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Abstract: To characterize heteroskedasticity, nonlinearity, and asymmetry in tail risk, this study investigates a
class of conditional (dynamic) expectile models with partially varying coefficients in which some coefficients
are allowed to be constants, but others are allowed to be unknown functions of random variables. A three-stage
estimation procedure is proposed to estimate both the parametric constant coefficients and nonparametric
functional coefficients. Their asymptotic properties are investigated under a time series context, together
with a new simple and easily implemented test for testing the goodness of fit of models and a bandwidth
selector based on newly defined cross-validatory estimation for the expected forecasting expectile errors. The
proposed methodology is data-analytic and of sufficient flexibility to analyze complex and multivariate nonlinear
structures without suffering from the curse of dimensionality. Finally, the proposed model is illustrated by
simulated data, and applied to analyzing the daily data of the S&P500 return series.
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1. Introduction

How to properly assess tail risk is one of the most important and challenging tasks in financial risk
management. Expectile, as an alternative risk measure to value at risk (VaR), has received more attentions in
recent years. VaR denotes the loss that is likely to be exceeded by a specified probability level, which is actually
the quantile of a portfolio loss distribution. However, in cases where the size of extreme losses matters—for
example, the occurrence of catastrophic events—VaR becomes a very conservative tail risk measure because a
quantile-based risk measure depends only on the probability of the occurrence of extreme losses rather than
the magnitude of extreme losses. Expectile, first introduced by Newey and Powell (1987), can rectify such an
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undesirable situation by defining a risk measure based on the minimization of asymmetrically weighted mean
square errors. Moreover, expectile has more merits compared with other popular risk measures in several ways.
For example, expectile is considered to be a better alternative to both VaR and expected shortfall because it
shares desirable properties of coherence and elicitability (See, for example, the papers by Bellini et al. (2014),
Bellini and Valeria (2015), and Ziegel (2016) for details). Another advantage is that expectile is easier computed
than VaR and expected shortfall, which is attractive in applications. Finally, since there exists a one-to-one
mapping between quantiles and expectiles, as argued in Efron (1991), Jones (1994), and Yao and Tong (1996)),
and the link between VaR and expected shortfall as addressed in Taylor (2008), expectile can be used to calculate
both VaR and expected shortfall.

By virtue of the aforementioned advantages of expectile, there has been an increasing number of studies
devoted to developing conditional expectile models in recent years. For example, Kuan et al. (2009) proposed
a class of conditional autoregressive expectile (CARE) models that allow for asymmetric dynamic effects of
the magnitude of positive and negative lagged returns on tail expectiles, while De Rossi and Harvey (2009)
proposed applying a modified state space signal extraction algorithm to estimate time-varying expectiles, which
may offer an alternative method to that in Kuan et al. (2009). Recently, Xie et al. (2014) enriched the conditional
dynamic expectile model by including variables reflecting current information of investment environment and
adopting a varying coefficient setup. In this way, a varying coefficient setup allows the conditional expectile
model to be linear in some components with their coefficients determined by unknown functions of other
variables. Compared with the aforementioned parametric models, a varying coefficient model can provide more
flexibility and capture parameter heterogeneity and nonlinearity. Furthermore, a varying coefficient model can
accommodate structural information by choosing smoothing variables and alleviate the curse of dimensionality
by adopting an additive structure (See, for example, Cai et al. (2000) for more details).

In this study, inspired by the empirical studies on characterizing heteroskedasticity and nonlinearity, as
well as asymmetry, in assessing the tail risk of asset returns for S&P500, we consider a new class of conditional
dynamic expectile models with partially varying coefficients. This new model adopts a partially linear form, in
which some coefficients are assumed to be constant, while other coefficients are allowed to depend on some
smoothing variables selected by economic theories or stylized facts. It is flexible enough to include both models
in Kuan et al. (2009) and Xie et al. (2014) as special cases. Particularly, it shares not only all merits of a fully
varying coefficient model, but also can achieve more efficient estimation for the parametric coefficient part.
Different from a fully varying coefficient model in Xie et al. (2014), the partially linear setup leads itself to a
three-stage estimation procedure. The first stage is to fit a fully varying coefficient model, the second stage
helps achieve the estimation of constant parameters with a parametric convergence rate, and the third stage
re-estimates the varying coefficients by using the estimates at the second stage. Now, an important statistical
question in fitting model (1) arises if the coefficient functions are actually varying, or more generally, if a
parametric model fits the given data. This amounts to testing whether the coefficient functions are constant
or in a certain parametric form. To this end, a simple constancy test is developed to test varying coefficients
to see if they really depend on particular economic variables. Finally, the proposed model and its inferential
procedures are applied to find a suitable expectile model to assess the tail risk of daily returns of S&P500 and
the detailed analyses are reported in Section 3.

The rest of the paper is organized as follows: Section 2 introduces the new model and proposes the
estimation method. The asymptotic properties of the proposed estimators are investigated in Section 2 too,
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together with a simple and fast algorithm for bandwidth selection and smoothing variable selection. A simple
and easily implemented test is proposed for testing whether functional coefficients are really changing or not.
Monte Carlo experiments and empirical analysis results of a real data examples are reported in Section 3. Finally,
Section 4 concludes the paper. All technical proofs are deferred to the appendix.

2. Expectile Models with Partially Varying Coefficients

2.1. Model Setup

Assume that (Yt, Ut, Xt), t = 1, 2, . . . , n is a sequence of strictly stationary random vectors. The τ-th
conditional expectile of Yt, given Ut = u and Xt = x, is then defined by

eτ(u, x) = arg min
ξ∈R

E{Qτ(Yt − ξ)|Ut = u, Xt = x},

where Qτ(v) = |τ − I(v ≤ 0)|v2 with I(·) denoting the indicator function. This study considers the τ-th
conditional expectile of Yt, given Ut and Xt, with a partially varying coefficient framework as

eτ(Ut, Xt) = a>τ Xt,1 + b>τ (Ut)Xt,2, (1)

where Xt = (X>t,1, X>t,2)
> ∈ Rp+q, and Ut is a smoothing variable. Here, both Xt and Ut are allowed to include

the past returns of Yt so that the model is dynamic. Without loss of generality, it is assumed that Ut = Ut is a
scalar variable for simplicity. Moreover, aτ = (a1,τ , . . . , ap,τ)> denotes a vector of constant coefficients of Xt,1,
and bτ(·) = (b1,τ(·), . . . , bq,τ(·))> is a vector of functional coefficients of Xt,2. For simplicity, τ is dropped in aτ

and bτ(·) from now on if it does not cause any confusion.
The above model is general enough to include some existing expectile models as special cases. For example,

the CARE model proposed by Kuan et al. (2009) can be considered a special case of a partially varying coefficient
expectile model, where the coefficients of the intercept term and past returns are constant, but the coefficients of
the magnitude of past return, measured either by the square of past returns or by the absolute value of past
returns, are varying, depending on whether the past returns are positive or negative. Moreover, if the constant
coefficients, a, are not included, the above model becomes a fully varying coefficient expectile model, as in Xie
et al. (2014).

2.2. Estimation Procedures

2.2.1. Three-Stage Estimation Procedure

Similar to the quantile model with partially varying coefficients in Cai and Xiao (2012), the well-known
estimation method in Robinson (1988) or profile least squares estimation approach in Speckman (1988) for
classical semiparametric regression estimation approach may not be applied to estimating a and b(·) due to
the fact that the expectile model does not have explicit normal equations. Therefore, estimation of a partially
varying coefficient model is not trivial compared with a fully varying coefficient model, as in Xie et al. (2014).
To estimate a and b(·), the following estimation procedures are proposed. First, a is considered a function of Us
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for 1 ≤ s ≤ n, and then, based on the local constant approximation, a(Us) can be estimated by minimizing the
following locally weighted loss function:

min
a,b

n

∑
t=1

Qτ

(
Yt − a>(Us)Xt,1 − b>(Us)Xt,2

)
Kh1(Ut −Us),

where K(·) is a kernel function, Kh1(x) = K(x/h1)/h1, and h1 denotes the bandwidth used at this step, which
controls the smoothness; it satisfies h1 = h1(n) → 0 and n h2

1 → ∞. The local constant estimator for a(Us) is
obtained, denoted by â(Us). To improve estimation efficiency for a by using full sample information, at the
second stage, one can take a simple average method for â(Us), which is given by

ã = ãτ =
1
n

n

∑
s=1

â(Us),

which is shown in Theorem 1 (later), in which the above estimator is
√

n-consistent and asymptotically normally
distributed.

Finally, b(·) is re-estimated by using the partial expectile residual, Y∗t1 = Yt − ã>Xt,1, where ã is a
√

n-consistent estimator of a, obtained possibly from the second stage. Thus, for the given grid point, u0,
the estimator of b(u0) can be obtained by the following minimization problem using local linear approximation
of b(Ut) at the grid point u0:

min
b,b′

n

∑
t=1

Qτ

(
Y∗t1 − b>(u0)Xt,2 − b

′>(u0)Xt,2(Ut − u0)

)
Kh2(Ut − u0),

where h2 denotes the bandwidth at this stage and b′(·) is the first order derivative of b(·). The local linear
estimator of b(u0) is denoted by b̃(u0).

2.2.2. Bandwidth Selection

Bandwidth selection is always a challenging issue for any semiparametric model in real applications. For
the proposed three-stage estimation procedure, the model needs to select bandwidths, h1, at the first stage,
and h2 at the third stage. There is no existing theory available in the literature on how to select h1 optimally
at the first stage. However, our simulation results show that the estimation of b(u0) is not sensitive to the
choice of h1 as long as the first stage estimation is under-smoothed. For the selection of h2 at the last stage, the
multifold cross-validation criterion proposed by Cai et al. (2000) for the mean regression model is extended
to the proposed expectile model, briefly described below. The main idea behind this approach is that, since
the classical cross-validation may not work well for time series data in the literature, this simple and quick
procedure is attentive to the structure of stationary time series data.

Let m and Q be two positive integers. The window, l, satisfies n > lQ. First, with the Q sub-series
of length n − ql (q = 1, . . . , Q), the unknown functions are estimated. Based on the estimated model, the
one-step forecasting errors of the length-l time series of the next section are computed. Specifically, the optimal
bandwidth is obtained by minimizing the average asymmetric mean squared error (AAMSE),
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AAMSE(h2) =
Q

∑
q=1

AAMSEq(h2), (2)

where for 1 ≤ q ≤ Q,

AAMSEq(h2) =
1
m

n−ql+l

∑
t=n−ql+1

Qτ

(
Yt − ã>τ Xt,1 − b̃>τ (Ut)Xt,2

)
.

It is worth noting that bandwidth is rescaled for different sample size according to the optimal rate
h2 = O(n−1/5), and one can take l = [0.1n] and Q = 4 in practical implementations, as suggested in Cai et al.
(2000). Note that a similar idea to the above selection procedure outlined in equation (2) was adopted in Xie
et al. (2014) too.

2.2.3. Smoothing Variable Selection

Choosing an appropriate smoothing variable, Ut, is of great importance in applying functional coefficient
models. To this end, economic theory or knowledge on the real data can be helpful. Nevertheless, if without
any prior information, some data-driven model selection methods, such as Akaike information criterion, cross
validation and other criteria are also suggested. Here, an easily implemented approach is proposed as follows.
The first is to select a potential set of Ut based on theory or existing models, and then the optimal Ut is obtained
when it reaches the minimum AAMSE value defined in equation (2). In the empirical study conducted in
Section 3.2, the practical implementation of this approach is presented.

2.3. Large Sample Theory

In this section, asymptotic properties for both the proposed estimators, ã and b̃(u0), are presented,
respectively. Moreover, to improve its estimation efficiency, some weighted average estimators for a are
addressed. Finally, a simple test on testing constancy is developed. It is shown to have an asymptotical
Chi-square distribution.

2.3.1. Notations and Assumptions

Note that some notations are defined here and used throughout the paper. First, fu(·) denotes the
marginal density of Ut, and fy|u,x(·) and Fy|u,x(·) are the conditional density function and distribution function
of Yt, given Ut and Xt, respectively. Moreover, we define Ω(u) = E[XtX>t |Ut = u], Γ∗(u) = E[Q′τ(Yt −
eτ(Ut, Xt))2XtX>t |Ut = u], Γ(u) = 2E

[(
τ{1 − Fy|u,x(eτ(Ut, Xt))} + (1 − τ)Fy|u,x(eτ(Ut, Xt))

)
XtX>t |Ut = u

]
,

Ω2(u) = E[Xt,2X>t,2|Ut = u], and Γ2(u) = 2E
[(

τ{1− Fy|u,x(eτ(Ut, Xt))}+(1− τ)Fy|u,x(eτ(Ut, Xt))
)
Xt,2X>t,2|Ut =

u
]
, where µj =

∫
ujK(u)du and νj =

∫
ujK2(u)du for j ≥ 0.

Now, assumptions are presented here for deriving asymptotic results. Note that these assumptions given
in the paper are sufficient conditions, but not necessarily the weakest ones.

Assumption A. (A1) b(u) is twice continuously differentiable in u. Further, fu(u) is continuously differentiable and
has a support, {u : 0 < Fu(u) < 1}, and fy|u,x(·) is bounded and satisfies the Lipschitz condition.

(A2) The kernel function, K(·), is a bounded nonnegative symmetric function with compact support.
(A3) The bandwidth, h1, satisfies h1 → 0 and nh2

1 → ∞.

Downloaded to IP: 192.168.0.24 On: 2019-02-18 11:03:24 http://engine.scichina.com/doi/10.3724/SP.J.1383.304011



188 JMSE 2018, 3(4), 183–213

(A4) | f (u, v|x0, xl)| ≤ C < ∞, for all l ≥ 1, where f (u, v|x0, xl) is the conditional density of (U0, Ul), given
(X0, Xl).

(A5) The process {(Yt, Xt, Ut)}n
t=1 is β-mixing with the mixing coefficient, β(·), satisfying ∑∞

k=1 k2[β(k)]δ/(1+δ) <

∞ for some δ > 0.
(A6) E||Xt||2(δ+1) < ∞ for some δ > 0. Further, functions Ω(u0) and Γ(u0) are continuous in a neighbourhood of

u0, with their inverse functions being uniformly bounded.

Assumption B. (B1) E|Xt,2|2(δ
∗+1) < ∞ for δ∗ > δ, Ω2(u0) and Γ2(u0) and their inverse functions are uniformly

bounded.
(B2) There exists a sequence of positive integers, sn, when n → ∞, to satisy sn → ∞, sn = o(

√
nh2), and√

n/h2β(sn)→ 0.
(B3) As n→ ∞, h2 = h2(n)→ 0, n1/2−δ/4hδ/δ∗−δ/4−1/2

2 = O(1), and h1/h2 = o(1).

Remark 1 (Discussions of Assumptions). First, Assumptions A1–A4 are standard in the nonparametric literature.
Assumption A5 is also used in Cai and Xiao (2012), and is stronger than Assumptions A3–A4 in Xie et al. (2014), which
ensures the second-stage estimator, ã, to be

√
n-consistent. E‖Xt‖2(δ+1) < ∞ in Assumption A6 is generally required

to ensure that 1/n ∑n
t=1 XtX>t → E(XtX>t ) for a mixing process. The boundedness of the inverse function of Ω(u0),

Ω2(u0), Γ(u0) and Γ2(u0) are the necessary and sufficient conditions for the model identification at the first and third
stages. For the same reason, Assumption B1 is required for the estimation at the third stage. To satisfy both Assumptions A5
and B2, a sufficient condition for the mixing coefficient, β(n), is provided. Suppose that h2 = O(n−ρ) for some 0 < ρ < 1,
sn = (nh2/ log n)1/2, and β(n) = O(n−d). Then, Assumption A5 is satisfied if d > 3/δ(δ + 1), and Assumption B2
is satisfied for d > (1 + ρ)/(1− ρ). Hence, if β(n) = O(n−d) and d > max {3/δ(δ + 1), (1 + ρ)/(1− ρ}, both
conditions are satisfied. Assumption B3 is a technical condition. Clearly, if δ > 3, or if δ < δ∗ ≤ 1 + 1/(3− δ) is
satisfied when 2 < δ < 3, Assumption B3 is automatically satisfied (See, for example, Cai et al. (2000) and Cai (2002a) for
more details).

2.3.2. Asymptotic Properties

Let us first provide the asymptotic properties of the constant coefficients estimator, ã. To simplify
presentation, the asymptotic result is stated here only with all technical details relegated to the appendix. The
main idea of the proof is that, under certain conditions, â(Ut) can be expressed as a linear estimator plus a higher
order term. In such a way, the average estimator, ã, can be formulated as a U-statistic plus a higher order term,
and then the asymptotic normality can be obtained by applying the central limit theorem of a U-statistic (See,
for example, Dette and Spreckelsen (2004)). Now, more notations are needed. ϕ(zt, zt) = Q′τ(Yt − eτ(Ut, Xt)),
e>1 = (Ip, 0

¯ p×q), Ip denotes the p-dimensional identity matrix, 0
¯ p×q represents the p × q zero matrix, Γ′(·)

and f ′u(·) are the first order derivatives of Γ(·) and fu(·), respectively; and b′′τ (·) stands for the second order
derivative of bτ(·). Next, the asymptotic normality of ãτ is stated in the following theorem.

Theorem 1. Suppose Assumption A holds. Then,

√
n[ãτ − aτ − Ba]

L−→ N (0, Σa), (3)

Downloaded to IP: 192.168.0.24 On: 2019-02-18 11:03:24 http://engine.scichina.com/doi/10.3724/SP.J.1383.304011



JMSE 2018, 3(4), 183–213 189

where the asymptotic bias term is Ba =
1
2 B∗1 h2

1 with

B∗1 =
µ2

µ0
e>1 E

[
2
(

Γ−1(Ut)Γ
′(Ut) + f ′u(Ut)/ fu(Ut)

)( 0
b′τ(Ut)

)
+

(
0

b′′τ (Ut)

)]
,

and the asymptotic variance is given by

Σa =
1

µ2
0

{
E[e>1 Γ−1(Ut)Γ

∗(Ut)Γ
−1(Ut)e1]

+ 2
∞

∑
t=1

Cov
(
e>1 Γ−1(U1)X1 ϕ(z1, z1), e>1 Γ−1(Ut+1)Xt+1 ϕ(zt+1, zt+1)

)}
.

From Theorem 1, one can observe that the estimator of constant coefficients has a parametric convergence
rate. When nh4

1 → 0, the asymptotic bias term, Ba, in Theorem 1 converges to 0, so that

√
n[ãτ − aτ ]

L−→ N (0, Σa),

which implies that to obtain ãτ , one needs to use the under-smoothing technique in the sense that nh4
1 → 0.

Remark 2. It is possible to improve the estimation efficiency of ã by using a weighted average method. Since the estimation
of a might be influenced by the tail behaviour of the distribution of Ut, similar to Cai and Masry (2000), one can use a
trimming function, wt = I(Ut ∈ U ), with a compact set, U ∈ R, which leads to the following weighted average estimator:

aw =

[
n

∑
t=1

wt

]−1 n

∑
t=1

wtâ(Ut).

Following Cai and Fan (2000), a general weighted average estimator can be given by

ǎ =

[
n

∑
t=1

W(Ut)

]−1 n

∑
t=1

W(Ut)â(Ut).

A more efficient estimator can be obtained by choosing an optimal weighting function. Under certain regularity
conditions, when ϕ(zt, zt) is a martingale difference sequence, it can be showed that

√
n[ǎ− a] L−→ N (0, Σ̌a),

where Σ̌a = 1/µ2
0E−1[W(Ut)]E[W(Ut)e>1 Γ−1(Ut)Γ

∗(Ut)Γ
−1(Ut)e1W(Ut)]E−1[W(Ut)]. If the weighting function

is chosen as
Wopt(Ut) = µ2

0[e
>
1 Γ−1(Ut)Γ

∗(Ut)Γ
−1(Ut)e1]

−1,

it is easy to show that the corresponding asymptotic variance is optimal, given by

Σ̌a,opt = E−1[Wopt(Ut)], (4)

which may be consistently estimable.
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Next, the asymptotic properties for b̃(u0) must be derived. To this end, some additional notations are
needed. Let Γ∗2(u) = E[Q

′2
τ (Yt − eτ(Ut, Xt))Xt,2X>t,2|Ut = u], Σ(u) = fu(u)diag{ν0, ν2} ⊗ Γ∗2(u). Now, we have

the following theorem:

Theorem 2. Suppose Assumptions A and B hold. Then,

√
nh2

[
b̃(u0)− b(u0)−

µ2h2
2

2µ0
b′′(u0)

]
L−→ N (0, Σb(u0)), (5)

where Σb(u0) = ν0/( fu(u0)µ
2
0)Γ
−1
2 (u0)Γ

∗
2(u0)Γ

−1
2 (u0).

The estimator has the same asymptotic result, as in Xie et al. (2014). It is worth emphasizing that the
asymptotic result is oracle in the sense that the asymptotic result in Theorem 2 is exactly the same as that for the
case in which a would be known.

2.4. Inference

Now, our focus is on how to test constancy on varying coefficients, b(·). A constancy test is usually of
interest because one may need to know whether the varying coefficients depend on particular smoothing
variables or not. Since the selection of smoothing variables is determined by economic theories, the constancy
test here serves as a vehicle to test underlying economic theories. To this end, we consider a null hypothesis
given by

H0 : b(u) = b0, for some unknown b0.

In light of Cai and Xiao (2012), it is easy to show that

‖
√

nh2Σ̂b
−1/2

(uj)
(
b̃(uj)− b̂0

)
‖2 L−→ χ2(q),

where {uj}mu
j=1 is a sequence of mu distinct points within the domain of Ut, b̂0 is the estimator under the null

hypothesis, and χ2(q) denotes a Chi-distribution with degrees of freedom, q, with the dimension of Xt2. Hence,
a simple and easily implemented test statistic, Tn, given below, has a limiting Chi-square distribution under the
null:

Tn = ∑
1≤j≤mu

‖
√

nh2Σ̂b
−1/2

(uj)
(
b̃(uj)− b̂0

)
‖2 L−→ χ2(muq), (6)

which is slightly different from that in Cai and Xiao (2012), proposing the use of the maximum rather than
summation in equation (6). To calculate Tn, one needs to find a consistent estimator of Σb(u0). As it is the
upper left q× q matrix of D−1(u0)Σ(u0)D−1(u0), where D(u) = fu(u)diag{µ0, µ2} ⊗ Γ2(u). Then, Σ̂b(u0) can
be calculated using the easily implemented estimators as shown below. To this end, we define

D̂(u0) =
1

nh2

n

∑
t=1

K
(

Ut − u0

h2

)
Q′′τ (Y

∗
t1 − η̂(u0, Ut, Xt))Z∗t,2Z∗>t,2
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as an estimator of D(u0), and

Σ̂(u0) =
1

nh2

n

∑
t=1

K2
(

Ut − u0

h2

)
Q
′2
τ (Y

∗
t1 − η̂(u0, Ut, Xt))Z∗t,2Z∗>t,2

as an estimator of Σ(u0), where η̂(u0, Ut, Xt,2) = β̂
>
(u0)Zt,2, β(u) = (b>(u), b′(u)>)>, Zt,2 = (X>t,2, X>t,2(Ut −

u0))
> and Z∗t,2 = (X>t,2, X>t,2(Ut − u0)/h2)

>. The consistency of both estimators is shown in Lemmas in the
appendix.

Remark 3. The testing procedure given by equation (6) is an asymptotic test. It has the advantage that its limiting
distribution is free of any nuisance parameter. Alternatively, a Bootstrap-based test of (6) can be applied to improve finite
sample performance. Clearly, another issue related to the proposed test is the choice of finite distinct points, {uj}m

j=1. In
practice, one may consider, for example, choosing certain quartiles. In some applications, different choices of {uj}mu

j=1 may
potentially lead to different conclusions in a finite sample. Thus, it would be desirable to consider all points, u, on the
domain of Ut so that some Lp-type tests may be constructed. Of course, investigating the properties of those test statistics
warrants further future research.

3. Simulation Studies and an Empirical Example

3.1. Simulation Studies

In this section, two simulated examples are used to illustrate the finite sample performance of the proposed
model and its estimators. To measure the performance, the medians and standard deviations of the root mean
squared errors (RMSEs) are reported. The RMSE for b̃j(·) is defined by

RMSEbj
=

[
1
G

G

∑
k=1

{
b̃j(uk)− bj(uk)

}2
]1/2

, 1 ≤ j ≤ q,

where {uk}G
k=1 are grid points within the domain of Ut. For RMSEaj of ãj, it is just the absolute deviation error,

that is, RMSEaj = |ãj − aj|. For each simulated example, sample sizes are considered to be n = 200, 400, and
800; simulations are repeated 500 times for each given sample size. Different probability levels are considered
to be τ = 0.25, 0.50, and 0.75. When generating the series of Yt, the initial value is set to be zero and the first
100 observations are dropped to reduce the impact from the initial value. For the bandwidth used at the first
step and by following the idea in Cai (2002b) and Cai and Xiao (2012), h1 is set to be d1 n−1/10h0 so that it is
under-smoothing, where h0 = n−1/5, and d1 > 0 is a constant. The bandwidth at the third stage is selected
based on the modified multifold cross-validation criterion given in Cai et al. (2000). To be specific, h2 is taken to
d2n−1/5, where d2 ranges from 0.005 to 0.2, and we then choose the optimal d2 to minimize AAMSE(h2) in (2).

For each simulated example, we compare the degree of sensitivity to tail events in quantile and expectile
models by modeling extreme tail events similar to that in Kuan et al. (2009) and Xie et al. (2014). To be
specific, two cases to model extreme values in the tail are considered. The εt is generated independently from
either N(0, 1/

√
1− P) with probability 1− P or N(c, 1/

√
P) with probability P, where Case 1: P = 0.01 and
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τ = θ = 0.05, and Case 2: P = τ = θ = 0.01. Here, θ denotes the probability level of quantile regression, c is set
to take values from −1 to −50, and n = 800 for both cases.

Example 1. The data generating process (DGP) is given by

Yt = a1Yt−1 + b1(Ut)Yt−2 + εt, t = 1, . . . , n,

where a1 = 0.5, b1(Ut) = −0.75 + 0.5 cos(
√

2πUt), Ut is generated from a Uniform (−1, 1), and εt is i.i.d. N(0, 1).
In this example, the expectile model is given by eτ(Yt) = eτ(εt) + a1Yt−1 + b1(Ut)Yt−2.

Table 1. Median and standard deviation (in parentheses) of the RMSE values for Example 1

τ = 0.25 τ = 0.50 τ = 0.75

n d1 RMSEa1 RMSEb1 RMSEa1 RMSEb1 RMSEa1 RMSEb1

200 0.5 0.0511 0.1381 0.0533 0.1403 0.0604 0.1385
(0.0485) (0.0553) (0.0448) (0.0502) (0.0494) (0.0481)

1 0.0508 0.1408 0.0531 0.1319 0.0561 0.1395
(0.0495) (0.0484) (0.0413) (0.0496) (0.0481) (0.0502)

2 0.0533 0.1343 0.0479 0.1356 0.0588 0.1358
(0.0491) (0.0517) (0.0453) (0.0479) (0.0480) (0.0487)

400 0.5 0.0387 0.1044 0.0373 0.1015 0.0382 0.1034
(0.0372) (0.0338) (0.0318) (0.0345) (0.0328) (0.0350)

1 0.0388 0.1070 0.0335 0.1028 0.0407 0.1086
(0.0343) (0.0328) (0.0305) (0.0346) (0.0153) (0.0342)

2 0.0380 0.1050 0.0332 0.1028 0.0384 0.1055
(0.0339) (0.0350) (0.0294) (0.0318) (0.0336) (0.0367)

800 0.5 0.0264 0.0836 0.0247 0.0835 0.0291 0.0858
(0.0254) (0.0238) (0.0213) (0.0244) (0.0246) (0.0239)

1 0.0264 0.0836 0.0257 0.0814 0.0282 0.0842
(0.0254) (0.0238) (0.0220) (0.0228) (0.0234) (0.0250)

2 0.0256 0.0822 0.0244 0.0828 0.0263 0.0838
(0.0237) (0.0258) (0.0215) (0.0239) (0.0228) (0.0242)

Table 1 reports the medians and standard deviations (in parentheses) of RMSE values of ã1 (RMSEa1 ) and b̃1

(RMSEb1 ) for all cases. First, one can see that the medians and standard deviations of RMSE values for all cases
decrease as the sample size increases. For example, when τ = 0.50, the median and standard deviation of the
RMSEa1 values for n = 400 are 0.037 and 0.032, respectively, and they decrease to 0.023 and 0.021, respectively,
when the sample size is doubled. Clearly, the same pattern for RMSEb1 can be observed too. Indeed, when
τ = 0.50 and the sample size is 400, the median is 0.102 and the corresponding standard deviation is 0.035.
When the sample size increases to 800, the median and its standard deviation decrease to 0.084 and 0.024,
respectively. Furthermore, Table 1 also reports the impact of different values of h1 on the estimation of ã1. When
h1 is under-smoothed, different choices of d1 in a reasonable range have very little impact on the estimation
performance of ã1. For example, when τ = 0.25 and the sample size is 800, the medians of RMSEa1 are 0.0264,
0.0264, and 0.0256 when d1 takes values of 0.5, 1, and 2, respectively. The standard deviations are almost same
for different values of d1.
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Figure 1 depicts the degree of sensitivity of quantile and expectile models to catastrophic events in the tail.
Figure 1(a) reports the results in Case 1 where P = 0.01 and τ = θ = 0.05. One can observe that the expectile
model is very sensitive to the change of values of c, while the quantile model does not change when the values
of c increase. In the Case 2, where P = τ = θ = 0.01, both vary with c. However, the change of expectile is
relatively larger than that of the quantile for each c. The results here are similar to those obtained in Kuan et al.
(2009) and Xie et al. (2014).
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P =0.01 , τ =0.05 , θ=0.05(a) Case 1: P =0.01 , τ =0.01 , θ=0.01(b) Case 2:

Figure 1. The sensitivity of quantile and expectile to extreme event for Example 1.

Example 2. In this example, the following DGP is considered:

Yt = a1Xt,1 + b1(Ut)Xt,2 + σ(Ut)εt, t = 1, . . . , n,

where a1 = 0.5, b1(Ut) = cos(
√

2πUt), and σ(Ut) = exp(−4(Ut − 1)2) + exp(−5(Ut − 2)2). Here, Xt,1 and Xt,2

are generated from Xt,1 = 0.75Xt−1,1 + vt,1 and Xt,2 = −0.5Xt−1,2 + vt,2, respectively, with vt,1 ∼ i.i.d.N(0, 1) and
vt,2 ∼ i.i.d.N(0, 1/4); Ut is generated from Ut = 0.5Ut−1 + vt,3 with vt,3 ∼ i.i.d.N(0, 1); and εt ∼ i.i.d.N(0, 1/4).
The corresponding expectile regression model is then given by eτ(Yt|Xt,1, Xt,2, Ut) = eτ(εt)σ(Ut) + a1Xt,1 + b1(Ut)Xt,2.

Table 2 reports the medians and the standard deviations (in parentheses) of the RMSE values for Example 2.
First, one can observe that in all cases, both the medians and the standard deviations of RMSE values decrease
as the sample size increases. For example, when τ = 0.5, the medians of RMSEa1 and RMSEb1 values decrease
from 0.0198 and 0.1324 to 0.0057 and 0.0684, respectively, when the sample size increases from 200 to 400. The
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standard deviations decrease from 0.0331 and 0.0514 to 0.0052 and 0.0200, respectively, when the sample size
increases from 200 to 800. One can see that RMSEa1 value shrinks to zero quicker than RMSEb1 value because
the former has a parametric convergence rate, while the latter has only a nonparametric rate. Similar to Figure 1,
Figure 2 reports the magnitude of the sensitivity to catastrophic events for quantile and expectile models for
Example 2 for two cases: Case 1 and Case 2. The results are quite similar to those observed in Figure 1. In
conclusion, the expectile model is much more sensitive to the values of c than the quantile models in both
simulated examples. This indicates clearly that the expectile seems to be a better risk measure than the quantile
for the case of the occurrence of extreme events.

Table 2. Median and standard deviation (in parentheses) of the RMSE values for Example 2

τ = 0.25 τ = 0.50 τ = 0.75

n RMSEa1 RMSEb1 RMSEa1 RMSEb1 RMSEa1 RMSEb1

200 0.0207 0.1365 0.0198 0.1324 0.0207 0.1383
(0.0273) (0.0535) (0.0331) (0.0514) (0.0259) (0.0565)

400 0.0094 0.0999 0.0104 0.0925 0.0105 0.0984
(0.0273) (0.0535) (0.0110) (0.0322) (0.0136) (0.0336)

800 0.0061 0.0699 0.0057 0.0684 0.0058 0.0716
(0.0056) (0.0235) (0.0052) (0.0200) (0.0056) (0.0219)
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Figure 2. The sensitivity of quantile and expectile to extreme event for Example 2.
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3.2. An Empirical Example

To illustrate the practical usefulness of the application of our proposed expectile model, we consider the
daily data of S&P500 from January 4, 2010 to December 7, 2017 with 2000 observations in total. The data are
downloaded from Yahoo Finance. The daily returns are computed as the difference of the log transformation
of the index, multiplying by 100, that is, Yt = 100 log(pt/pt−1), where pt is the daily price. Table 3 reports
the summary statistics of the return series. Clearly, one can see from Table 3 that the sample mean is close to
zero, but the distribution is slightly negatively skewed, which motivates us to use the expectile model than the
quantile model. Figure 3 gives the time series plot for S&P500, and it clearly shows that extreme values mainly
occur during 2010–2012, that is, the period of economic recovery from the financial crisis. However, the return
series is less volatile from 2012 to 2015.

Table 3. Summary statistics of return series

Mean Min Median Max S.Dev. Skew. Kurt.

0.0425 −6.8958 0.0535 4.6317 0.9320 −0.4621 4.7855

−6
−4

−2
0

2
4

S&P500 Index Return
2010 2011 2012 2013 2014 2015 2016 2017

Figure 3. Time series plot of stock return series: S&P500

To model the aforementioned financial data, Kuan et al. (2009) proposed the ABS(2) model and the SQ(2)
model, given by

et,τ = a0,τ + δ1,τY+
t−1 + λ1,τY−t−1 + δ2,τY+

t−2 + λ2,τY−t−2,

where v+ = max(v, 0) and v− = max(−v, 0), and
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et,τ = a0,τ + a1,τYt−1 + b1,τ(Y+
t−1)

2 + γ1,τ(Y−t−1)
2 + b2,τ(Y+

t−2)
2 + γ2,τ(Y−t−2)

2,

Respectively. They have an ability to capture asymmetric properties in the tail risk for financial data, where
as Xie et al. (2014) proposed a fully varying coefficient (VC) model to fit the exchange rate data, defined as

eτ(Xt, Ut) = b0,τ(Ut) + b1,τ(Ut)Yt−1 + b2,τ(Ut)Yt−2,

which, unfortunately, is unable to characterize the asymmetric effect as emphasized in ABS(2) and SQ(2). To
capture the asymmetric effects by generalizing the models considered in Kuan et al. (2009) and Xie et al. (2014),
the following model is proposed:

eτ(Yt, Ut) = b0,τ(Ut) + b1,τ(Ut)Y+
t−1 + b2,τ(Ut)Y−t−1 + b3,τ(Ut)Y+

t−2 + b4,τ(Ut)Y−t−2. (7)

Before estimating the functional coefficients in (7), two issues are addressed. The first question is how to
choose Ut. As mentioned in Section 2.2.3, choosing Ut in the above model is of importance in real applications.
Unfortunately, Xie et al. (2014) did not provide any theory on how to choose Ut empirically or economically. In
this empirical study, due to lack of physical background on how to choose Ut, Ut is selected to be the lagged
variable of Yt, say Yt−1 or Yt−2. The optimal choice of Ut is determined based on the data-driven method
introduced in Section 2.2.3. From the AAMSE results presented in Table 4, Ut = Yt−1 is selected.

Table 4. AAMSE values of choosing the smoothing variable.

S&P 500

AAMSE 0.005 0.01 0.05 0.1

Ut = Yt−1 0.2492 0.3143∗ 0.6329∗ 0.8588∗

Ut = Yt−2 0.2399∗ 0.3339 0.6474 0.8610

Note: ∗ denotes that the corresponding AAMSE value is smaller

Table 5. P-values of constancy tests for the VC model in equation (7).

τ 0.005 0.01 0.05 0.1

b0,τ 0.0005 0.0000 0.0000 0.0000
b1,τ 0.0031 0.0000 0.0000 0.0000
b2,τ 0.9410 0.0000 0.0000 0.0000
b3,τ 0.8520 0.2826 0.9693 0.9987
b4,τ 0.0119 0.0000 0.0001 0.0210

The second issue is whether the fully varying coefficient model given in equation (7) is appropriate. To this
end, a constancy test is conducted to determine which coefficients are truly varying. Table 5 reports the testing
results for all coefficients under four expectile levels, τ = 0.005, 0.01, 0.05, and 0.1, respectively, and one cannot
reject the null hypothesis of constancy for b3,τ(·) in all cases.

Therefore, given the evidences in Tables 4 and 5, the following partially varying coefficient (PVC) expectile
model is investigated:

eτ(Xt, Ut) = a0,τY+
t−2 + b0,τ(Ut) + b1,τ(Ut)Y+

t−1 ++b2,τ(Ut)Y−t−1 + b3,τ(Ut)Y−t−2, (8)
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Ut = Yt−1 is termed as PVC model hereafter.
Next, Figures 4–5 depict the estimated curves for functional coefficients in the PVC model for τ = 0.005,

0.01, 0.05, and 0.1, respectively. To investigate the asymmetry effects of positive and negative returns, the
figures of the estimated functional coefficients in pairs are presented to get a clear insight. For example, one can
see clearly that the effects of Y+

t−1 and Y−t−1, measured by b1,τ(Yt−1) (Figure 4(a)) and b2,τ(Yt−1) (Figure 4(b)),
show obvious asymmetric effects. When Yt−1 ∈ (−1, 0), b1,τ(Yt−1) are positive in all case, while b2,τ(Yt−1) are
negative under the same circumstance. However, when Yt−1 ∈ (0, 1), the effects of Y+

t−1 and Y−t−1 are nearly
symmetric, although the magnitude may not be exactly identical. In Figure 5, it is clear that the constant
coefficient, Y+

t−2, and functional coefficient, Y−t−2, measured by a0,τ and b3,τ(Yt−1), are both negative, which is
consistent with the findings in Kuan et al. (2009), although the time periods are different. It is also worthy to
mention that the functional coefficient, b3,τ(Yt−1), achieves its minimal value when Yt−1 almost equals to zero.
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Figure 4. Functional coefficients b1,τ(·) (a) and b2,τ(·) (b) for S&P500 in model (8).

Finally, to compare the relative performance of these three models in terms of predictive ability, all models
are estimated on rolling windows of length N = 1500. As discussed in Campbell (2007) and references therein,
when assessing the accuracy of forecasting models for VaR, one needs to consider evaluation procedures other
than violation measures. Here, we employ the Murphy diagram introduced in Ehm et al. (2016), which plots the
expected scores for competing expectile forecasters. The expected score is calculated using the score function as

S(eτ , Y) =
1
n

n

∑
t=1

Sτ,ω(eτ,t, Yt),

where eτ,t is the one-step expectile forecaster for a rolling sample of {Yt−1}, and Sτ,ω(eτ,t, Yt) is given by

Sτ,ω(eτ,t, Yt) = |I(Yt < eτ,t)− τ|{(Yt −ω)+ − (eτ,t −ω)+ − (Yt − eτ,t)I(ω < eτ,t)}
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=


(1− τ)(ω−Yt), if Yt ≤ ω < eτ,t,
τ(Yt −ω), if eτ,t ≤ ω < Yt,
0, otherwise.
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Figure 5. Coefficient a0,τ (a) and functional coefficient b3,τ(·) (b) in model (8).

To estimate the model in equation (8), the normal kernel function is used for local linear estimation. The
methods introduced in Section 2.2.2 are employed to choose bandwidths at the third stage. The values of
expectile forecasters for three models under each case of τ = 0.005, 0.01, 0.05, and 0.1 are displayed in Figure
6. Moreover, Figure 7 plots the Murphy diagram for the forecasters of the three models under various τs. It
demonstrates that the PVC model outperforms the other two models under all cases. The numerical results
suggest that our PVC model is a better alternative model to ABS and SQ models for the given dataset.

4. Conclusion

First, a class of dynamic expectile models with partially varying coefficients is proposed and a three-stage
estimation procedure is employed to estimate both the constant and varying coefficients. Then, it shows that
the constant coefficient estimator has a parametric convergence rate, while the varying coefficient estimator
has a nonparametric rate. We also propose weighted average estimators for constant coefficients for further
improving estimation efficiency. Moreover, a simple test statistic is derived to testing the constancy of varying
coefficients. Our simulation results re-confirm that expectile models are more sensitive to extreme values
than quantile models. Using the S&P500 return series, the proposed expectile model with partially varying
coefficients outperforms other existing models in most cases. For future works, it is interesting to consider
an expectile model including the lag of expectile term, which constitutes an analog of CAViaR models under
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Figure 6. Expectile forecasters of three models under four cases: (a) τ = 0.005, (b) τ = 0.01, (c) τ = 0.05, (d)
τ = 0.1.
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Figure 7. Murphy diagram for the forecasters of three models under four cases: (a) τ = 0.005, (b) τ = 0.01, (c)
τ = 0.05, (d) τ = 0.1.

expectile setting. Moreover, developing a general specification test on varying coefficients based on the proposed
expectile models with partially varying coefficients could be of great importance.
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Appendix A Mathematical Proofs

Appendix A.1 Notations and Definitions

In this section, some additional notations and definitions are introduced and used in the following sections.
Let zt = (Ut, Xt, Yt), define S(zt) = µ0 fu(Ut)Γ(Ut), M(zt) = Xt, and Z(u0, zt) = Q′τ(Ỹt)M(zt)Kh1(Ut − u0),
where Ỹt = Yt − a>(u0)X1,t − b>(u0)X2,t. Define

θ̂ =
√

nh1{â1(u0)− a1(u0), . . . , âp(u0)− ap(u0), b̂1(u0)− b1(u0), . . . , b̂q(u0)− bq(u0)}>.

Then, â>(u0)X1,t + b̂
>
(u0)X2,t = a(u0)X1,t + b(u0)X2,t + θ̂

>Xt
/√

nh1 and θ̂ minimizes the following
objective function

Ψn(θ) ≡
n

∑
t=1

[Qτ(Ỹt − θ>Xt
/√

nh1)−Qτ(Ỹt)]K((Ut − u0)/h1).

Proof of Theorem 1.

To establish the asymptotic result of ã, the first step is to derive the the local Bahadur representation for the
estimators obtained from the first stage. By Lemma A.1, together with the convexity theorem in Pollard (1991),
θ̂ can be explicitly expressed as

θ̂ = S−1(u0)Wn/
√

nh1 + op(1) (A-1)

uniformly for θ in compact set of K1, where Wn = ∑n
t=1 Q′τ(Ỹt)K(Ut−u0

h1
)Xt. It follows from (A-1) that for any u0

under Assumption A,

â(u0)− a(u0) ≈
1
n

n

∑
t=1

e>1 S−1(u0)Q′τ(Ỹt)K((Ut − u0)/h1)Xt =
1
n

n

∑
t=1

e>1 S−1(u0)Z(u0, zt).

Next, the leave-one-out method is used to obtain the following formula for each point Us,

â(Us)− a(Us) ≈
1
n

n

∑
t 6=s

e>1 S−1(zs)Z(zs, zt).

Hence,

ã− a =
1
n

n

∑
t=1

[â(Ut)− a(Ut)] ≈
2
n2

n

∑
1≤s<t≤n

e>1 S−1(zs)Z(zs, zt)

=
1
n2

n

∑
1≤s<t≤n

[e>1 S−1(zs)Z(zs, zt) + e>1 S−1(zt)Z(zt, zs)] =
n− 1

2n
Un,
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where with hn(zs, zt) = e>1 S−1(zs)Z(zs, zt) + e>1 S−1(zt)Z(zt, zs),

Un =
2

n(n− 1) ∑
1≤s<t≤n

hn(zs, zt).

To derive the asymptotic properties for ã, it suffices to show that Un is a U-statistics with non-degenerate
dependent kernel, hn(zs, zt). Applying a Hoeffding decomposition as in Lee (1990), one has

Un = γn + 2H(1)
n + H(2)

n , (A-2)

where H(1)
n = ∑n

t=1 h(1)n (zt)/n, H(2)
n = ∑t 6=s h(2)n (zs, zt)/n(n − 1), and γn = E[hn(zs, zt)] with h(1)n (v) and

h(2)n (v, w) defined by h(1)n (v) = E(hn(v, zt))− γn, and h(2)n (v, w) = hn(v, w)− E(hn(v, zt))− E(hn(zs, w)) + γn.

Lemma A.1. Under Assumptions A, as n→ ∞, one has,

Ψn(θ) =
1
2

θ>S(u0)θ−
1√
nh1

W>n θ+ rn(θ),

where S(u0) = fu(u0)µ0Γ(u0) and supθ∈K1
|rn(θ)| = op(1) for any compact set K1.

Lemma A.2. Under Assumptions A,

Cn ≡ max
{

sup
s 6=t,i 6=j,t 6=j

E|hn(zs, zt)hn(zi, zj)|1+δ, sup
s 6=t,i 6=j,t 6=j

E1⊗|hn(zs, zt)hn(zi, zj)|1+δ

sup
s 6=t,i 6=j,t 6=j

E3⊗|hn(zs, zt)hn(zs, zj)|1+δ, sup
s 6=t,i 6=j,t 6=j

E2⊗|hn(zs, zt)hn(zs, zj)|1+δ
}

= O(h−2(1+δ)
1 ),

where E1⊗, E2⊗, and E3⊗ denote the expectations with respect to the measures Pzs1
⊗ Pzs2 ,zs3 ,zs4

, Pzs1 ,zs2
⊗ Pzs3

, and
Pzs1 ,zs2 ,zs3

⊗ Pzs4
for s1 < s2 < s3 < s4, respectively.

Lemma A.3. Under Assumptions A, as n→ ∞, one has,
(a) E|h(1)n (zs)|4 = O(1),
(b) E|h(2)n (zs, zt)|2 = o(h−1

1 ).

Lemma A.4. Under Assumption A, as n→ ∞, then,
(a) γn = B∗1 h2

1 + o(h2
1),

(b) nVar(H(1)
n ) = Σa + o(1),

where Σa ≡ Σ∗a + 2 ∑n−1
s=1 Cov(h(1)n (z1), h(1)n (zs+1)).

Our proof uses Theorem 2 in Dette and Spreckelsen (2004) to establish the asymptotic results of the
proposed estimator. It is easy to find that the kernel, hn(zs, zt), satisfies the assumptions of Theorem 2 in
Dette and Spreckelsen (2004). Thus, we must check the other conditions, such as (17) and (18), in Dette and

Downloaded to IP: 192.168.0.24 On: 2019-02-18 11:03:24 http://engine.scichina.com/doi/10.3724/SP.J.1383.304011



202 JMSE 2018, 3(4), 183–213

Spreckelsen (2004). The condition in (17) in Dette and Spreckelsen (2004) is checked and proved in Lemma A.2,
and the proof of the condition in (18) in Dette and Spreckelsen (2004) is given in Lemma A.3. Then, one has

Un − E⊗(Un)√
Var(Un)

L−→ N (0, 1),

which implies that
Un − γn√

Var(H(1)
n (zt))

L−→ N (0, 1).

The asymptotic normality follows from Lemma A.4 and equation (A-2) that

√
n
[

ã− a− 1
2

γn

]
L−→ N (0, Σa),

which completes the proof of Theorem 1.

Proof of Theorem 2.

To simplify notation, define

ϑ̂ =
√

nh2{b̂1(u0)− b1(u0), . . . , b̂q(u0)− bq(u0), h2(b̂′1(u0)− b′1(u0)), . . . , h2(b̂′q(u0)− b′q(u0))}>,

which minimizes the following function

Φn(ϑ) ≡ Φn(ϑ; τ, X, U, u0) =
n

∑
t=1
{Qτ(Ỹ

∗
t − ϑ>Z∗t,2/

√
nh2)−Qτ(Ỹ

∗
t )}K(

Ut − u0

h2
), (A-3)

where Ỹ∗t = Y∗t1 − β>τ (u0)Zt,2 with βτ(u) = (b>(u), b′>(u))>, Zt,2 = (X>t,2, X>t,2(Ut − u0))
>, and Z∗t,2 =

(X>t,2, X>t,2(Ut − u0)/h2)
>. Note that τ is dropped from βτ(u) afterwards. Then, the following two lemmas are

provided to establish the asymptotic properties of b̂(u0).

Lemma A.5. Under Assumptions A and B, as n→ ∞, the following results hold true:
(a) Φn(ϑ) =

1
2 ϑ>D(u0)ϑ − 1√

nh2
G>n ϑ + Rn(ϑ),

(b) R∗n(ϑ) = op(1),
(c) supϑ∈K2

|Rn(ϑ)| = op(1),

where Gn = ∑n
t=1 Q′τ(Ỹ∗t )K(

Ut−u0
h2

)Z∗t,2.

Lemma A.6. Under Assumptions A and B, as n→ ∞, one has

1√
nh2

[
Gn −

nh3
2

2
fu(u0)

(
Γ2(u0)b′′(u0)µ2

0

)
+ o(nh3

2)

]
L→ N(0, Σ(u0)).

From the convexity lemma of Pollard (1991) and Lemma A.5, the minimizer ϑ̂ can be expressed as

ϑ̂ = D−1(u0)Gn/
√

nh2 + op(1)
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uniformly for ϑ ∈ K2, which is a compact set of ϑ. From the above equation, we have√
nh2H

(
β̂(u0)− β(u0)

)
= D−1(u0)Gn/

√
nh2 + op(1),

where H = Iq ⊗ diag(1, h2) is the selection matrix. Together with Lemma A.6, Theorem 2 is proved.

Appendix A.2 Proofs of Lemmas

Proof of Lemma A.1.

It follows from the same procedure as that used in the proof of Lemma A.5.

Proof of Lemma A.2.

It is easy to find that the kernel, hn(zs, zt), satisfies the assumptions of Theorem 2 in Dette and Spreckelsen
(2004). Thus, the remaining condition needs to be checked, namemly, the condition in (17) of Dette and
Spreckelsen (2004). To this end, κ is chosen to satisfy 1/κ + 1/ι = 1, where 1 < ι < 2/(1 + δ). It follows from
the Hölder’s inequality that

E|hn(zs, zt)hn(zs, zt)|1+δ ≤ [E|hn(zs, zt)|κ(1+δ)]
1
κ [E|hn(zs, zt)|ι(1+δ)]

1
ι .

By the Cr-inequality, one obtains

E|hn(zs, zt)|κ(1+δ) = E|e>1 S−1(zs)Z(zs, zt) + e>1 S−1(zt)Z(zt, zs)|κ(1+δ)

≤ C{E|e>1 S−1(zs)Z(zs, zt)|κ(1+δ) + E|e>1 S−1(zt)Z(zt, zs)|κ(1+δ)}

≤ CE|e>1 S−1(zs)Z(zs, zt)|κ(1+δ)

= CE|e>1 S−1(Us)ϕ(zs, zt)K(
Ut −Us

h1
)Z∗>t |κ(1+δ) = O(h−κ(1+δ)

1 ).

In a similar way, it follows that E|hn(zs, zt)|ι(1+δ) = O(h−ι(1+δ)
1 ). Then,

sup
s 6=t,i 6=j,t 6=j

E|hn(zs, zt)hn(zi, zj)|1+δ = O(h−2(1+δ)
1 )

can be easily shown. By the same token, one can show that

sup
s 6=t,i 6=j,t 6=j

E1⊗|hn(zs, zt)hn(zi, zj)|1+δ = O(h−2(1+δ)
1 ),

sup
s 6=t,s 6=j,t 6=j

E3⊗|hn(zs, zt)hn(zi, zj)|1+δ = O(h−2(1+δ)
1 ),

and
sup

s 6=t,i 6=j,t 6=j
E2⊗|hn(zs, zt)hn(zs, zj)|1+δ = O(h−2(1+δ)

1 ).
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Therefore,

Cn = max{ sup
s 6=t,i 6=j,t 6=j

E|hn(zs, zt)hn(zi, zj)|1+δ, sup
s 6=t,i 6=j,t 6=j

E1⊗|hn(zs, zt)hn(zi, zj)|1+δ

sup
s 6=t,i 6=j,t 6=j

E2⊗|hn(zs, zt)hn(zs, zj)|1+δ, sup
s 6=t,i 6=j,t 6=j

E2⊗|hn(zs, zt)hn(zs, zj)|1+δ}

= O(h−2(1+δ)
1 ),

so that the condition in (17) of Theorem 2 in Dette and Spreckelsen (2004) is satisfied.

Proof of Lemma A.3.

Note that E[Xt ϕ(zt, zt)Kh1(Ut − u0)] = 0 according to the first order condition. Then,

E[Z(u0, zt)]

= E[XtQ′τ(Yt − eτ(Ut, Xt) + X>t,2[b(Ut)− b(u0)])Kh1(Ut − u0)]

= E
[
Γ(Ut)Kh1(Ut − u0)

(
0

b′(u0)(Ut − u0) +
1
2 b′′(u0)(Ut − u0)2

)]
(1 + o(1))

=
{

E
[
Γ(Ut)

(
0

b′(u0)(Ut − u0)

)
Kh1(Ut − u0)

]
+ E

[
Γ(Ut)

(
0

1
2 b′′(u0)(Ut − u0)2

)
Kh1(Ut − u0)

]}
(1 + o(1)). (A-4)

For the first term on the right hand side of (A-4), one can obtain

Γ(u0 + uh) = Γ(u0) + Γ′(u0)uh + o(h) and fu(u0 + uh) = fu(u0) + f ′u(u0)uh + o(h)

by Taylor expansion. Thus,

E[Γ(Ut)b′(u0)(Ut − u0)Kh1(Ut − u0)]

=
∫

Γ(u0 + uh)(Ut − u0)K(u) fu(u0 + uh)b′(u0)du

= h1

∫ [
Γ(u0) fu(u0) + Γ′(u0) fu(u0)uh1 + Γ(u0) f ′u(u0)uh1

]
b′(u0)uK(u)du(1 + o(1))

= µ2h2
1[Γ
′(u0) fu(u0) + Γ(u0) f ′u(u0)]b′(u0).

For the second term on the right hand side of (A-4), one has

E[Γ(Ut)
1
2

b′′(u0)(Ut − u0)
2Kh1(Ut − u0)] =

µ2h2
1

2
Γ(u0) fu(u0)b′′(u0)(1 + o(1)).

Therefore,

E[Z(u0, zt)] =
µ2h2

1
2

[
2
(

Γ′(u0) fu(u0) + Γ(u0) f ′u(u0)
)( 0

b′(u0)

)
+ Γ(u0) fu(u0)

(
0

b′′(u0)

)]
(1 + o(1)).
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It follows from the definition of hn(zs, zt) and (A-2) that

E[hn(v, zt)] = E[e>1 S−1(v)Z(v, zt)] + E[e>1 S−1(zt)Z(zt, v)]

= E[e>1 S−1(zt)Z(zt, v)] + o(h2
1)

= E[e>1 S−1(zt)ϕ(zt, v)M(v)K(
v−Ut

h1
)] + o(h2

1)

= e>1 S−1(v)ϕ(v, v)M(v) fu(v) + o(h1).

Then, it is readily seen that

h(1)n (v) = e>1 S−1(v)ϕτ(v, v)M(v) fu(v) + o(h1),

where fu(·) is the density function of Ut, and

h(2)n (v, w) = hn(v, w)− e>1 S−1(v)ϕτ(v, v)M(v) fu(v)− e>1 S−1(w)ϕτ(w, w)M(w) fu(w) + o(1).

Therefore,

E|h(1)n (zs)|4 =
1

µ4
0

E|e>1 Γ−1(Us)ϕ(zs, zs)Xs|4 + o(h2
1)

≤ CE|e>1 Γ−1(Us)XsX>s Γ−1(Us)e1|2 ≤ C,

and

E|hn(zs, zt)|2 = E[e>1 S−1(zs)Z(zs, zt) + e>1 S−1(zt)Z(zt, zs)]
2

≤ CE|e>1 S−1(zs)Z(zs, zt)|2

≤ CE|e>1 S−1(zs)Z(zs, zt)Z>(zs, zt)S−1(zs)e1|

≤ Ce>1 E[E{S−1(zs)Z(zs, zt)Z>(zs, zt)S−1(zs)}]e1

= Ce>1 E[S−1(zs)
∫

ϕ2(zs, zt)K2
h1
(Ut −Us)XtX>t dF(zt)S−1(zs)]e1 = O(h−1

1 ).

Hence,

E|h(2)n (zs, zt)|2 = CE|hn(zs, zt)− e>1 S−1(zs)ϕτ(zs, zs)M(zs) fu(zs)

− e>1 S−1(zt)ϕτ(zt, zt)M(zt) f (zt)|2 + o(1)

= C{E|hn(zs, zt)|2 + E|e>1 S−1(zs)ϕτ(zs, zs)M(zs) fu(zs)|2

+ E|e>1 S−1(zt)ϕτ(zt, zt)M(zt) f (zt)|2}+ o(1)

= C{E|hn(zs, zt)|2 +
1

µ2
0

E|e>1 (Γ−1(Us))ϕτ(zs, zs)Xs|2

+
1

µ2
0

E|e>1 (Γ−1(Ut))ϕτ(zt, zt)Xs|2}+ o(1)

= CE|hn(zs, zt)|2 + C1 = O(h−1
1 ).
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Clearly, Lemma A.3 is established.

Proof of Lemma A.4.

It is easy see from Lemma A.3 and (A-2) that

γn =
∫ ∫

hn(zs, zt)dF(zs)dF(zt)

=
∫ ∫

[e>1 S−1(zs)Z(zs, zt) + e>1 S−1(zt)Z(zt, zs)]dF(zs)dF(zt)

= 2
∫ ∫

e>1 S−1(zs)Z(zs, zt)dF(zs)dF(zt)

=
µ2h2

1
µ0

e>1 E
[

2
(

Γ−1(Us)Γ
′(Us) + f ′u(Us)/ fu(Us)

)( 0
b′(Us)

)
+

(
0

b′′(Us)

)]
(1 + o(1))

= B∗1 h2
1 + o(h2

1),

which completes the proof of (a). For (b), as E[h(1)n (zs)] = 0 holds, it is easy to show that

Var(h(1)n (zs)) = E[e>1 S−1(zs)ϕ(zs, zs)M(zs) f (zs)]
2 + o(h2

1)

=
1

µ2
0

E[e>1 Γ−1(Us)XsX>s Γ−1(Us)Q
′2
τ (Ys − eτ(Us, Xs))e1] + o(h2

1)

=
1

µ2
0

E[e>1 Γ−1(Us)E(Q
′2
τ (Ys − eτ(Us, Xs))XsX>s )Γ

−1(Us)e1] + o(h2
1)

= Σ∗a + o(h2
1),

and

Cov(h(1)n (z1), h(1)n (zs+1)) = E[h(1)n (z1)h
(1)
n (zs+1)]

=
1

µ2
0

E[e>1 (Γ−1(U1)X1X>s+1Γ−1(Us+1)ϕ(z1, z1)ϕ(zs+1, zs+1)e1] + o(h2
1)

= Cov(w1, ws+1) + o(1) ≤ Cβ(s).

Using the above results together with properties of stationarity, one obtains

nVar(H(1)
n ) =

1
n

n

∑
s=1

Var(h(1)n (zs)) + 2
n−1

∑
s=1

(1− s
n
)Cov(h(1)n (z1), h(1)n (zs+1))

= Σ∗a + 2
n−1

∑
s=1

Cov(h(1)n (z1), h(1)n (zs+1)) + o(1) = Σa + o(1),

and Lemma A.4 holds.
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Proof of Lemma A.5.

Write η(Ut, Xt,2) = b>(Ut)Xt,2. Applying Taylor expansion leads to

η(Ut, Xt,2) = η(u0, Ut, Xt,2) +
1
2

q

∑
j=1

b′′j (u0)Xtj,2(Ut − u0)
2 + o(h2

2),

for u in |u− u0| < h2, in which Xtj,2 is the j-th element of Xt,2. Let φ(v|u, x) = E[Qτ(Y∗t1 − η(Ut, Xt,2) + v)|Ut =

u, Xt,2 = x]. Denote ∂φ(v|u, x)/∂v and ∂2φ(v|u, x)/∂v2 by φ′(v|u, x) and φ′′(v|u, x), respectively. It is worth
mentioning that Φn(ϑ) is also convex in ϑ and it can be re-written as

Φn(ϑ) = E[Φn(ϑ)|Ut, Xt,2]−
1√
nh2

n

∑
t=1

{
Q′τ(Ỹ

∗
t )Z

∗
t,2K(

Ut − u0

h2
)

− E[Q′τ(Ỹ
∗
t )|Ut, Xt,2]Z∗t,2K(

Ut − u0

h2
)
}>

ϑ + R∗n(ϑ). (A-5)

Let us deal with the first term on right hand side of (A-5). For this purpose, it follows from equation (A-3)
that

E[Φn(ϑ)|Ut, Xt,2] (A-6)

=
n

∑
t=1

[
φ
(
η(Ut, Xt,2)− η(u0, Ut, Xt,2)−

ϑ>Z∗t,2√
nh2
|Ut, Xt,2

)
− φ

(
η(Ut, Xt,2)− η(u0, Ut, Xt,2)|Ut, Xt,2

)]
K(

Ut − u0

h2
)

= −
n

∑
t=1

φ′
(
η(Ut, Xt,2)− η(u0, Ut, Xt,2)|Ut, Xt,2

)ϑ>Z∗t,2√
nh2

K(
Ut − u0

h2
)

+
1
2

n

∑
t=1

φ′′
(
η(Ut, Xt,2)− η(u0, Ut, Xt,2)|Ut, Xt,2

)
(

ϑ>Z∗t,2√
nh2

)2K(
Ut − u0

h2
)(1 + op(1))

= − 1√
nh2

n

∑
t=1

E[Q′τ(Ỹ
∗
t )|Ut, Xt,2)]Z∗>t,2 K(

Ut − u0

h2
)ϑ

+
1

2nh2
ϑ>
{ n

∑
t=1

K(
Ut − u0

h2
)E
[
Q′′τ (Yt − eτ(Ut, Xt))|Ut, Xt,2

]
Z∗t,2Z∗>t,2

}
ϑ(1 + op(1)).

For the second term on the right hand side of (A-5),

E
[
K(

Ut − u0

h2
)E
[
Q′′τ (Yt − eτ(Ut, Xt))|Ut, Xt,2

]
Z∗t,2Z∗>t,2

]
= 2E

[
K(

Ut − u0

h2
)
{

τ[1− Fy|x,u(eτ(Ut, Xt))] + (1− τ)Fy|x,u(eτ(Ut, Xt)))
}

Z∗t,2Z∗>t,2
]

= h2 fu(u0)

(
µ0 0
0 µ2

)
⊗ Γ2(u0)(1 + op(1)).
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Then, by ergodicity, one has

1
nh2

n

∑
t=1

K(
Ut − u0

h2
)Q′′τ (Yt − eτ(Ut, Xt))Z∗t,2Z∗>t,2 → fu(u0)

(
µ0 0
0 µ2

)
⊗ Γ2(u0). (A-7)

Using Lemma A.6(b) (see below), together with (A-5), (A-6), and (A-7), (a) holds true, where Rn(ϑ) = op(1)
for each fixed ϑ. To prove (b), note that

R∗n(ϑ) =
n

∑
t=1
{Vt − E(Vt|Ut, Xt,2)},

where

Vt =
n

∑
t=1
{Qτ(Ỹ

∗
t − ϑ>Z∗t,2/

√
nh2)−Qτ(Ỹ

∗
t ) + Q′τ(Ỹ

∗
t )ϑ

>Z∗t,2/
√

nh2}K(
Ut − u0

h2
).

Since ER∗n(ϑ) = 0,

ER∗2n (ϑ) = nEV2
t + 2

n−1

∑
s=1

(n− s)Cov(V1, Vs+1),

and by Lemma A.2 in Yao and Tong (1996),

EV2
t ≤ 16E[(ϑ>Z∗t,2/

√
nh2)

4K2(
Ut − u0

h2
)] = O(

1
n2h2

).

Let dn → ∞ be a sequence of positive integers, such that dnh2(n)→ 0, and define

J1 =
dn−1

∑
s=1

n|Cov(V1, Vs+1)| and J2 =
n−1

∑
s=dn

n|Cov(V1, Vs+1)|.

By Cauchy–Schwartz inequality and stationarity, for s < dn,

|Cov(V1, Vs+1)| ≤ CEV2
t = O(

1
n2h2

),

so that
J1 = ndnO(

1
n2h2

) = o(
1

nh2
2
).

Next, the upper bound of J2 is derived. Using Davydov’s inequality (See Corollary A.2 in Hall and Heyde
(1980)), it is easy to obtain

|Cov(V1, Vs+1)| ≤ C[β(s)]1−2/δ[E|Vt|δ]2/δ.

Using Lemma A.2 in Yao and Tong (1996) again, one has

E|Vt|δ ≤ 4δE[(
ϑ>Z∗t,2√

nh2
)2δKδ(

Ut − u0

h2
)]

≤ C
hδ−1

2
(nh2)δ

E[(ϑ>Z∗t,2)
2δK(

Ut − u0

h2
)]
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≤ C
h2

(nh2)δ
= Cn−δh1−δ

2 ,

which implies that

J2 ≤ nCn−2h
2
δ−2
2

∞

∑
s=dn

β1−2/δ(s)

≤ Cn−1h
2
δ−2
2 d−c

n

∞

∑
s=dn

scβ1−2/δ(s) = o(
1

nh2
),

by choosing dn, such that h1−2/δ
2 dc

n = O(1) for δ > 2, so that dnh2 → 0 is satisfied. Consequently, ER∗2n (θ) =

o( 1
nh2

2
) and

P(|R∗n(θ)| > ε) ≤ ER∗2n (θ)

ε2 = o(1),

which completes the proof of (b).
The fact that Gn is stochastically bounded, together with the convex function, Φn(ϑ)

p→ 1
2 ϑ>D(u0)ϑ −

1√
nh2

G>n ϑ, implies that
sup
ϑ∈K2

|Rn(ϑ)| = op(1),

for any compact set, K2, which follows from the convexity lemma in Pollard (1991). This completes the proof of
Lemma A.5.

Proof of Lemma A.6.

Since E[Z∗t,2Q′τ(Y∗t1 − η(Ut, Xt,2))K(
Ut−u0

h2
)] = 0, one has

E[Z∗t,2Q′τ(Ỹ
∗
t )K(

Ut − u0

h2
)]

= E[Z∗t,2Q′′τ (Ỹ
∗
t )K(

Ut − u0

h2
)X>t,2{

1
2

b′′(u0)(Ut − u0)
2}](1 + o(1))

= E
[(

1
Ut−u0

h2

)
⊗ 2{τ(1− Fy|x,u(eτ(Ut, Xt)) + (1− τ)Fy|x,u(eτ(Ut, Xt))}Xt,2X>t,2

K(
Ut − u0

h2
)

1
2

b′′(u0)(Ut − u0)
2
]
(1 + o(1))

=
h3

2
2

fu(u0)

(
Γ2(u0)b′′(u0)µ2

0

)
(1 + o(1)), (A-8)

and

E[Z∗t,2Q′τ(Ỹ
∗
t )K(

Ut − u0

h2
)]2

= E
[(

1 Ut−u0
h2

Ut−u0
h2

(Ut−u0
h2

)2

)
⊗ K2(

Ut − u0

h2
)Q
′2
τ (Ỹ

∗
t )Xt,2X>t,2

]
(1 + o(1))

Downloaded to IP: 192.168.0.24 On: 2019-02-18 11:03:24 http://engine.scichina.com/doi/10.3724/SP.J.1383.304011



210 JMSE 2018, 3(4), 183–213

= h2 fu(u0)

(
ν0 0
0 ν2

)
⊗ Γ∗2(u0)(1 + o(1)) = h2Σ(u0)(1 + o(1)). (A-9)

Next, the basic idea of proving the asymptotic normality is to employ the classical large-block and
small-block technique, which partition the {1, . . . , n} into 2kn + 1 subsets with large block of size r = rn and
small block of size s = sn, where

k = kn =

[
n

rn + sn

]
.

Then, the Cramer–Wold device is used to derive the asymptotic normality of Gn for any unit vector, d ∈ R2q.
To this end, define

Pn ≡
d>√
nh2

(Gn − EGn)

=
1√
n

n

∑
t=1

d>√
h2

[
Z∗t,2Q′τ(Ỹ

∗
t )K(

Ut − u0

h2
)− E{Z∗t,2Q′τ(Ỹ

∗
t )K(

Ut − u0

h2
)}
]

4
=

1√
n

n−1

∑
t=0

H∗n,t.

From (A-8) and (A-9), it is easy to show that

Var(H∗n,t) = Σp(u0)(1 + o(1)), (A-10)

where Σp(u0) = d>Σ(u0)d and
n−1

∑
s=1
|Cov(H∗n,0, H∗n,s)| = o(1). (A-11)

For 0 ≤ j ≤ k− 1, define the following three random variables

ηj =
j(r+s)+r−1

∑
i=j(r+s)

H∗n,i, ξ j =
(j+1)(r+s)

∑
i=j(r+s)+r

H∗n,i, and ζk =
n−1

∑
i=k(r+s)

H∗n,i.

Then,

Pn =
1√
n

( k−1

∑
j=0

ηj +
k−1

∑
j=0

ξ j + ζk

)
=

1√
n
(Pn,1 + Pn,2 + Pn,3).

To establish the asymptotic result of Pn, Theorem 18.4.1 of Ibragimov and Linnik (1971) is employed. To
this end, the following conditions must be checked

1
n

E[Pn,2]
2 → 0,

1
n

E[Pn,3]
2 → 0, (A-12)∣∣∣∣E[exp(itPn,1)]−

k−1

∏
j=0

E[exp(itηj)]

∣∣∣∣→ 0, (A-13)

1
n

k−1

∑
j=0

E(η2
j )→ Σp(u0), (A-14)
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and

1
n

k−1

∑
j=0

E
[
η2

j I{|ηj| ≥ ε
√

nΣp(u0)}
]
→ 0 (A-15)

for every ε > 0. We first prove (A-12) and consider the large block sizes. Assumption (B2) implies that there is a
sequence of positive constant, an → ∞, such that

ansn = o(
√

nh2(n)),

and
(nh−1

2 )1/2β(sn)→ 0.

Defining the large-block size, rn = [(nh2)
1/2/an], and the small-block size, sn, shows that

sn/rn → 0, rn/n→ 0, rn(nh2)
−1/2 → 0 (A-16)

as n→ ∞, and
(n/rn)β(sn)→ 0.

It follows from the stationarity and equations (A-10) and (A-11) that

E[Pn,2]
2 =

k−1

∑
j=0

Var(ξ j) + 2 ∑
0≤i<j≤k−1

Cov(ξi, ξ j) ≡ I1 + I2,

in which

I1 = kVar(ξ0) = kVar(
r+s

∑
i=r

H∗n,i) = ksn[Σp(u0) + o(1)] = O(ksn).

Next, I2 is considered. Let r∗j = j(rn + sn), then r∗j − r∗i ≥ rn for all j > i. Thus,

|I2| ≤ 2 ∑
0≤i<j≤k−1

sn

∑
j1=1

sn

∑
j2=1
|Cov(Pn,r∗i +rn+j1 , Pn,r∗j +rn+j2)|

≤ 2
n−rn

∑
j1=1

n

∑
j2=j1+rn

|Cov(Pn,j1 , Pn,j2)| ≤ 2n
n

∑
j=rn+1

|Cov(Pn,1, Pn,j)| = o(n). (A-17)

It is straight forward that from (A-16) and (A-17), one can obtain

1
n

E[P2
n,2] = O(ksnn−1) + o(1) = o(1). (A-18)

In the same way, the stationarity and equations (A-10) and (A-16) imply that

Var(Pn,3) = Var
( n−k(rn+sn)

∑
j=1

Pn,j

)
= O(n− k(rn + sn)) = o(n). (A-19)
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Thus, combining (A-18) and (A-19), (A-12) is established. To prove (A-13), applying Lemma A.1 of
Volkonskii and Rozanov (1959) (See also Ibragimov and Linnik (1971)) leads to

∣∣∣∣E[exp(itPn,1)]−
kn−1

∏
j=0

E[exp(itηj)]

∣∣∣∣ ≤ 16(n/rn)β(sn)→ 0.

Then,
1
n

k−1

∑
j=0

E(η2
j ) =

k
n

E(η2
1) =

krn

n
· 1

rn
Var(

rn

∑
j=1

Pn,j)→ Σp(u0),

so that (A-14) is proved.
Finally, an application of Theorem 4.1 of Shao and Yu (1996) and Assumption B implies that both (A-15)

and

E
[
η2

j I
(
|ηj| ≥ ε

√
nΣp(u0)

)]
≤ Cn1−δ/2E(|ηj|δ) ≤ Cn1−δ/2rδ/2

n (E(|H∗n,0|δ
∗
))δ/δ∗ (A-20)

hold true. Since

E(|H∗n,0|δ
∗
) ≤ Ch−δ∗/2

2 E(‖Gn‖δ∗)

≤ Ch−δ∗/2
2 E[‖Z∗t Q′τ(Ỹ

∗
t )K(

Ut − u0

h2
)‖δ∗ ] ≤ Ch1−δ∗/2

2 . (A-21)

Thus, by (A-20) and (A-21),

E
[
η2

j I{|ηj| ≥ ε
√

nΣp(u0)
]
≤ Cn1−δ/2rδ/2

n h(2−δ∗)δ/(2δ∗)
2 .

Therefore, by Assumption B and the definition of rn, one has

1
n

k−1

∑
j=0

E
[
η2

j I{|ηj| ≥ ε
√

nΣp(u0)
]
≤ Ca1−δ/2

n n1/2−δ/4hδ/δ∗−δ/4−1/2
2 = o(1),

because an → ∞. Finally, because of (A-12)–(A-15), one can use Theorem 18.4.1 of Ibragimov and Linnik (1971)
to show that

Pn
L→ N(0, Σp(u0)),

which completes the proof of Lemma A.6.
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