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Summary We study the nonparametric estimation of a regression function with nonstationary
(integrated or nearly integrated) covariates and the error series of the regressor process
following a fractional integrated autoregressive moving average model. A local linear
estimation method is developed to estimate the unknown regression function. The asymptotic
results of the resulting estimator at both interior points and boundaries are obtained. The
asymptotic distribution is mixed normal, associated with the local time of an Ornstein–
Uhlenbeck fractional Brownian motion. Furthermore, we study the Nadaraya–Watson
estimator and we examine its asymptotic results. As a result, it shares exactly the same
asymptotic results as those for the local linear estimator for the zero energy situation. However,
for the non-zero energy case, the local linear estimator is superior to the Nadaraya–Watson
estimator in terms of optimal convergence rate. We also present a comparison of our results
with the conventional results for stationary covariates. Finally, we conduct a Monte Carlo
simulation to illustrate the finite sample performance of the proposed estimator.
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1. INTRODUCTION

Nonparametric estimation techniques have become cornerstone research topics in statistics
and econometrics for the last three decades because of their numerous advantages relative
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to parametric techniques, such as more flexibility and robustness to functional form
misspecification. These techniques have been embraced by applied researchers in many fields;
see the books by Härdle (1990), Fan and Gijbels (1996), Fan and Yao (2003) and Li and Racine
(2007), and the survey papers by Cai and Hong (2009) and Cai et al. (2009a) for nonparametric
methods with applications in finance and economics. Asymptotic theory underlying various
nonparametric estimators and test statistics for many commonly used models have been well
established for independent and identically distributed (i.i.d.) data and some weak and strong
dependent stationary time series. The only nonparametric asymptotic analysis when covariates
are integrated (unit root, denoted by I (1)) or nearly integrated (nearly unit root or local-to-unity,
denoted by NI (1)) time series, that we are aware of, includes but is not limited to the work by
Phillips and Park (1998), Park and Hahn (1999), Chang and Martinez-Chombo (2003), Chang
and Park (2003), Juhl (2005), Cai et al. (2009b, 2015), Wang and Phillips (2009a, 2011, 2012),
Xiao (2009), Cai (2011), Cai and Wu (2013) and Sun et al. (2013, 2016). It is worth pointing
out that for local-to-unity or nearly integrated regressors, the main focus in the literature is on a
linear regression model; see, e.g. Elliott and Stock (1994), Cavanagh et al. (1995), Torous et al.
(2004), Campbell and Yogo (2006), Polk et al. (2006), Rossi (2007), Cai and Wang (2014) and
Zhu et al. (2014), among others.

In this paper, for the observed data {(yt , xt )} for t = 1, . . . , n, we study a nonparametric
regression function with a nonstationary covariate as follows:

yt = f (xt ) + ut , 1 ≤ t ≤ n. (1.1)

Here, f (xt ) = E[yt |xt ] is an unknown regression function, {ut } is some stationary sequence and
xt is an integrated or nearly integrated process satisfying

xt = β xt−1 + εt , 1 ≤ t ≤ n,

where β = 1 − c/n for c ≥ 0 and {εt } is assumed to be a stationary sequence with a possible
long-run dependence as a fractional integrated autoregressive moving average (FARIMA)
process, which can be expressed as

(1 − B)dεt = ηt ≡
∞∑
j=0

ψjξt−j . (1.2)

Here, B is the backward operator, ψj , j < ∞ are some constants, ξj , j > 0 are i.i.d. random
variables with zero mean and finite variance, and |d| < 1/2. The fractional power (1 − B)d

is defined as
∑∞

k=0 ck,dB
k , where ck,d = �(−d + k)/�(−d)�(k + 1) and �(·) denotes the

�-function. It is easy to see that ck,d ∼ k−d−1/�(−d) as k → ∞. Therefore, {εt } in (1.2) can
be expressed as a linear process.

Note that the nonparametric regression model in (1.1) is not new in the literature. For
example, if xt is i.i.d. or stationary, model (1.1) has been studied extensively in the literature;
see the books by Härdle (1990), Fan and Gijbels (1996), Fan and Yao (2003) and Li and Racine
(2007) for details. It was investigated by Karlsen and Tjøstheim (2001) for xt being a null
recurrent time series, by Karlsen et al. (2007) for the φ-irreducible Markov chain time series and
by Bandi (2002), Cai (2011) and Cai and Wu (2013) for both integrated and nearly integrated
time series. Wang and Phillips (2009a, 2009b, 2011, 2012) have considered a nonparametric
regression and structure regression when xt is I (1) and is possibly correlated with ut , by
assuming that {εt } is either i.i.d. or a linear process. A functional coefficient type model and
nonlinear cointegration were investigated by Cai et al. (2009b), Xiao (2009) and Sun et al.
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(2013, 2016), for both I (0) and I (1) covariates, and by Cai et al. (2015) for NI (1) covariates.
Finally, Miller and Park (2010) investigated the probability properties of model (1.1) by assuming
that xt is an I (1) process and that εt has a heavy-tailed distribution. However, to identify a
nonparametric regression, as pointed out by Miller and Park (2010), the common approaches
to three nonstandard modelling approaches (nonlinearity, nonstationarity and long memory) are
either separated or in conjunction, to account for the nonstandard features observed in many time
series data in economics and finance, such as discontinuous sample paths, excessive volatility
or leptokurtosis. Therefore, in this paper, we consider a more general setting under which the
aforementioned three nonstandard modelling approaches are combined. It turns out that all our
results depend explicitly or implicitly on d.

Model (1.1) might have great potential in many applications. For example, in
macroeconomics, a nonparametric form of (1.1) can be used for forecasting the inflation rate
based on some persistent and nonstationary covariates, such as velocity; see Bachmeier et al.
(2006), which shows that velocity is an I (1) process. Also, it can be used to model a nonlinear
cointegration relationship in the purchasing power parity (PPT) hypothesis and to test whether
or not the PPT theory holds between two countries; see Hong and Phillips (2010), Sun et al.
(2013) and Li et al. (2015) for details on empirical examples. In finance, it can be employed for
testing the predictability and stability of stock returns using various lagged financial variables,
such as the dividend yield, term and default premia, the dividend–price ratio, the earning–price
ratio, the book-to-market ratio and interest rates; see Elliott and Stock (1994), Cavanagh et al.
(1995), Bandi (2002), Torous et al. (2004), Campbell and Yogo (2006), Polk et al. (2006), Rossi
(2007), Cai and Wu (2013), Cai and Wang (2014), Zhu et al. (2014) and Cai et al. (2015), among
others. In fact, Campbell and Yogo (2006) have shown that the the log dividend–price ratio and
the log earnings–price ratio are indeed nonstationary; see Panel A in Table 4 of Campbell and
Yogo (2006). Therefore, motivated by the aforementioned empirical examples, we need to study
our model.

The main purpose of the present paper is to estimate nonparametric regression f (·) by
using local linear (polynomial) and local constant (Nadaraya–Watson) fitting schemes when the
regressor xt is either I (1 + d) or NI (1 + d) with long-run dependence errors. For simplicity, the
main results can be summarized as follows. First, the optimal rate of convergence is n(1−2d)/5

with |d| < 1/2 slower than the usual rate n2/5 for the stationary case – see Fan and Yao (2003) –
and when 0 ≤ d < 1/2, it is slower than the rate n1/5 for the case where εt is short-dependence
(d = 0); see Cai et al. (2009b). Consequently, the order of the asymptotic mean-squared error
(AMSE) is n−(2−4d)/5 rather than the standard rate n−4/5. The intuitive explanation to this
phenomenon is that an NI (1 + d) or I (1 + d) time series (under long-run dependence) takes
longer to revisit levels in its range. Second, the asymptotic bias term, similar to the stationary
case, is independent of the distributions of regressors and is only due to the linear approximation,
which is typical for a local linear fitting scheme. Third, the limiting distribution is mixed normal
(conditional normal) in that the asymptotic variance depends inversely on the local time of an
Ornstein–Uhlenbeck (O–U) fractional Brownian motion in which the nearly unit root series can
be embedded. Furthermore, the nearly integrated covariate requires larger bandwidths. Indeed,
the optimal (in the AMSE sense) bandwidth is Op(n−(1−2d)/10) implying a larger optimal band-
width than in conventional kernel regressions with stationary regressors where the optimal band-
width is of the orderO(n−1/5). Clearly, the use of the conventional bandwidth has the theoretical
potential of undersmoothing in the presence ofNI (1 + d) or I (1 + d) covariates. Finally, similar
to Cai (2011) and Wang and Philips (2009b), the interesting new finding is that both local linear
and local constant estimators share exactly the same asymptotic properties at both interior and

C© 2017 Royal Economic Society.



Cointegration under long-run dependence 121

boundary points for the zero energy case. However, for the non-zero energy case, the local
linear estimator is superior over the Nadaraya–Watson estimator in terms of optimal convergence
rate.

The remainder of the paper is organized as follows. In Section 2, we present the
nonparametric kernel estimators of f (·) using both local linear and Nadaraya–Watson (local
constant) estimation methods and their asymptotic behaviours for both interior and boundary
points, together with assumptions and remarks on comparisons of our results with conventional
findings. In Section 3, we illustrate the finite sample performance of the estimators with a Monte
Carlo experiment. We present concluding remarks in Section 4. Finally, the mathematical proofs
of the main results of the paper are relegated to the Appendix.

2. ECONOMETRIC MODELLING

2.1. Local linear estimation

We estimate f (·) using local linear fitting from observations {(yt , xt )}nt=1. Our motivation for
using local linear fitting is its high statistical efficiency in an asymptotic minimax sense, design
adaptation and automatic correction for edge effects, as discussed in Fan and Gijbels (1996).
Although a general local polynomial technique is applicable as well, it is well known that
the local linear fitting will suffice for many applications – see Fan and Gijbels (1996) for a
very comprehensive discussion – and that the theory developed for the local linear estimator
continues to hold for the local polynomial estimator with only slight modification. Another virtue
of using local polynomials is that both the unknown functions as well as their derivatives can be
estimated simultaneously. For simplicity, we only focus on local linear estimation and we leave
the generalization for additional research.

We assume throughout the paper that f (·) is twice continuously differentiable, so that, at
any given x, we use a local approximation, f (xt ) 
 f (x) + f ′(x) (xt − x), when xt is in the
neighbourhood of x, where 
 denotes the first-order Taylor approximation and f ′(x) is the first
derivative of f (x). Hence, (1.1) is approximated by

yt 
 θ0 + (xt − x) θ1 + ut ,

and it becomes a local linear model. Therefore, the locally weighted sum of squares is

n∑
t=1

(
yt − θ0 − (xt − x) θ1

)2
Kh(xt − x), (2.1)

where Kh(x) = K(x/h)/h, K(·) is the kernel function, and h = hn > 0 is the bandwidth
satisfying h → 0 and n h → ∞ as n → ∞, which controls the amount of smoothing used in
the estimation. By minimizing (2.1) with respect to θ0 and θ1, we obtain the local linear estimate
of f (x), denoted by f̂ (x), and the local linear estimator of the derivative of f (x), denoted by
f̂ ′(x). It is easy to show that the minimizer of (2.1) is given by

(f̂ (x), f̂ ′(x))T =
( n∑
t=1

(
1
xt − x

)⊗2

Kh(xt − x)
)−1 n∑

t=1

(1, xt − x)T yt Kh(xt − x), (2.2)

where A⊗2 = AAT (A⊗1 = A) for a vector or matrix A.
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2.2. Notations and Assumptions

We first introduce some notation before making the model assumptions. Denote by Wd (·) the
Type I fractional Brownian motion with |d| < 1/2. That is, Wd (·) is a time-continuous Gaussian
process with the following covariance structure,

E[Wd (t)Wd (s)] = 1

2
(t2d+1 + s2d+1 − |t − s|2d+1),

where d + 1/2 is the so-called Hurst parameter in the literature; see Mandelbrot and Van Ness
(1968). Then, Wd (t) for t > 0 admits the following representation of the Weyl integral,

Wd (t) = 1

A(d)

∫ 0

−∞
((t − s)d − (−s)d )dW (s) +

∫ t

0
(t − s)ddW (s),

where W (·) is a standard Brownian motion and

A2(d) = 1

2d + 1
+

∫ ∞

0
((1 + s)d − sd )2ds.

It is well known that for d ∈ (0, 1/2), Wd (·) inherits long-run dependence in its increments;
that is

∞∑
m=1

Cov(Wd (m) −Wd (m− 1),Wd (1)) = ∞.

For detailed properties of a fractional Brownian motion, we refer to the paper by Mandelbrot and
Van Ness (1968). A stochastic processWc,d (·) is called an O–U fractional Brownian motion with
parameters (c, d) if it admits the following expression,

Wc,d (s) = Wd (s) − c

∫ s

0
e−c(s−u)Wd (u)du, (2.3)

whereWd (·) is a fractional Brownian motion and c and d are two parameters satisfying c ≥ 0 and
|d| < 1/2. Clearly, when c = 0, Wc,d (·) reduces to Wd (·), and when d = 0, an O–U fractional
Brownian motion becomes an O–U process driven by a standard Brownian motion. Further, when
both c and d are zero,Wc,d (·) is simply a standard Brownian motion. Therefore,Wc,d (·) provides
a flexible way in approximating a normalized nonstationary series. A more general definition of
an O–U process can be found in Buchmann and Chan (2007).

We now list some assumptions to be used later. Let c, σ , ρ and q be some constants.

ASSUMPTION 2.1. n(1 − β) → c,
∑∞

j=0 |ψj | < ∞ and bψ ≡ ∑∞
j=0 ψj �= 0. For d ∈ [0, 1/2),

we assume E[ξ 2
0 ] < ∞, and for d ∈ (−1/2, 0), we assume E[|ξ0|(2+δ)/(1+2d)] < ∞ for some

δ > 0.

ASSUMPTION 2.2. Ft = σ {ui, ξj , 1 ≤ i ≤ t,−∞ < j ≤ t + 1} is the smallest σ -field
generated by (ui, ξj ), 1 ≤ i ≤ t,−∞ < j ≤ t + 1. Assume that E[(ut , ξt+1]|Ft−1) = 0,
E[utξt+1] ≡ ρt+1 → ρ and E[u2

t |Ft−1] → σ 2
u > 0 almost surely (a.s.) as t → ∞. Also,

sup1≤t≤n E|ut |q < ∞ for some q > 2.

REMARK 2.1. Assumption 2.1 is commonly used in the literature; see Wang et al. (2003b)
and references therein. The condition n(1 − β) → c includes the special setting β = 1 − c/n.
Although we assume that E[ξ 2

0 ] < ∞, it is possible to consider the more general setting, where
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{ξj } belong to the domain of attraction of some stable law. However, this is out of the scope of
the present paper. The definition of the filtration (or called information flow) in Assumption 2.2
implies that xt ∈ Ft−1 while ut ∈ Ft . The second condition implies that (ut , ξt+1) is a two-
dimensional martingale difference with respect to Ft , which is slightly more demanding than just
saying that E[ξt |σ {ξj ,−∞ < j ≤ t − 1}] = 0. Here, Ft is more informative than σ {ξj ,−∞ <

j ≤ t + 1} while the former implies further that E[utξt+l] = 0 for l > 1. Assumption 2.2 allows
for heteroscedasticity of model (1.1) and the last condition in Assumption 2.2 guarantees the
Linderberg condition in the martingale central limit theorem.

REMARK 2.2. The most important implication of Assumption 2.2 is that E[(xt ut )] = 0, which
implies that {xt } is a strictly exogenous series. Wang and Phillips (2009b, 2012) and Chang
and Park (2010) considered a structural model for which the aforementioned orthogonality may
not hold. We expect that, based on the results of Wang (2014) and Chang and Park (2010),
relaxing the exogeneity assumption would yield qualitatively similar results but with lengthier
mathematical proofs. To this end, we conduct a small simulation at the end of Section 3 to
demonstrate this conjecture. As pointed by Miller and Park (2010), for the I -regular class of
functions defined in Miller and Park (2010), such robustness immediately follows from the
limiting mixed normality that is obtained, even under reasonable allowances for endogeneity.
Finally, it is possible to relax the martingale difference assumption on ut but the proof would be
much lengthier.

Let ⇒ denote the weak convergence in the Skorohod space D[0, 1]; see Billingsley (1999).

Denote the convergence in probability and in distribution by
p→ and

d→, respectively. The
notations xn = oP (yn), xn = o(yn), xn = OP (yn) and xn = O(yn) used later denote, respectively,
the convergence in probability to 0, the convergence a.s. to zero, tightness and boundedness in
limit, of the quotient xn/yn. Define

Un(s) = 1√
n

[ns]∑
t=1

ut and Vn(s) = 1

γn

[ns]∑
t=1

εt , (2.4)

where γn = k(d)n1/2+d with k2(d) = b2
ψEξ

2
0�(1 − 2d)/[(1 + 2d)�(1 + d)�(1 − d)]. Then, we

have the following two lemmata.

LEMMA 2.1. Under Assumptions 2.1 and 2.2, (Un, Vn) ⇒ (U,Wd ), where

U (s) = σu
(
ρ ′W (s) +

√
1 − ρ ′2W⊥(s)

)
,

with ρ ′ = ρbψ/σuk(d)�(1 + d), ρ given in Assumption 2.2, and W⊥(·) denoting a standard
Brownian motion orthogonal to W (·).
LEMMA 2.2. Under Assumption 2.1, we have x[ns]/γn ⇒ Wc,d , where Wc,d (·) is an O–U
fractional Brownian motion.

To obtain the local time approximation of the nonstationary kernel density estimation, we
need the following two assumptions.

ASSUMPTION 2.3. K(·) is a continuous kernel function with a compact support.

ASSUMPTION 2.4.
∫ |ψ(u)|du < 1, where ψ(u) is the characteristic function of ξ1.

Assumption 2.3 is commonly used in the kernel estimation literature and Assumption 2.4
is easily fulfilled. For example, any random variable with the distribution function having a
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non-zero absolutely continuous component will be strongly non-lattice, which amounts to the
Cramér condition. Recall that a measurable process {LWc,d

(t, x); t ≥ 0, x ∈ R} is called the local
time of Wc,d (·) at state x up to time t for each t ≥ 0, defined by

LWc,d
(t, x) = lim

η→0

1

2η

∫ t

0
I{x−η<Wc,d (s)<x−η}ds,

where IA(·) is an indicator function of the event A. Then,∫ t

0
IA(Wc,d (s))ds =

∫
R

IA(x)LWc,d
(t, x)dx, for all Borel subset A ∈ R. (2.5)

For ease of notation, we drop Wc,d from LWc,d
(t, x) so that LWc,d

(t, x) becomes L(t, x).
Finally, let

S =
(
μ0 μ1

μ1 μ2

)

with μj = ∫
R
ujK(u)du for j = 0, 1, 2,

S∗ =
(
ν0 ν1

ν1 ν2

)

with νj = ∫
R
ujK2(u)du for j = 0, 1, 2 and

c2 =
(
μ2

μ3

)
.

Denote by e the unit vector (1, 0)T. Clearly, μ1 = ν1 = 0 if K(·) is symmetric.

2.3. Asymptotic results

We now state our main result. The notations AT and A−1 denote the transpose and the inverse of
a matrix A, respectively.

THEOREM 2.1. Under Assumptions 2.1–2.4, if nh7/γn → 0, f ∈ C2 and γn/(nh) → 0, we have

λn
(
f̂ (x) − f (x) − h2B(x)

) d→ MN (σ 2
f ),

where λn = √
nh/γn, B(x) = f ′′(x)/2eTS−1c2 andMN (σ 2

f ) is a mixed normal distribution with
mean zero and conditional variance σ 2

f = σ 2
u e

TS−1S∗S−1e/L(1, 0).

REMARK 2.3. The asymptotic properties for f̂ ′(x) can be obtained in the same way as those in
Theorem 2.1 and omitted. By comparing the results in Theorem 2.1 and conventional findings
in Fan and Gijbels (1996) and Fan and Yao (2003) for the stationary covariates, our new
results can be summarized as follows. Clearly, B(x) serves as the asymptotic bias, which is
the same as that for the stationary case when one uses a local linear estimation method; see
Fan and Yao (2003). If we choose K(u) as a probability density function with zero mean,
the bias B(x) and the variance σ 2

f become f ′′(x)/2 and σ 2ν0/L(1, 0), respectively, which are
the same as those for the Nadaraya–Watson estimator (see Theorem 2.3). This is consistent
with the fact that the asymptotic bias term comes mainly from the local linear approximation.
However, the convergence rate is of order λn, much slower than that for stationary covariates.
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Also, the stochastic asymptotic variance is independent of the grid point x. Indeed, one can
show that the results in Theorem 2.1 hold true as long as any x = xn satisfies xn/γn → 0 and
λn h

2 f ′′(xn) = O(1); see Theorem 2.2. Furthermore, from the asymptotic bias and variance
presented in Theorem 2.1, the stochastic AMSE is given by

AMSE = Var + bias2 = σ 2
f λ

−2
n + h4

4
μ2

2(K)(f ′′(x))2,

where μ2(K) = eTS−1c2. The minimization of the AMSE with respect to h yields the optimal
bandwidth

hopt =
( 4σ 2

f γn

μ2
2(f ′′(x))2n

)1/5
= Op((nd−1/2)1/5), (2.6)

which is stochastic and much larger than the conventional optimal bandwidth hopt,s = O(n−1/5)
for the stationary case; see Fan and Yao (2003). Therefore, if hopt,s is used in estimating f (·)
in (1.1), the nonparametric estimator given in (2.2) is undersmoothing. Hence, it is of interest
to investigate theoretically and empirically the data-driven (optimal) bandwidth selection and it
might be an interesting future research topic.

To make Theorem 2.1 applicable in statistical inference, an estimator of the stochastic
variance has to be given. Let σ̂ 2

f = σ̂ 2
u e

TS−1S∗S−1eμ0/
∑n

t=1K((xt − x)/h), where σ̂ 2
u is some

consistent estimator of σ 2
u , i.e. σ̂ 2

u

p→ σ 2
u . By virtue of Proposition A.1 in the Appendix, we find

that σ̂ 2
f /λn converges to σ 2

f in distribution. Generally, using the classic martingale central limit
theorem, one needs convergence in probability so that the studentized sequence (normalize the
left-hand side of the equation in Theorem 2.1 by σ̂ 2

f ) should converge to the standard normal
random variable in distribution. However, by a slight modification of the proof of Theorem 2.1
in Wang (2014), we can easily show that σ̂ 2

f /λn converges to σ 2
f in distribution jointly with

f̂ (x) − f (x) − h2B(x). Hence, we have the following result.

COROLLARY 2.1. Under the conditions in Theorem 2.1,

1√
σ̂ 2
f

(
f̂ (x) − f (x) − h2B(x)

) d→ N (0, 1),

where N (0, 1) stands for the standard normal random variable.

REMARK 2.4. In Corollary 2.1, we assume that there exists a consistent estimator of σ 2
u .

Practically, one could use the sample variance of the residuals for xt in a compact set. Let �∗ be
a compact set on R. Then, a possible estimator of σ 2

u is

σ̂ 2
u ≡

∑n
t=1(yt − f̄ (xt ))2I (xt ∈ �∗)∑n

t=1 I (xt ∈ �∗)
,

where f̄ (x) is either the local linear estimator f̂ (x) or the local constant estimator f̃ (x) given
later. A key condition for σ̂ 2

u to be consistent to the target is the following uniform convergence,

sup
x∈�∗

|f̄ (x) − f (x)| = op(1).

The uniform convergence of the estimator of the nonparametric regression function for
nonstationary covariates has become increasingly interesting recently; see Wang and Wang
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(2013), Wang and Chan (2014), Gao et al. (2011), and references therein. When d = 0 in the
definition of εt in (1.2), the uniform convergence of f̃ (x) to f (x) in probability in a compact
set has recently been established by Wang and Wang (2013). However, for d �= 0, the uniform
convergence result is still not theoretically underpinned and definitely nontrivial to be extended
from Wang and Wang (2013). We leave the derivation of the required uniform convergence in
compact sets, as well as the efficient estimation of σ 2

u , for our future research work.

Now, we embark on investigating the asymptotic behaviours at boundaries. When xt isNI (1),
it follows from Lemma 2.2 that when x = a γn (a �= 0) and r = t/n,

P (xt ≥ x) = P (xt ≥ aγn) → P (Wc,d (r) ≥ a) > 0.

This means that there is a great chance that |xt | can take large values. In other words, an NI (1)
time series takes longer to revisit levels in its range. Now the question is what the asymptotic
behaviours of the estimator look like when x is large, such as x = a γn for any fixed a. To
this end, we obtain the following asymptotic results at the boundary x = a γn for any fixed a.
However, we do not provide detailed proofs because they follow closely the same arguments as
those used in the proof of Theorem 2.1.

THEOREM 2.2. If Assumptions 2.1–2.4 hold and λn h2 f ′′(aγn) = O(1) for any a, then, we have

λn
(
f̂ (aγn) − f (aγn) − h2 B(aγn)

) d→ MN (σ 2
a ),

where MN (σ 2
a ) is a mixed normal distribution with mean zero and conditional variance σ 2

a =
σ 2
u e

TS−1S∗S−1e/L(1, a).

REMARK 2.5. Comparing Theorem 2.2 with Theorem 2.1, we observe that the magnitude of
the asymptotic variance of f̂ (·) at the boundary points (x = O(γn)) differs from that for the
interior points (x = o(γn)). This finding is different from its i.i.d. and stationary counterparts;
see Fan and Gijbels (1996) for the i.i.d. case and see Fan and Yao (2003) for the stationary
case.

2.4. Nadaraya–Watson estimation

Now we turn to the asymptotic properties for the local constant estimator of f (·). It is well
documented that the Nadaraya–Watson estimator is given by

f̃ (x) =
n∑
t=1

yt Kh(xt − x)/
n∑
t=1

Kh(xt − x). (2.7)

For f̃ (x), we have the following theorem.

THEOREM 2.3. Under the assumptions of Theorem 2.1, if further K(·) is a symmetric density
function and nh7/γn → 0, then both f̃ (x) and f̂ (x) share the exact same asymptotic properties.
That is, we have

λn
(
f̃ (x) − f (x) − h2B(x)

) d→ MN (σ 2
f ),

where B(x) = μ2f
′′(x)/2 and MN (σ 2

f ) is a mixed normal distribution with mean zero and

conditional covariance σ 2
f = σ 2

u ν0 /L(1, 0). Further, Theorem 2.2 holds for f̃ (x).
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REMARK 2.6. It is clear that h2μ2f
′′(x)/2 serves as the asymptotic bias, which is the same

as the case when one uses a local linear estimation method (see Theorem 2.1). However, for
the stationary xt case with a local constant estimation method, there is an additional leading
bias term, which has the form of h2μ2f

′
x(x)f ′(x)/2fx(x) where fx(·) is the stationary density

of xt when xt is stationary; see Fan and Gijbels (1996) and Fan and Yao (2003). Theorem 2.3
shows that for nonstationary xt , the local constant estimator has the same leading bias as that of
a local linear method. This is an interesting phenomenon that is not shared by a local constant
estimator if xt is stationary. It can be shown that with nonstationary xt , the bias term associated
with f ′

t,x(x)f ′(x), where ft,x(x) is the density of (xt − x)/
√
t , has an order of h

√
γnh/n, which

is smaller than h2; see (A.25) in the Appendix. Therefore, the leading bias contains only one
term associated with f ′′(x) with the order h2. Interestingly, as in the case of standard local
polynomial methods, the Nadaraya–Watson estimator is design-adaptive too in the sense of
Fan and Gijbels (1996). Clearly, this property should be interpreted as follows. The clustered
designs are not expected to occur in the presence of integrated or nearly integrated (highly
persistent) processes. Therefore, the theoretical relevance of the design-adaptation property and
the theoretical appeal of local polynomial methods over the standard Nadaraya–Watson kernel
estimates seem to vanish. Finally, the interesting finding is that for the non-zero energy case,
the local linear estimator is superior to the Nadaraya–Watson estimator in terms of the optimal
convergence rate; see (A.25) in the Appendix.

3. MONTE CARLO SIMULATION STUDIES

In this section, we report a Monte Carlo simulation to examine the finite sample property of the
proposed estimator. In our computation, the Epanechnikov kernel K(u) = 0.75 (1 − u2) I (|u| ≤
1) is used.

We consider the following data-generating process

yt = f (xt ) + ut , t = 1, . . . , n,

where xt is generated from the integrated or nearly integrated model xt = β xt−1 + εt with
β = 1 − c/n with c ≥ 0 and εt ∼ FARIMA(0, d, 0), and ut ∼ N (0, 1). In the simulations,
we consider two functions: fA(z) = z3 and fB(z) = ∑4

i=1(−1)j sin(jπz)/j !. To assess the
performance of finite samples, we compute the mean absolute deviation errors (MADE) for f̂ (·),
which is defined as

MADE = m−1
m∑
k=1

|f̂ (vk) − f (vk)|,

where f̂ (·) is the local linear estimate of f (·). We take {vk = −1 + 0.1k, k = 1, . . . , 20} for fA
and {vk = 0.05k, k = 1, . . . , 20} for fB . The Monte Carlo simulation is repeated 500 times for
each sample size n = 200, 500 and 1,000. Here, we take c to be 0, −5 and −20 and d to be
1/4 and 0.45 for simplicity. Theoretically, the optimal bandwidth given in (2.6) is hopt = A0 ×
n−(1−2d)/10, where A0 (depending on unknown parameters and functions) can often be estimated
in practice by some data-driven methods such as the cross-validation method, and d can be
replaced by its estimate. In our simulations, we would like to see how the MADE values change
with different choices of A0.
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Table 1. MADE median and standard deviation: d = 0.25.

c A0 n = 200 n = 500 n = 1,000

f̂A

0 0.2 0.2374 (0.8654) 0.5169 (0.4119) 0.4075 (0.1688)
0.4 0.1822 (0.6543) 0.2973 (0.0840) 0.2412 (0.0612)
0.6 0.1562 (0.2977) 0.2247 (0.0505) 0.1987 (0.0421)
0.8 0.1663 (0.2646) 0.2075 (0.0470) 0.1811 (0.0332)
1.0 0.2228 (0.3265) 0.2136 (0.0758) 0.1945 (0.0387)

−5 0.2 0.2278 (0.8246) 0.5169 (0.4119) 0.4075 (0.1688)
0.4 0.1415 (0.2602) 0.2973 (0.0840) 0.2412 (0.0612)
0.6 0.1288 (0.0921) 0.2247 (0.0505) 0.1987 (0.0421)
0.8 0.1422 (0.0857) 0.2075 (0.0470) 0.1811 (0.0332)
1.0 0.2010 (0.0704) 0.2136 (0.0758) 0.1945 (0.0387)

−20 0.2 0.1585 (0.7470) 0.5169 (0.4119) 0.4075 (0.1688)
0.4 0.1050 (0.0373) 0.2973 (0.0840) 0.2412 (0.0612)
0.6 0.0996 (0.0399) 0.2247 (0.0505) 0.1987 (0.0421)
0.8 0.1320 (0.0442) 0.2075 (0.0470) 0.1811 (0.0332)
1.0 0.1896 (0.0425) 0.2136 (0.0758) 0.1945 (0.0387)

f̂B

0 0.2 0.2487 (0.3106) 0.2090 (0.2919) 0.2044 (0.1658)
0.4 0.2228 (0.1542) 0.1565 (0.1340) 0.1531 (0.1212)
0.6 0.2243 (0.1456) 0.1785 (0.1205) 0.1682 (0.1165)
0.8 0.2893 (0.1232) 0.2336 (0.1170) 0.2354 (0.1032)
1.0 0.3807 (0.1333) 0.3479 (0.0958) 0.3240 (0.0878)

−5 0.2 0.2360 (0.3556) 0.1718 (0.3229) 0.1387 (0.1188)
0.4 0.1625 (0.2295) 0.1300 (0.0738) 0.1134 (0.0919)
0.6 0.1815 (0.0990) 0.1601 (0.0718) 0.1511 (0.0660)
0.8 0.2637 (0.1265) 0.2304 (0.0750) 0.2161 (0.0620)
1.0 0.3525 (0.1161) 0.2274 (0.0827) 0.3061 (0.0698)

−20 0.2 0.1580 (0.1018) 0.1176 (0.0501) 0.0996 (0.0360)
0.4 0.1250 (0.0563) 0.1050 (0.0404) 0.0959 (0.0361)
0.6 0.1621 (0.0637) 0.1545 (0.0498) 0.1403 (0.0420)
0.8 0.2469 (0.0698) 0.2252 (0.0516) 0.2162 (0.0469)
1.0 0.3456 (0.0733) 0.3152 (0.0580) 0.2943 (0.0493)

Note: MADE values are shown for f̂A and f̂B with different sample sizes and different values of c and h = A0n
−1/20.

The simulation results are presented for d = 0.25 and d = 0.45 in Tables 1 and 2 (the median
and the standard deviation (in parentheses) of 500 MADE values), respectively. First, we can see
from Tables 1 and 2 that the mean squared error of 500 MADE values for both f̂A and f̂B
decrease overall when the sample size increases. This is consistent with the asymptotic theory.
Secondly, it can also be seen that as the value of A0 increases, the MADE values for both f̂A
and f̂B start to decrease first, reach the minimum and then increase for all settings. This pattern
is invariant for different sample sizes. We note that the MADE values for different sample sizes
achieve the minimum when A0 = 0.8 for f̂A with d = 0.25 and A0 = 0.6 for f̂A with d = 0.45,
and when A0 = 0.4 for f̂B with both d = 0.25 and d = 0.45. This is in line with the fact that
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Table 2. MADE median and standard deviation: d = 0.45.

c A0 n = 200 n = 500 n = 1,000

f̂A

0 0.2 0.2649 (0.5432) 0.2196 (0.4132) 0.1988 (0.2881)
0.4 0.1913 (0.2987) 0.1511 (0.2751) 0.1270 (0.1632)
0.6 0.1566 (0.1865) 0.1295 (0.1765) 0.1167 (0.1325)
0.8 0.1670 (0.1443) 0.1501 (0.1349) 0.1336 (0.1124)
1.0 0.2120 (0.1646) 0.1941 (0.1086) 0.1773 (0.0897)

−5 0.2 0.2563 (0.6392) 0.2221 (0.6098) 0.1394 (0.1099)
0.4 0.1581 (0.4453) 0.1378 (0.4087) 0.0968 (0.0504)
0.6 0.1345 (0.2514) 0.1143 (0.2301) 0.0903 (0.0420)
0.8 0.1434 (0.1207) 0.1367 (0.1153) 0.1120 (0.0425)
1.0 0.2032 (0.0824) 0.1820 (0.0876) 0.1622 (0.0414)

−20 0.2 0.1598 (0.1295) 0.1258 (0.0455) 0.1012 (0.0277)
0.4 0.1044 (0.0366) 0.0858 (0.0287) 0.0722 (0.0249)
0.6 0.1014 (0.0395) 0.0854 (0.0317) 0.0745 (0.0279)
0.8 0.1294 (0.0446) 0.1157 (0.0355) 0.1086 (0.0297)
1.0 0.1899 (0.0439) 0.1686 (0.0343) 0.1560 (0.0303)

f̂B

0 0.2 0.2422 (0.4126) 0.1827 (0.3761) 0.1796 (0.0987)
0.4 0.2082 (0.2546) 0.1618 (0.2231) 0.1434 (0.0764)
0.6 0.2249 (0.2237) 0.1793 (0.1925) 0.1588 (0.0432)
0.8 0.2765 (0.1811) 0.2370 (0.1471) 0.2323 (0.0343)
1.0 0.3673 (0.1867) 0.3205 (0.1228) 0.3127 (0.0675)

−5 0.2 0.2299 (0.3806) 0.2252 (0.3139) 0.1564 (0.0963)
0.4 0.1551 (0.2005) 0.1492 (0.1738) 0.1201 (0.0737)
0.6 0.1902 (0.1151) 0.1749 (0.1087) 0.1560 (0.0450)
0.8 0.2422 (0.0971) 0.2426 (0.0901) 0.2242 (0.0325)
1.0 0.3543 (0.1075) 0.3434 (0.0933) 0.3117 (0.0532)

−20 0.2 0.1657 (0.0909) 0.1305 (0.0546) 0.1061 (0.0379)
0.4 0.1284 (0.0533) 0.1106 (0.0512) 0.1001 (0.0389)
0.6 0.1689 (0.0648) 0.1534 (0.0560) 0.1426 (0.0399)
0.8 0.2502 (0.0691) 0.2252 (0.0616) 0.2118 (0.0463)
1.0 0.3531 (0.0759) 0.3211 (0.0619) 0.2980 (0.0483)

Note: MADE values are shown for f̂A and f̂B with different sample sizes and different values of c and h = A0n
−1/20.

A0 only depends on the population parameter and functionals, but not on the sample size. The
results in Tables 1 and 2 also show that the MADE values are not too sensitive to the choice of
the bandwidth if A0 is in (0.4, 1). This is a good thing in practice as it is not necessary to worry
too much about obtaining a rough estimate of the bandwidth.

Finally, to find out the effect of the appearance of a non-zero correlation between εt and
ut on the local linear estimator, we conduct the following simulation study. We choose the
function fB(·) and let d = 0.25 andA0 = 0.8. We obtain the correlation pairs of (εt , ut ) by letting
ut = ρ(εt/sd(εt )) +

√
1 − ρ2N (0, 1), where ρ varies from 0.05 to 0.9 with step size 0.05. For

each fixed ρ, we repeat the simulation 500 times, and the MADE values are calculated for each
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Figure 1. MADE median (left) and standard deviation (right). [Colour figure can be viewed at
wileyonlinelibrary.com]

simulation. We display the median and standard deviation of these 500 MADE values against ρ
in Figure 1. From the figure, we can see that the increasing correlation between εt and ut does
not change the performance of the local linear estimator too much in view of the flat median
curve, while the standard deviation increases slightly but not too much. This demonstrates that
our results might hold for a certain cross-correlation between ut and εt .

4. DISCUSSION

In this paper, we have studied a nonparametric regression model for nearly integrated time series
data with a possible long-range dependence. We have suggested using the local polynomial and
local constant fitting schemes to estimate the nonparametric function and we have derived the
asymptotic properties of the proposed estimators. Our theoretical results show that the asymptotic
bias is of the same order as that for stationary covariates. However, the convergence rate for the
nonstationary covariates is slower than that for the stationary covariates by a factor of n−1/4.
Further, the asymptotic distribution is no longer normal but just a mixed normal associated
with the local time of an O–U fractional Brownian motion. Moreover, we have shown that the
asymptotic properties for both the local linear and local constant estimators are exactly the same.
We would like to mention some interesting future research topics related to this paper. First,
it would be very useful and important to discuss how to select the data-driven (optimal) band-
width empirically. Secondly, the model may include both stationary and nonstationary covariates.
Thirdly, an extension to allow for a certain cross-correlation between ut and εt is warranted.
Finally, it is worth considering some extensions to other types of nonstationary models, such as
semiparametric models, additive models, index models and varying coefficient models.
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APPENDIX

Throughout this appendix, we denote by C or C̃ a generic positive constant, which can take different values
at different places. In the following, we drop the dependence on d of ck,−d and write, for simplicity, ck for
ck,−d .

Proof of Lemma 2.1: Let ck = �(d + k)/[�(d)�(k + 1)]. Then ck ∼ kd−1/�(d), as k → ∞. We make a
convention that ck = 0 for k < 0. By Theorem 2.1 in Wang et al. (2003b),

Vn(s) ⇒ Wd (s), 0 ≤ s ≤ 1. (A.1)

However, by the functional central limit theorem, we have

Un(s) ⇒ σuW̃s, (A.2)

where W̃ is a standard Brownian motion. Because two marginal sequences of processes are tight, the joint
sequences of processes must also be tight. Then, it suffices to prove the convergence in distribution of finite
vectors at different time points. Because the limiting joint distribution is multivariate normal and (Un, Vn)
has the form of sums, it is enough to prove the pairwise convergence of their covariances. Therefore, it is
enough to show the following

E[Un(s1)Vn(s2)] → σuE[W̃s1Wd (s2)] = ρbψ

k(d)�(2 + d)
(sd+1

2 − ((s2 − s1) ∨ 0)d+1). (A.3)

In fact, suppose s1 < s2

E[Un(s1)Vn(s2)] = 1

k(d)n1+d

[ns1]∑
t=1

[ns2]∑
l=1

E[utεl]

= 1

k(d)n1+d

[ns1]∑
t=1

[ns2]∑
l=t+1

E[ut

∞∑
j=0

ψj

∞∑
k=0

ckξl−j−k]

= 1

k(d)n1+d

[ns1]∑
t=1

[ns2]∑
l=t+1

∞∑
j=0

ψjcl−j−(t+1)E[utξt+1]

≡ 1

k(d)n1+d

[ns1]∑
t=1

[ns2]∑
l=t+1

∞∑
j=0

ψjcl−j−(t+1)ρt+1

= 1

k(d)n1+d

∞∑
j=0

ψj

[ns1]∑
t=1

[ns2]∑
l=t+1

cnl/n−n(t+1)/n−j ρn(t+1)/n

= 1

k(d)n1+d

∞∑
j=0

ψjn
2

∫ s1

2/n

∫ s2

[nv]/n
c[nu]−[nv]−j ρ[nv]dudv
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∼ 1

k(d)n1+d

∞∑
j=0

ψjn
2

∫ s1

2/n

∫ s2

v

ρ/�(d)(nu− nv − j )d−1dudv

∼ ρbψ

k(d)�(2 + d)
(sd+1

2 − (s2 − s1)d+1), (A.4)

which verifies (A.3). The case for s1 ≥ s2 can be done similarly. �

Proof of Lemma 2.2: Following the ideas as in Buchmann and Chan (2007), we have

1

γn
x[ns] = β [ns]

γn
x0 + 1

γn

[ns]∑
k=1

β [ns]−kεk

= β [ns]

γn
x0 +

[ns]∑
k=1

β [ns]−k
(
Vn

(
k

n

)
− Vn

(
k − 1

n

))

= β [ns]

γn
x0 + Vn

(
[ns]

n

)
− β [ns]−1Vn(0) − β [ns]

[ns]−1∑
k=1

(β−(k+1) − β−k)Vn

(
k

n

)

= β [ns]

γn
x0 + Vn

(
[ns]

n

)
+ β [ns]n log(β)

[ns]−1∑
k=1

∫ (k+1)/n

k/n

Vn(u)β−nudu

≡ I ns − II ns + III ns + IV n
s + V n

s , (A.5)

where

I ns = 1

γn
β [ns]x0, I I ns =

( ∫ s

[ns]/n
+

∫ 1/n

0

)
(n log(β))β [ns]−nuVn(u)du;

III ns = Vn

(
[ns]

n

)
− Vn(s), IV n

s =
∫ s

0
[(n log(β))β [ns]−nu + ce−c(s−u)]Vn(u)du;

V n
s = Vn(s) − c

∫ s

0
e−c(s−u)Vn(u)du.

By the condition in Lemma 2.2, I ns
p→ 0. By Theorem 2.1 of Wang et al. (2003a), Vn(·) ⇒ Wd (·) inD[0, 1].

Then, by the Skorohod representation theorem, there exists V ∗
n and W ∗

d such that V ∗
n

d= Vn and W ∗
d

d= Wd ,
and sup0≤s≤1 |V ∗

n (s) −W ∗
d (s)| → 0. To simplify notation, let Vn = V ∗

n and Wd = W ∗
d . Then

V n
s −Wc,d (s) = (Vn(s) −Wd (s)) − c

∫ s

0
e−c(s−u)(Vn(u) −Wd (u))du. (A.6)

This shows that sup0≤s≤1 |V n
s −Wc,d (s)| → 0, which implies that V n

s ⇒ Wc,d in D[0, 1] under uniform
topology. Using uniform tightness of Vn and uniform boundedness of (n log(β))β [ns]−nu in the interval

[0, 1], II ns
p→ 0, and III ns

p→ 0. By the definition β = 1 − c/n, β [ns]−nu is uniformly close to e−c(s−u) for
0 ≤ s ≤ 1, 0 ≤ u ≤ s, and n logβ converges to −c. Hence, the product of β [ns]−nu and n logβ converges
to −ce−c(s−u) uniformly in 0 ≤ s ≤ 1, 0 ≤ u ≤ s. However, for large enough n, on the enlarged probability
space, |Vn(u) −Wd (u)| ≤ ε for any ε > 0. This implies IV n

s → 0 uniformly in s to 0. Combining the above
arguments, Lemma 2.2 is proved. �

Before we prove the main results of this paper, we first give a useful proposition, the proof of which
relies on checking the conditions of Theorem 2.1 of Wang and Phillips (2009a). Note that the proof of
Corollary 2.2 in their paper is not applicable as there d is assumed to be equal to 0.
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PROPOSITION A.1. Let F (·) be a continuous function with compact support. Under Assumptions 2.1, 2.3
and 2.4, if γn/(nh) → 0, then for any 0 ≤ s ≤ 1, we have (a) if

∫
R
F (u)du �= 0,

γn

nh

[ns]∑
t=1

F ((xt − x)/h)
d→ LWc,d (s, 0)

∫
R

F (y)dy;

(b) if
∫
R
F (u)du = 0 and

∫
R
F 2(u)du > 0,

[ns]∑
t=1

F ((xt − x)/h) = OP (
√
nh/γn).

Proof: We prove Proposition A.1(a) by checking the conditions given in the very general Theorem 2.1 in
Wang and Phillips (2009a), which cannot be obtained with several equations. We define dl,k,n = cl−k/cn for
any 0 < k < l ≤ n. Then it suffices to prove Assumption 2.3(a) and (b) of Wang and Phillips (2009a). Their
Assumption 2.3(a) can be verified directly by using the definition of dl,k,n and the fact that cn ∼ nd−1/�(d).
To prove their Assumption 2.3(b), let g(j ) = ∑j

i=1 ciβ
j−i . Then

xl − βl−kxk =
l∑

j=k+1

( l−j∑
m=0

ψmg(l − j −m)ξj

)
+ x̃k, (A.7)

where x̃k is some random variable adapted to Fk−1. Now we need to prove that

1

γl−k

l∑
j=k+1

a(l − j )ξj

has integrable characteristic function where a(j ) := ∑j

m=0 ψmg(j −m), i.e.,
∫ |fl,k(u)|du < ∞. To this

end, we need the following two facts.

(a) For large enough l − k, there exist 0 < c∗
1 < c∗

2 < ∞ such that c∗
1/

√
l − k < a(l − j )/γl−k <

c∗
2/

√
l − k when ((l − k)/2) ≤ l − j ≤ l − k − 1.

(b) For some δ0 > 0, there exists a 0 < η < 1 such that

|φ(t)| = |Ee
√−1tξ0 | ≤

{
e−t2/4, for |t | ≤ δ0

η, |t | ≥ δ0.

Fact (b) is due to the existence of second moment of ξ0. We will prove fact (a) later. In view of facts (a) and
(b), for some δ > 0, we have

∫
|fl,k(θ )|dθ ≤

∫ (l+k)/2∏
j=k+1

|Ee
√−1θ(a(l−j )/(γl−k ))ξj |dθ

=
(∫

|θ |≤δ√l−k
+

∫
|θ |>δ√l−k

) (l+k)/2∏
j=k+1

|Ee
√−1θ(a(l−j )/(γl−k ))ξj |dθ

≤
∫
e−θ2/8dθ + Cη(l−k)/2−1

∫
|Ee

√−1θξ0 |dθ < ∞, (A.8)

in view of (a) and (b) and Assumption 2.4. Therefore, conditional on Fk−1, (xl − xk/γn)/dl,k,n has a density
function hl,k,n(x) that is uniformly bounded by a constant. Hence the first claim of Theorem 2.1(b) of Wang
and Phillips (2009a) is verified. The second claim can be proved using the same lines as in the proof of
Corollary 2.2 of the same paper.
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Now we return to show fact (a). Recall that ((l − k)/2) ≤ l − j ≤ l − k − 1 and l − k is large enough.
Let λl−k ≤ l − k satisfying λl−k/(l − k) → 0 and λl−k → ∞. By definition of a(l − j ),

a(l − j ) =
( λl−k∑
m=0

+
l−j∑

m=λl−k+1

)
ψm

l−j−m∑
i=0

ciβ
l−j−m−i := a1(l − j ) + a2(l − j ). (A.9)

The second sum in the last equation is bounded by

l−j∑
m=λl−k

|ψm|
l−j∑
i=0

ci ≤ C(l − k)d
l−k∑

m=λl−k+1

|ψm|.

By Assumption 2.1, we have

|a2(l − j )/γl−k| ≤ C
1√
l − k

o(1). (A.10)

a1(l − k) can be further decomposed as follows.

a1(l − j ) =
λl−k∑
m=0

ψm

( l−j∑
i=0

−
l−j∑

i=l−j−m+1

)
ciβ

l−j−m−i := a1,1(l − j ) − a1,2(l − j ). (A.11)

By definition of λl−k , we have

|a1,2(l − j )| ≤ C

λl−k∑
m=0

|ψm|cl−kλl−k ≤ Cλl−k(l − k)(d−1). (A.12)

Therefore

|a1,2(l − j )/γl−k| ≤ Cλl−k(l − k)−3/2. (A.13)

Lastly,

a1,1(l − j )/γl−k = 1

γl−k

λl−k∑
m=0

ψmβ
−m

l−j∑
i=0

ciβ
l−j−i ∈

[
c∗

1√
l − k

,
c∗

2√
l − k

]
, (A.14)

where we have used Assumption 2.1, 0 < β < 1, and the fact that
∑l−j

i=0 ci ∼ C(l − j )d . A combination of
(A.10)–(A.14) produces fact (a).

Proposition A.1(b) can be proved using (A.10)–(A.14) and the same lines as in the proof of Theorem
2.1 of Wang and Phillips (2011). �

Proof of Theorem 2.1: Let

An =
n∑
t=1

(
1 xt − x

xt − x (xt − x)2

)
Kh(xt − x)

and

Bn =
n∑
t=1

(
1
xt − x

)
ytKh(xt − x).

Then, for some random number ξt ∈ (x, xt ), and

Hn =
(

1 0
0 h−1

)
,

C© 2017 Royal Economic Society.



Cointegration under long-run dependence 137

A−1
n Bn − (f (x), f ′(x))T = A−1

n

( n∑
t=1

(
1

2
f ′′(ξt )(xt − x)2 + ut

)
(1, xt − x)TKh(xt − x)

)

= : A−1
n (Bn1 + Bn2) = (HnAn)

−1Hn(Bn1 + Bn2), (A.15)

and

HnAnHn =
n∑
t=1

⎛
⎜⎝ 1

xt − x

h
xt − x

h

(
xt − x

h

)2

⎞
⎟⎠Kh(xt − x). (A.16)

By (A.16) and Proposition A.1,

n

γn
H−1
n (HnAn)

−1 d→ L−1(1, 0)

(
μ0 μ1

μ1 μ2

)−1

. (A.17)

Similarly, we have

γn

nh2
HnBn1

d→ 1

2
f ′′(x)L(1, 0)(μ2, μ3)T. (A.18)

Motivated by (A.17) and (A.18), by Proposition A.1 again, we have

(1, 0)H−1
n A−1

n Bn1 − h2B(x) = (1, 0)TA−1
n Bn1 − h2B(x) = oP (h2). (A.19)

Let

Kn =
√
γnh

n
utKh

(
xt − x

h

)
Hn(1, xt − x)T.

By Proposition A.1, (A.19) and Assumption 2.2, we have

n∑
t=1

E
[
K⊗2
n 1|{|Kn>ε|}|Ft−1

] p→ 0, for any ε > 0,

and

n∑
t=1

E
[
K⊗2
n |Ft−1

] d→ σ 2
uL(1, 0)

(
ν0 ν1

ν1 ν2

)
. (A.20)

Motivated by (A.17) and (A.20), a direct use of Theorem 2.1 of Wang (2014) yields

√
nh

γn
(1, 0)(HnAn)

−1HnBn2 = n

γn
(1, 0)H−1

n (HnAn)
−1Kn

d→ σu[(1, 0)S−1S∗S−1(1, 0)T]1/2z√
L(1, 0)

, (A.21)

where z is a standard normal random variable. Together with (A.19), this completes the proof of
Theorem 2.1. �
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Proof of Theorem 2.3: f̃ (x) − f (x) can be decomposed as a bias term plus a variance term as follows

f̃ (x) − f (x) =
∑n

t=1

(
ut + f ′(x)(xt − x) + (f ′′(ξ )/2)(xt − x)2

)
K((xt − x)/h)∑n

t=1 K((xt − x)/h)
, (A.22)

where ξt is some number between x and xt . Similar to obtaining (A.21),√
nh

γn

∑n

t=1 utK((xt − x)/h)∑n

t=1 K((xt − x)/h)
⇒ σu

√
ν0(K)√

L(1, 0)
z3, (A.23)

where z3 is independent ofWd , so the right-hand side of (A.23) is a mixed normal random variable. Similar
to obtaining (A.19),

(1/2)
∑n

t=1 f
′′(ξt )(xt − x)2K((xt − x)/h)∑n

t=1 K((xt − x)/h)
− h2B(x) = oP (h2), (A.24)

while ∑n

t=1 f
′(x)(xt − x)K((xt − x)/h)∑n

t=1 K((xt − x)/h)
=

{
hf ′(x)μ1 μ1 �= 0;

OP (h
√

(γnh)/n) μ1 = 0.
(A.25)

A combination of (A.23), (A.24), (A.25) and Theorem 2.1 in Wang (2014) finishes the proof of
Theorem 2.3. �

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the
publisher’s website:

Replication files

C© 2017 Royal Economic Society.


