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A perspective on recent methods on testing predictability

of asset returns

LIAO Xiao-sai1 CAI Zong-wu2,1,∗ CHEN Hai-qiang1

Abstract. This paper highlights some recent developments in testing predictability of asset

returns with focuses on linear mean regressions, quantile regressions and nonlinear regression

models. For these models, when predictors are highly persistent and their innovations are

contemporarily correlated with dependent variable, the ordinary least squares estimator has a

finite-sample bias, and its limiting distribution relies on some unknown nuisance parameter,

which is not consistently estimable. Without correcting these issues, conventional test statistics

are subject to a serious size distortion and generate a misleading conclusion in testing pre-

dictability of asset returns in real applications. In the past two decades, sequential studies have

contributed to this subject and proposed various kinds of solutions, including, but not limit

to, the bias-correction procedures, the linear projection approach, the IVX filtering idea, the

variable addition approaches, the weighted empirical likelihood method, and the double-weight

robust approach. Particularly, to catch up with the fast-growing literature in the recent decade,

we offer a selective overview of these methods. Finally, some future research topics, such as

the econometric theory for predictive regressions with structural changes, and nonparametric

predictive models, and predictive models under a more general data setting, are also discussed.

§1 Introduction

Testing predictability of asset returns has been studied for recent three decades as a cor-

nerstone research topic in economics and finance. It not only attracts attention from financial

practitioners as it is a key component to evaluate mutual fund managers’ performance, examine

the validity of asset pricing models, and improve asset allocation efficiency, but also has impor-

tant implications in theoretical researches in finance. A large literature has been devoted to
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examining the validity of the efficient market hypothesis (Fama, 1965,1970) by testing whether

asset returns are predictable or not.

There are two major directions in the area of testing asset return predictability. The first

one is to check whether the return as a time series is a white noise process, or random walk

process, or martingale difference sequence. The rejection of the null hypothesis implies that a

certain type of dependent structure exists in return processes, which violates the definition of

the weak-form efficient market hypothesis, so that one can predict future asset returns using

past observations. A vast amount of literature has been devoted to this aspect; see, for example,

the books by Campbell, Lo and MacKinlay (1997) and Jondeau, Poon and Rockinger (2007),

and the references therein. However, as pointed out by Fama (1991), the past realized returns

are noisy measures of expected return so that the test based on them lacks of power. Meanwhile,

it is restrictive to use historical returns only as predictors since investors could observe other

information. Therefore, the second stream of the literature is to expand predictive regressions

to include other economic and financial variables, such as the dividend-price ratio, the earnings-

price ratio, the book-to-market ratio, default spread, and interest rates as well as other economic

variables; see, for example, Campbell (1987), Fama and French (1988), and Campbell and Shiller

(1988). Empirical findings strongly suggest that the asset returns might be predictable by using

these financial ratios and macroeconomic variables as in Lettau and Ludvigson (2001). But some

critical analysis raises the concern that the predictability may be a result of data-snooping as

addressed by Bossaerts and Hillion (1999) and Welch and Goyal (2008).

The typical econometric method used in aforementioned studies is an ordinary least squares

(OLS) regression of returns versus the lag of the financial variables, and conventional t-statistics

are used to check the significance of coefficients. However, a series of recent studies find that

the statistical inference for predictive regressions, or more specifically, the limiting distribution

of t-statistics, crucially relies on the time series properties of the regressors, i.e., their degree

of persistence. Empirical analyses conclude evidently that most of predictors widely used in

the literature are highly persistent with autoregressive roots extremely close to unity. Ignoring

such persistence may lead to an over-rejection of the null hypothesis for conventional test

statistics, and the problem is more serious if the innovation of the predictor is highly correlated

with the error of return as studied by Campbell and Yogo (2006) and Torous, Valkanov and

Yan (2004) and others. Acknowledging the invalidity of the standard approach, sequential

studies have contributed to this subject and proposed various kinds of solutions, including, but

not limit to, the bias-correction approaches, the linear projection approach, the IVX filtering

method, the variable addition (or control function) ideas, the weighted empirical likelihood

procedure, and the double-weight robust approach. To help the reader to catch up with the

fast-growing literature, this paper offers a brief overview of these methods with some comments

and suggestions with a further improvement. To this end, we first review the classical approaches

and comment on their strengths and limitations, and then move to the recently proposed robust

inferences regardless of the types of persistence, in the framework of linear mean regression

models. Moreover, we extend the discussion into the framework of quantile regressions and

nonlinear predictive models, and highlight recent developments on these predictive models. As
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for quantile regressions, we focus on the methods such as the IVX-QR idea by Lee (2016)

and the weighted variable addition approach by Cai, Chen and Liao (2017b). For nonlinear

predictive models, we mainly introduce the predictive regressions with varying-coefficients, in

discontinuous or smoothing form. Nonparametric tests and their limiting distribution with

nonstationary variables are discussed. Finally, we suggest several further research topics for

future studies.

The rest of the paper is organized as follows. In Section 2 we discuss some econometric

issues, classical methods and robust inference results for predictive mean regressions. Section 3

is devoted to the methods for quantile predictive regressions and Section 4 focuses on nonlinear

predictive models. In particular, it elaborates some recent nonparametric tests for nonparamet-

ric predictive models. Section 5 concludes the paper with some discussions on future research

directions.

§2 Mean predictive regression models

The classical predictive regression commonly considered in the literature is the following

structural predictive linear model:
⎧
⎨

⎩

yt = α+ βxt−1 + ut,

xt = θ + φxt−1 + vt, 1 ≤ t ≤ T,
(1)

where (ut, vt) ∼ N (0,Σ) are independent and identically distributed (i.i.d.) series and Σ =(
σ2
u δ σuσv

δ σuσv σ2
v

)

so that ut and vt may be correlated if δ is non-zero. Of course, the second

equation in (1) can be in a higher order in autoregressive (AR) model, say AR(p). For simplicity,

the focus here is on AR(1). Given the above linear regression model, testing the predictability

of xt−1 to yt is equivalent to testing the null hypothesis H0 : β = 0. However, it is not easy to

estimate parameters and to make their statistical inferences for model (1) due to the following

econometric issues:

• Embedded endogeneity: The correlation coefficient δ between ut and vt may be non-zero,

inducing a finite sample bias in estimating β and the invalidity of traditional inference;

see Torous, Valkanov and Yan (2004) and Campbell and Yogo (2006) for real examples.

• Nonstationarity: The predicting regressor xt might be persistent. That is, xt can be

stationary if |φ| < 1, denoted by I(0), or nonstationary if φ = 1 + c/T , denoted by NI(1)

or I(1) when c = 0. For the second case with nonstationary regressors, the limiting distri-

bution of the estimator of β relies on the nuisance parameter c, which is not consistently

estimable; see, for example, the theory developed in Cai and Wang (2014).

• Drift term: It is known that non-zero θ in the second equation of (1) does not make any

difference in asymptotic theory when xt is I(0). But, when θ is non-zero for I(1) or NI(1),

it makes econometric inferences totally different from those for I(1) and NI(1) cases; see,

for example, Theorem 2 in Cai and Wang (2014).
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• Nonlinearity: The structural predictive linear model in (1) may not be appropriate in

many applications due to the existence of nonlinearity. Also, as argued in Section 4.2

(see later), a nonparametric setting of model (1) may avoid the embedded endogeneity as

mentioned earlier.

• Heteroskedasticity: It is well documented in the literature that heteroskedasticity issue

exists for most of economic and financial data. How to characterize heteroskedasticity is

of importance in real applications.

Indeed, it often happens to have the above econometric issues encountered in real applica-

tions; see, for example, Table 1 in Torous, Valkanov and Yan (2004) and Table 4 in Campbell

and Yogo (2006), which show clearly that most of economic and financial variables applied to

predict stock returns are highly persistent and/or δ is non-zero. Under these situations, con-

ventional inferential techniques are invalid and might lead to misleading conclusions about the

predictability. To overcome these issues, sequential studies have been devoted to this subject

and proposed various solutions. In the following, we make a selective review on these studies.

2.1 Bias-correction methods under stationarity

The OLS estimator for α and β in (1) is given by

(α̂, β̂)� =

[
T∑

t=2

Xt−1X
�
t−1

]−1 T∑

t=2

Xt−1yt,

where Xt−1 = (1, xt−1). Stambaugh (1999) shows that the OLS estimator β̂ is biased in finite

sample although it is asymptotically unbiased, due to the nonzero correlation between ut and

vt under normality and stationary regression (|φ| < 1). The bias can be represented as

E[β̂ − β] = ρE[φ̂ − φ] = ρ[−(1 + 3φ)/T ] +O(T−2), (2)

where ρ = cov(ut, vt)/σ
2
v = δσu/σv, based on the Kendall (1954)’s approximation under nor-

mality assumption.

Therefore, there are several bias correction methods proposed in the literature to make

the estimation more accurate in finite sample. Particulally, the first is the so-called first-order

bias-correction estimator β̂bc1 proposed by Stambaugh (1999) from equation (2). That is,

β̂bc1 = β̂ − ρ̂(1 + 3φ̂)/T , where ρ̂ and φ̂ are the estimator of ρ and φ, respectively. The second

one is the second-order bias-correction estimator β̂bc2 of Amihud and Hurvich (2004) based on

a linear projection of ut onto vt as ut = ρvt + εt. Therefore, model (1) can be rewritten as

follows:

yt = α+ βxt−1 + ρ vt + εt, (3)

and the least squares estimator based on the estimated {v̂t} is defined as

(α̂bc2 , β̂bc2 , ρ̂bc2)
� = arg min

α,β,ρ

T∑

t=1

(yt − α− βxt−1 − ρv̂t)
2
, (4)

where v̂t is obtained from the second equation in (1). By assuming that xt is stationary,

Amihud and Hurvich (2004) argue that this estimator is indeed the second-order bias-correction
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and derive its asymptotic theory so that the conventional t-type test can be used to test the

predictability H0 : β = 0. Moreover, Amihud, Hurvich and Wang (2009) extend model (1)

to multiple predictive regressions. Note that this approach in equation (3) is similar to the

so-called control function idea as in Elliott (2011), which will be discussed later. Thirdly, when

φ is close to 1, Lewellen (2004) suggests a conservative bias-adjusted estimator β̂bc3 of β as

β̂bc3 = β̂ + ρ̂(0.9999− φ̂), and argues that β̂bc3 is actually the least biased estimator of β when

the true value of φ is very close to 1.

2.2 Statistical inference under nonstationarity

Most of the bias-correction methods mentioned above assume |φ| < 1. However, the autore-

gressive parameter φ in xt might be very close to one. Therefore, to this end, a local-to-unity

framework, that is, φ = 1+c/T , is pervasive in the literature; see, e.g., Lewellen (2004), Torous,

Valkanov and Yan (2004), Campbell and Yogo (2006), Jansson and Moreira (2006), Cai and

Wang (2014), and the references therein. In this case, the conventional test statistic, which

converges to standard normal distribution with stationary xt, is invalid due to the persistence

of xt and non-zero δ. In particular, given φ = 1 + c/T and δ �= 0, Campbell and Yogo (2006)

show that the conventional t-test tβ̂ for equation (1) has the following limit distribution instead

of normal

tβ̂
d→ δ τc/kc +

[
1− δ2

]1/2
Z, (5)

where k2c =
∫ 1

0 K
2
c (r)dr, τc =

∫ 1

0 Kc(r)dW (r), and Z is a standard normal random variable

independent of Kc(·) and W (·). Here, W (·) is the Brownian motion generated by {vt} and

Kc(·) is a special case of the Ornstein-Uhlenbeck process satisfying the stochastic differential

equation system (Black-Scholes model)

dKc(r) = cKc(r)dr + dW (r),

so that Kc(·) is a geometric Brownian motion. Then, it can be shown easily that Kc(r) ∼
N(0, σ2

c (r)), where σ2
c (r) = σ2

u [exp(2cr) − 1] /2c and
∫ 1

0 Kc(r)dr ∼ N(0, ς(c)2) with ς(c)2 =

σ2
u/c

2 + σ2
u(e

2c − 4ec + 3)/2c3. Also, it can be shown that limc→0 ς(c)
2 = σ2

u/3. Clearly,

equation (5) shows that tβ̂ contains the nuisance parameter c and the embedded endogeneity

problem caused by non-zero δ. This implies that the asymptotic distribution of tβ̂ deviates from

the standard normal and it is impossible to construct a pivotal test statistic by self normalizing

the OLS estimator. Therefore, conventional test fails with an over-rejection, which is verified

by simulation studies in Campbell and Yogo (2006).

On the other hand, Cai and Wang (2014) extend the linear projection approach of Amihud

and Hurvich (2004) to nonstationary case with φ = 1+ c/T , and show that β̂bc2 in (4) has the

following asymptotic distribution

T (β̂bc2 − β)
d→ ξc,

where ξc =
[
τc −W (1)

∫ 1

0 Kc(r)dr
] [
k2c − τ2c

]−1
+ δ [τc +Ω1] /k

2
c with Ω1 =

∑∞
k=2 E(u1uk).

Based on this asymptotic theory, one can construct a test statistic and compute the critical

values using a Monte Carlo simulation approach as suggested by Cai and Wang (2014) if c = 0.
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However, the test is infeasible if c is nonzero as the distribution of ξc depends on c which can not

be estimated consistently. Moreover, it is interestingly to note that when θ in (1) is non-zero,

i.e., there is a linear time trend in xt, and Cai and Wang (2014) show that

T 3/2(β̂ − β)
d→ N(0, σ2

θ,c),

where σ2
θ,c depends on θ, c and σ2

v with σ2
v =Var(vt) + 2

∑∞
t=2Cov(v1, vt). In particular, σ2

θ,0 =

48σ2
v/θ

2 for the case that c = 0; see Cai and Wang (2014) for details.

2.3 Robust inferences

As mentioned earlier, the asymptotic results in Campbell and Yogo (2006) and Cai and

Wang (2014) depend on c, which is not consistently estimable although its estimate has a lim-

iting distribution. Consequentially, the conventional test statistic is infeasible in applications.

Recently, a series of researches investigate uniform (robust) inferences on predictive regressions

in the sense that testing procedure for predictability is robust to general time series charac-

teristics of the regressor and errors; see, for example, to name just a few, Campbell and Yogo

(2006), Chen and Deo (2009), Phillips and Lee (2013), Zhu, Cai and Peng (2014), Demetrescu,

Hanck and Tarcolea (2014), Kostakis, Magdalinos and Stamatogiannis (2015), Breitung and

Demetrescu (2015), Rodrigues and Demetrescu (2016), Liu, Yang, Cai and Peng (2016), Cai,

Chen and Liao (2017a, 2017b), and Yang, Liu, Cai and Peng (2017). In the following sections,

ut and vt could be generalized to be a linear process as in Phillips and Solo (1992) and/or

non-normally distributed.

2.3.1 Bonferroni method

Campbell and Yogo (2006) propose a new method (termed as Q-test) to construct a Bon-

ferroni confidence interval for β. The procedure is as follows. The first step is to construct a

100(1 − α1)% confidence interval for φ, denoted as CIφ(α1), while the second step is to con-

struct 100(1−α2)% confidence interval for β given φ, denoted as CIβ|φ(α2). Then, a confidence

interval with the confidence level 100(1− α∗)%, independ of φ, can be obtained by

CIα∗(β) = ∪φ∈CIα1 (φ)
CIα2 (β|φ),

where α∗ = α1 + α2.

In particular, the confidence interval CIφ(α1) given φ can be obtained by the procedures

introduced by Stock (1991). One may choose any unit root test, such as the ADF test or the

DF-GLS test, to construct the interval. It is noted that the DF-GLS test may generate a tighter

confidence interval of φ as DF-GLS is more powerful than ADF test. Given the value of φ, the

confidence interval CIα2 (β|φ) can be constructed using either the t-test or the Q-test. Again,

the confidence interval based on Q-test is tighter than that based on t-test at the true value of

φ. One may refer to Campbell and Yogo (2005) for more details.

As pointed out by Phillips and Lee (2013), Bonferroni approach might lead to an empirical

size substantially lower than nominal size, resulting in a conservative test whose power is often

negligible in nearly local alternative to the null of no predictability. Another critical limitation is
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the difficulty of extending the approach to multivariate regressions involving several predictors.

Finally, the computing is very involved.

2.3.2 Weighted empirical likelihood

Zhu, Cai and Peng (2014), Liu, Yang, Cai and Peng (2016), and Yang, Liu, Cai and Peng

(2017) propose an empirical likelihood approach together with a weighted least squares idea to

construct confidence interval for β. If α in equation (1) is known, i.e., α = α0, the empirical

likelihood function for β is

L(β) = sup

{ T∏

t=2

pt : 0 ≤ pt ≤ 1,

T∑

t=2

pt = 1,

T∑

t=2

ptHt(β) = 0

}

,

whereHt(β) = (yt−α0−β xt−1)xt−1

/√
1 + x2t−1 and the weighted score equation is

∑T
t=2Ht(β)

= 0. After applying the Lagrange multiplier technique, we have

l(β) = −2 logL(β) = 2

T∑

t=2

log{1 + λHt(β)},

where λ = λ(β) satisfies
∑T

t=2Ht(β)/[1 + λHt(β)] = 0. More importantly, Zhu, Cai and Peng

(2014) show that under some regularity conditions, l(β0) converges in distribution to a chi-

square distribution with one degree of freedom, where β0 is the true value of β. Therefore, one

can construct confidence interval with the significance level 100(1− b)% as CIb = {β : l(β) ≤
χ2
1,b}. Rejecting H0 : β = 0 is equivalent to checking if 0 �∈ CIb. The above result is the

so called Wilks’ theorem which holds regardless of the predicting variable being stationary or

nonstationary. The key idea behind this approach is that the estimator of β defined from the

empirical likelihood method could be associated to the weighted least squares as

β̂w = arg min
β

T∑

t=2

(yt − α0 − βxt−1)
2Wt,

where the weight isWt = 1/
√
1 + x2t−1 and it is easily to check that xt−1Wt = xt−1/

√
1 + x2t−1

= Op(1) no matter that xt is I(0) or I(1) or NI(1).

When α is unknown, Zhu, Cai and Peng (2014) show that Wilks’ theorem for above empirical

likelihood method fails when xt is nonstationary and suggest using differencing idea as

y∗t = βx∗t−1 + u∗t ,

where y∗t = yt+m − yt for m = [T/2]. Note that x∗t = Op(
√
T ) if xt is I(1) or NI(1). But, this

differencing method is inefficient since it uses only half of sample. One may consider to take

a difference as x∗t−1 = xt−1 − xt−2 to remove α so that x∗t = Op(1) for all cases of xt but the

convergence rate is
√
T instead of T or T 3/2.

Recently, Liu, Yang, Cai and Peng (2016) extend this approach to bivariate regression but

it still loses efficiency when α is unknown. Similar to the Bonferroni procedure, it is difficult to

extend this approach to a general multivariate regression with mixed degree of persistence.
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2.3.3 IVX

Phillips and Magdalinos (2009) introduce a data-filtering approach, termed as IVX, to di-

minish the effect of embedded endogeneity in the predictive regression. The main idea of IVX

is to construct an instrument variable zt as

zt = φz zt−1 + uzt (6)

with φz = 1+ cz/T
η, η ∈ (0, 1), and cz < 0. Clearly, zt is a mildly integrated process, which is

less persistent than xt if xt is I(1) or NI(1). The reason of choosing the less persistent zt−1 is

to ensure validity for chi-squared test limit theory at the cost of slow convergence rate. Using

zt as an instrumental variable, one can obtain an estimator of β, denoted by β̂IV . Phillips and

Magdalinos (2009) show that the convergence rate for β̂IV is T (1+η)/2 instead of T ; see Phillips

and Magdalinos (2009) for details. Recently, Rodrigues and Demetrescu (2016) consider model

(3) using the IVX approach.

In practice, how to choose the tuning parameters (cz , η) and innovation uzt is a challenging

issue. To gain efficiency, one wishes η very close to 1. Indeed, Phillips and Lee (2013) and

Kostakis, Magdalinos and Stamatogiannis (2015) suggest empirically choosing η = 0.95, cz =

−I, and uzt = Δxt−1, where I is the identity matrix. But, there is no theory on how to choose

these tuning parameters and neither is there data-driven approach available in the literature.

In summary, for the IVX approach, one can observe the followings. First, the power of

the test depends heavily on the choice of η. In other words, mis-choice of η might lose power;

see, Kostakis, Magdalinos and Stamatogiannis (2015). Secondly, the IVX does not work well

when xt is I(0); see Phillips and Magdalinos (2009). Finally, the IVX approach requires the

instrumental variable zt to be less persistent than xt, which sacrifices the convergence rate.

2.3.4 Dynamic approach

To improve the local power of the IVX based tests, Demetrescu, Hanck and Tarcolea (2014)

and Yang, Liu, Cai and Peng (2017) consider adding the lagged variables into the model so

that model (1) becomes dynamic as

yt = α+ γ1yt−1 + βxt−1 + ut.

Clearly, if β = 0, the above model is the AR(1) for yt. Then, Demetrescu, Hanck and Tarcolea

(2014) argue that the power losses of the IVX approach based test can be reduced to a minimum

at the cost of loosening size control, while Yang, Liu, Cai and Peng (2017) employ the weighted

empirical likelihood approach. Both show empirically that indeed, the dynamic approach can

improve the local power than the IVX method.

2.3.5 Variable addition

Elliott (2011) and Breitung and Demetrescu (2015) initiate a variable addition (VA) or

control function approach by adding an additional variable zt into model (1) as

yt = α+ βxt−1 + γ zt−1 + ut, (7)
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where zt−1 is an augmented variable, and its generating mechanism will be specified later. The

method is called as control function method in Elliott (2011) and Phillips and Lee (2013) as

mentioned earlier. If zt−1 is taken to be v̂t in equation (3), then model (7) becomes to the

linear projection approach described in equation (3).

There have been some approaches proposed in recent years about choosing zt−1 in practice.

For example, Elliott (2011) proposes adding a stationary variable (e.g., zt−1 is I(0) and possibly,

it is orthogonal to ut) into the predictive regression to help stabilize the limit theory. In

simulations, this approach is shown to have better size control with higher local power than

the method in Campbell and Yogo (2006). Recently, Liu, Yang, Cai and Peng (2016) consider

taking zt−1 to be xt−2 so that the above model in (7) becomes to

yt = α+ βxt−1 + γ xt−2 + ut = α+ βΔxt−1 + β1 xt−2 + ut, (8)

where β1 = β + γ, and then, they use the weighted empirical likelihood approach to construct

confidence interval for β and β1 regardless of φ. One of the nice properties of the above model in

(8) is that even if β1 = 0, yt can be still predictable using Δxt−1. Further, Breitung and Deme-

trescu (2015) give out some general conditions for zt. That is, for some 0 ≤ ν < 1/2, zt satisfies:

(i) VT,z =
∑T

t=2 z
2
t−1/T

1+2ν → Vz and VT,zu =
∑T

t=2 z
2
t−1u

2
t/T

1+2ν → Vzu, where Vz and Vzu

are positive and bounded; (ii) 1
T 1.5+ν

∑T
t=2 zt−1xt−1 → 0 and 1√

Vzu

1
Tν+1/2

∑T
t=2 zt−1 ut → Z,

where Z is the standard normal random variable. Under the above conditions, there are a wide

range of candidate variables, such as stationary processes, mild integrated processes, fractional

integrated processes and long differences processes. For more details, one may refer to the paper

by Breitung and Demetrescu (2015). However, the augmented variable zt generated under the

above conditions still maintains the property that it is less persistent than xt, sacrificing the

convergence rate.

2.3.6 Double-weighted robust

Curiously, one might ask why one can not take zt to be nonstationary. To answer this ques-

tion, recently, Cai, Chen and Liao (2017a) develop a new method by combining two coefficients

estimators in the variable addition regression and allow for an exogenous but nearly integrated

zt. To this end, Cai, Chen and Liao (2017a) rewrite model (1) as follows:

yt = α+ βxt−1 + ut = α+ β1x
∗
t−1 + β2 zt−1 + ut, (9)

where x∗t−1 = xt−1 − zt−1, β1 = β, β2 = β, and zt−1 is nearly integrated additional variable

generated exogenously as zt = (1 + cz/T )zt−1 + uzt, where uzt ∼ N(0, 1). One can obtain the

OLS estimator, denoted by (α̂, β̂1, β̂2). Since both β̂1 and β̂2 converge to the same value β, Cai,

Chen and Liao (2017a) suggest using a weighted approach to estimate β as

β̃w =
W1

W1 +W2
β̂1 +

W2

W1 +W2
β̂2,

where

W1 =
T∑

t=2

x∗t−1zt−1/T
2 −

T∑

t=2

x∗t−1

T∑

t=2

zt−1/T
3 and W2 =

T∑

t=2

z2t−1/T
2 −

(
T∑

t=2

zt−1/T
3/2

)2

.
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Furthermore, Cai, Chen and Liao (2017a) show that

(W1 +W2)T
(
β̃w − β

)
/
√
W2σ̂2

u
d−→ N(0, 1),

where σ̂2
u =

∑T
t=1 û

2
t/T and ût is the residual from (9). Therefore, one can use this result to

construct a test statistic for testing H0 : β = 0, denoted by

Qw = (W1 +W2)T β̃w/
√
W2σ̂2

u. (10)

Also, Cai, Chen and Liao (2017a) show that if xt−1 is I(1) or NI(1), under H0 : β = 0,

Qw
d−→ N(0, 1)

and under the alternative

Qw
p−→ ∞,

which implies that Qw is a consistent test. However, Cai, Chen and Liao (2017a) find out that

similar to the IVX and VA approaches, Qw in (10) might not be consistent when xt−1 is I(0).

Therefore, to remedy this shortage, Cai, Chen and Liao (2017a) suggest constructing a test

statistic to accommodate both stationary and nonstationary cases. Indeed, Cai, Chen and Liao

(2017a) propose the following test statistic

QRW =
W∗

1 +W∗
Qw +

1

1 +W∗
tβ̂s

for some W∗ satisfying that W∗
p→ 0 if xt−1 is I(0) and W∗

p→ ∞ if xt−1 is I(1) or NI(1). For

example, one can take W∗ to be

W∗ =

T∑

t=2

x2t−1/T
1+ζ

for any 0 < ζ < 1, which can characterize the degree of nonstationarity. Here, tβ̂ is the t-statistic

and β̂ is the OLS estimate of β for classical predictive regression. Finally, Cai, Chen and Liao

(2017a) show that under H0, QRW = Qw + op(1) for I(1) or NI(1) xt−1 and QRW = tβ̂ + op(1)

for I(0) xt−1. Therefore, QRW
d−→ N(0, 1) under H0 for all cases. Also, they derive the

asymptotic distribution of QRW under the local alternative. In all cases, QRW
p−→ ∞ under

the alternative hypothesis Ha : β �= 0, which implies that QRW is consistent. Furthermore,

QRW reaches its optimal convergence rate
√
T with I(0) xt and T with I(1) xt, respectively.

§3 Quantile predictive regression models

In the preceding work, all errors in predictive regressions are assumed to be homoskedastic;

that is, conditional variance is constant (do not change over xt−1 or time). However, it is well

documented that economic or financial data are generally heteroskedastic. In the literature,

there have been some papers devoted to predictive mean regression models with heteroskedas-

ticity. For example, Han and Park (2012), Han and Zhang (2012) and Choi, Jacewitz and

Park (2016) consider model (1) with heteroskedasticity as ut = σt et, where σt = σ(qt/
√
T )

with some nonstationary regressor qt or σt = σ(t/
√
T ). Also, Choi, Jacewitz and Park (2016)

propose a robust test based on the Cauchy estimator with no constant term in (1) and σt is

stationary.

Another way to handle the heteroskedasticity issue is to use quantile regression. In addition
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to the reason for capturing heteroskedasticity automatically, there are still more reasons to

model the predictive quantile regression with persistent predictors. First, quantile regression is

wildly used in risk management to estimate VaR and CoVaR as in Adrian and Brunnermeier

(2016). Secondly, quantile regression avoids the imbalance issue in the mean regression mod-

els, i.e., the regressors are highly persistent but the dependent variable might be close to be

stationary. The imbalance issue does not only make equation (1) false but also make the OLS

estimator of β always converging to zero even β �= 0. Finally, quantile regression techniques

can characterize well asymmetric and heavy-tailed distribution of the dependent variable.

In recent years, there have been several papers devoted to modeling the quantile regression

with non-stationary explanatory variables. For example, Xiao (2009a) is the first work to

consider the quantile regression with unit root regressors

qτ (xt) = ατ + βτxt, (11)

where P (yt ≤ qτ (xt)|xt) = τ and xt is unit root, whereas Lee (2016) generalizes (11) to the

predictive setting and proposes using the IVX method (dubbed as IVX-QR) as mentioned

above to estimate parameters in (11) as well as derives the asymptotic theory. In the following

subsections, we review several methods to robust inferences under the framework of predictive

quantile regressions.

3.1 IVX-QR

Given the following linear predictive quantile regression model,

qτ (xt−1) = ατ + βτxt−1, 1 ≤ t ≤ T, (12)

where xt = φxt−1+ut and φ = 1+ c/T κ. With different values of (c, κ), xt could be stationary,

or mild integrated, or nearly integrated or integrated, or mild explosive. Lee (2016) shows that

the asymptotic distribution of the t-test statistic depends on the nuisance parameter c, given

below (similar to (5))

tβ̂τ
=
β̂τ − βτ

s.e.(β̂τ )
⇒
√
1− δ2τ Z + δτ τc/kc,

where Z is the standard normal random variable, both τc and kc are defined in (5), and

δτ , which, similar to δ in a mean predictive model, is regarded as measuring the correlation

coefficient between ut and with ψtτ = τ−I(yt ≤ ατ +βτxt−1). Here, α̂τ and β̂τ are the quantile

estimator of ατ and βτ , respectively, given by

(α̂τ , β̂τ )
� = arg min

ατ ,βτ

T∑

t=2

ρτ (yt − ατ − βτxt−1) ,

where ρτ (v) = v (τ − I(v ≤ 0)), the check function. Similar to Campbell and Yogo (2006), Lee

(2016) demonstrates that δτ indeed is non-zero for some real applications, which implies that

the so-called embedded endogeneity still exists under predictive quantile regressions.

To solve the above issues, Lee (2016) extends the IVX approach to quantile regression frame-

work and proposes a new approach (IVX-QR), to estimate model (12) using an instrumental
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variable zt generated by equation (6). The IVX-QR estimator is defined as:

(α̂IVX−QR
τ , β̂IVX−QR

τ )� = arg min
ατ ,βτ

T∑

t=2

ρτ (yt − ατ − βτzt−1) .

Under the null hypothesis H0 : βτ = 0, Lee (2016) shows that

tβ̂τ
=

β̂IVX−QR
τ

s.e.(β̂IVX−QR
τ )

⇒ N(0, 1).

However, there is still no theoretical criterion on how to choose turning parameters which might

affect the finite-sample performance of inferences as elaborated in Phillips and Lee (2013).

Moreover, the convergence rate of the IVX-QR estimator under the null hypothesis H0 : βτ = 0

is less than the optimal rate T and thus it may suffer from a loss of power.

Recently, Fan and Lee (2017) provide a valid and easy-to-use inference procedure in pre-

dictive quantile framework with conditional heteroskedasticity innovations and suggest using

the IVX-QR method and the moving block-wise Bootstrap of Bühlmann and Künsch (1999).

Therefore, it inherits these limitations of the IVX-QR for quantile predictive regressions.

3.2 Weighted variable addition

Using a similar idea in equation (9), Cai, Chen and Liao (2017b) extend the weighted

approach discussed in section (2.3.6) to quantile predictive regression framework. Similarly,

one can rewrite the model (12) as follows:

qτ (xt−1) = ατ + βτxt−1 = ατ + β1τx
∗
t−1 + β2τzt−1,

where zt−1 is the additional variable, x∗t−1 = xt−1 − zt−1, and β1τ = β2τ = βτ . The quantile

estimator is defined as

(α̂τ , β̂1τ , β̂2τ )
� = arg min

ατ ,β1τ ,β2τ

T∑

t=2

ρτ
(
yt − ατ − β1τx

∗
t−1 − β2τzt−1

)
.

To achieve the optimal convergence rate T , Cai, Chen and Liao (2017b) define the control

function variable zt as zt−1 = xt−1/
√
1 + x2t−1, which is different from that in Cai, Chen and

Liao (2017a), and they show that zt−1 is I(0) if xt−1 is I(0), and zt−1 ⇒ sign(Kc(r)) as t→ ∞
if xt−1 is I(1) or NI(1), where sign(·) is the sign function and Kc(·) is defined in (5).

Define the weighted estimator β̃w
τ as follows:

β̃w
τ =

W1

W1 +W2
β̂1τ +

W2

W1 +W2
β̂2τ ,

where

W1 =
1

T 2

T∑

t=2

x∗t−1zt−1− 1

T 3/2

T∑

t=2

x∗t−1

1

T 3/2

T∑

t=2

zt−1 andW2 =
1

T 2

T∑

t=2

z2t−1−
(

1

T 3/2

T∑

t=2

zt−1

)2

.

Then, under the null hypothesis H0 : βτ = 0, Cai, Chen and Liao (2017b) show that, the test

statistic

Qw
τ = f̂vτ [W2τ(1 − τ)]

−1/2
(W1 +W2)T β̃

w
τ ⇒ N(0, 1),

where f̂vτ is a consistent estimate of a normalization constant fvτ ; see Cai, Chen and Liao
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(2017b) for details, and that under the alternative hypothesis Ha : βτ �= 0,

Qw
τ

p→ ∞
no matter xt−1 is I(0), or I(1), or NI(1). Therefore, Qw

τ is consistent for all cases. Furthermore,

they show that Qw
τ reaches the optimal rate

√
T if xt−1 is I(0), and the optimal rate T if xt−1

is I(1) or NI(1), respectively.

§4 Nonlinear predictive models

4.1 Models for time-varying coefficients

So far, the parameters in both mean and quantile regressions, are assumed to be stable. That

is, coefficients are constant (do not change over random variable or time). For time series data

in economics and finance over a long time period, it is reasonable to expect that parameters

in predictive regression models may experience structural changes at some unknown dates.

Actually, Viceira (1997), Paye and Timmermann (2006), and Rapach and Wohar (2006) find

strong evidence of instability in predictive regression models. However, they do not explain how

to test predictability after detecting and estimating the break dates. Lettau and Nieuwerburgh

(2008) focus on level shifts in the predictor variables and explain that the forecasting relationship

is unstable unless such shifts are included in the analysis.

To model this instability in predictive regression, Cai, Wang and Wang (2015) consider a

model with coefficients changing smoothly with time as

yt = αt + βt xt−1 + ut, (13)

where both αt and βt are smooth functions of time. Then, they propose a nonparametric testing

procedure to test whether the time-varying coefficients are indeed changing with time. That

is, the null hypothesis is H0 : αt = α & βt = β. They find that indeed, the coefficients are

unstable for testing predictability of asset returns based on a real example.

Thereafter, the question arises is how to specify the form of time-varying coefficients. To

solve this problem, Cai and Chang (2017) consider model (13), where both αt and βt are

piecewise constants, with one break (easy to consider multiple breaks), specified as αt = α1I(t ≤
κ1) + α2I(t > κ1) and βt = β1I(t ≤ κ1) + β2I(t > κ1), where the break point κ1 is unknown.

Also, xt−1 might be allowed to have a structural change at the same or different break point.

They propose using the weighted empirical likelihood approach as mentioned earlier to test

predictability in two time periods, i.e., H0 : β1 = 0 and/or H0 : β2 = 0. Of interest is to test

H0 : β1 = β2, which is the well known Chow test for the existence of structural changes.

Additionally, a threshold form of model in (1) is considered by Chen (2015) and Ganzalo

and Pitarakis (2017) as

yt = α(qt−1) + β(qt−1)xt−1 + ut, (14)

where qt is an observable stationary variable (say, some variable proxying business cycles).

Here, they assume that α(qt−1) = α1I(qt−1 ≤ γ) + α2I(qt−1 > γ) and β(qt−1) = β1I(qt−1 ≤
γ) + β2I(qt−1 > γ), so that model (14) is a nonlinear model. They use the Wald-type test

statistic to test predictability with the null hypothesis specified as H0 : β1 = β2 = 0, or test the
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parameter stability with the null hypothesis defined as H0 : α1 = α2. Note that if both α(·)
and β(·) are smoothing functions, model (14) reduces to the model in Cai, Li and Park (2009),

Xiao (2009b) and Chen, Fang and Li (2015) when qt−1 is I(0) and xt−1 is I(1), and the model

in Sun, Cai and Li (2013) when both qt−1 and xt−1 are I(1).

4.2 Nonparametric models and their tests

One of possible ways to avoid the embedded endongeneity is to consider a nonparametric

model as

yt = m(xt−1) + ut,

where m(xt−1) = E(yt|xt−1) so that E(ut|xt−1) = 0, which is a more general model since there

is no restriction on m(·). To estimate m(·), there is a vast amount of literature on this topic for

both stationary and nonstationary cases; see, for example, to name just a few, the papers by

Cai, Fan and Yao (2000) for stationary case, and Cai, Li and Park (2009) and Cai (2011) for

nonstationary case. Note that as elaborated in Cai (2011), the local constant and local linear

estimators share the exact same large sample behavior for nonstationary regressors.

The key point is how to test H0 : m(x) = m0(x, β), where m0(·, ·) is a known function but

β is an unknown parameter. By this way, it could be applied to check if m(x) is a threshold

function or other types of parametric forms to see if some financial/economic theory holds. To

this end, Cai and Wu (2013) consider this kind of test and propose a L2-type test statistic.

That is,

||m̂(·)−m0(·, β̂)||22 =

∫ (
m̂(x)−m0(x, β̂)

)2
D(x)dx

for some weighting function D(·) to avoid a random denominator and β̂ is the estimate of β

under the null hypothesis, which can be simplified as a U-statistic as

JT =
1

T 3/4 h1/2

∑

t�=s

ûtûsKts, (15)

where h is the bandwidth and Kts = K((xt−1 − xs−1)/h) with K(·) being the kernel function

used to obtain m̂(x). Also, Cai and Wu (2013) derive the asymptotic distribution of the

proposed test statistic JT under H0 and show that it diverges to ∞ under the alternative

hypothesis. In particular, of interest is that they derive the limiting result for a U-statistic

involving nonstationary variables.

Recently, by assuming that m0(·) = μm but unknown, Kasparis, Andreou and Phillips

(2015) consider a special case of the above hypothesis test by specifying H0 : m(z) = μm for

all z. Then, based on the asymptotic distribution of the nonparametric estimation of m(zj),

denoted by m̂(zj) for some grid points {zj}mj=1, they propose a naive test as follows:

F̂sum =

m∑

j=1

A(zj) (m̂(zj)− μ̂m)
2
or F̂max = max

1≤j≤m
A(zj) (m̂(zj)− μ̂m)

2
,

where A(·) is a self-normalized function and μ̂m is the estimate of μm under the null hypothesis.

They argue that F̂sum
d→ χ2

m and F̂max
d→ Z∗ for some random variable Z∗. But, the

proposed test depends on the choice of {zj}mj=1 and m.
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Further, by assuming that μm = 0, Juhl (2014) considers testing the hypothesis H0 : m(z) =

0 for all z, and proposes using the conditional moment testing approach as in Zheng (1996) and

Fan and Li (1999) to construct the test statistic. Different from JT in (15) involving {ût}, the
test statistic proposed in Juhl (2014) is given as follows:

UT =
1

T 2 h

∑

t�=s

yt ysKts,

which is a function of {yt} instead of {ût}, and its limiting distribution under H0 is derived by

Juhl (2014); see Juhl (2014) for details.

§5 Conclusions

Although the literature on modeling the predictive regression with stationary or nonstation-

ary predictor is tremendously and rapidly growing, there are still some open issues left to be

addressed. First, how to deal with the predictive regression model with xt having structural

changes is still unclear, although Cai and Chang (2017) consider the case with a known break

point in xt. Secondly, it deserves to develop a test similar to the Chow test for testing the

existence of structural changes in predictive regression models, i.e., test β1 = β2, when regres-

sors are nonstationary. The third issue is how to develop a new method, unlike the weighted

empirical likelihood approach, to avoid losing half of the sample, when the model contains an

unknown intercept. The fourth one is how to generalize predictive models to a more general

setting for predicting global asset returns (panel data); see, for example, Hjalmarsson (2010)

for an example on panel data with/without cross-sectional dependence. The fifth issue is how

to conduct nonparametric tests, especially under nonparametric quantile predictive models,

which can provide a good way to construct the prediction interval to directly predict the asset

returns. Finally, the interesting topic is how to develop predictive regression models applied to

other fields such as macroeconomics. For instance, it is worth studying bubbles by assuming

that φ = 1 + c/T ζ with c > 0 and 0 ≤ ζ < 1 so that xt is mildly explosive; see the papers

by Philipps, Shi and Yu (2015a, 2015b) and others on characterizing the bubbles in macroeco-

nomics. Clearly, the aforementioned issues and the related topics are very interesting and they

are warranted as future research topics.
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