth function of t is available in Cai et al. (2015). Some recent
developments on nonparametric inferences for predictive regressions, when Xt is nonstationary, include, but not limited to,
the papers by Juhl (2014) and Kasparis et al. (2015).

Although model (1) has been studied and applied to testing predictability of asset returns, a common drawback with
model (1) is that Yt cannot be stationary if Xt is nonstationary. In such a case, it might lose the economic interpretation if Yt
is an asset return which is commonly assumed to be stationary. To overcome this issue, we propose including the difference
of the predicting variable into the simple linear predictive regression. That is, we consider the following model

Yt = α + β1∆Xt−1 + β2Xt−2 + Ut , Xt = θ + φXt−1 + Vt , (3)

where ∆Xt−1 = Xt−1 − Xt−2. Clearly, when Xt is a unit root process, ∆Xt−1 is stationary and Yt in (3) can be stationary if
β2 = 0. Undermodel (3), Yt is predictable by not only the difference of Xt−1’s but also the series Xt−1’s itself. Note that despite
the fact that the difference∆Xt−1 = θ + Vt−1 + (φ − 1)Xt−2 = θ + Vt−1 − ρ Xt−2/n, where φ = 1 − ρ/n for some ρ, is not
an innovation unless the regressor belongs to the class of integrated processes (i.e., ρ = 0), it behaves asymptotically as an
innovation for ρ ̸= 0. To answer the important question on whether Xt−1 and/or Xt−2 can be used to directly predict Yt , one
may be interested in testing the null hypothesis H0 : β1 = 0 or H0 : β2 = 0 or H0 : β1 = β2 = 0 under model (3).

Model (3) is different from the existing literature in the following ways. First, although model (3) can be viewed as a
special case of multiple-predictor regressions in the literature such as Amihud et al. (2009) for the stationary case, there
exists no unified test for testing predictability; that is, a test does not require knowing whether Xt is stationary or nearly
integrated or unit root. Also, it does not need to estimate Vt as in model (2). Secondly, we remark that model (3) is different
from that in Amihud and Hurvich (2004) and Cai and Wang (2014) since the predicting variables in (3) are Xt−1 and Xt−2
and we allow errors Ut and Vt to be correlated, while the predicting variables in (2) are Xt and Xt−1 essentially and errors
V ∗
t and Vt are uncorrelated. Moreover, model (3) is different from that in Zhu et al. (2014) which is model (1) without the

difference term. Finally, it is worth pointing out that the idea of adding the difference∆Xt−1 directly into (3) as a regressor
is different from that in Kostakis et al. (2015) for using ∆Xt to construct the IVX instrument to obtain the two-stage least
squares estimator of β2 although both use the differencing idea.

To obtain a unified test for testing predictability in model (3) without knowing the properties of {Xt}, this paper
investigates the possibility of extending the unified empirical likelihood inference in Zhu et al. (2014) for model (1). We
refer to the book by Owen (2001) for an overview of empirical likelihood methods.

The paper is organized as follows. Section 2 presents the methodologies and main asymptotic results. A simulation study
is conducted to illustrate the finite sample performance of the proposed robust test in Section 3. Section 4 reports a real data
analysis. All proofs are relegated to Section 5.

2. Methodologies and asymptotic results

For testing predictability under model (3), we consider the testing hypothesis H0 : β1 = 0 or H0 : β2 = 0 or
H0 : β1 = β2 = 0 and propose a unified empirical likelihood test regardless of Xt being stationary or nearly integrated
or unit root. More generally, the proposed empirical likelihood method can be employed to construct a unified confidence
interval for β1 or β2 and a unified confidence region for (β1, β2)T without knowing the properties of {Xt}.

2.1. With a known intercept

To better appreciate the proposed unified test, we first consider the simple case of having a known intercept α = α0,
which may have an independent interest as well. That is to assume that observations Y1, . . . , Yn and X1, . . . , Xn−1 follow
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from the model

Yt = α0 + β1∆Xt−1 + β2Xt−2 + Ut , Xt = θ + φXt−1 +

∞∑
j=0

ψjVt−j, (4)

where, in what follows, the linear process
∑

∞

j=0 ψjVt−j is assumed to be strictly stationary,1 and {(Ut , Vt )T } is a sequence of
independent and identically distributed random vectors with means zero and finite variances.

It is known that a test statistic for testing predictability based on the least square estimators for β1 and β2 has an
asymptotic distribution depending on the properties of {Xt}. Therefore, a direct application of the empirical likelihood
method in Qin and Lawless (1994) fails, i.e., the so-called Wilks theorem does not hold. Motivated by the unified empirical
likelihood inference idea in Zhu et al. (2014) for model (1), the following score equations are considered:{∑n

t=3{Yt − α0 − β1∆Xt−1 − β2Xt−2}∆Xt−1 = 0,∑n
t=3{Yt − α0 − β1∆Xt−1 − β2Xt−2}Xt−2/

√
1 + X2

t−2 = 0,
(5)

which lead to the following empirical likelihood method. Clearly, the weight is only added to the second equation in (5)
to ensure that 1

n

∑n
t=3{Xt−2/

√
1 + X2

t−2}
2 converges in probability to a positive constant for {Xt} being both stationary

and nonstationary. Unlike the second equation, we do not need to add a weight to the first equation in (5) because
1
n

∑n
t=3{∆Xt−1}

2 always converges in probability to a positive constant. Now, define{
Zt1(β1, β2) = {Yt − α0 − β1∆Xt−1 − β2Xt−2}∆Xt−1,

Zt2(β1, β2) = {Yt − α0 − β1∆Xt−1 − β2Xt−2}Xt−2/

√
1 + X2

t−2,

and let Zt (β1, β2) = (Zt1(β1, β2), Zt2(β1, β2))T for t = 3, . . . , n. Like Qin and Lawless (1994), we define the empirical
likelihood function for (β1, β2)T via estimating equations as

L(β1, β2) = sup

{
n∏

t=3

(npt ) : p3 ≥ 0, . . . , pn ≥ 0,
n∑

t=3

pt = 1,
n∑

t=3

ptZt (β1, β2) = 0

}
.

Note that the supremum is taken with respect to pt ’s. It follows from the Lagrange multiplier method that the empirical
likelihood ratio for β1 and β2 is

−2 log L(β1, β2) = 2
n∑

t=3

log
(
1 + λTZt (β1, β2)

)
,

where λ = λ(β1, β2) satisfies

1
n

n∑
t=3

Zt (β1, β2)
1 + λTZt (β1, β2)

= 0.

If one is interested in testing H0 : β1 = 0 or constructing a unified confidence interval for β1, then the profile empirical
likelihood function LP1(β1) = maxβ2 L(β1, β2) is considered. On the other hand, one considers LP2(β2) = maxβ1 L(β1, β2) for
testing H0 : β2 = 0 or constructing a unified interval for β2.

To prove the Wilks theorem for the aforementioned empirical likelihood method, we assume the following regularity
conditions:

C1. E(U1) = 0, E(V1) = 0, E(|U1|
2+δ

+ |V1|
2+δ) < ∞ for some δ > 0 and {(Ut , Vt )T } is a sequence of independent and

identically distributed random vectors.

Theorem 1. Suppose model (4) holds with known α0 and coefficients ψ ′

j s satisfying that the linear process
∑

∞

j=0 ψjVt−j is a
strictly stationary process, and either (i) |φ| < 1 independent of n (stationary case), or (ii) φ = 1 − ρ/n for some ρ ̸= 0
(near unit root case), or (iii) φ = 1 (unit root case). Then, under Condition C1, we have −2 log L(β1,0, β2,0)

d
−→ χ2(2),

−2 log LP1(β1,0)
d

−→ χ2(1) and −2 log LP2(β2,0)
d

−→ χ2(1) as n → ∞, where (β1,0, β2,0)T denotes the true value of (β1, β2)T

and
d

−→ denotes the convergence in distribution.

It follows from Theorem 1 that a unified empirical likelihood test rejects the null hypothesis H0 : β1 = β2 = 0 at the
significance level a if −2 log L(0, 0) > χ2

2,1−a, where χ2
2,1−a denotes the (1 − a)th quantile of a chi-squared distribution with

two degrees of freedom. Similarly, unified empirical likelihood tests can be obtained for testing H0 : β1 = 0 and H0 : β2 = 0
based on −2 log LP1(0) and −2 log LP2(0), respectively. A unified interval/region can be obtained as well by Theorem 1.

1 If {ψj} in model (4) satisfies some condition, say
∑

∞

j=0 |ψj| < ∞, it is easy to show that
∑

∞

j=0 ψjVt−j is strictly stationary; see Brockwell and Davis
(1991) on Page 89 for details.
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Remark 1. When {Ut} in (4) is a strictly stationary AR(p)model, Theorem 1 fails due to correlated errors. In this case, we can
follow the idea in Li et al. (2017) to develop some unified empirical likelihood tests and unified jackknife empirical likelihood
tests by taking the structure of U ′

t s into account.

2.2. With an unknown intercept

This section is devoted to considering the model with an unknown intercept α, i.e.,

Yt = α + β1∆Xt−1 + β2Xt−2 + Ut , Xt = θ + φXt−1 +

∞∑
j=0

ψjVt−j (6)

where coefficientsψ ′

j s are assumed to satisfy some condition so that
∑

∞

j=0 ψjVt−j is a strictly stationary process as before. By
the same token, one may simply apply the empirical likelihood method to some weighted score equations. However, when
Xt is nearly integrated and θ = 0, the joint asymptotic distribution of the score equation with respect to α and the weighted
score equation with respect to β2 is no longer a bivariate normal distribution, which makes the Wilks theorem invalid. To
solve this degenerate issue, Zhu et al. (2014) proposed splitting the data into two parts and then using the differencing idea
with a big lag to get rid of the intercept before formulating an empirical likelihood function formodel (1). Here, we generalize
their idea for model (1) to the above model in (6).

Let m = [n/2] and define Ỹt = Yt+m − Yt , X̃t = Xt+m − Xt , Ũt = Ut+m − Ut and Ṽt = Vt+m − Vt , where [·] denotes the
floor function. Then, model (6) implies that

Ỹt = β1∆X̃t−1 + β2X̃t−2 + Ũt , X̃t = φX̃t−1 +

∞∑
j=0

ψjṼt−j, (7)

where∆X̃t−1 = X̃t−1 − X̃t−2. The reason of using difference with a big lag is to ensure |X̃t |
p

→ ∞ when |Xt |
p

→ ∞ as t → ∞.
Like the proposed unified empirical likelihood tests given in Section 2.1, we define the empirical likelihood function for β1
and β2 in the above model (7) as follows:

L̃(β1, β2) = sup

{
m∏

t=3

(mpt ) : p3 ≥ 0, . . . , pm ≥ 0,
m∑

t=3

pt = 1,
m∑

t=3

pt Z̃t (β1, β2) = 0

}
,

where Z̃t (β1, β2) =

(
Z̃t1(β1, β2), Z̃t2(β1, β2)

)T
with Z̃t1(β1, β2) = {Ỹt − β1∆X̃t−1 − β2X̃t−2}∆X̃t−1 and Z̃t2(β1, β2) =

{Ỹt − β1∆X̃t−1 − β2X̃t−2}X̃t−2/

√
1 + X̃2

t−2.
When the interest is in testing H0 : β1 = 0 or H0 : β2 = 0, one considers the profile empirical likelihood function

L̃P1(β1) = maxβ2 L̃(β1, β2) or L̃P2(β2) = maxβ1 L̃(β1, β2), respectively. The following result shows that the Wilks theorem
holds for the above proposed empirical likelihood method.

Theorem 2. Under model (6), Condition C1 and the same conditions on φ and ψ ′

j s as in Theorem 1, we have that −2 log L̃

(β1,0, β2,0)
d

−→ χ2(2), −2 log L̃P1(β1,0)
d

−→ χ2(1) and −2 log L̃P2(β2,0)
d

−→ χ2(1) as n → ∞.

In view of Theorem 2, a unified empirical likelihood test rejects the null hypothesis H0 : β1 = β2 = 0 at the significance
level a for model (6) if −2 log L̃(0, 0) > χ2

2,1−a. Similarly, unified empirical likelihood tests can be obtained for testing
H0 : β1 = 0 and H0 : β2 = 0 for model (6) based on −2 log L̃P1(0) and −2 log L̃P2(0), respectively. Again, a unified
interval/region can be obtained as well by Theorem 2.

2.3. An extension to multiple regressors

When Xt in (4) is a multivariate vector, in which one of variables may be nonstationary and the rest of the variables are
surely stationary, we could simply replace the weight

√
1 + X2

t−2 in (5) by
√
1 + XT

t−2Xt−2 and show that Theorem 1 still
holds. However, this is not true when more than one variables in Xt may be nonstationary. Here, we propose an easy but
inefficient way to extend the model in (4) to the case of a bivariate predicting vector by splitting the data into two parts and
using each part to derive the score equations with respect to each variable in Xt . Therefore, the idea of splitting data here is
different from the previous one, which uses differences to get rid of the intercept before formulating an empirical likelihood
function.

Consider the following model

Yt = α0 + βT
1∆Xt−1 + βT

2 Xt−2 + Ut , Xt = θ + φXt−1 +

∞∑
j=0

ψjVt−j, (8)
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whereβ1,β2,Xt and θ are 2× 1 vector,φ andψ are 2× 2matrix, andα0 is known. Note thatwe alwayswriteβi = (βi,1, βi,2)T .
Similar to the empirical likelihood function formulated in Section 2.1, one may use the following weighted score equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
t=3

{Yt − α0 − βT
1∆Xt−1 − βT

2 Xt−2}∆Xt−1 = 0,

n∑
t=3

{Yt − α0 − βT
1∆Xt−1 − βT

2 Xt−2}
Xt−2,1√

1 + X2
t−2,1

= 0,

n∑
t=3

{Yt − α0 − βT
1∆Xt−1 − βT

2 Xt−2}
Xt−2,2√

1 + X2
t−2,2

= 0.

(9)

As before, the added weights ensure that

both
1
n

n∑
t=3

{
Xt−2,1/

√
1 + X2

t−2,1

}2

and
1
n

n∑
t=3

{
Xt−2,2/

√
1 + X2

t−2,2

}2

converge in probability. However, the normalized product of the right sides of the second and third equations in (9) does
not converge in probability in all cases. More specifically,

1
n

n∑
t=3

{Yt − α0 − β
(0)T
1 ∆Xt−1 − β

(0)T
2 Xt−2}

2 Xt−2,1√
1 + X2

t−2,1

Xt−2,2√
1 + X2

t−2,2

converges in distribution to a nondegenerate random variable rather than in probability to a constant when Xt is nonsta-
tionary and θ = 0 in (8), where β (0)

i to denote the true value of βi. That is, the joint distribution of the normalized right sides
of the score equations in (9) cannot be normal for all cases. Hence, a direct application of the empirical likelihood inference
to the estimating equations in (9) fails to have a chi-squared limit for all cases.

In order to derive a unified inference when α is known, we propose to first splitting the data into two parts and then
applying each part to the score equations with respect to each predicting variable. More specifically, let m = [n/2] and
define for t = 1, . . . ,m⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z̄t,1(β1, β2) = {Yt − α0 − βT
1∆Xt−1 − βT

2 Xt−2}∆Xt−1,1,

Z̄t,2(β1, β2) = {Yt − α0 − βT
1∆Xt−1 − βT

2 Xt−2}
Xt−2,1√

1 + X2
t−2,1

,

Z̄t,3(β1, β2) = {Yt+m − α0 − βT
1∆Xt+m−1 − βT

2 Xt+m−2}∆Xt+m−1,2,

Z̄t,4(β1, β2) = {Yt+m − α0 − βT
1∆Xt+m−1 − βT

2 Xt+m−2}
Xt+m−2,2√

1 + X2
t+m−2,2

,

Z̄t (β1, β2) = (Z̄t,1(β1, β2), . . . , Z̄t,4(β1, β2))T .

It is clear that the first part of data is used to derive scores with respect to β1,1 and β2,1, while the second part of data
constructs scores with respect to β1,2 and β2,2. Now due to the independence of Ut and Ut+m, we have 1

m

∑m
t=3 Z̄t,2(β

(0)
1 , β

(0)
2 )

Z̄t,4(β
(0)
1 , β

(0)
2 )

p
→ 0 as n → ∞, which is necessary to ensure that Wilks theorem holds for the application of the empirical

likelihood method to the above Z̄t (β1, β2), t = 3, . . . ,m.
Define the empirical likelihood function for β1 and β2 as

L̄(β1, β2) = sup

{
m∏

t=3

(mpt ) : p3 ≥ 0, . . . , pm ≥ 0,
m∑

t=3

pt = 1,
m∑

t=3

pt Z̄t (β1, β2) = 0

}
.

To prove the Wilks theorem, we need the following regularity conditions:

D1. E(|U1|
2+δ

+ |V1,1|
2+δ

+ |V1,2|
2+δ) < ∞ for some δ > 0 and {(Ut , Vt )T } is a sequence of independent and identically

distributed random vector with means zero.
D2. {ψt} satisfies that {

∑
∞

j=0 ψjVt−j} is a strictly stationary process.
D3. Either φ given in (8) satisfies that |I2 − γφ| ̸= 0 for all |γ | ≤ 1 (stationary), or φ = I2 − ρ/n, where I2 denotes the

2 × 2 identity matrix and ρ is a 2 × 2 matrix (unit root or nearly integrated).

Theorem 3. Under model (8) and Conditions D1–D3, we have that −2 log L̄(β (0)
1 , β

(0)
2 )

d
−→ χ2(4) as n → ∞.
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The consequence of Theorem 3 is that a unified empirical likelihood test rejects the null hypothesis H0 : (βT
1 , β

T
2 )

T
= 0

at the significance level a for model (8) if −2 log L̄(0, 0) > χ2
4,1−a. If one is interested in testing H0 : β1,1 = 0, then a

unified empirical likelihood test is based on the profile empirical likelihood ratio −2 log(maxβ1,2,β2 L̄(β1, β2)), which has a
chi-squared distribution with one degree of freedom under the null hypothesis. Similarly, a unified empirical likelihood test
can be obtained for testing other null hypotheses such as H0 : β1 = 0 or H0 : β2 = 0.

Remark 2. When Xt is a d-dimensional vector, which may be nonstationary for each variable, the above proposed unified
test has to split the data into d parts and use each part to construct score equations with respect to each variable in Xt , which
becomes quite inefficient. Moreover, when the intercept α is unknown, getting rid of the intercept via differencing is needed
too. Therefore, developing an efficient unified predictability test for a multivariate predictive regression is challenging and
is believed to be beyond the scope of this paper. This will be one of our future research projects.

3. A simulation study

In this section, we investigate the finite sample performance of the proposed unified tests for predictive regressions using
simulated data sets.

Let {(Ut , Vt )T }nt=1 be a random sample from a bivariate Gaussian Copula C(F1(Ut ), F2(Vt ), η), where the marginal distribu-
tion Fi is a Student’s t distribution with degrees of freedom νi for i = 1,2. The dependence parameter is set to be η = −0.5,
which captures the correlation between two innovations. The negative sign is based on a real example of predicting the stock
return by the log dividend-price or the log earning-price in Cai and Wang (2014). For copula models and their applications,
we refer to the books by Joe (1997), Jaworski et al. (2013, 2010). We take ν1 = 5 and ν2 = 4 and choose ψj = 1 for
j = 0, . . . , q − 1 and ψj = 0 for j ≥ qwith q = 1 or 5 in

∑
∞

j=0 ψjVt−j, θ = 0, α = 1, φ = 0.9 or 1 − 2/n or 1 with n = 200 or
500 or 2,000 in either model (4) or (6). For testing H0 : β1 = 0 in either model (4) or model (6), we consider β2 = 0.5 and
β1 = d/n0.5 for d = 0,±1,±2,±3,±4. On the other hand, for testing H0 : β2 = 0 in either model (4) or (6), we consider
β1 = 0.5 and β2 = d/

√
n for d = 0,±1,±2,±3,±4 when φ = 0.9, and β1 = 0.5 and β2 = d/n for d = 0,±2,±4,±6,±8

when φ = 1 − 2/n and 1. Therefore, results for d = 0 and d ̸= 0 represent the empirical sizes and empirical powers of the
proposed unified tests, respectively.

By drawing 10,000 random samples from either model (4) or model (6) under the above settings, we compute the unified
profile empirical likelihood functions for testing H0 : β1 = 0 and H0 : β2 = 0 in Theorems 1 and 2 by using the package
‘‘emplik" in the statistical software R, and report the empirical sizes and powers in Tables 1–8. From these tables, we could
summarize our observations as follows. Firstly, the test for H0 : β2 = 0 has an accurate size for all sample sizes considered,
but the test for H0 : β1 = 0 does not have an accurate size when n = 200, which is because β2 is estimated at the rate of
n−1 while β1 is estimated at the rate of n−1/2. Secondly, tests based on Theorem 1 are more powerful than those based on
Theorem 2 due to the employed technique of splitting data into two parts to get rid of the intercept. Thirdly, the proposed
unified tests have an overall satisfactory power and their powers become larger as the alternative hypothesis is far away
from the null hypothesis. Furthermore, for testing H0 : β2 = 0, the test for the case of unit root is more powerful than that
for the nearly integrated case. Finally, results for q = 1 and q = 5 show that our method is robust against the dependent or
independent errors in modeling the predicting variable.

4. A real example

This section is devoted to applying the proposed unified tests to testing the predictability of the asset returns with some
U.S. equity data, where the sample period is January 1927 to December 2012 with monthly data as in Kostakis et al. (2015).
The predicted variable is the CRSP value-weighted excess returns and some predicting variables are the difference between
the log of dividends and the log of earnings (dividend payout ratio), the long-term US government bond yield (long-term
yield), the difference between the log of dividends and the log of the lagged prices (dividend yield), the difference between
the log of dividends and the log of stock prices (dividend price ratio), the 3-month US Treasury bill rate (T-bill rate), the
difference between the log of earnings and the log of prices (earnings price ratio), the ratio of book value to market value for
the Dow Jones Industrial Average (book-to-Market value ratio), the difference between the BAA and AAA-rated corporate
bond yields (default yield spread), the ratio of 12-month moving sum of net equity issues by NYSE listed stocks divided by
the total end-of-year market capitalization of these stocks (net equity expansion), and the difference between the long-term
yield and the T-bill rate (term spread).

Before applying the proposed unified tests to the above data, we examine whether both U ′
t s and V ′

t s in models (4) and (6)
are uncorrelated. By fitting model (6) with the least squares estimate, we plot the autocorrelation functions of the estimated
U ′
t s for the period 1/1927–12/2012 and the period 1/1952–12/2012, which suggest that the assumption of uncorrelated U ′

t s
in model (6) is reasonable for the period 1/1952–12/2012. Therefore our study will focus on the period 1/1952–12/2012.
Plots of the autocorrelation functions also show that the assumption of uncorrelated U ′

t s in model (4) with known α0 = 0
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Table 1
Empirical sizes and powers for the test based on Theorem 1 and model (4) with θ = 0 and known α = 1 for
testing H0 : β1 = 0 vs Ha : β1 ̸= 0.We take ψ0 = 1 and ψj = 0 for j ≥ 1 in

∑
∞

j=0 ψjVt−j .

(β1, φ) n = 200 n = 500 n = 2000

10% 5% 10% 5% 10% 5%

(0, 0.9) 0.12 0.07 0.11 0.06 0.10 0.05
(− 1

√
n , 0.9) 0.30 0.21 0.30 0.21 0.30 0.19

( 1
√
n , 0.9) 0.33 0.23 0.31 0.21 0.30 0.20

(− 2
√
n , 0.9) 0.69 0.58 0.69 0.57 0.70 0.57

( 2
√
n , 0.9) 0.71 0.60 0.70 0.58 0.70 0.58

(− 3
√
n , 0.9) 0.92 0.86 0.93 0.87 0.94 0.90

( 3
√
n , 0.9) 0.92 0.88 0.93 0.88 0.94 0.90

(− 4
√
n , 0.9) 0.98 0.97 0.99 0.98 0.99 0.99

( 4
√
n , 0.9) 0.99 0.90 0.99 0.98 0.99 0.99

(0, 1 −
2
n ) 0.12 0.06 0.11 0.06 0.10 0.05

(− 1
√
n , 1 −

2
n ) 0.30 0.21 0.30 0.20 0.30 0.20

( 1
√
n , 1 −

2
n ) 0.33 0.23 0.32 0.21 0.30 0.21

(− 2
√
n , 1 −

2
n ) 0.69 0.58 0.69 0.58 0.70 0.58

( 2
√
n , 1 −

2
n ) 0.71 0.60 0.70 0.59 0.70 0.59

(− 3
√
n , 1 −

2
n ) 0.92 0.86 0.93 0.88 0.94 0.90

( 3
√
n , 1 −

2
n ) 0.93 0.88 0.94 0.89 0.94 0.90

(− 4
√
n , 1 −

2
n ) 0.98 0.97 0.99 0.98 1.00 0.99

( 4
√
n , 1 −

2
n ) 0.99 0.97 0.99 0.98 0.99 0.99

(0, 1) 0.12 0.06 0.11 0.06 0.10 0.05
(− 1

√
n , 1) 0.30 0.21 0.30 0.20 0.30 0.19

( 1
√
n , 1) 0.33 0.23 0.32 0.22 0.30 0.21

(− 2
√
n , 1) 0.69 0.58 0.69 0.58 0.70 0.58

( 2
√
n , 1) 0.72 0.61 0.70 0.60 0.70 0.59

(− 3
√
n , 1) 0.92 0.86 0.93 0.88 0.94 0.90

( 3
√
n , 1) 0.93 0.88 0.94 0.89 0.94 0.90

(− 4
√
n , 1) 0.98 0.97 0.99 0.98 0.99 0.99

( 4
√
n , 1) 0.99 0.97 0.99 0.98 0.99 0.99

is reasonable, and confirms the setting for the considered predicting variables is suitable. To save space as suggested by a
reviewer, we only report the autocorrelation function for the predicting variable, dividend payout ratio in Fig. 1. Other plots
are available upon request.

Next, we employ our proposed unified tests to model (4) with known α0 = 0 and to model (6) with unknown α for
the period 1/1952–12/2012. P-values for testing H0 : β1 = 0, H0 : β2 = 0 and H0 : β1 = β2 = 0 are reported in
Tables 9 and 10, respectively. Results in Table 9 show predictability for each predicting variable, while results in Table 10
show no predictability except the difference of the long-term yield. This finding shows that a small intercept can change the
predictability dramaticallywhen the predicting variable is nearly integrated. Thismay be due to the drawback of ourmethod
in Theorem2,which requires splitting the data into two parts so that efficiency is reduced.Without doubt, it is important and
challenging to derive a unified test for testing zero intercept regardless of the predicting variable being stationary or nearly
integrated or unit root, which iswarranted as one of future research projects. On the other hand, results in Table 10 are in line
with the conclusion of no predictability at level 5% for the considered predicting variables in Table 6 of Kostakis et al. (2015),
which studies model (6) without the term ∆Xt−1. However, they found predictability for the predicting variables of T-bill
rate and term spread at level 10%. Therefore, it remains interesting to extend the IVX-based test in Kostakis et al. (2015) to
the largermodel (6) and to seewhether the predictability for these two predicting variables at level 10%will disappear due to
the fact that an additional parameter has to be estimated. Since the IVXmethod involves the construction of an instrumental
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Table 2
Empirical sizes and powers for the test based on Theorem 1 and model (4) with θ = 0 and known α = 1 for
testing H0 : β1 = 0 vs Ha : β1 ̸= 0.We take ψ0 = · · · = ψ4 = 1 and ψj = 0 for j ≥ 5 in

∑
∞

j=0 ψjVt−j .

(β1, φ) n = 200 n = 500 n = 2000

10% 5% 10% 5% 10% 5%

(0, 0.9) 0.12 0.07 0.12 0.06 0.10 0.05
(− 1

√
n , 0.9) 0.31 0.21 0.30 0.20 0.30 0.19

( 1
√
n , 0.9) 0.32 0.22 0.31 0.21 0.30 0.20

(− 2
√
n , 0.9) 0.68 0.57 0.69 0.58 0.70 0.58

( 2
√
n , 0.9) 0.70 0.59 0.69 0.58 0.70 0.58

(− 3
√
n , 0.9) 0.91 0.86 0.93 0.88 0.94 0.89

( 3
√
n , 0.9) 0.92 0.87 0.93 0.88 0.94 0.89

(− 4
√
n , 0.9) 0.98 0.97 0.99 0.98 0.99 0.98

( 4
√
n , 0.9) 0.98 0.97 0.99 0.98 0.99 0.99

(0, 1 −
2
n ) 0.12 0.07 0.11 0.06 0.10 0.05

(− 1
√
n , 1 −

2
n ) 0.31 0.21 0.30 0.20 0.30 0.20

( 1
√
n , 1 −

2
n ) 0.33 0.22 0.31 0.22 0.31 0.20

(− 2
√
n , 1 −

2
n ) 0.69 0.58 0.69 0.58 0.70 0.59

( 2
√
n , 1 −

2
n ) 0.70 0.55 0.70 0.59 0.71 0.59

(− 3
√
n , 1 −

2
n ) 0.92 0.86 0.93 0.88 0.95 0.90

( 3
√
n , 1 −

2
n ) 0.93 0.88 0.94 0.88 0.94 0.90

(− 4
√
n , 1 −

2
n ) 0.98 0.97 0.99 0.98 0.99 0.99

( 4
√
n , 1 −

2
n ) 0.99 0.97 0.99 0.98 0.99 0.99

(0, 1) 0.12 0.07 0.11 0.06 0.10 0.05
(− 1

√
n , 1) 0.31 0.21 0.30 0.20 0.30 0.20

( 1
√
n , 1) 0.33 0.22 0.32 0.22 0.31 0.20

(− 2
√
n , 1) 0.68 0.57 0.69 0.58 0.70 0.59

( 2
√
n , 1) 0.71 0.60 0.71 0.59 0.71 0.59

(− 3
√
n , 1) 0.92 0.86 0.93 0.88 0.94 0.90

( 3
√
n , 1) 0.93 0.88 0.94 0.89 0.94 0.90

(− 4
√
n , 1) 0.99 0.97 0.99 0.98 0.99 0.99

( 4
√
n , 1) 0.99 0.97 0.99 0.98 0.99 0.99

variable, such an extension to the larger model (6) is non-trivial at all although we expect the power of the IVX-based test
might be reduced because of the larger model.

To compare with results in Campbell and Yogo (2006), we also apply our unified tests to the period 1/1952–12/2002,
and report P-values in Tables 11 and 12. Again, when intercept is assumed to be known zero, results in Table 11 show
predictability for each predicting variable. When the intercept is assumed to be unknown, unlike Table 10 for the longer
period 1/1952–12/2012, results in Table 12 show that the CRSP value-weighted excess return can be predicted by the T-bill
rate and its difference, the term spread and its difference, the difference of the long-term yield, and the difference of the
net equity expansion. For model (1), Campbell and Yogo (2006) found predictability for T-bill rate and no predictability
for dividend price ratio and earnings price ratio, which are in line with corresponding results in Table 12. On the other
hand, they found predictability for the default yield spread while the corresponding result in Table 12 does not lead to this
predictability.

5. Proofs

We provide only the proof of Theorem 1 under the following setting:

θ = 0, φ = 1 − ρ/n for some ρ ∈ R (10)
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Table 3
Empirical sizes and powers for the test based on Theorem 2 and model (6) with θ = 0 and unknown α for
testing H0 : β1 = 0 vs Ha : β1 ̸= 0.We take ψ0 = 1 and ψj = 0 for j ≥ 1 in

∑
∞

j=0 ψjVt−j .

(β1, φ) n = 200 n = 500 n = 2000

10% 5% 10% 5% 10% 5%

(0, 0.9) 0.13 0.07 0.11 0.06 0.11 0.06
(− 1

√
n , 0.9) 0.22 0.14 0.21 0.13 0.20 0.12

( 1
√
n , 0.9) 0.24 0.15 0.22 0.14 0.21 0.13

(− 2
√
n , 0.9) 0.47 0.35 0.47 0.35 0.45 0.33

( 2
√
n , 0.9) 0.49 0.38 0.48 0.35 0.47 0.34

(− 3
√
n , 0.9) 0.72 0.61 0.73 0.62 0.74 0.62

( 3
√
n , 0.9) 0.74 0.63 0.74 0.63 0.75 0.64

(− 4
√
n , 0.9) 0.89 0.82 0.90 0.84 0.91 0.85

( 4
√
n , 0.9) 0.90 0.84 0.91 0.85 0.91 0.85

(0, 1 −
2
n ) 0.13 0.07 0.11 0.06 0.11 0.05

(− 1
√
n , 1 −

2
n ) 0.22 0.14 0.21 0.13 0.20 0.12

( 1
√
n , 1 −

2
n ) 0.24 0.15 0.22 0.14 0.21 0.13

(− 2
√
n , 1 −

2
n ) 0.47 0.35 0.47 0.35 0.46 0.33

( 2
√
n , 1 −

2
n ) 0.50 0.38 0.49 0.36 0.47 0.35

(− 3
√
n , 1 −

2
n ) 0.72 0.62 0.73 0.62 0.74 0.63

( 3
√
n , 1 −

2
n ) 0.74 0.64 0.75 0.64 0.75 0.65

(− 4
√
n , 1 −

2
n ) 0.89 0.83 0.90 0.84 0.91 0.85

( 4
√
n , 1 −

2
n ) 0.91 0.85 0.91 0.85 0.92 0.86

(0, 1) 0.13 0.07 0.11 0.06 0.11 0.05
(− 1

√
n , 1) 0.21 0.13 0.20 0.13 0.20 0.12

( 1
√
n , 1) 0.24 0.16 0.22 0.14 0.21 0.13

(− 2
√
n , 1) 0.46 0.34 0.46 0.35 0.45 0.33

( 2
√
n , 1) 0.51 0.39 0.50 0.37 0.48 0.35

(− 3
√
n , 1) 0.71 0.61 0.73 0.62 0.74 0.63

( 3
√
n , 1) 0.75 0.65 0.75 0.65 0.76 0.65

(− 4
√
n , 1) 0.89 0.82 0.90 0.84 0.91 0.85

( 4
√
n , 1) 0.85 0.96 0.91 0.86 0.92 0.86

since proofs for other cases are similar and sometimes simpler. For example, when {Xt} is stationary, Theorems 1 and 2 can
be shown easily by using the weak law of large numbers and central limit theorem for martingales in Hall and Heyde (1980)
and the standard arguments in proving the profile empirical likelihood method based on estimating equations in Qin and
Lawless (1994). Before proving Theorem 1, we need some lemmas.

Lemma 1. Under conditions of Theorem 1 and (10), we have that

1
√
n

n∑
t=3

Zt1(β1,0, β2,0) =
1

√
n

n∑
t=3

Ut{

∞∑
j=0

ψjVt−1−j} + op(1)

and

1
√
n

n∑
t=3

Zt2(β1,0, β2,0) = {
1

√
n

n∑
t=3

Ut}
Xn−2√

1 + X2
n−2

+ op(1).
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Table 4
Empirical sizes and powers for the test based on Theorem 2 and model (6) with θ = 0 and unknown α for
testing H0 : β1 = 0 vs Ha : β1 ̸= 0.We take ψ0 = · · · = ψ4 = 1 and ψj = 0 for j ≥ 5 in

∑
∞

j=0 ψjVt−j .

(β1, φ) n = 200 n = 500 n = 2000

10% 5% 10% 5% 10% 5%

(0, 0.9) 0.12 0.07 0.11 0.06 0.10 0.05
(− 1

√
n , 0.9) 0.22 0.14 0.20 0.13 0.20 0.12

( 1
√
n , 0.9) 0.24 0.16 0.22 0.14 0.21 0.13

(− 2
√
n , 0.9) 0.46 0.35 0.46 0.34 0.46 0.33

( 2
√
n , 0.9) 0.49 0.37 0.47 0.36 0.46 0.33

(− 3
√
n , 0.9) 0.72 0.62 0.72 0.61 0.74 0.63

( 3
√
n , 0.9) 0.74 0.63 0.74 0.63 0.74 0.63

(− 4
√
n , 0.9) 0.89 0.83 0.90 0.84 0.91 0.85

( 4
√
n , 0.9) 0.90 0.84 0.91 0.85 0.92 0.85

(0, 1 −
2
n ) 0.12 0.07 0.11 0.06 0.10 0.05

(− 1
√
n , 1 −

2
n ) 0.22 0.14 0.20 0.13 0.20 0.12

( 1
√
n , 1 −

2
n ) 0.24 0.16 0.22 0.14 0.22 0.13

(− 2
√
n , 1 −

2
n ) 0.47 0.35 0.46 0.35 0.46 0.34

( 2
√
n , 1 −

2
n ) 0.49 0.38 0.48 0.36 0.47 0.35

(− 3
√
n , 1 −

2
n ) 0.73 0.62 0.73 0.62 0.75 0.64

( 3
√
n , 1 −

2
n ) 0.75 0.65 0.75 0.64 0.75 0.64

(− 4
√
n , 1 −

2
n ) 0.89 0.83 0.91 0.84 0.92 0.86

( 4
√
n , 1 −

2
n ) 0.91 0.85 0.91 0.85 0.92 0.86

(0, 1) 0.12 0.07 0.11 0.06 0.10 0.05
(− 1

√
n , 1) 0.22 0.14 0.20 0.12 0.20 0.12

( 1
√
n , 1) 0.25 0.17 0.22 0.14 0.21 0.13

(− 2
√
n , 1) 0.45 0.34 0.46 0.34 0.45 0.33

( 2
√
n , 1) 0.50 0.39 0.49 0.37 0.47 0.35

(− 3
√
n , 1) 0.72 0.61 0.72 0.61 0.74 0.63

( 3
√
n , 1) 0.76 0.65 0.75 0.65 0.75 0.64

(− 4
√
n , 1) 0.89 0.82 0.90 0.84 0.92 0.85

( 4
√
n , 1) 0.91 0.85 0.91 0.86 0.92 0.86

Proof. It follows from Phillips (1987) that under (10),

1
√
n
X[nr] ⇒ Jρ(r) in the space D[0, 1], (11)

where Jρ(r) =
∫ r
0 e−(r−s)ρdW (s) andW (s) is a centered Brownian process. Indeed, Jρ(·) is a geometric Brownian process. Here,

‘‘⇒" denotes the weak convergence and the space D[0, 1] is the collection of real-valued functions on [0, 1] which are right
continuous with left limits; see Billingsley (1999) for details. By (11), we can write that

1
√
n

n∑
t=3

Zt1(β1,0, β2,0) =
1

√
n

n∑
t=3

Ut (Xt−1 − Xt−2)

=
1

√
n

n∑
t=3

Ut{

∞∑
j=0

ψjVt−1−j −
ρ

n
Xt−2}

=
1

√
n

n∑
t=3

Ut{

∞∑
j=0

ψjVt−1−j} + op(1)

(12)
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Table 5
Empirical sizes and powers for the test based on Theorem 1 and model (4) with θ = 0 and known α = 1 for
testing H0 : β2 = 0 vs Ha : β2 ̸= 0.We take ψ0 = 1 and ψj = 0 for j ≥ 1 in

∑
∞

j=0 ψjVt−j .

(β2, φ) n = 200 n = 500 n = 2000

10% 5% 10% 5% 10% 5%

(0, 0.9) 0.10 0.05 0.10 0.05 0.10 0.05
(− 1

√
n , 0.9) 0.64 0.53 0.66 0.55 0.67 0.55

( 1
√
n , 0.9) 0.68 0.55 0.69 0.57 0.69 0.57

(− 2
√
n , 0.9) 0.96 0.93 0.98 0.96 0.99 0.98

( 2
√
n , 0.9) 0.99 0.98 1.00 0.99 1.00 0.99

(− 3
√
n , 0.9) 1.00 0.99 1.00 1.00 1.00 1.00

( 3
√
n , 0.9) 1.00 1.00 1.00 1.00 1.00 1.00

(− 4
√
n , 0.9) 1.00 1.00 1.00 1.00 1.00 1.00

( 4
√
n , 0.9) 1.00 1.00 1.00 1.00 1.00 1.00

(0, 1 −
2
n ) 0.10 0.05 0.10 0.05 0.10 0.05

(− 2
n , 1 −

2
n ) 0.24 0.16 0.24 0.16 0.23 0.16

( 2n , 1 −
2
n ) 0.19 0.11 0.18 0.10 0.17 0.10

(− 4
n , 1 −

2
n ) 0.44 0.35 0.45 0.36 0.44 0.35

( 4n , 1 −
2
n ) 0.46 0.33 0.45 0.33 0.44 0.31

(− 6
n , 1 −

2
n ) 0.62 0.54 0.64 0.55 0.62 0.54

( 6n , 1 −
2
n ) 0.73 0.62 0.72 0.61 0.72 0.60

(− 8
n , 1 −

2
n ) 0.76 0.69 0.75 0.69 0.76 0.69

( 8n , 1 −
2
n ) 0.88 0.81 0.88 0.81 0.88 0.80

(0, 1) 0.10 0.05 0.10 0.05 0.10 0.05
(− 2

n , 1) 0.36 0.28 0.37 0.29 0.36 0.28

( 2n , 1) 0.32 0.22 0.32 0.21 0.32 0.21

(− 4
n , 1) 0.60 0.53 0.61 0.53 0.61 0.53

( 4n , 1) 0.70 0.59 0.70 0.60 0.69 0.58

(− 6
n , 1) 0.76 0.70 0.76 0.70 0.75 0.70

( 6n , 1) 0.89 0.83 0.88 0.82 0.88 0.82

(− 8
n , 1) 0.86 0.81 0.85 0.80 0.85 0.81

( 8n , 1) 0.96 0.92 0.95 0.92 0.96 0.93

and

1
√
n

n∑
t=3

Zt2(β1,0, β2,0) =
1

√
n

n∑
t=3

{

t∑
j=1

Uj −

t−1∑
j=1

Uj}
Xt−2√

1 + X2
t−2

=
1

√
n

n∑
j=1

Uj
Xn−2√

1 + X2
n−2

+
1

√
n

n−1∑
t=3

{

t∑
j=1

Uj}
Xt−2√

1 + X2
t−2

−
1

√
n

n∑
t=3

{

t−1∑
j=1

Uj}
Xt−2√

1 + X2
t−2

= {
1

√
n

n∑
t=3

Ut}
Xn−2√

1 + X2
n−2

+
1

√
n

n−1∑
t=3

{

t∑
j=1

Uj}{
Xt−2√

1 + X2
t−2

−
Xt−1√

1 + X2
t−1

} + op(1).

(13)

It follows from Taylor expansion that

Xt−2√
1 + X2

t−2

−
Xt−1√

1 + X2
t−1

= (1 + ξ 2t )
−3/2(Xt−2 − Xt−1), (14)
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Table 6
Empirical sizes and powers for the test based on Theorem 1 and model (4) with θ = 0 and known α = 1 for
testing H0 : β2 = 0 vs Ha : β2 ̸= 0.We take ψ0 = · · · = ψ4 = 1 and ψj = 0 for j ≥ 5 in

∑
∞

j=0 ψjVt−j .

(β2, φ) n = 200 n = 500 n = 2000

10% 5% 10% 5% 10% 5%

(0, 0.9) 0.10 0.05 0.10 0.05 0.10 0.05
(− 1

√
n , 0.9) 0.64 0.53 0.66 0.55 0.66 0.55

( 1
√
n , 0.9) 0.68 0.55 0.60 0.57 0.69 0.57

(− 2
√
n , 0.9) 0.95 0.93 0.98 0.96 0.99 0.98

( 2
√
n , 0.9) 0.99 0.98 1.00 0.99 1.00 0.99

(− 3
√
n , 0.9) 1.00 1.00 1.00 1.00 1.00 1.00

( 3
√
n , 0.9) 1.00 1.00 1.00 1.00 1.00 1.00

(− 4
√
n , 0.9) 1.00 1.00 1.00 1.00 1.00 1.00

( 4
√
n , 0.9) 1.00 1.00 1.00 1.00 1.00 1.00

(0, 1 −
2
n ) 0.10 0.05 0.11 0.06 0.10 0.05

(− 2
n , 1 −

2
n ) 0.24 0.16 0.23 0.16 0.24 0.16

( 2n , 1 −
2
n ) 0.18 0.11 0.18 0.10 0.18 0.11

(− 4
n , 1 −

2
n ) 0.46 0.37 0.45 0.35 0.44 0.35

( 4n , 1 −
2
n ) 0.47 0.34 0.45 0.32 0.44 0.31

(− 6
n , 1 −

2
n ) 0.63 0.55 0.63 0.54 0.62 0.54

( 6n , 1 −
2
n ) 0.73 0.62 0.72 0.60 0.72 0.61

(− 8
n , 1 −

2
n ) 0.76 0.70 0.76 0.69 0.76 0.69

( 8n , 1 −
2
n ) 0.88 0.81 0.89 0.82 0.88 0.81

(0, 1) 0.10 0.05 0.11 0.05 0.10 0.05
(− 2

n , 1) 0.36 0.28 0.36 0.28 0.36 0.28

( 2n , 1) 0.33 0.22 0.32 0.21 0.32 0.21

(− 4
n , 1) 0.61 0.53 0.60 0.53 0.60 0.53

( 4n , 1) 0.71 0.60 0.70 0.60 0.69 0.59

(− 6
n , 1) 0.76 0.70 0.76 0.70 0.76 0.70

( 6n , 1) 0.89 0.83 0.88 0.82 0.88 0.82

(− 8
n , 1) 0.86 0.82 0.86 0.81 0.85 0.81

( 8n , 1) 0.96 0.93 0.96 0.93 0.96 0.93

where ξt lies between Xt−2 and Xt−1. By (11), we have |Xt−2|/ta
p

→ ∞, |Xt−1|/ta
p

→ ∞ and |Xt−2 − Xt−1|/ta
p

→ 0 for any
a ∈ (0, 1/2) as t → ∞, which imply that

|ξt |/ta
p

→ ∞ for any a ∈ (0, 1/2) as t → ∞. (15)

By (11), (13)–(15), we have

1
√
n

n∑
t=3

Zt2(β1,0, β2,0) = {
1

√
n

n∑
t=3

Ut}
Xn−2√

1 + X2
n−2

+ op(1). (16)

Hence, the lemma follows from (12) and (16). □

Lemma 2. Under conditions of Theorem 1 and (10), we have that as n → ∞

1
n

n∑
t=3

Zt (β1,0, β2,0)ZT
t (β1,0, β2,0)

p
−→ Σ =

(
E(U2

1 )E(
∑

∞

j=0 ψj V−j)2 0
0 E(U2

1 )

)
,

where
p

−→ denotes the convergence in probability.
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Table 7
Empirical sizes and powers for the test based on Theorem 2 and model (6) with θ = 0 and unknown α for
testing H0 : β2 = 0 vs Ha : β2 ̸= 0.We take ψ0 = 1 and ψj = 0 for j ≥ 1 in

∑
∞

j=0 ψjVt−j .

(β2, φ) n = 200 n = 500 n = 2000

10% 5% 10% 5% 10% 5%

(0, 0.9) 0.11 0.06 0.10 0.05 0.10 0.05
(− 1

√
n , 0.9) 0.43 0.32 0.43 0.33 0.43 0.31

( 1
√
n , 0.9) 0.43 0.30 0.44 0.31 0.43 0.31

(− 2
√
n , 0.9) 0.81 0.74 0.84 0.77 0.88 0.81

( 2
√
n , 0.9) 0.89 0.81 0.92 0.85 0.92 0.86

(− 3
√
n , 0.9) 0.95 0.92 0.98 0.96 0.99 0.98

( 3
√
n , 0.9) 0.99 0.98 1.00 0.99 1.00 1.00

(− 4
√
n , 0.9) 0.99 0.98 1.00 1.00 1.00 1.00

( 4
√
n , 0.9) 1.00 1.00 1.00 1.00 1.00 1.00

(0, 1 −
2
n ) 0.10 0.05 0.09 0.05 0.09 0.05

(− 2
n , 1 −

2
n ) 0.14 0.07 0.13 0.07 0.13 0.07

( 2n , 1 −
2
n ) 0.15 0.08 0.15 0.08 0.13 0.07

(− 4
n , 1 −

2
n ) 0.25 0.17 0.24 0.15 0.24 0.16

( 4n , 1 −
2
n ) 0.29 0.18 0.28 0.17 0.27 0.17

(− 6
n , 1 −

2
n ) 0.38 0.29 0.38 0.29 0.36 0.27

( 6n , 1 −
2
n ) 0.45 0.33 0.45 0.33 0.45 0.32

(− 8
n , 1 −

2
n ) 0.51 0.42 0.50 0.42 0.50 0.41

( 8n , 1 −
2
n ) 0.63 0.51 0.63 0.51 0.61 0.49

(0, 1) 0.11 0.06 0.10 0.05 0.11 0.06
(− 2

n , 1) 0.15 0.08 0.15 0.08 0.14 0.08

( 2n , 1) 0.23 0.14 0.22 0.14 0.22 0.13

(− 4
n , 1) 0.30 0.22 0.30 0.21 0.30 0.21

( 4n , 1) 0.45 0.33 0.44 0.32 0.44 0.32

(− 6
n , 1) 0.46 0.37 0.47 0.38 0.46 0.37

( 6n , 1) 0.64 0.53 0.65 0.54 0.64 0.53

(− 8
n , 1) 0.60 0.52 0.59 0.52 0.60 0.50

( 8n , 1) 0.78 0.69 0.79 0.70 0.78 0.69

Proof. Let Dt = U2
t (Xt−1 − Xt−2). Using (11), (14) and (15), we can show that

1
n

n∑
t=3

Z2
t1(β1,0, β2,0) =

1
n

n∑
t=3

U2
t (

∞∑
j=0

ψjVt−1−j −
ρ

n
Xt−2)2

=
1
n

n∑
t=3

U2
t (

∞∑
j=0

ψjVt−1−j)2 + op(1) = E(U2
1 )E(

∞∑
j=0

ψjV−j)2 + op(1),

and

1
n

n∑
t=3

Z2
t2(β1,0, β2,0) =

1
n

n∑
t=3

U2
t

X2
t−2

1 + X2
t−2

=
1
n

n∑
t=3

U2
t + op(1) = E(U2

1 ) + op(1),

as well as

1
n

n∑
t=3

Zt1(β1,0, β2,0)Zt2(β1,0, β2,0)

=
1
n

n∑
t=3

U2
t (Xt−1 − Xt−2)

Xt−2√
1 + X2

t−2
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Table 8
Empirical sizes and powers for the test based on Theorem 2 and model (6) with θ = 0 and unknown α for
testing H0 : β2 = 0 vs Ha : β2 ̸= 0.We take ψ0 = · · · = ψ4 = 1 and ψj = 0 for j ≥ 5 in

∑
∞

j=0 ψjVt−j .

(β2, φ) n = 200 n = 500 n = 2000

10% 5% 10% 5% 10% 5%

(0, 0.9) 0.11 0.06 0.10 0.05 0.10 0.05
(− 1

√
n , 0.9) 0.42 0.33 0.44 0.33 0.44 0.32

( 1
√
n , 0.9) 0.43 0.30 0.43 0.31 0.43 0.31

(− 2
√
n , 0.9) 0.81 0.73 0.84 0.77 0.88 0.81

( 2
√
n , 0.9) 0.89 0.81 0.92 0.85 0.92 0.85

(− 3
√
n , 0.9) 0.95 0.92 0.98 0.96 0.99 0.98

( 3
√
n , 0.9) 0.99 0.98 1.00 0.99 1.00 1.00

(− 4
√
n , 0.9) 0.99 0.98 1.00 1.00 1.00 1.00

( 4
√
n , 0.9) 1.00 1.00 1.00 1.00 1.00 1.00

(0, 1 −
2
n ) 0.10 0.05 0.10 0.05 0.09 0.05

(− 2
n , 1 −

2
n ) 0.14 0.08 0.13 0.07 0.14 0.08

( 2n , 1 −
2
n ) 0.15 0.09 0.14 0.08 0.14 0.07

(− 4
n , 1 −

2
n ) 0.24 0.16 0.23 0.15 0.25 0.16

( 4n , 1 −
2
n ) 0.28 0.18 0.27 0.17 0.26 0.17

(− 6
n , 1 −

2
n ) 0.38 0.29 0.38 0.28 0.37 0.28

( 6n , 1 −
2
n ) 0.46 0.34 0.46 0.33 0.45 0.32

(− 8
n , 1 −

2
n ) 0.51 0.42 0.51 0.42 0.50 0.41

( 8n , 1 −
2
n ) 0.63 0.51 0.63 0.51 0.61 0.49

(0, 1) 0.11 0.06 0.10 0.05 0.11 0.06
(− 2

n , 1) 0.15 0.08 0.15 0.08 0.15 0.08

( 2n , 1) 0.23 0.15 0.22 0.14 0.22 0.14

(− 4
n , 1) 0.30 0.22 0.29 0.21 0.30 0.21

( 4n , 1) 0.45 0.33 0.44 0.33 0.43 0.31

(− 6
n , 1) 0.46 0.38 0.46 0.38 0.46 0.38

( 6n , 1) 0.63 0.53 0.64 0.53 0.64 0.53

(− 8
n , 1) 0.60 0.52 0.60 0.52 0.60 0.52

( 8n , 1) 0.78 0.69 0.79 0.70 0.78 0.69

Table 9
P-values for testing H0 : β1 = 0, H0 : β2 = 0 and H0 : β1 = β2 = 0 for model (4) with known
α0 = 0 for the period 1/1952–12/2012.
Regressor H0 : β1 = 0 H0 : β2 = 0 H0 : β1 = β2 = 0

Dividend payout ratio 0.1316 0.0049 0.0097
Long-term yield 0.0155 0.0085 0.0013
Dividend yield 0.5236 0.0007 0.0032
Dividend price ratio 0.2418 0.0010 0.0002
T-bill rate 0.0090 0.0608 0.0053
Earnings price ratio 0.6748 0.0008 0.0035
Book-to-Market value ratio 0.2458 0.0006 0.0002
Default yield spread 0.6182 0.0032 0.0129
Net equity expansion 0.0956 0.0477 0.0301
Term spread 0.1459 0.0007 0.0026

=
1
n

n∑
t=3

{

t∑
j=2

Dj −

t−1∑
j=2

Dj}
Xt−2√

1 + X2
t−2

=
1
n

n∑
j=2

Dj
Xn−2√

1 + X2
n−2

+
1
n

n−1∑
t=3

{

t∑
j=2

Dj}
Xt−2√
1 + X2

j−2
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Fig. 1. (a) Upper left panel: autocorrelation function of Ût = Yt − α̂ − β̂1(Xt−1 − Xt−2) − β̂2Xt−2 for the period 1/1927–12/2012, where (α̂, β̂1, β̂2)T is the
least squares estimate. (b) Upper right panel: autocorrelation function of Ût = Yt − α̂ − β̂1(Xt−1 − Xt−2) − β̂2Xt−2 for the period 1/1952–12/2012, where
(α̂, β̂1, β̂2)T is the least squares estimate. (c) Lower left panel: autocorrelation function of Ût = Yt −β̂1(Xt−1−Xt−2)−β̂2Xt−2 for the period 1/1952–12/2012,
where (α̂, β̂1, β̂2)T is the least squares estimate. (d) Lower right panel: autocorrelation function of the estimated V ′

t s for the period 1/1952–12/2012 based
on the ARMA(1,15) model, i.e., Xt = θ + φXt−1 + Vt −

∑15
j=1 ψjVt−j .

−
1
n

n∑
t=3

{

t−1∑
j=2

Dj}
Xt−2√

1 + X2
t−2

= {
1
n

n∑
t=2

U2
t (

∞∑
j=0

ψjVt−1−j −
ρ

n
Xt−2)}

Xn−2√
1 + X2

t−2

+
1
n

n−1∑
t=3

{

t∑
j=2

Dj}{
Xt−2√

1 + X2
t−2

−
Xt−1√

1 + X2
t−1

} + op(1)
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Table 10
P-values for testing H0 : β1 = 0, H0 : β2 = 0 and H0 : β1 = β2 = 0 for model (6) with
unknown α for the period 1/1952–12/2012.
Regressor H0 : β1 = 0 H0 : β2 = 0 H0 : β1 = β2 = 0

Dividend payout ratio 0.2921 0.6481 0.5674
Long-term yield 0.0866 0.2758 0.1623
Dividend yield 0.2631 0.8195 0.5064
Dividend price ratio 0.6891 0.8703 0.8965
T-bill rate 0.1292 0.1328 0.1268
Earnings price ratio 0.5483 0.9997 0.8293
Book-to-Market value ratio 0.6159 0.8268 0.8694
Default yield spread 0.6675 0.6552 0.8641
Net equity expansion 0.1182 0.5829 0.2559
Term spread 0.7083 0.1631 0.3477

Table 11
P-values for testing H0 : β1 = 0, H0 : β2 = 0 and H0 : β1 = β2 = 0 for model (4) with known
α0 = 0 for the period 1/1952–12/2002.
Regressor H0 : β1 = 0 H0 : β2 = 0 H0 : β1 = β2 = 0

Dividend payout ratio 0.7029 0.0039 0.0145
Long-term yield 0.0184 0.0148 0.0026
Dividend yield 0.5365 0.0019 0.0079
Dividend price ratio 0.7253 0.0025 0.0036
T-bill rate 0.0051 0.0682 0.0034
Earnings price ratio 0.6481 0.0025 0.0036
Book-to-Market value ratio 0.5214 0.0016 0.0014
Default yield spread 0.0235 0.0021 0.0015
Net equity expansion 0.0937 0.1459 0.0889
Term spread 0.0488 0.0016 0.0030

Table 12
P-values for testing H0 : β1 = 0, H0 : β2 = 0 and H0 : β1 = β2 = 0 for model (6) with
unknown α for the period 1/1952–12/2002.
Regressor H0 : β1 = 0 H0 : β2 = 0 H0 : β1 = β2 = 0

Dividend payout ratio 0.7281 0.6122 0.8451
Long-term yield 0.0297 0.4013 0.0804
Dividend yield 0.7425 0.6885 0.8778
Dividend price ratio 0.9720 0.6550 0.8853
T-bill rate 0.0046 0.0683 0.0074
Earnings price ratio 0.8708 0.8010 0.9389
Book-to-Market value ratio 0.5021 0.7541 0.7957
Default yield spread 0.1966 0.7089 0.4129
Net equity expansion 0.0223 0.1918 0.0241
Term spread 0.0751 0.0025 0.0059

= {
1
n

n∑
t=2

U2
t (

∞∑
j=0

ψjVt−1−j) + op(1)}
Xn−2√

1 + X2
n−2

+
1
n

n−1∑
t=3

{

t∑
j=2

Dj}(1 + ξ 2t )
−3/2(Xt−2 − Xt−1) + op(1)

= op(1),

where ξt lies between Xt−2 and Xt−1. Hence, the lemma follows from the above equations. □

Lemma 3. Under conditions of Theorem 1 and (10), L(β1, β2,0) attains its maximum value with probability tending to one at
some point β̄1 such that |β̄1 − β1,0| < n−1/δ0 for some δ0 ∈ (2, 2 + δ) as n → ∞, and β̄1 and λ̄ satisfy Q1n(β̄1, λ̄) = 0 and
Q2n(β̄1, λ̄) = 0, where

Q1n(β1, λ) :=
1
n

n∑
t=3

Zt (β1, β2,0)
1 + λTZt (β1, β2,0)

,
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Q2n(β1, λ) =
1
n

n∑
t=3

1
1 + λTZt (β1, β2,0)

(
∂Zt (β1, β2,0)

∂β1

)T

λ.

Proof. Like the proof of Lemma 1 of Qin and Lawless (1994), the lemma follows from Lemmas 1 and 2. □

Lemma 4. Under conditions of Theorem 1 and (10), L(β1,0, β2) attains its maximum value with probability tending to one at some
point β̄2 such that |

√
nβ̄2 −

√
nβ2,0| < n−1/δ0 for some δ0 ∈ (2, 2 + δ) as n → ∞, and β̄2 and λ̄ satisfy Q ∗

1n(β̄2, λ̄) = 0 and
Q ∗

2n(β̄2, λ̄) = 0, where

Q ∗

1n(β2, λ) :=
1
n

n∑
t=3

Zt (β1,0, β2)
1 + λTZt (β1,0, β2)

,

Q ∗

2n(β2, λ) =
1
n

n∑
t=3

1
1 + λTZt (β1,0, β2)

(
∂Zt (β1,0, β2)
∂(

√
nβ2)

)T

λ.

Proof. Since Xt = Op(
√
n), we write β2Xt−2 = (

√
nβ2)(Xt−2/

√
n). Hence, following the proof of Lemma 1 of Qin and Lawless

(1994), the lemma can be shown by using Lemmas 1 and 2. □

Proof of Theorem 1. We only prove the case of (10) since other cases can be proved in a similar way. First, it follows easily
from (11) and Condition C1 that

max
3≤t≤n

∥Zt (β1,0, β2,0)∥ = op(n1/2). (17)

Hence, using Lemmas 1 and 2, (17) and the same arguments in the proof of Theorem 1 in Owen (1990), we can show that
−2 log L(β1,0, β2,0)

d
→ χ2(2) as n → ∞. Let et =

∑
∞

j=0 ψjVt−j. By (11), (14) and (15), we have

1
n

n∑
t=3

(Xt−1 − Xt−2)2 =
1
n

n∑
t=3

e2t−1 + op(1) = E(
∞∑
j=0

ψjV−j)2 + op(1),

and

1
n

n∑
t=3

(Xt−1 − Xt−2)
Xt−2√

1 + X2
t−2

=
1
n

n∑
t=3

et−1
Xt−2√

1 + X2
t−2

+ op(1)

=
1
n

n−1∑
t=2

et
Xt−1√

1 + X2
t−1

+ op(1) =
1
n

n−1∑
t=2

{

t∑
j=1

ej −
t−1∑
j=1

ej}
Xt−1√

1 + X2
t−1

+ op(1)

=
1
n

n−1∑
j=1

ej
Xn−2√

1 + X2
n−2

+
1
n

n−1∑
t=2

{

t∑
j=1

ej}{
Xt−1√

1 + X2
t−1

−
Xt√

1 + X2
t

} + op(1)

= op(1) +
1
n

n−1∑
t=2

{

t∑
j=1

ej}(1 + ξ 2t )
−3/2(Xt−1 − Xt ) + op(1)

= op(1),

where ξt lies between Xt−1 and Xt . Hence, we have

∂Q1n(β1,0, 0)
∂β1

=
1
n

n∑
t=3

(
−(Xt−1 − Xt−2)2

−(Xt−1 − Xt−2)
Xt−2√
1+X2

t−2

)

=

(
−E(

∑
∞

j=0 ψjV−j)2

0

)
+ op(1)

= S1 + op(1).

(18)

Furthermore, we have

∂Q1n(β1,0, 0)
∂λ

= Σ + op(1),
∂Q2n(β1,0, 0)

∂β1
= 0,

∂Q2n(β1,0, 0)
∂λT

=
∂Q1n(β1,0, 0)

∂β1
, (19)
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whereΣ is given in Lemma 2. Using Lemma 3 and expanding Q1n(β̄1, λ̄) and Q2n(β̄1, λ̄) around (β1,0, 0)T , we have

0 = Q1n(β1,0, 0) +
∂Q1n(β1,0, 0)

∂β1
(β̄1 − β1,0) +

∂Q1n(β1,0, 0)
∂λ

λ̄+ op(|β̄1 − β1,0| + ∥λ̄∥)

= Q1n(β1,0, 0) + S1(β̄1 − β1,0) −Σ λ̄+ op(|β̄1 − β1,0| + ∥λ̄∥)
(20)

and

0 = Q2n(β1,0, 0) +
∂Q2n(β1,0, 0)

∂β1
(β̄1 − β1,0) +

∂Q2n(β1,0, 0)
∂λ

λ̄+ op(|β̄1 − β1,0| + ∥λ̄∥)

= ST1λ+ op(|β̄1 − β1,0| + ∥λ̄∥).
(21)

By (20) and (21), we have

ST1Σ
−1S1

√
n(β̄1 − β1,0) = −ST1Σ

−1√nQ1n(β1,0, 0) + op(1) (22)

and
√
nλ̄ = Σ−1√nQ1n(β1,0, 0) +Σ−1S1

√
n(β̄1 − β1,0) + op(1), (23)

which imply that
√
nλ̄ = {Σ−1

−Σ−1S1S−1ST1Σ
−1

}
√
nQ1n(β1,0, 0) + op(1), (24)

where S = ST1Σ
−1S1. SinceΣ = diag{σ 2

1 , σ
2
2 } and ST1 = (−σ 2

1 , 0), we have S = σ 2
1 and

M = Σ−1
−Σ−1S1S−1ST1Σ

−1
= diag{0, σ−2

2 }. (25)

It follows from Lemmas 1, 3, (23)–(25) and Taylor expansion that

−2 log LP2(β2,0) = −2 log L(β̄1, β2,0)

= 2
n∑

t=3

λ̄TZt (β̄1, β2,0) −

n∑
t=3

λ̄TZt (β̄1, β2,0)ZT
t (β̄1, β2,0)λ̄+ op(1)

= 2nλ̄TQ1n(β̄1, 0) − nλ̄TΣλ+ op(1)

= 2nλ̄TQ1n(β1,0, 0) + 2nλ̄T
∂Q1n(β1,0, 0)

∂β1
(β̄1 − β1,0) − nλ̄TΣ λ̄+ op(1)

= 2nλ̄TΣ λ̄− nλ̄TΣ λ̄+ op(1)

= {
√
nQ1n(β1,0, 0)}TMΣM{

√
nQ1n(β1,0, 0)} + op(1)

= {
1

√
n

n∑
t=3

Zt2(β1,0, β2,0)}2/σ 2
2 + op(1)

d
→ χ2(1)

as n → ∞. Similarly, we can show that −2 log LP1(β1,0)
d

→ χ2(1) as n → ∞ by using Lemma 4 instead of Lemma 3. Hence
the theorem follows. □

Proof of Theorem 2. It can be shown in the same way as in Theorem 1. □

Proof of Theorem 3. Note that a key fact in proving Theorems 1 and 2 is that |Xt |
p

→ ∞ in case of nonstationary, which still
holds under conditions of Theorem 3. Also, due to the independence of Ut and Ut+m, it is clear that

1
m

m∑
t=3

Z̄t,2(β
(0)
1 , β

(0)
2 )Z̄t,4(β

(0)
1 , β

(0)
2 )

p
→ 0 as n → ∞.

Therefore Theorem 3 can be shown by following the arguments in proving Theorem 1. □
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