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ABSTRACT

In this article, a generalized Lévy model is proposed and its parameters are
estimated in high-frequency data settings. An infinitesimal generator of Lévy
processes is used to study the asymptotic properties of the drift and volatility
estimators. They are consistent asymptotically and are independent of other
parametersmaking thembetter than those inChenet al. (2010). Theestimators
proposed here also have fast convergence rates and are simple to implement.
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1. Introduction

The Lévy process is currently of considerable interest to researchers in econometric and financial fields
due to its ability to explain abrupt jumps in financial markets and due to its mathematical tractability.
For example, it is used in the analysis of discontinuous changes in price, believed to be an essential
component of financial asset-price dynamics. See Cont and Tankov (2003) for more detail.

Let {Xt , t ∈ R+} be a Lévy process taking values inR, whose characteristic function is given as follows:

E(eiθXt ) = exp

{

t

[

ibθ −
σ 2θ2

2
+

∫

R
(eiθu − 1 − iθuI|u|<1)ρ(du)

]}

. (1.1)

Here, b ∈ R, σ ≥ 0, and ρ is a measure on R satisfying ρ({0}) = 0 and the integrability condition
∫

R
(1 ∧ |u|2)ρ(du) < ∞.

This formula is known as the Lévy-Khintchine formula. The process {Xt , t ∈ R+} is characterized by
the generating triplet (b, σ , ρ(·)), where b is the drift of Xt , and ρ is the Lévy measure. Please refer to
Bertoin (1996) and Sato (1999) for precise definitions and more details concerning properties of Lévy
processes.

Aït-Sahalia and Jacod (2007, 2009), studied many properties of Lévy processes using high frequency
financial data: the degree of activity, the test of jump, and the estimator of σ . However, it is difficult to
identify the estimators of the drift and the Lévy measure from observations of finite time interval, as
indicated by Aït-Sahalia and Jacod (2009).

Because of the explicit expression of the Lévy-Khintchine formula, some researchers have estimated
the parameters of the Lévy process based on the characteristic function expression of (1.1). Chen et al.
(2010) proposed a nonparametric approach to estimating the characteristics of Lévy processes using
regression of the empirical characteristic function. However, in their article, the estimator of the drift
was dependent on other unknown parameters. According to the authors, “The regression models used
here to define estimators seemperhaps rather naive, and in particular, the polynomialmodels considered
there may seem to be crude approximations” (Chen et al., 2010, p. 259).

CONTACTWentao Gu zjgsu-guwentao@hotmail.com Department of Statistics, Zhejiang Gongshang University, Hangzhou,
China.

© 2016 Taylor & Francis Group, LLC



1052 J. ZHENG ET AL.

In this article, the following model with the characteristic function is considered:

E(eiθXt ) = exp

{

t

[

ibθ −
σ 2

2
θ2 +

∫

{|x|≤ϵ}
(eiθu − 1 − iθuI|u|<1)cu

−α−1(du)

+

∫

{|x|>ϵ}
(eiθu − 1 − iθuI|u|<1)ρ2(du)

]}

.

Here, 0 < ϵ ≤ 1 and 0 < α < 2. The current model can approximate the general Lévy process, and it
is more general than that described by Chen et al. (2010). Another advantage of this model is that it can
provide one possible way of estimating the Lévy measure. It is well known that Lévy measure can be a
infinity measure and explode near zero; here, we approximate it with a stable measure near zero, similar
to that in Aït-Sahalia and Jacod (2009).

Using the infinitesimal generator of Lévy processes, we propose estimators of the drift and the
volatility, which are consistent under high frequency data (a Lévy process is observed at equidistant
time points &n, . . . , n&n with limn→∞&n = 0, limn→∞ n&n = ∞), and the rates of convergence are
faster than those of Chen et al. (2010). We will discuss this method in detail in Sections 2 and 3.

For the estimation of c, the estimator was identified using the small-time ergodic property of the Lévy
process:

lim
t→0

1

t
EX2

t I{|Xt |<ϵ} = σ 2 +

∫

{|x|<ϵ}
x2ρ(dx).

This estimator is asymptotically normal.
Recently, related problems have been treated by Comte et al. (2009), Ueltzhöfer (2013), and Schmisser

(2014). Comte et al. (2009) proposed estimators of b, σ 2, and ρ by Fourier inversion and kernel
smoothing. Their models involved finite jump activity and had absolutely continuous Lévy measures.
They considered a superposition of a compound Poisson process and an independent Brownianmotion,
which is treated as a special case in the current model. Comte and Genon-Catalot (2011) studied
nonparametric estimation of the Lévy measure at high frequencies using an adaptive deconvolution
method. In their model, the strong moment condition (E|X1|

4 < ∞) must be satisfied. Chen et al.
(2010) used a nonparametric method to estimate the parameters of a class of Lévy processes.

The article is organized as follows. The proposed model is given in Section 2. In Section 3, the
construction of consistent estimators of parameters b, c, and measure ρ is described. In Section 4, the
theoretical properties of the estimators are discussed. Section 5 reports a simulation experiment. A real
data example is given in Section 6. Technical details are deferred to the Appendix.

Throughout this article, X = {Xt , t ∈ R+} is a Lévy process and C always stands for a positive
constant, whose valuemay be different at different contexts. The expectation operator underP and Px are
denoted by E and Ex. ϕη(·) stands for the characteristic function of a random variable (a distribution) η.

2. Model specification

Let X = {Xt , t ∈ R+} be a Lévy process taking values in R on the naturally filtered space generated by
itself, whose characteristic function is given by (1.1).

For any fixed 0 < ϵ ≤ 1, X can be expressed as

Xt = bt + σWt + Z1
t + Z2

t . (2.1)

Here, b and σ are the drift and the volatility of X, respectively. W is a Brownian motion. Z1 is a Lévy
process that has fewer than ϵ jumps and is called the compensated sum of jumps. Z2 is another Lévy
process which has jumps more than ϵ. It is well known thatW, Z1, and Z2 are independent. In fact, Z1

is a square-integrable martingale with expectation zero, and Z2 is a compound Poisson process. When
ϵ = 1, (2.1) is the Lévy-Itô decomposition. It is written as (2.1) in order to avoid the need for complex
symbols. In this article, we assume that Z1 is a symmetrical and stable-like process whose Lévy measure
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is stable and supported in [−ϵ, ϵ]. Hence, the Lévy measure and the characteristic function of X can be
written as follows:

ρ(dx) = cx−α−1I{|x|<ϵ}dx + ρ2I{|x|≥ϵ}dx, (2.2)

and

E(eiθXt ) = exp

{

t

[

ibθ −
σ 2

2
θ2 +

∫

{|x|≤ϵ}
(eiθu − 1 − iθuI|u|<1)cu

−α−1(du)

+

∫

{|x|>ϵ}
(eiθu − 1 − iθuI|u|<1)ρ2(du)

]}

. (2.3)

Here, ρ2 is the Lévy measure of Z2.
One advantage of this model is its ability to estimate the Lévy measure. When the Lévy measure

explodes near 0, it is not possible to estimate it with finite data. However, a great deal of financial data tell
us that infinite activity exists and the model above could be used to approximate general Lévy processes.
This idea is similar to the conclusions drawn by Aït-Sahalia and Jacod (2009), who use an activity index
to describe small jumps. The activity index defined by Aït-Sahalia and Jacod (2009) was equal to α in
(2.2), but the current model is more general than that proposed in that article. When b = 0 and either
σ or Z1 is 0, it is appopriate to use an earlier model also proposed by Aït-Sahalia and Jacod (2007), who
assesses the volatility estimators using Fisher information. Chen et al. (2010) considered the following
model, whose characteristic function is given as follows:

E(eiθXt ) = exp{ibθ − c|θ |α + ψ(θ)},

where ψ(θ) is the characteristic function of a compound Poisson process. This model is a special case
of the currently proposed model when σ or c is zero.

The following examples are provided to show how a general Lévy process can be approximated by
our model with a choice of small enough ϵ.

2.1. Example 1

Drift + Brownian motion + Stable process
Consider the Lévy measure ρ(dx) = c|x|−α−1dx for x ̸= 0. X can be written as follows:

Xt = bt + σWt + Z1
t + Z2

t ,

whereZ1 is a pure jumpmartingale with Lévymeasure c|x|−α−1I{|x|≤ϵ}dx, andZ2 is a compound Poisson
process with finite measure cx−α−1I{|x|>ϵ}dx, which is another way of describing the currently proposed
model.

2.2. Example 2

Drift + Brownian motion + compound Poisson process
Let the following be true:

Xt = bt + σWt +

Nt
∑

i=1

Yi,

where N = {Nt , t ∈ R+} is a Poisson process with constant intensity λ, and Yi is a sequence of
independent and identically distributed (i.i.d.) random variables with density f , which is independent

of the Poisson process N. Then
∑Nt

i=1 Yi is a compound Poisson process and X is a Lévy process with

Lévy measure λf (x)dx. Let Z1
t = 0 and Z2

t =
∑Nt

i=1 Yi. This model can be approximated by (2.3), and
the error of ρ in (2.2) is O(ϵ).
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2.3. Example 3

Drift + Brownian motion + Gamma process
Consider the Lévy measure ρ(dx) = a exp(−bx)x−1Ix>0dx. X can be written as

Xt = bt + σWt + Z1
t + Z2

t ,

whereZ1 is a pure jumpmartingale with Lévymeasure a exp(−bx)x−1I{0<x≤ϵ}dx, andZ2 is a compound
Poisson process with finite measure a exp(−bx)x−1I{x>ϵ}dx. The density function of this model has a
semi-heavy (right) tail and has an infinite number of small jumps because the Lévy measure explodes
near 0. In this model, the index α is one. It can also be approximated by (2.3) and the error of ρ in (2.2)
is o(ϵ).

2.4. Example 4

Drift + Brownian motion + Variance gamma process

Let the Lévy measure ρ(dx) = a exp(Ax − B|x|)|x|−1dx with A = θ
σ 2

and B = (θ2+2σ 2/a)1/2

σ 2
. X can

be written as follows:

Xt = bt + σWt + Z1
t + Z2

t ,

where Z1 is a pure jump martingale with Lévy measure a exp(Ax − B|x|)|x|−1I{|x|≤ϵ}dx, and Z2 is a
compound Poisson process with finite measure a exp(Ax−B|x|)|x|−1I{|x|>ϵ}dx. The index α here is one.
It can also be approximated using (2.3), and the error of ρ in (2.2) is O(ϵ).

3. Methodology

In this section, the parameters of the proposed model are estimated using (2.3). First, we define some
notations. Denote the observed n independent increments Yi = Xi&n − X(i−1)&n , i = 1, 2 . . . n. When
& = &n tends to 0, and n& tends to infinity, the sequence Yi is a high frequency datum, such as can
be found in financial data. Hence & and Yi depend on n. However, to simplify notation, we omit the
dependence on n and simply write &, Yi. Because the Lévy process has independent and stationary
increments, Yi, i = 1, 2, . . . n, is i.i.d. with the characteristic function of (1.1), where t is replace with&.

3.1. Estimation of b and σ
2

Inmost phenomena that can bemodeled using a Lévy process, the way in which the process moves from
point to point can be grasped intuitively. The infinitesimal generator may be one means of describing
how the process moves from point to point in an infinitesimally small time interval.

For Lévy processes, the infinitesimal generator

(Lf )(x) := lim
t→0

1

t
{Ef (Xt + x) − f (x)} (3.1)

exists, and the following is true:

(Lf )(x) = bf ′(x) +
σ 2

2
f ′′(x)

+

∫

R
[f (x + y) − f (x) − f ′(x)yI{|y|<1}]ρ(dy), (3.2)

where f (x) ∈ C2
0(b), which is twice continuously differentiable, and it is bounded together with

its derivatives and tends to 0 at infinity. For example, f (x) could be the density function of normal
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distribution. The following is true:
∥

∥

∥

∥

(Lf )(x) −
1

t
[Ef (Xt + x) − f (x)]

∥

∥

∥

∥

→ 0

as t → 0 (see Revuz and Yor, 2005, p. 281),
∥

∥

∥

∥

(Lf )(x) −
1

t
[Ef (Xt + x) − f (x)]

∥

∥

∥

∥

< ϵ(t).

When f ∈ C∞
0 (K), the convergence rate for (3.1) can be established (see Theorem A.1). This suggests

that regression can be used to estimate the parameters of (3.2). Let

(L̂f )(x) =
1

&

{

1

n

n
∑

i=1

f (Yi + x) − f (x)

}

.

Then the following equation is true:

(L̂f )(x) = bf ′(x) +
σ 2

2
f ′′(x)

+

∫

R
[f (x + y) − f (x) − f ′(x)yI{|y|<1}]ρ(dy) + ϵ(x),

where

ϵ(x) = (L̂f )(x) − (Lf )(x). (3.3)

Choosing a set + of values x and minimizing the following equation:
∫

+

|(L̂f )(x) − bf ′(x) −
σ 2

2
f ′′(x)

−

∫

R
[f (x + y) − f (x) − f ′(x)yI{|y|<1}]ρ(dy)|2dx, (3.4)

this produces the estimator of b. Also (3.4) could be rewritten as follows:
∫

+

|(L̂f )(x) − bf ′(x)|2dx. (3.5)

The estimator of b is provided as follows:

b̂ =

∫

+ f
′(x)(L̂f )(x)dx
∫

+[f ′(x)]2dx
.

Remark 3.1. In practice, each regression needs to be implemented over a set+ of values x. It is important
to choose the fitting function f (x) and set +. In the current simulation, + is symmetrical and far enough
from zero. The length of +much greater than that of (n&), which makes the value of ϵ(x) in (3.3) small.
f (x) must be in the domain of the infinitesimal generator L. Choosing suitable f (x) and + can improve
the accuracy of the estimation. This is discussed in Section 4.

Estimators of σ 2 based on power variations of X have been proposed and mostly studied in high
frequency data for which t is fixed. Aït-Sahalia and Jacod (2007) identified the estimator of σ 2 under
parametric and semiparametric settings with complex constructions and proofs. σ 2 was estimated from
(3.2) by extension of this methodology. Similar to the estimation of b, let

(L̂f )(x) =
1

&

{

1

n

n
∑

i=1

f (Yi + x) − f (x)

}

.
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The regression can be used to determine the estimator of σ 2 as follows:

σ̂ 2 =

∫

+ f
′′(x)(L̂f )(x)dx
∫

+[f ′′(x)]2dx
. (3.6)

Like the estimation of b, it is important to choose suitable f (x) and + in (3.6) in order to render the
bias small. Before offering other estimators, a few remarks should be made.

Remark 3.2. When
∫

|x|<1 |x|ρ(dx) < ∞, the jump part of X has bounded variation on every compact
time interval a.s., and the characteristic function of X can be written as follows:

E(eiθXt ) = exp

{

t

[

ib′θ −
σ 2θ2

2
−

∫

R
(eiθu − 1)ρ(du)

]}

,

b′ = b+
∫

|x|<1 xρ(dx), some authors call it as the generous drift. As described in Section 5, data can be
simulated with Poison jumps and Cauchy jumps, and b can be estimated in this paper.

Remark 3.3. Comte and Genon-Catalot (2011) identified the estimators of b and σ 2 using empirical
moments under the assumption of finite moments. In the current article, finite moment restrictions are
not needed.

Remark 3.4. By (Bertoin, 1996, p. 24), the Fourier transform of (Lf )f (x) is

F(Lf )(θ) = −ψ(−θ)Ff (θ),

whereψ(θ) = t−1 logE(eiθXt ). Hence, the equivalent estimation of Chen et al. (2010) can be determined
based on empirical characteristic function by a weighted least-squares method. The regression method
in this article does not require using the logarithm.

3.2. Estimation of α and c

Two important parameters in a Lévy process are α and c. In financial time series, α is used to explain the
long-memory property of financial data. When α = 2, the model is a Brownian motion which implies
the efficient market (see Fama, 1970). The activity exponent is another name for α which describes the
small jump.

There are many methods of estimating α. For example, Hill (1975) provided a way to estimate it;
Csörgő et al. (1985) and Groeneboom et al. (2003) used the kernel method to estimate α. Because the
model in Aït-Sahalia and Jacod (2009) is moderately close to our model (2.3), it is here suggested that
the method proposed by Aït-Sahalia and Jacod (2009) be used to estimate α. They define this method as
an instantaneous jump activity index. Using high-frequency data, they proposed the following method
of estimating α:

α̂n(t,ϖ , ϵ) =
log(U(ϖ , ϵ)nt /U2(ϖ , ϵ)nt )

ϖ log 2
,

where

U(ϖ , ϵ)nt =

t/&n
∑

i=1

I{|Yi|>ϵ&ϖn }

and U2(ϖ , ϵ)nt is defined analogously to U(ϖ , ϵ)nt , except that sampling at &n is replaced by sampling
at 2&n. In this article, α is assumed to be known.

The estimator of c can be determined using the small-time ergodic property of Lévy processes:

lim
t→0

1

t
E|Xt|

kI{|Xt |<ϵ} =

∫

|x|<ϵ
|x|kρ(dx) for k ≥ 3. (3.7)
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This can also be shown using (2.2)

ρ(dx)I{|x|<ϵ} = c|x|−α−1,

This produces the estimator of c:

c∗ =
k − α

2ϵk−αn&

n
∑

i=1

|Yi|
3I{|Yi|<ϵ}.

In practice, c∗ is not a good estimator of c because it depends heavily on&, and has a steady bias. In case
of the bias, the following property is considered:

lim
t→0

1

t
EX2

t I{|Xt |<ϵ} = σ 2 +

∫

{|x|<ϵ}
x2ρ(dx).

Hence, the estimator of c can be given as follows:

ĉ =
2 − α

(2 − 2α−1)ϵ2−αn&

n
∑

i=1

(|Y2i|
2I{|Y2i|<ϵ} − |Y2i−1|

2I{|Y2i−1|<
ϵ
2 }). (3.8)

Here the sample size is assumed to be 2n.

3.3. Estimation of Lévymeasure

For every fixed a > 0, the measure ϵ−1P0(Xϵ ∈ dx) converges vaguely to ρ(dx) on {|x| > a} as
ϵ → 0+ (Bertoin, 1996). Using high-frequency data and letting n& → ∞, facilitates approximation
of P0(Xϵ ∈ dx) using the empirical distribution function 1

n

∑n
i=1 I{|Yi|>a} and finding the estimator of

Lévy tail measure:

ρ̂[a,∞) = &−1 1

n

n
∑

i=1

I{|Yi|>a}.

However, this estimator is not very good in practice as indicated by our simulations. Hence, we suggest
the method of deconvolution used in Chen et al. (2010) for the estimation of Lévy measure ρ.

4. Properties of estimators

This section focuses on the properties of these proposed estimators, and ϵ = 1 inmodel (2.3). In practice,
each regression needs to be implemented over a set + which usually depends on f (x). For f ∈ C2

0(b),
we choose f (x) such that f (x) > 0, f ′(x) is an odd (or even) function, and f ′′(x) is an even (or odd)
function, which can reduce the error when + is a symmetric set. Let the following be true:

δ1 =

∫

+

|f ′(x)|dx

∫

|y|<1
[f (x + y) − f (x) − yf ′(x)]|y|−1−αdy

/
∫

+

[f ′(x)]2dx,

δ2 =

∫

+

|f ′(x)|dx

∫

|y|≥1
[f (x + y) − f (x)]ρ(dy)

/
∫

+

[f ′(x)]2dx,

and

δ′1 =

∫

+

|f ′′(x)|dx

∫

|y|<1
[f (x + y) − f (x) − yf ′(x)]|y|−1−αdy

/
∫

+

[f ′′(x)]2dx,

δ′2 =

∫

+

|f ′′(x)|dx

∫

|y|≥1
[f (x + y) − f (x)]ρ(dy)

/
∫

+

[f ′′(x)]2dx.
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For the estimators of b and σ 2, as indicated by the regression of the infinitesimal generator, the
following properties can be stated as a theorem.

Theorem 4.1. If& tends to 0, n& tends to infinity. f ∈ C2
0(b) and + is a symmetric subset of R. Then the

following is true:

b̂ − b = Op

{

δ1 + δ2 + (&n)−
1
2

∫

+ |f ′(x)|dx
∫

+[f ′(x)]2dx

}

, (4.1)

σ̂ 2 − σ 2 = Op

{

δ′1 + δ′2 + (&n)−
1
2

∫

+ |f ′′(x)|dx
∫

+[f ′′(x)]2dx

}

.

For f (x), the following two types are considered:

Type A. f ′′(x)/f ′(x) → 0 as x → ∞, f ′(x) and f ′′(x) are integrable. For example, f (x) = 1
1+x2

.

Type B. f ′(x)/f ′′(x) → 0 as x → ∞, f ′(x) and f ′′(x) are integrable. For example, f (x) = e−x2/2.

In general, f (x) was chosen in Type A to estimate b and f (x) in Type B for σ 2. If something is known
about the Lévy measure ρ, the estimators can be improved upon. The implications of Theorem 4.1 are
discussed next.

Corollary 4.1. If ρ(|x| ≥ 1) = 0 in model (2.3), let f (x) = 1
1+x2

and + = [x,+∞) ∪ (−∞,−x]. Then
the following is true:

b̂ − b = Op{x
−1 + (&n)−

1
2 [f ′(x)]−1}.

Corollary 4.2. If c = 0 and ρ(−∞,−1) = 0 in model (2.2), let f (x) = e−x2/2 and + = [x,+∞). Then

σ̂ 2 − σ 2 = Op{x
−2 + (&n)−

1
2 [f ′′(x)]−1}.

In Corollary 4.1, the process X has only small jumps; and X in Corollary 4.2 is a compound Poisson
process with positive jumps. For stable processes, the following theorem is used.

Theorem 4.2. If X is an α-stable process, let f (x) = sin x
1+x2

and + = [2kπ , k ∈ Z+], where k is far enough
from zero. Then for x ∈ +,

b̂ − b = Op{x
−(α∧1) + (&n)−

1
2 [min

x∈+
f ′(x)]−1}.

The last theorem concerns the property of estimator of c using the small-time ergodic property of the
Lévy process.

Theorem 4.3. If& tends to 0, n& tends to infinity, and n&3 tends to 0, the sample Yi, i = 1, 2, · · · 2n are
defined as above. Let the following be true:

Zn
t =

[nt]
∑

i=1

(

n&)−1/2

[

2 − α

(2 − 2α−1)ϵ2−α
(|Y2i|

2I{|Y2i|<ϵ} − |Y2i−1|
2I{|Y2i−1|<

ϵ
2 }

)

− c

]

.

Then the process {Zn
t , t ∈ R+} converges in distribution to a Wiener process with variance tσ 2

3 , where

σ 2
3 = (2−α)2

(2−2α−1)2ϵ4−2α [
∫

{|x|<ϵ} x
4ρ(dx) +

∫

{|x|<ϵ/2} x
4ρ(dx)].

5. A simulation study

To demonstrate the estimation methods proposed in the previous sections, the following simulations
were performed.
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The first simulated example involved estimating the drift coefficient b based on (3.5). The data
generation process involves drift + Brownian motion + compound Poisson process,

Xt = bt + σWt +

Nt
∑

i=1

Zi,

where b = 3, σ = 1, andN = {Nt , t ∈ R+} are a Poisson process with constant intensity λ = 0.5. {Zi, i =
1, 2 . . .} is a sequence of i.i.d. normal random variables with mean= 4 and standard deviation= 10. The
function f (x) was selected:

f (x) =
sin(x)

1 + x2
.

A sequence {xi}
T
i=1 with T = 50 chosen to be {−3 + i

25 , i = 1, . . . , 25}
⋃

{2 + i
25 , i = 1, . . . , 25}.

For each xi, n = 500 observations of Lévy process {Xt} were generated by setting △t = 5/3,600. Let
Yt = Xt − Xt−1. Then the left side of (3.1) could be estimated as follows:

ˆ(Lf )(xi) ≈
1

△t

(

1

n − 1

n
∑

t=2

f (Yt + xi) − f (xi)

)

.

This yields 50 pairs of the values {f ′(xi), ˆ(Lf )(xi)}, where f ′(xi) is the derivative of f at xi. By running a

simple linear regression without intercept for ˆ(Lf )(xi) on f ′(xi) the estimator of the drift coefficient b is
found.

In order to confirm performance, the simulation was run with two different sample sizes, n = 500
and 1,000. Different △t values were also used: 10/3,600, 20/3,600, 40/3,600 and 60/3,600, respectively.
The results are shown in Fig. 1, where each of the two groups are for n = 500 and 1,000, respectively,
under different △t from small to large.

The results given above show that the estimated medians of the groups are all quite close to the true
parameter b = 3. Under fixed △t, the variance decreases as the sample size increases. The performance
seems to be very good for all the chosen values of △t.

Next, simulation was performed to estimate b using a Cauchy process instead of compound Poisson
process as in the data generation process:

Xt = bt + σWt + Ct(A,B).

Figure 1. Regression for b with compound poison process,△t = 5/3,600, 10/3,600, 20/3,600, 40/3,600, and 60/3,600 from left to right.
With each△t, the results of sample size n = 500 and n = 1,000 are shown.
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Figure 2. Regression for b with Cauchy process,△t = 5/3,600, 10/3,600, 20/3,600, 40/3,600 and 60/3,600 from left to right. With each
△t the results of sample size n = 500 and n = 1,000 are shown.

Here b = 3, σ = 4, and Ct(A,B) are a Cauchy process with the location parameter A = 0 and scale
parameter B = △t. The same sample size and △t as above were used, and the results in Fig. 2 were
produced.

As shown in Fig. 2, the medians of the groups are all close to the true parameter b = 3. And under
fixed△t, the variance is decreasing as the sample size increases. The performance seems to be very good
for all values of △t.

It is very similar to estimating σ 2 by the regression setup as in (3.6). With the same models and same
choices of sample size and △t, we have the results shown in Fig. 3.

Results show that the bias for the estimation of σ 2 is better for the Lévy process with Poisson jump
than with the Cauchy jump. Again the bias increases when △t increases. For the Lévy process with
Cauchy jump, the bias is still obvious, even when the △t is small. This might be because of the greater
amount of noise produced by small △t in the random simulation.

Figure 3. Regression for σ 2, △t = 5/3,600, 10/3,600, 20/3,600, 40/3,600, and 60/3,600 from left to right. With each △t the results of
sample size n = 500 and n = 1,000 are shown.
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Figure 4. Estimation of C,△t = 5/3,600, 200/3,600, 500/3,600, 600/3,600, and 8,000/3,600 from left to right. With each △t the results
of sample size n = 200, n = 1,000 and n = 2,000 are shown.

The final simulation involved estimating the parameter c in a Lévy process with the Cauchy process
serving as the jumppart. The procedure is based on (3.8).Here, theCauchy process in the data generating
process also involved location 0 and scale △t and the parameter c was theoretically 1. The △t was set to
5/3,600, 200/3,600, 500/3,600, 600/3,600, and 800/3,600 with the total number of observations N to be
200, 1,000, and 2,000, respectively.

As shown in Fig. 4, groups 1, 2, and 3 were associated with n = 200, n = 1, 000 and n = 2, 000,
respectively, when △t = 5/3, 600. Groups 4, 5 and 6 were for those values of n under △t = 200/3, 600.
Groups 7, 8 and 9 were under△t = 500/3, 600. Groups 10, 11 and 12 were under△t = 600/3, 600, and
groups 13, 14 and 15 were under △t = 800/3, 600. As shown, the results improved when △t increases.

In simulations involving estimating b and σ 2, xi must be selected carefully. As shown in the proof,
values of xi can be determined from intervals symmetrical to zero.

Results also showed the estimations to be sensitive to the choice of △t, especially for c and σ 2,
even when the sample size n was already large. In practical applications, relatively large △t, such as
5-minute data, should be used for the estimation of C. The identification of the optimal △t to estimate
the parameters is out of the scope for this article. This should be addressed in further research.

6. A real data example

The current method was used on daily tick-by-tick data collected between May 6 and May 8, 2009, for
the Shanghai Stock Exchange (SSE) Constituent Index and the Financial Index, which were constructed
in June 2002 by the Shanghai Stock Exchange to promote the long-term development of infrastructure
and the standardization of the security market.

A 30-second interval served as data frequency, and total sample size was set to n = 1, 446. Figure 5
shows the plots of original price and log return.

The parameter α of the asset price data is usually between 1.6 and 2. Here the regression procedure
was run with α = 1.8. The estimation method was applied to the function

f (x) =
sin(x)

1 + x2
,

This produced the estimated values b̂ = 1.90 × 10−4, and σ̂ 2 = 3.96 × 10−5. By taking ϵ = 0.004 in
(3.8), the estimator of parameter c was found to be ĉ = 2.078793 × 10−5.

A different △t was used to estimate c because, in the current simulation, the estimation of c is better
when △t is relatively large. Figure 6 shows the two plots of the Yt , which is used to estimate c. The left
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Figure 5. Thirty-second high frequency data fromMay 6 to May 8, 2009.

Figure 6. The Yt data for estimating C.

panel is at △t = 30 seconds, and the right one is at △t = 5 minutes. The estimator ĉ of the 5-minute
data was 1.005× 10−4. As expected, the lower frequency estimates were much more variable, since they
relied on a smaller number of large increments in total.

A. Appendix: Proofs

A lemma reported by Figueroa-López and by Jacod is used here (Figueroa-López, 2008; Jacod, 2007,
p. 185). It concerns the small-time ergodic property of Lévy process, and will be used in the proofs of
Theorem 4.1 and Theorem 4.3.

Lemma A.1. Let {Xt , t ∈ R+} be a Lévy process, and with Lévy triplet (b, σ 2, ρ). Then

lim
t→0

1

t
EX2

t I{|Xt |<ϵ} = σ 2 +

∫

{|x|<ϵ}
x2ρ(dx), (A.1)

and

lim
t→0

1

t
EXk

t I{|Xt |<ϵ} =

∫

{|x|<ϵ}
xkρ(dx) for k > 2. (A.2)

The following lemma comes from Figueroa-López (2008).
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Lemma A.2. Let {Xt , t ∈ R+} be a Lévy process, and with Lévy triplet (b, σ 2, ρ), let f be twice continuous
differentiable such that the following statements hold:
(i) f vanishes in a neighborhood of the origin;
(ii) |f (i)| is bounded for i = 0, 1, 2.
Then

lim
t→0

1

t

{

1

t
Ef (Xt) −

∫

f (x)ρ(dx)

}

= C(f , ρ). (A.3)

Now, let g(x) = x2I{ϵ/2<x<ϵ}. We can find fh and f ′h with fh ≤ g ≤ f ′h , which meet the conditions
of Lemma A.2, and

lim
h→0

fh = lim
h→0

f ′h = g.

By the dominated convergence theorem and (A.3), for g(x) = x2I{ϵ/2<x<ϵ}, we have

lim
t→0

1

t

{

1

t
Eg(Xt) −

∫ ϵ

ϵ/2
x2ρ(dx)

}

= C(g, ρ). (A.4)

A.1. Proof of Theorem 4.3

Proof. Consider the process {Zn
t , t ∈ R+}, where

Zt =

[nt]
∑

i=1

(n&)−1/2

[

2 − α

(2 − 2α−1)ϵ2−α
(|Y2i|

2I{|Y2i|<ϵ/2} − |Y2i−1|
2I{|Y2i−1|<ϵ}) − c

]

.

Zn
t is the sum of [nt] i.i.d. variables. We have |(n&)−1/2[ 2−α

(2−2α−1)ϵ2−α
(|Y2i|

2I{|Y2i|<ϵ/2} − |Y2i−1|
2

I{|Y2i−1|<ϵ}) − c]| ≤ C(n&)−1/2 → 0 for all i = 1, 2, · · · [nt], which implies the uniformly tightness
of Zt . According to Theorem 14.1 of Billingsley (1968), what we need to prove looks like a Central Limit
Theorem (CLT), but this is a bit difficult since the centering is not explicit.

Suppose ζi = [ 2−α
(2−2α−1)ϵ2−α

(|Y2i|
2I{|Y2i|<ϵ/2} − |Y2i−1|

2I{|Y2i−1|<ϵ})], By a standard CLT,

(n&)−1/2
[nt]
∑

i=1

(ζi − Eζi) ∼ N(0, σ 2
3 ), (A.5)

where σ 2
3 = (2−α)2

(2−2α−1)2ϵ4−2α [
∫

{|x|<ϵ} x
4ρ(dx) +

∫

{|x|<ϵ/2} x
4ρ(dx)].

Notice (A.4), and by the condition n&3 → 0, we can get

(n&)−1/2nt(Eζi −&c) = (n&)1/2
(

1

&
Eζi − c

)

t = Cn1/2&3/2 → 0. (A.6)

Hence, {Zn
t , t ∈ R+} converges in law to a Wiener process with variance σ 2

3 .

A.2. Proof of Theorem 4.1

Before the proof of Theorem 4.1, we first show the consistency of (L̂f )(x) with (Lf )(x).

Theorem A.1. Let X = {Xt , t ∈ R+} be a Lévy process, and with Lévy triplet (b, σ 2, ρ), f ∈ C∞
0 (K), L is

the infinitesimal generator of X. Then

(Lf )(x) −
1

t
[Ef (Xt + x) − f (x)] = O(t) as t → 0.
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Proof. By a simple calculation (or see Bertoin, 1996, p. 24), we can get the Fourier transformofEf (Xt+x),

FEf (Xt + x)(θ) = exp{−tψ(−θ)}Ff (θ),

and

F(Lf )(x)(θ) = −ψ(−θ)}Ff (θ),

where ψ(θ) = t−1 logE(eiθXt ). Using the Fourier inversion,

Ef (Xt + x) − f (x) =
1

2π

∫

R
e−iθx exp{−tψ(−θ)}Ff (θ)dθ − f (x)

=
1

2π

∫

R
e−iθx[exp{−tψ(−θ)} − 1]Ff (θ)dθ

=
1

2π

∫

R
e−iθx[−tψ(−θ)} + t2ψ2(−θ) + o(t2)]Ff (θ)dθ

= t(Lf )(x) + Ct2 + o(t2).

Now, we begin the proof of Theorem 4.1, we just prove (i), and the proof of (ii) is similar.

Proof. Let

(L̂f )(x) = bf ′(x) + ϵ1(x),

where

ϵ1(x) =
σ 2

2
f ′′(x) +

∫

R
[f (x + y) − f (x) − f ′(x)yI{|y|<1}]ρ(dx) + ϵ(x), (A.7)

and ϵ(x) is defined in (3.3). We write ϵ(x) as

ϵ(x) = (L̂f )(x) −
1

&
[Ef (Xt + x) − f (x)] +

1

&
[Ef (Xt + x) − f (x)] − (Lf )(x),

and (L̂f )(x) is defined as (3.6). By the definition of b̂ and (A.7),

b̂∗ − b =

∫

+ f
′(x)ϵ1(x)dx

∫

+[f ′(x)]2dx
,

and

ϵ1(x) =
σ 2

2
f ′′(x) +

∫

R
[f (x + y) − f (x) − f ′(x)yI{|y|<1}]ρ(dx)

+
1

&

{

1

n

n
∑

i=1

[f (Yi + x) − Ef (Yi + x)]

}

+ ϵ(&). (A.8)

Hence
∫

+

f ′(x)ϵ1(t)dx =

∫

+

σ 2

2
f ′(x)f ′′(x)dx +

∫

+

∫

R
[f (x + y) − f (x) − f ′(x)yI{|y|<1}]ρ(dy)f ′(x)dx + R,

where

R =
1

&

∫

+

{

1

n

n
∑

i=1

[f (Yi + x) − Ef (Yi + x)]

}

f ′(x)dx + ϵ(&).
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Using the definition of the infinitesimal generator and the property of f (x), we can get that
Var f (Yi + x) = O(&). Similar to the proof of Theorem 4.2, since f (Yi), i = 1, 2, · · · n are i.i.d.,
we have

1

n&

n
∑

i=1

[f (Yi + x) − Ef (Yi + x)] = O[(n&)−
1
2 ]. (A.9)

Hence

R

[
∫

+

[f ′(x)]2dx

]−1

≤
(n&)−1/2

∫

+ |f ′(x)|dx
∫

+[f ′(x)]2dx
= O

{

(n&)−1/2

∫

+ |f ′(x)|dx
∫

+[f ′(x)]2dx

}

. (A.10)

Remeber f ′(x) and f ′′(x) are bounded, and f ′(x) f ′′(x) is an odd function,
∫

+

σ 2

2
f ′(x)f ′′(x)dx = 0 (A.11)

and
∣

∣

∣

∣

∫

+

∫

R
[f (x + y) − f (x) − f ′(x)yI{|y|<1}]ρ(dy)f ′(x)dx

∣

∣

∣

∣

≤

∫

+

∫

|y|<1
|[f (x + y) − f (x) − f ′(x)y]||y|−1−α|f ′(x)|dx

+

∫

+

∫

|y|≥1
[|f (x + y) − f (x)|]ρ(dy)|f ′(x)|dx.

This implies (4.1).

A.3. Proof of Theorem 4.2

Proof. f (x) = sin x
1+x2

, so f ′(x) = cos x
1+x2

− 2x sin x
(1+x2)2

, and f ′′(x) = − sin x
1+x2

− 4x cos x+2 sin x
(1+x2)2

+ 8x2 sin x
(1+x2)3

. For

x ∈ [2kπ , k ∈ Z], we have

|f ′′(x)| ≤ Cx−3 as k → ∞; (A.12)

because X is an α-stable process, the Lévy measure ρ(dx) = c|x|−1−αdx,
∫

{|y|<1}
[f (x + y) − f (x) − f ′(x)y]|y|−1−αdy

=

∫

{|y|<1}

[

sin y

1 + (x + y)2
−

y

1 + x2

]

|y|−1−αdy

=

∫ 1

0

[

sin y

1 + (x + y)2
−

sin y

1 + (x − y)2

]

y−1−αdy

=

∫ 1

0

[

4xy sin y

[1 + (x + y)2][1 + (x − y)2]

]

y−1−αdy

= O(x−3), (A.13)

and
∫

{|y|≥1}
[f (x + y) − f (x)]|y|−1−αdy

=

∫

{|y|≥1}

[

sin y

1 + (x + y)2

]

|y|−1−αdy

=

∫ ∞

1

[

4xy sin y

[1 + (x + y)2][1 + (x − y)2]

]

y−1−αdy

= O(x−[3∧(2+α)]), (A.14)

together with (A.8), (A.10) we finish the proof.
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