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In this paper, we propose a simple nonparametric test for testing the null hypoth-
esis of constant coefficients against nonparametric smooth coefficients in a semi-
parametric varying coefficient model with integrated time series. We establish the
asymptotic distributions of the proposed test statistic under both null and alternative
hypotheses. Moreover, we derive a central limit theorem for a degenerate second
order U-statistic, which contains a mixture of stationary and nonstationary variables
and is weighted locally on a stationary variable. This result is of independent interest
and useful in other applications. Monte Carlo simulations are conducted to examine
the finite sample performance of the proposed test.

1. INTRODUCTION

Cointegration has proved to be a powerful tool in studying long-run relationships
among integrated time series and is a widely used econometric methodology
in macroeconomics and financial time series analysis. Nonetheless, empirical
evidence often fails to support the existence of cointegrating relations with
fixed cointegrating slope coefficients; e.g., see Taylor and Taylor (2004) for an
overview on the purchasing power parity debates. Motivated by empirical find-
ings, researchers propose various flexible specifications to relax the constancy
restriction of cointegrating vector(s), including, (i) structural breaks (Gregory
and Hansen, 1996), (ii) a smooth transition between different economic regimes
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(Saikkonen and Choi, 2004), (iii) varying coefficient models with the coefficients
being functions of some additional variables (Cai, Li, and Park, 2009; Xiao, 2009;
Sun and Li, 2011; and Sun, Cai, and Li, 2013), or the coefficients being functions
of time (Park and Hahn, 1999; Cai and Wang, 2010; Phillips, Li, and Gao, 2013;
and Cai, Wang, and Wang, 2014). Alternatively, some researchers directly seek
nonlinear cointegrating relation among integrated time series, see, for example,
Granger (1991) and Park and Phillips (2001) for parametric nonlinear cointegrat-
ing models and Wang and Phillips (2009a, 2009b) about nonparametric cointe-
grating models.

In this paper we are interested in testing parameter constancy in the framework
of semiparametric varying coefficient models studied by Cai et al. (2009) and
Xiao (2009), i.e.

Yt = X T
t θ (Zt )+ut , 1 ≤ t ≤ n, (1)

where Yt , Zt , and ut are all scalars, Xt is of dimension d, and θ (·) is a d × 1
vector of unknown smooth functions,1 the superscript T denotes the transpose of a
matrix. We assume that Zt and ut are stationary variables, or I(0) variables, while
Xt is allowed to contain some nonstationary components. Also, all the variables
are continuously distributed. Of course, Zt can be t/T so that model (1) becomes
the time varying coefficient model discussed in Park and Hahn (1999), Cai and
Wang (2010), Phillips et al. (2013), and Cai et al. (2014). We are interested in
testing the following null hypothesis:

H0 : Pr{θ(Zt ) ≡ θ0} = 1 for some θ0 ∈ � (2)

against an alternative hypothesis of

H1 : Pr{θ(Zt ) �= θ} > 0 for any θ ∈ �, (3)

where � is a compact subset ofRd . That is, we test whether the coefficient func-
tions in (1), θ(·), are constant. If the null hypothesis holds true, model (1) becomes
a linear cointegrating model; otherwise, model (1) is a semiparametric varying
cointegrating model.

There are several new and interesting findings in this paper. First, the power
of our test statistic depends on the stochastic property of Xt . Specifically, we
consider two cases. In Case (a), Xt is an integrated process of order one (or I (1));
in Case (b), X T

t = (X T
1,t , X T

2,t )
T , where X1,t is I (0) and X2,t is I (1).2 We show

that the proposed test is consistent under both cases, although the power of the test
varies. If the null hypothesis fails to hold, under Case (a), the test statistic diverges
to +∞ at the rate of n2

√
h; under Case (b), the test diverges at the rate of n2h

when the coefficients for the I(1) regressors (i.e., X2,t ) are nonconstant, and the
divergence rate reduces to n

√
h when the coefficients for the I(0) variables are

nonconstant but the coefficients for the I(1) variables are constant. These results
suggest that the presence of a stationary component (under H1) reduces the power
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of the test by an order of
√

h, while the presence of a nonstationary component
enhances the power of the test by an order of n.

Another interesting and perhaps surprising finding of the paper is obtained for
Case (b). Let θj (z) be the functional coefficient for variable X j,t for j = 1,2.
When θ1(z) ≡ θ10 (a constant vector) for all z and θ2(z) does not equal any
constant over a nonempty interval of z, then the least squares estimator θ̂1
based on a misspecified linear (null) model diverges to ∞ at the rate of root-n
if Cov

[
X1,t ,θ2 (Zt )

] �= 0. Therefore, a misspecified linear model leads to incon-
sistent or divergent OLS estimates from the true parameter value θ10, if the true
model is only linear in the stationary covariate X1,t , but the coefficient of the
nonstationary variable X2,t is a smoothing function of the stationary covariate Zt .
This result suggests that it can be very important to test for the correct model
specification when Xt contains both I(0) and I(1) components in model (1). More
discussions on this issue are given in Section 3.2 and Appendix A.

Xiao (2009) also independently considered the parameter constancy test for
Case (a), where his test statistic is based on the maximum of a sequence of squared
(standardized) distances between the kernel estimates calculated at pre-selected
points under the alternative hypothesis and the OLS estimate calculated under the
null hypothesis. By assuming independency between {Zt } and {ut }, Xiao (2009)
showed that his proposed test statistic follows a maximum chi-squared distribu-
tion under the null hypothesis. With Zt = t/n in model (1), Park and Hahn (1999)
considered the problem of testing for the parameter constancy applying Shin’s
(1994) residual-based test statistic which was originally used to test the station-
arity against nonstationarity of error terms, whereas Cai et al. (2014) proposed
a procedure for testing whether θ(·) has a known parametric functional form for
the predictability of asset returns. The test statistics proposed in Park and Hahn
(1999) and Cai et al. (2014) do not converge to conventional distributions under
the null hypothesis. In contrast, our test statistic given in Section 2 is a consistent
test and is asymptotically normally distributed under the null hypothesis.

Against different alternative hypotheses than the semiparametric varying coef-
ficient model considered in this paper, many researchers propose various statis-
tics for testing a linear cointegrating model, including a parameter stability test
by Hansen (1992a), a modified RESET test by Hong and Phillips (2010), a non-
parametric specification test by Wang and Phillips (2012), and linearity tests of
cointegrating smooth transition regressions by Gao, King, Lu, and Tjøstheim
(2009) and Choi and Saikkonen (2004), among others. Gao et al. (2009) con-
sidered the problem of testing a linear cointegration model, Yt = θ0 + Xtθ1 + ut ,
against a nonlinear cointegration model, Yt = g(Xt )+ut , where {Xt }n

t=1 is a ran-
dom walk process independent of {ut }n

t=1. Wang and Phillips (2012) considered
a similar testing problem as in Gao et al. (2009) but relaxed many of the restric-
tive assumptions to allow for a more general nonstationary process for {Xt }n

t=1.
Moreover, Wang and Phillips (2012) did not require {Xt }n

t=1 to be independent
of {ut }n

t=1. Choi and Saikkonen (2004) advocated a smooth transition regression
model, Yt = X T

t α + θT Xt g(Xt, j − c)+ut , where Xt is a p ×1 vector of random
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walk processes, Xt, j is the j th component of Xt , and the functional form g(·) is
unspecified. Choi and Saikkonen (2004) investigated the problem of testing the
null hypothesis of θ = 0, so that the model becomes a linear cointegration model
under the null hypothesis. They further applied the Taylor expansion method to
the smooth function g(·), so that they essentially tested a linear cointegration
model against a parametric nonlinear (with some finite order polynomials in Xt )
cointegration model. Our model (1) differs from all the aforementioned models in
the sense that under the alternative hypothesis, the coefficients in our model are
functions of a stationary variable Zt with unknown functional forms. While for
example, the smooth function g(·) considered in Choi and Saikkonen (2004) is a
finite order polynomial function of the nonstationary variable Xt, j .3

Some technical results developed in this paper may be useful in other contexts.
For example, Lemmas A.1 and A.6 extend the central limit theorem for degen-
erate U-statistics of Hall (1984) for i.i.d. data and of Fan and Li (1999) and Gao
and Hong (2008) for weakly dependent (absolutely regular) processes to inte-
grated processes. Lemma B.2 in Appendix B gives the convergence results for
nondegenerate U-statistics with integrated time series and kernel weights on a
stationary variable. In addition, we obtain weak uniform convergence results for
a kernel estimator of θ (z) in model (1), which is used to derive a limiting result
of the “asymptotic variance” of the proposed test.4

The rest of the paper is organized as follows. Section 2 describes our test
statistic. Section 3 studies the asymptotic behaviors of the test statistic under both
the null and the alternative hypotheses. Section 4 presents Monte Carlo simulation
results to examine the finite sample performance of our test. Section 5 concludes
the paper. All the mathematical proofs are relegated to three Appendices.

2. TEST STATISTIC

Following Li , Huang, Li, and Fu (2002), we initiate our test statistic from an
L2 -type test statistic as follows∫ [

θ̂ (z)− θ̂0
]T [

θ̂ (z)− θ̂0
]

dz,

where Kt (z) ≡ K ((Zt − z)/h) , K (z) is a kernel function, h is the bandwidth,

θ̂ (z) =
[

n∑
t=1

Xt X T
t Kt (z)

]−1 n∑
t=1

Xt Yt Kt (z) (4)

is the kernel estimator of the unknown smooth coefficient curve θ (z), and θ̂0
is the usual ordinary least squares (OLS) estimator of θ0 based on the linear
(null) model. It is clear that the test statistic has a random denominator. To avoid
the random denominator problem, we modify the test statistic with a positive
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definite weighting matrix Dn (z) =∑n
t=1 Xt X T

t Kt (z), which leads to the follow-
ing weighted test statistic∫ [

Dn (z)
(
θ̂ (z)− θ̂0

)]T [
Dn (z)

(
θ̂ (z)− θ̂0

)]
dz

=
n∑

t=1

n∑
s=1

X T
t Xsût ûs

∫
Kt (z) Ks (z)dz, (5)

where ût = Yt − X T
t θ̂0 is the parametric residual. Define K̄t,s ≡ ∫ Kt (z) Ks (z)dz.

Then,

K̄t,s = h
∫

K (v) K ((Zs − Zt )/h + v)dv

can be regarded as a local weight function selecting (t,s) among all t �= s such
that Zt and Zs are close to each other. Therefore, by removing the global cen-
ter, the term with t = s, replacing the local weight function K̄t,s with Kt,s ≡
K ((Zt − Zs)/h) as in Li et al. (2002), and adding a trimming indicator function,
we obtain the final test statistic given as follows

În ≡ 1

n3h

n∑
t=1

n∑
s �=t

X T
t Xs ût ûs Kt,s1n,t,s, (6)

where 1n,t,s ≡ 1n,t 1n,s , 1n,t ≡ 1(Zt ∈ Sn), and 1(A) is a trimming indicator func-
tion which equals 1 if A holds true and 0 otherwise. The set Sn trims out the
boundary region of the support of Zt so that we can obtain the weak uniform
convergence result for θ̂ (z) over z ∈ Sn . Note that Sn satisfies the condition that
limn→∞ Pr(Zt ∈ Sn) = 1 holds uniformly over t = 1, . . . ,n; see Lemma C.1 in
Appendix C for the construction of the trimming set Sn . Hence, the use of such
a trimming function will not affect our test results asymptotically.

Evidently, the proposed test statistic is a second order U-statistic constructed
from both I(0) and I(1) variables. To the best of our knowledge, there does not
exist any asymptotic result for such a U-statistic, which makes the results of
Lemmas A.1 and A.6 be of independent interest and useful in other applications.

3. ASYMPTOTIC RESULTS

For the convenience of readers, we summarize our notation here. (i) For a non-
decreasing nonstochastic positive sequence cn , we use Oe(cn) to denote an ex-
act probability order of cn ; i.e., An = Oe(cn) means that An = Op(cn) but not
An �= op(cn). (ii) Let χ be a finite dimensional matrix of random variables.

The Lr -norm of χ is denoted by ‖χ‖r =
(∑

i
∑

j E
∣∣χi, j

∣∣r)1/r
, where χi, j is

the (i, j)-th element of χ , and ‖·‖ without any subscript denotes the Euclidean

norm. (iii) “
d−→”, “

p−→”, and “
a.s.→ ” stand for the convergence in distribu-

tion, in probability, and almost surely, respectively, and “⇒ ” denotes the weak



A CONSISTENT NONPARAMETRIC TEST 993

convergence with respect to the Skorohod metric as defined in Billingsley (1999).
(iv) We write “A ≡ B ” to define A by a known or previously defined quantity
B, or to assign the quantity A to a new notation B (usually A has a long ex-
pression and B is a shorthand notation). (v) [a] is the integer part of a (a > 0),
and [0,1]d = [0,1] × ·· · × [0,1] refers to the product space of d-multiplication
of interval [0,1]. (vi) We denote a generic positive constant by C that may take
different values at different places.

Throughout this paper, we assume that {Zt }n
t=1 is a strictly stationary, abso-

lutely regular (β-mixing) sequence, and that Xt may contain a constant term
but it does not contain any deterministic trend variables. We derive the asymp-
totic results of the proposed test statistic when Xt is nonstationary in Section 3.1,
and when Xt contains both stationary and nonstationary variables in Section 3.2.
Below we use Î a

n and Î b
n to denote the test statistic În under Case (a) and Case (b),

respectively.

3.1. Case (a): Xt is a Vector of Integrated Variables

In this section, Xt is a d ×1 vector of I (1) variables. Below we list some assump-
tions on the data-generating mechanism of {(Xt , Zt ,ut )}n

t=1.

(A1) (i) Xt = Xt−1 + ηt for 1 ≤ t ≤ n, where X0 = Op(1) and
max1≤t≤n E

(‖ηt‖q
)≤ C < ∞ for some q > 8;

(ii) {Zt }n
t=1 is a strictly stationary and absolutely regular (β-mixing)

sequence with β-mixing coefficients satisfying βτ = O
(
ρ−τ

)
for

some ρ > 1 ;
(iii) {ut }n

t=1 is independent of {(Xt , Zt )}n
t=1;

{(
(ut ,ηt ) ,Fn,t−1

)}
2≤t≤n

and forms a martingale difference sequence with σ 2
v = E

(
v2

t

)
< ∞,

sup2≤t≤n

∣∣E (v2
t |Fn,t−1

)−σ 2
v

∣∣ a.s.→ 0, and sup2≤t≤n E
(
v4

t |Fn,t−1
)

<
C < ∞ for v = η or v = u, where Fn,t = σ ((us,ηs, Zs+1) ,s ≤ t) is
the smallest σ -field containing all the past history of (ut ,ηt , Zt+1)
for 1 ≤ t ≤ n.

(A2) Denote Bn,η (r) ≡ n−1/2∑[nr ]
t=1 ηt . There exists a vector Brownian mo-

tion Bη such that

Bn,η (r) ⇒ Bη (r) (7)

on D[0,1]d as n → ∞, where D[0,1]d is the space of cadlag functions on
[0,1]d equipped with Skorohod topology, and Bη is a d-dimensional mul-
tivariate Brownian motion with a finite positive definite covariance matrix
�η = lim

n→∞Var
(
n−1/2∑n

t=1 ηt
)
.

Remark 1. The mutual independence between {ut }n
t=1 and {(Xt , Zt )}n

t=1 in
A1 (iii) looks restrictive, but it is not unreasonable given the complexity of our test
problem; e.g., Gao et al. (2009) made the same independence assumption when
considering a test statistic similar to ours. The martingale difference condition is
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required for the application of Wang’s (2014, Thm. 2.1) generalized martingale
central limit theorem when we derive the limiting distribution of our proposed test
statistic under the null hypothesis. Taking the weak convergence result in (7) as an
assumption is commonly done in the econometrics literature; e.g., Assumption 2.2
in Wang and Phillips (2009a). The conditions for the multivariate functional cen-
tral limit theorem for partial sums of weakly dependent random vectors can be
found in Wooldridge and White (1988) and de Jong and Davidson (2000). More-
over, Assumption A2 assumes that the d × 1 vector Xt is not cointegrated with
itself as �η is finite and nonsingular; see Phillips (1986).

It follows clearly by (7) and applying the continuous mapping theorem that

sup0≤r≤1

∣∣Bn,η (r)
∣∣ d→ sup0≤r≤1

∣∣Bη (r)
∣∣. As sup0≤r≤1

∣∣Bη (r)
∣∣ = Op(1), hence,

we have

max
1≤t≤n

|Xt | = Op
(√

n
)

, (8)

which is frequently used in our proofs in the appendices.
To derive the limiting distribution of Î a

n , we need additional regularity assump-
tions listed below.

(A3) The sequence {Zt }n
t=1 has a common Lebesgue probability density f (z)

with bounded uniformly continuous derivatives up to the second order over
the support of Zt . Let ft,s (zt , zs) be the joint probability density function
of (Zt , Zs) for t �= s. Then, ft,s (zt , zs) and its first- and second-order par-
tial derivatives are all continuous and uniformly bounded over its support
and over all t �= s.

(A4) θ (z) has bounded uniformly continuous derivatives up to the second order
and ‖θ (Zt )‖q < C < ∞ for some q ≥ 2.

(A5) (i) The kernel function K (u) is a symmetric (around zero) probability
density function on interval [−1,1];

(ii) K (·) satisfies that
∣∣K (u)− K

(
u′)∣∣≤ C

∣∣u −u′∣∣ for some C < ∞.

(A6) As n → ∞, h → 0 and nh/ lnn → ∞.

Assumptions A3–A6 are regularity assumptions commonly imposed in a non-
parametric framework. Next we present the asymptotic properties of our test
statistic with the detailed proofs relegated to Appendix A.

THEOREM 3.1. Under Assumptions A1–A3, A5, and A6, we have,

(i) under H0,

J a
n ≡ n

√
h Î a

n /
√

σ̂ 2
n,a

d→ N (0,1) , (9)

where

σ̂ 2
n,a ≡ 2

n4h

n∑
t=1

n∑
s �=t

ũ2
t ũ2

s

(
X T

t Xs

)2
K 2

t,s1n,t,s
d→ σ 2

a , (10)
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ũt = Yt − X T
t θ̂ (−t) (Zt ) is the nonparametric residual5 with the

leave-one-out semiparametric estimator θ̂ (−t) (Zt ) for all t , σ 2
a =

4σ 4
u v2 E [ f (Z1)]

∫ 1
0

∫ s
0

(
Bη (s)T Bη (r)

)2
drds is an almost surely positive

random variable, and v2 = ∫ K 2 (u)du;

(ii) under H1 and if Assumption A4 also holds, the test statistic J a
n diverges to

+∞ at the rate of n2
√

h, viz.

Pr
(
J a

n > Cn
)→ 1 as n → ∞,

for any nonstochastic positive sequence Cn = o(n2
√

h).

Theorem 3.1 indicates that J a
n is a consistent one-sided test as the leading term

of J a
n diverges to positive infinity at the rate of n2

√
h under H1; see (A.21) in

the proof of Theorem 3.1 in Appendix A. The null hypothesis is thus rejected at
the significance level α if J a

n is greater than zα , the (1−α)100th percentile of
a standard normal distribution for α ∈ (0,1).

3.2. Case (b): Xt Contains Both Stationary and Integrated Variables

We decompose Xt (a d × 1 vector) into two groups: Xt = (X T
1,t , X T

2,t

)T , where
X1,t is of dimension d1 with its first component unity and the remainder I(0) vari-
ables, and X2,t is of dimension d2 with I(1) variables. Model (1) then becomes
Yt = X T

1,tθ1 (Zt ) + X T
2,tθ2 (Zt ) + ut . The null and alternative hypotheses are

defined by (2) and (3), respectively, where under the null hypothesis we have a
linear cointegrating model, Yt = X T

1,tθ10 + X T
2,tθ20 +ut . The test statistic is given

by (6) and is denoted by Î b
n .

Below we only list assumptions that replace the corresponding assumptions
listed in Section 3.1.

(B1) (i) We assume that X1, an n × d1 matrix containing n observations on
X1,t , has a full column rank and that X2,t = X2,t−1 + ηt satisfies
Assumption A1(i) with Bn,η (r) ≡ n−1/2 X2,[nr ] for r ∈ [0,1];

(ii) The sequence
{

X1,t ,ηt , Zt
}n

t=1 is a strictly stationary and abso-
lutely regular (β-mixing) process with β-mixing coefficients satis-
fying βτ = O

(
ρ−τ

)
for some ρ > 1;

(iii) Assumption A1 (iii) holds with Fn,t = σ
((

us,ηs, X1,s, Zs+1
)
,s ≤ t

)
being the smallest σ -field containing all the past history of(
ut ,ηt , X1,t , Zt+1

)
for 1 ≤ t ≤ n.

(B3) (i) Assumption A3 holds.

(ii) For some s > 2, E
(∥∥∥X1,t X T

1,t

∥∥∥s)≤ C < ∞ and

sup
z∈S

E
(∥∥∥X1,t X T

1,t

∥∥∥s |Zt = z
)

f (z) ≤ C < ∞, (11)
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where S is the support of Z . Also, sup(z0,zt )∈S×S E(∥∥X1,t X T
1,t X1,0 X T

1,0

∥∥|Z0 = z0, Zt = zt
)

f0,t (z0, zt ) ≤ C < ∞,
where f0,t (z0, zt ) is the joint density function of (Z0, Zt ).

(iii) E
(
X1,t |Zt = z

)
, E
(

X1,t X T
1,t |Zt = z

)
, and E

(∥∥X1,t X T
1,t

∥∥1+δ0 |Zt =
z
)

all have bounded uniformly continuous derivatives up to the
second order for some δ0 > 0.

Remark 2. Assumptions A5 (ii) and B3 are used to derive the weak uniform
convergence rate for the kernel estimators: supz∈Sn

∥∥θ̂1 (z)− θ1 (z)
∥∥ = op(1) and

supz∈Sn

∥∥θ̂2 (z)− θ2 (z)
∥∥ = op

(
n−1/2

)
, see Lemma C.1 in Appendix C, where Sn

is an expanding bounded subset of S and is given in Remark 6 at the end of
Appendix C.

In the next two theorems, we present the limiting results of the test statistic Î b
n

under the null and alternative hypotheses. The proofs are relegated to Appendix A.

THEOREM 3.2. Under Assumptions B1, A2, B3, A5, and A6, we have,
under H0,

J b
n ≡ n

√
h Î b

n /
√

σ̂ 2
n,b

d−→ N (0,1) ,

where σ̂ 2
n,b

d→ σ 2
b , and σ̂ 2

n,b and σ 2
b have respectively the same mathematical rep-

resentation as σ̂ 2
n,a and σ 2

a defined in Theorem 3.1.

In Appendix A we show that the asymptotic property of σ̂ 2
n,b is dominated

by the I(1) covariates so that one can replace
(
X T

t Xs
)2 in σ̂ 2

n,b by
(
X T

2,t X2,s
)2

if the sample size is sufficiently large. The intuitive explanation to this result is as
follows: ût in equation (6) mimics the stochastic properties of ut under H0 so that
under H0, the leading term of Î b

n is

Î b
1n ≡ 1

n3h

n∑
t=1

n∑
s �=t

X T
t Xsut us Kt,s1n,t,s ,

and further, the leading term of Î b
1n is given by n−3h−1∑n

t=1
∑

s �=t X T
2,t X2,sut us

Kt,s1n,t,s because X T
2,t X2,s is the leading term of X T

t Xs = X T
1,t X1,s + X T

2,t X2,s .

THEOREM 3.3. Under the assumptions of Theorem 3.2 and if Assumption A4
also holds, we have, under H1,

(i) if Pr[θ2(Zt ) �= θ2] > 0 for any θ2 ∈ �2, then J b
n = Oe(n2h) which implies

that Pr
(
J b

n > Cn
)→ 1 as n → ∞ for any nonstochastic positive sequence

Cn = o(n2h);

(ii) if Pr[θ2(Zt ) ≡ θ20] = 1 for some θ20 ∈ �2 and Pr[θ1(Zt ) �= θ1] > 0 for
any θ1 ∈ �1, then J b

n = Oe(n
√

h) which implies that Pr
(
J b

n > Cn
)→ 1 as
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n → ∞ for any nonstochastic positive sequence Cn = o(n
√

h); where �1
and �2 are compact subsets ofRd1 andRd2 , respectively.

Remark 3. Theorem 3.3 shows that under H1, the test statistic J b
n diverges to

+∞ at different rates depending on whether or not θ2(z) ≡ θ20 (a constant vector).
Although J b

n is a consistent test under both cases, more samples are required for
the power of the test statistic to approach one under case (ii) than under case (i).
Moreover, the proof in Appendix A indicates that when θ1(z) ≡ θ10 (a constant
vector) for all z and θ2(z) �= θ20 over a nonempty interval of z, the least squares
estimator θ̂1 of the misspecified linear regression model diverges to ∞ at the rate
of root-n if Cov

(
X1,t ,θ2

(
Zt
)) �= 0. This result suggests that it is very important

to test for the correct model specification when Xt contains both I(0) and I(1)
components in model (1).

Specifically, when θ1(z) ≡ θ10 (a constant vector) for all z and θ2(z) �= θ20
over a nonempty interval of z, model (1) becomes Yt = X T

1,tθ10 + X T
2,tθ2 (Zt )+

ut = X T
1,tθ10 + X T

2,t c0 + εt , where c0 = E [θ2 (Zt )] and εt ≡ et + ut =
X T

2,t {θ2 (Zt )− E [θ2 (Zt )]} +ut . Applying the partitioned inverse to the OLS esti-

mator gives θ̂1 = (X T
1 M2 X1

)−1
X T

1 M2Y , where M2 = In − X2
(
X T

2 X2
)−1

X T
2 and

In is the n ×n identity matrix, so that θ̂1 −θ10 = (X T
1 M2 X1

)−1
X T

1 M2ε. It is easy
to show that n−1 X T

1 M2 X1 = Oe(1) and n−1/2∑n
t=1 ut = Op(1), so the stochastic

order of θ̂1 −θ10 is determined by n−1 X T
1 M2e. If Cov

[
X1,t ,θ

T
2

(
Zt
)] �= 0, we have

n−3/2∑n
t=1 X1,t X T

2,t{θ2
(
Zt
)− E[θ2(Zt )]} d→ Cov [X1,t ,θ

T
2 (Zt )] ×∫ 1

0 Bη (r)dr ,

so θ̂1 − θ10 = Op
(√

n
)
. However, n−1∑n

t=1 X1,t X T
2,t{θ2(Zt ) − E[θ2(Zt )]} =

Oe(1) if Cov
[
X1,t ,θ

T
2

(
Zt
)] = 0, which leads to θ̂1 − θ10 = Oe(1). Therefore, it

is the correlation between the stationary variables X1,t and θ2(Zt ) (the varying
coefficients for the integrated variable X2,t ) that nurtures the inflation of θ̂1
by a magnitude of

√
n when the coefficients for the integrated variables are

wrongly specified as constants. Note that J b
n = Oe(n2h) holds true whether

Cov
[
X1,t ,θ

T
2

(
Zt
)]

equals zero or not, as terms containing X2,t are the domi-
nating terms of Î b

n .

4. MONTE CARLO SIMULATIONS

In this section we use Monte Carlo simulations to examine the finite sample
performance of the proposed test. The power simulation results reported below
include two cases: (i) the coefficients for the I (1) variables are nonconstant;
(ii) the coefficients for the I (1) variables are constant, but the coefficient for the
I (0) variable is nonconstant. The test statistic is computed as

În = 1

n3h

n∑
t=1

n∑
s �=t

X T
t Xs ût ûs K

(
Zt − Zs

h

)
. (12)
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Note that we did not use any trimming indicator function in the simulations. In
practice, the data support is always finite. Thus, the trimming indicator carries
theoretical importance, but it may not be needed in practice.

The standardized test statistic is given by

Jn = n
√

h În/
√

σ̂ 2
n , (13)

where σ̂ 2
n = 2n−4h−1∑n

t=1
∑n

s �=t ũ2
t ũ2

s

(
X T

t Xs
)2

K 2
ts , ût in (12) and ũt in σ̂ 2

n are
the respective OLS and semiparametric residuals calculated under H0 and H1.
Under H0, Jn is asymptotically normally distributed with zero mean and unit
variance by Theorems 3.1 and 3.2.

We consider the following data-generating process (DGP):

Yt = θ1(Zt )X1,t + θ2(Zt )X2,t + θ3(Zt )X3,t +ut , (14)

where X1,t ≡ 1, X2,t =∑t
s=1 v1,s , X3,t =∑t

s=1 v2,s , and
{
v1,s
}

and
{
v2,s
}

are
both randomly drawn from i.i.d. N (0,1), so that

{
X1,t

}
is an I(0) process and{

X2,t
}

and
{

X3,t
}

are both I(1) processes; {Zt } is randomly drawn from i.i.d.
uniform [0,2]; {ut } is randomly drawn from i.i.d. N (0,σ 2

u ) with σu = 2. Also,{
v1,t
}
,
{
v2,t
}
, {Zt }, and {ut } are all mutually independent of each other. We set

θ1(z) = γ1 + γ2z, θ2(z) = γ3 + γ4 sin(z), and θ3(z) = γ5 + γ6z. Three DGPs are
considered by setting different values to the six parameters γj ’s for j = 1, . . . ,6.
They are set as follows:

DGP1 : (γ1,γ2,γ3,γ4,γ5,γ6) = (1,0,0.5,0,0.5,0)

DGP2 : (γ1,γ2,γ3,γ4,γ5,γ6) = (1,0.5,0,0.5,0.5,0.3)

DGP3 : (γ1,γ2,γ3,γ4,γ5,γ6) = (1,2,0.5,0,0.5,0)

where DGP1 satisfies the null hypothesis with Yt = X1,t +0.5X2,t +0.5X3,t +ut ,
and both DGP2 and DGP3 violate the null hypothesis. None of the three coeffi-
cient curves are constant under DGP2, while the coefficient curves for the inte-
grated variables X2,t and X3,t are constant under DGP3. To measure the distance
between the null and alternative hypotheses, we define

D̂j =
3∑

l=1

1

n

n∑
t=1

[
θl, j (Zt )− θj,0

]2 p→
3∑

l=1

E
[
θl, j (Z1)− θl,0

]2 ≡ Dj ,

where j refers to the experiment corresponding to DGPj , θl,0 and θl, j (z) are the
lth coefficient under H0 and DGPj , respectively. It is easy to calculate that D1 = 0,
D2 = 0.4979, and D3 = 16/3 ≈ 5.33.

The number of Monte Carlo replications is 1,000, and the sample size n = 100,
200, 400, and 600. According to Sun and Li (2011) we use a Gaussian kernel func-
tion with h = c σ̂zn−.5, where σ̂z is the sample standard deviation of {Zt }n

t=1, and
we choose c = 0.8, 1.0, and 1.2 to examine the effects of different degrees of
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TABLE 1. Estimated sizes

c = 0.8 c = 1.0 c = 1.2

n 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20%

100 .006 .019 .037 .080 .006 .018 .035 .077 .007 .016 .037 .084
200 .013 .037 .057 .115 .011 .030 .060 .119 .014 .033 .062 .114
400 .010 .044 .073 .143 .011 .045 .079 .145 .011 .046 .084 .143
600 .005 .040 .074 .135 .008 .039 .069 .139 .010 .038 .065 .131

smoothing on test results. Monte Carlo results for DGPj are reported in Table j ,
j = 1, 2, 3. Using different bandwidths does have mild impacts on the percentage
rejection rates–more on estimated powers than estimated sizes. We observe from
Table 1 that some downward size distortion of our test. This is quite common in
this type of nonparametric test even for independent or weakly dependent data
cases. We have done some simulations using a residual-based bootstrap method
to generate the null critical values. The results show significant size improvement
using the bootstrap method. Since we do not verify the theoretical validity of the
bootstrap method in this paper, these results are not reported here. However, the
results are available from the authors upon request.

Although our test is under-sized (see Table 1), Table 2 shows that our test is
quite powerful against DGP2 where none of the coefficients of the nonstationary
covariates are constant. DGP3 is designed to measure the power of our test when
the coefficients for the I(1) variables are constant but the coefficient for the I(0)
variable varies with respect to Zt . Although D3 = 16/3 (the distance between
the null DGP1 and DGP3) is much larger than D2 (the distance between DGP1
and DGP2), the rejection rates in Table 3 for each given sample size are smaller
than those given in Table 2 in most cases. Moreover, the rejection rates in Table
3 grow at speeds slower than those in Table 2. The results given in Tables 2 and
3 are in line with the theory given in Theorem 3.3. Whether the coefficients of
the I(1) variables are constant or not overwhelms the distant measure Dj ’s in the
prediction of the power of the test.

TABLE 2. Estimated powers: Varying coefficients for the I(1) variables

c = 0.8 c = 1.0 c = 1.2

n 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20%

100 .709 .769 .806 .855 .737 .800 .830 .870 .754 .813 .843 .879
200 .964 .978 .984 .991 .968 .982 .988 .993 .970 .985 .992 .994
400 .998 1.00 1.00 1.00 .998 1.00 1.00 1.00 1.00 1.00 1.00 1.00
600 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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TABLE 3. Estimated powers: Constant coefficients for the I(1) variables

c = 0.8 c = 1.0 c = 1.2

n 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20%

100 .658 .788 .836 .89 .732 .829 .868 .905 .774 .853 .883 .914
200 .930 .945 .955 .969 .94 .953 .963 .972 .944 .96 .966 .976
400 .965 .975 .982 .986 .967 .982 .983 .99 .973 .982 .986 .990
600 .985 .987 .989 .992 .987 .987 .99 .991 .987 .988 .991 .991

5. CONCLUSION

In this paper, we propose a consistent nonparametric test for testing the null
hypothesis of constant coefficients against nonparametric smooth coefficients
in a semiparametric varying coefficient cointegrating model. We show that the
standardized test statistic converges to a standard normal distribution under the
null hypothesis.

Although not reported here, we have also done some simulations using a
residual-based bootstrap method, the results show that we can have much bet-
ter estimated sizes for a wide range of smoothing parameter values. We leave
the theoretical justification of the bootstrap method as well as the selection of
the smoothing parameters balancing the size and the power of the test as fu-
ture research topics. Finally, we only consider the case that Zt is a station-
ary variable. It will be interesting to generalize the result of this paper to the
case that Zt is an I(1) variable, and we leave this as a possible future research
topic.

NOTES

1. This paper only deals with the case that Zt is a scalar for expositional simplicity. How-
ever, our results can be easily extended to the case that Zt contains more than one stationary
variable.

2. The test statistic for the case that Xt is stationary was considered by Cai, Fan, and Yao (2000)
and Li et al. (2002), among others.

3. It would be desirable if our model can be extended to allow for Zt to be a nonstationary pro-
cess, then it will be a general model which covers, for example, the testing problem considered in
Gao et al. (2009) as a special case. This extension is beyond the scope of the current paper and is left
as a possible future research topic.

4. The “asymptotic variance” does not have the same meaning as in stationary cases as it is a
positive random variable, not a constant. The square root of this term is used to scale the test statistic
such that the standardized test statistic has a standard normal distribution under H0. As this scale
serves a role similar to the square root of a traditional variance, we abuse the usage of “asymptotic
variance” to save creating a new name for this term.

5. Here, the reason for using a nonparametric residual is that (10) holds under both the null and
alternative hypotheses.
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APPENDIX A: Proofs of Main Theorems

Proof of Theorem 3.1 (i). Under H0, the OLS residual, ût = Yt − X T
t θ̂0 =

ut − X T
t
(
θ̂0 − θ0

)
, and accordingly we decompose Î a

n in (6) as

Î a
n = 1

n3h

n∑
t=1

∑
s �=t

X T
t Xs

[
ut us + (θ̂0 − θ0

)T
Xt X T

s

(
θ̂0 − θ0

)−2ut X T
s

(
θ̂0 − θ0

)]
Kt,s1n,t,s

≡ I a
1n + (θ̂0 − θ0

)T
Ga

2n

(
θ̂0 − θ0

)−2
(
θ̂0 − θ0

)T
Ga

3n , (A.1)

where

I a
1n = 2

n3h

n∑
t=2

t−1∑
s=1

X T
t Xsut us Kt,s1n,t,s , (A.2)

Ga
2n = 2

n3h

n∑
t=2

t−1∑
s=1

Xt X T
t Xs X T

s Kt,s1n,t,s , (A.3)

and

Ga
3n = 1

n3h

n∑
t=2

t−1∑
s=1

X T
t Xs (ut Xs +us Xt ) Kt,s1n,t,s . (A.4)
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Applying the generalized martingale central limit theorem of Wang (2014, Thm. 2.1) we

show that n
√

hI a
1n/
√

σ 2
n,a

d→ N (0,1) in Lemma A.1. Also, combining Lemmas A.2 and
A.3 gives

σ 2
n,a = 2

n4h

n∑
t=1

n∑
s �=t

u2
t u2

s

(
X T

t Xs

)2
K 2

t,s1n,t,s
d→ σ 2

a , (A.5)

where σ 2
a = 4σ 4

u v2 E
[

f (Z1)
]∫ 1

0
∫ s

0

(
Bη (s)T Bη (r)

)2
drds > 0 (almost surely) is inde-

pendent of a standard normal variate N , and v2 = ∫ K 2 (u)du. In addition, Lemma A.4
shows that Ga

2n = Op(n) and Ga
3n = Op(1). Note that under H0, model (1) becomes

a linear cointegrating model, Yt = X T
t θ0 + ut , and it is well known that the OLS es-

timator, θ̂0, of the linear cointegrating model, gives θ̂0 − θ0 = Op(n−1) (e.g., Phillips,

1995). Taking these results together gives, under H0, n
√

h Î a
n /
√

σ 2
n,a = n

√
hI a

1n/
√

σ 2
n,a +

Op

(√
h
)

= n
√

hI a
1n/
√

σ 2
n,a +op(1), where h → 0 as n → ∞ by Assumption A6. Finally,

by Slutsky’s lemma, we obtain under H0 that J a
n = n

√
h Î a

n /
√

σ̂ 2
n,a = n

√
h Î a

n /
√

σ 2
n,a ×√

σ 2
n,a/σ̂ 2

n,a
d→ N (0,1) because σ̂ 2

n,a = σ 2
n,a + op(1) by Lemma A.5, where replacing ut

in σ 2
n,a by the semiparametric residual for all t gives σ̂ 2

n,a . This completes the proof of
Theorem 3.1 (i). n

Below, we present Lemmas A.1–A.5 which are used to prove Theorem 3.1 (i). In par-
ticular, Lemma A.1, a limiting result of a degenerate U-statistic with both I (1) and I (0)
covariates, should also be useful in other contexts.

LEMMA A.1. Under Assumptions A1–A3, A5(i), and A6, we have n
√

hI a
1n/
√

σ 2
n,a

d→
N (0,1).

Proof. First, we have

I a
1n = 2

n3h

n∑
t=2

t−1∑
s=1

X T
t Xsut us Kt,s1n,t,s

= 2

n3h

n∑
t=2

t−1∑
s=1

X T
t−1 Xsut us Kt,s1n,t,s + 2

n3h

n∑
t=2

t−1∑
s=1

ηT
t Xsut us Kt,s1n,t,s

≡ �n1 +�n2,

where �n1 and �n2 denote the two terms in the same order as they appear in the second
equality line. Under Assumption A1 (iii) we have E (�n2) = 0. Without loss of generality
we assume that Xt is a scalar for notation simplicity. Under Assumption A1 we have for
some δ0 > 0

E
(
�2

n2

)
= 4σ 4

u

n6h2

n∑
t=2

t−1∑
s=1

E
[
(ηt Xs)

2 K 2
t,s1n,t,s

]

≤ 4σ 4
u σ 2

v

n6h2

n∑
t=2

t−1∑
s=1

E
(

X2
s K 2

t,s

)
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= 4σ 4
u σ 2

v

n6h2

n∑
t=3

t−1∑
s=2

s∑
i=1

E
(
η2

i K 2
t,s

)
+ 4σ 4

u σ 2
v

n6h2

n∑
t=4

t−1∑
s=3

s∑
i1=2

i1−1∑
i2=1

E
(
ηi1ηi2 K 2

t,s

)

= O

(
n3

n6h

)
+ O

(
1

n3h1+δ0/(1+δ0)

)
= O

(
1

n3h1+δ0/(1+δ0)

)
,

where applying Lemma B.1 gives
∣∣h−1 E

(
ηi1ηi2 K 2

t,s
)∣∣ ≤ h−δ0/(1+δ0)β

δ0/(1+δ0)
s−i1

for

some δ0 > 0, and
∑∞

l=1 β
δ0/(1+δ0)
l ≤ C < ∞ by Assumption A1 (ii). Hence, apply-

ing Markov’s inequality gives �n2 = Op
((

n3h1+δ0/(1+δ0)
)−1/2). Hence, n

√
h�n2 =

Op
((

nhδ0/(1+δ0)
)−1/2) and is asymptotically ignorable under Assumption A6. n

Next, denoting Xn,t−1 = 2
(
n2√

h
)−1 X T

t−1
∑t−1

s=1 Xsus Kt,s1n,t,s and S2
n =

σ 2
u
∑n

t=2X 2
n,t−1. Then, n

√
h�n1 = ∑n

t=2 utXn,t−1. Applying Wang (2014, Thm. 2.1)

we will show
(
n
√

h�n1, S2
n
) d→ (

σ 2
a N ,σ 2

a
)
, which requires that we verify the following

results:
{
big(ηt ,ut

)
,Fn,t

}
forms a martingale difference such that

max
2≤t≤n

E
∣∣∣(η2

t |Fn,t−1

)
− E

(
η2

t

)∣∣∣= op (1) (A.6)

max
2≤t≤n

∣∣∣E (u2
t |Fn,t−1

)
− E

(
u2

t

)∣∣∣= op(1)

max
2≤t≤n

∣∣∣E [η2
t I (|ηt | ≥ Cn) |Fn,t−1

]
+ E

[
u2

t I (|ut | ≥ Cn) |Fn,t−1

]∣∣∣= op(1) (A.7)

for any constant positive sequence Cn → ∞,

max
2≤t≤n

∣∣Xn,t−1
∣∣= op (1) and n−1/2

n∑
t=2

∣∣Xn,t−1
∣∣ ∣∣E (ηt ut |Fn,t−1

)∣∣= op(1), (A.8)

and there exists an almost surely finite functional g2 (Bη
)

of Bη (r), r ∈ [0,1], such that(
Bn,η (r) , S2

n

)
⇒
(

Bη (r) ,g2 (Bη
))

. (A.9)

Evidently, (A.6)–(A.7) hold under Assumption A1 (iii). Also, in Lemma A.2 we
have that

S2
n = 4σ 4

u v2 E
[

f (Z1)
]

n2

n∑
t=2

t−1∑
s=1

(
X T

t−1 Xs

n

)2

+op(1)

= 4σ 4
u v2 E

[
f (Z1)

]
n2

n∑
t=2

t−1∑
s=1

[
Bn,η

(
t −1

n

)T
Bn,η

( s

n

)]2

+op(1)

d→ σ 2
a .

Thus, (A.9) holds by the continuous mapping theorem under Assumption A2 with

g2 (Bη
)≡ 4σ 4

u v2 E
[

f (Z1)
] ∫ 1

0
∫ s

0

(
Bη (s)T Bη (r)

)2
drds.
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Under Assumptions A1 and A3, Hansen (2008, Thm. 2) holds, which gives

sup
z∈Sn

∣∣∣∣∣∣ 1

nh

n∑
t=1

|ut | K

(
Zt − z

h

)
− E (|ut |) f (z)

∣∣∣∣∣∣= Op

(
h2 +

√
lnn

nh

)
.

It follows that

max
2≤t≤n

∣∣Xn,t−1
∣∣= 2

n2
√

h
max

2≤t≤n

∣∣∣∣∣∣X T
t−1

t−1∑
s=1

Xsus Kt,s1n,t,s

∣∣∣∣∣∣
= Op

(
1

n
√

h

)
max

2≤t≤n

t−1∑
s=1

|us | Kt,s1n,t,s = Op

(√
h
)
,

where we used (8) that max1≤t≤n ‖Xt‖ = Op
(√

n
)
. This gives max2≤t≤n

∣∣Xn,t−1
∣∣ =

op(1) as h → 0 when n → ∞. In addition, the independence between {ut }n
t=1 and {ηt }n

t=1
implied in Assumption A1 gives n−1/2∑n

t=2

∣∣Xn,t−1
∣∣ ∣∣E (ηt ut |Fn,t−1

)∣∣ = 0. Hence,
(A.8) holds true. As all the assumptions required by Wang (2014, Thm. 2.1) hold, we

obtain n
√

h�n1/

√
S2

n
d→ N (0,1). Combining this result with Lemma A.3, we obtain

n
√

hI a
1n/
√

σ 2
n,a

d→ N (0,1). This completes the proof of Lemma A.1.

Remark 4. Gao and Hong (2008) derived a central limit theorem for a general-
ized U-statistic of the form of

∑n
t=1
∑n

s �=t ψn (Xs , Xt )φ1 (ηs ,ηt ), where ψn (Xs , Xt ) =∑min(s−1,t−1)
i=1 An,i φ2

(
ηs−i ,ηt−i

)
is a linear combination of a function of an r -

dimensional strictly stationary β-mixing process, Xt = (ηt−1, . . . ,η1
)
, and φ1 (·, ·) and

φ2 (·, ·) are both symmetric functions. The central limit theorem in Gao and Hong (2008)
assumes ψn (Xs , Xt ) to be weakly dependent, while Lemma A.1 considers the case that
ψn (Xs , Xt ) is nonstationary. Therefore, Lemma A.1 can be considered as an extension of
Gao and Hong’s (2008) result to for integrated time series data.

LEMMA A.2. Under the assumptions given in Lemma A.1, we have S2
n

d→ σ 2
a .

Proof. First, we have

S2
n = σ 2

u

n∑
t=2

X 2
n,t−1 = 4σ 2

u

n4h

n∑
t=2

t−1∑
s=1

(
X T

t−1 Xs

)2
u2

s K 2
t,s1n,t,s

+ 8σ 2
u

n4h

n∑
t=3

t−1∑
s1=2

s1−1∑
s2=1

X T
t−1 Xs1 X T

s2
Xt−1us1 us2 Kt,s1 Kt,s2 1n,t,s1 1n,t,s2

≡ An1 + An2. (A.10)

Letting et,s =
[
u2

s K 2
t,s1n,t,s − E

(
u2

s K 2
t,s1n,t,s

)]
/h, we decompose An1 into two terms

An1 = 4σ 2
u

n2

n∑
t=2

t−1∑
s=1

(
X T

t−1 Xs

n

)2

E

(
u2

s K 2
t,s1n,t,s

h

)
+ 4σ 2

u

n2

n∑
t=2

t−1∑
s=1

(
X T

t−1 Xs

n

)2

et,s

≡ �n1 +�n2.
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Using Lemma B.1 we have that

h−1 E
(

u2
s K 2

t,s1n,t,s

)
= v2σ 2

u E
[
1(Z1 ∈ Sn) f (Z1)

]+ O (h)

+ O
(

h−δ0/(1+δ0)β
δ0/(1+δ0)|t−s|

)
under Assumption A1 (iii). Then by (8), we have n−4∑n

t=2
∑t−1

s=1

(
X T

t−1 Xs
)2(

h +h−δ0/
(
1+δ0

)
β

δ0/
(
1+δ0

)
|t−s|

)
= Op(h) + Op

(
n−1/(1+δ0)(nh)−δ0/(1+δ0)

) = op(1) by

Assumptions A1 (ii) and A6. Therefore, applying the continuous mapping theorem and
(7), we obtain

�n1 = 4v2σ 4
u E
[

f (Z1)
]

n2

n∑
t=2

t−1∑
s=1

(
X T

t Xs

n

)2

+op(1)
d→ σ 2

a . (A.11)

Now, we show that �n2 = op(1). Let Mn,t = n−1 X T
t ⊗ X T

t and Vn,s =
vec
(
n−1 Xs X T

s
)
, where “⊗ ” denotes the Kronecker product, and vec (A) is an (nk)× 1

vector formed by stacking up the columns of an n ×k matrix A. Then, n−2 X T
t Xs X T

s Xt =
Mn,t Vn,s . Denote Mn (r) ≡ Mn,[nr ] and Vn (r) ≡ Vn,[nr ] for any r ∈ [0,1]. By As-
sumption A2 and the continuous mapping theorem, we have Mn ⇒ M ≡ BT

η ⊗ BT
η and

Vn ⇒ V ≡ vec
(
Bη BT

η

)
. For any small ε ∈ (0,1), setting N = [1/ε], sk = [kn/N ] + 1,

s∗
k = sk+1 −1, N∗

t = [(N −1)(t −1)/n], and s∗∗
k = min

(
s∗
k , t −1

)
, we have

|�n2| =
∣∣∣∣∣∣n−2

n∑
t=2

Mn,t

t−1∑
s=1

Vn,set,s

∣∣∣∣∣∣≤ sup
0≤r≤1

‖Mn (r)‖n−2
n∑

t=2

∥∥∥∥∥∥
t−1∑
s=1

Vn,set,s

∥∥∥∥∥∥
= sup

0≤r≤1
‖Mn (r)‖n−2

n∑
t=2

∥∥∥∥∥∥
N∗

t∑
k=0

s∗∗
k∑

s=sk

Vn,set,s

∥∥∥∥∥∥
= sup

0≤r≤1
‖Mn (r)‖n−2

n∑
t=2

∥∥∥∥∥∥
N∗

t∑
k=0

Vn,sk

s∗∗
k∑

s=sk

et,s

∥∥∥∥∥∥
+ sup

0≤r≤1
‖Mn (r)‖n−2

n∑
t=2

∥∥∥∥∥∥
N∗

t∑
k=0

s∗∗
k∑

s=sk

(
Vn,s − Vn,sk

)
et,s

∥∥∥∥∥∥
≤ sup

0≤r≤1
‖Mn (r)‖ sup

0≤r≤1
‖Vn (r)‖n−2

n∑
t=2

N∗
t∑

k=0

∣∣∣∣∣∣
s∗
k∑

s=sk

et,s

∣∣∣∣∣∣ (A.12)

+ sup
0≤r≤1

‖Mn (r)‖ sup
|r−r ′|≤ε

∥∥Vn (r)− Vn
(
r ′)∥∥n−2

n∑
t=2

t−1∑
s=1

∣∣et,s
∣∣ .

Since Mn and Vn converge to well defined Op(1) limiting processes under the Skoro-
hod topology, we have sup0≤r≤1 ‖Mn (r)‖ = Op (1) and sup0≤r≤1 ‖Vn (r)‖ = Op(1).
In addition, as n → ∞, we have

sup
|r−r ′|≤ε

∥∥Vn (r)− Vn
(
r ′)∥∥ d−→ sup

|r−r ′|≤ε

∥∥V (r)− V
(
r ′)∥∥ p−→ 0
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as ε → 0. With
∣∣et,s

∣∣= Op(1), the second term in (A.12) is op(1). Further, we have

1

n2

n∑
t=2

N∗
t∑

k=0

E

⎡⎣∣∣∣∣∣∣
s∗∗
k∑

s=sk

et,s

∣∣∣∣∣∣
⎤⎦≤ 1

n

n∑
t=2

sup
s+nε<t

E

∣∣∣∣∣∣ 1

nε

s+εn∑
i=s

et,i

∣∣∣∣∣∣≤ C (εnh)−1/2 = o(1),

if we set ε to be a small positive constant such that εnh → ∞ as n → ∞. Hence, the first
term in (A.12) is also op(1). Therefore, we obtain �n2 = op(1).

Next, we show that An2 = op(1). Without loss of generality, we give the proof for a
scalar Xt . By Assumption A1 (iii) we have E (An2) = 0 and

E
(

A2
n2

)
= 64σ 8

u

n8h2

n∑
t=3

t−1∑
s1=2

s1−1∑
s2=1

E
(

X4
t−1 X2

s1
X2

s2
K 2

t,s1
K 2

t,s2
1n,t,s1 1n,t,s2

)

+ 128σ 8
u

n8h2

n∑
t=4

t−1∑
t ′=3

t ′−1∑
s1=2

s1−1∑
s1=1

E
(

X2
t−1 X2

s1
X2

s2
X2

t ′−1 Kt,s1

Kt,s2 1n,t,s1 1n,t,s2 Kt ′,s1
Kt ′,s2

1n,t ′,s1
1n,t ′,s2

)
≡ 64σ 8

u (χn1 +2χn2) , (A.13)

where the definition of χn1 and χn2 will be clear from the context below. Consider χn1
first. As Xt =∑t

i=1 ηi , we have X4
t−1 X2

s1
X2

s2
=∑i1≤t−1

∑
i2≤t−1

∑
i3≤t−1

∑
i4≤t−1∑

i5≤s1

∑
i6≤s1

∑
i7≤s2

∑
i8≤s2

ηi1 · · ·ηi8 . Hence, there are totally 11 summations in χn1
over subindexes: t , s1, s2, i1,. . . ,i8. Letting j be the total number of different subindexes,
we have χn1 ≡ Dn,1 + . . .+ Dn,8, where

Dn, j = 1

n8h2

n∑
t=3

t−1∑
s1=2

s1−1∑
s2=1

∑
i1

· · ·
∑
i j

E
(
η

l1
i1

. . .η
lj
i j

K 2
t,s1

K 2
t,s2

1n,t,s1 1n,t,s2

)

sums over j +3 different subindexes and
∑ j

s=1 ls = 8. Applying Lemma B.1 to j ≤ 4, it is

readily seen that Dn,1 = O
(
n−4), Dn,2 = O

(
n−3), Dn,3 = O

(
n−2), and Dn,4 = O

(
n−1),

where E
(∣∣ηt

∣∣q)≤ C < ∞ for some q > 8. When j ≥ 5, there are more than eight different
subindexes. Letting mn = [C0 lnn

]
for some positive constant C0, we will repeatedly use

Lemma B.1 and a summation splitting method to obtain the order for Dn,5 to Dn,8.

(i) For j = 5, Dn,5 contains 8 summations, where 1 ≤ ls ≤ 4 for s = 1, . . . ,5,
∑5

s=1 ls =
8, and there are at least two l ’s equal to one. As an illustration, we take the case that
l5 = l4 = 1 and t > i1 > s1 > i2 > i3 > s2 > i4 > i5, and apply Lemma B.1 to obtain∣∣∣h−2 E

(
ηi5ηi4η

l3
i3

η
l2
i2

η
l1
i1

K 2
t,s1

K 2
t,s2

1n,t,s1 1n,t,s2

)∣∣∣
≤ C

h2δ0/(1+δ0)

⎧⎨⎩β
δ0/(1+δ0)
mn , if s2 − i4 > mn

β
δ0/(1+δ0)
i4−i5

, if s2 − i4 ≤ mn

.

Applying this method to other combinations of summations, we obtain

E
(
Dn,5

)= O

(
n8β

δ0/(1+δ0)
mn

n8h2δ0/(1+δ0)

)
+ O

(
n6mn

n8h2δ0/(1+δ0)

)
.
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(ii) For j = 6, Dn,6 contains 9 summations, where 1 ≤ ls ≤ 3 for s = 1, . . . ,6,∑6
s=1 ls = 8, and there are at least four l ’s equal to one. We take a case that l6 = l5 = l4

= l3 = 1 and t > i1 > i2 > s1 > i3 > i4 > s2 > i5 > i6 and apply Lemma B.1 to obtain∣∣∣h−2 E
(
ηi6ηi5ηi4ηi3η

l2
i2

η
l1
i1

K 2
t,s1

K 2
t,s2

1n,t,s1 1n,t,s2

)∣∣∣
≤ C

h2δ0/(1+δ0)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
β

δ0/(1+δ0)
mn , if i3 − i4 > mn

β
δ0/(1+δ0)
mn , if i3 − i4 ≤ mn and s2 − i5 > mn

β
δ0/(1+δ0)
i5−i6

, if i3 − i4 ≤ mn and s2 − i5 ≤ mn

.

Applying this method to other combinations of summations, we obtain

E
(
Dn,6

)= O

(
n9β

δ0/(1+δ0)
mn

n8h2δ0/(1+δ0)

)
+ O

(
n6m2

n

n8h2δ0/(1+δ0)

)
.

(iii) Applying the same method to the cases with j = 7 and j = 8 we obtain

E
(
Dn,7

)= O

(
n10β

δ0/(1+δ0)
mn

n8h2δ0/(1+δ0)

)
+ O

(
n6m3

n

n8h2/(1+δ0)

)
,

E
(
Dn,8

)= O

(
n11β

δ0/(1+δ0)
mn

n8h2δ0/(1+δ0)

)
+ O

(
n6m4

n

n8h2δ0/(1+δ0)

)
.

Therefore, we obtain

χn1 = O

(
1

n

(
1+ n4β

δ0/(1+δ0)
mn

h2δ0/(1+δ0)
+ m4

n

nh2δ0/(1+δ0)

))
= O

(
1

n

)
(A.14)

if C0 >
[
4+2δ0 (2+α)

]
/(δ0 lnρ) for some δ0 ∈ (0,1) as Assumption A6 implies h ∼ n−α

for some α ∈ (0,1). Similarly, we can show

χn2 = O

(
h

(
1+ n4β

δ0/(1+δ0)
mn

h3δ0/(1+δ0)
+ m4

n

nh3δ0/(1+δ0)

))
= O (h) (A.15)

if C0 >
[
5+ δ0 (5+3α)

]
/(δ0 lnρ) for some δ0 ∈ (0,1/2). Hence, we obtain An2 =

Op
(
n−1/2 +√

h
)

by Markov’s inequality. Combining this result with (A.11) gives S2
n

d→
σ 2

a . This completes the proof of Lemma A.2. n

LEMMA A.3. Under the assumptions given in Lemma A.1, we have σ 2
n,a = S2

n +
op(1).

Proof. Simple calculations lead to

σ 2
n,a − S2

n = 4

n4h

n∑
t=2

t−1∑
s=1

(
u2

t −σ 2
u

)
u2

s

(
X T

t Xs

)2
K 2

t,s1n,t,s .
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By Assumption A1 (iii) we have E
(
σ 2

n,a − S2
n

)
= 0 and

E

[(
σ 2

n,a − S2
n

)2
]

≤ C

n8h2

n∑
t=2

t−1∑
s=1

E

[(
X T

t Xs

)4
K 4

t,s1n,t,s

]

+ C

n8h2

n∑
t=3

t−1∑
s=2

s−1∑
s′=1

E

[(
X T

t Xs X T
s′ Xt

)2
K 2

t,s K 2
t,s′1n,t,s1n,t,s′

]

= O

(
1

n2h

(
1+ n4β

δ0/(1+δ0)
mn

hδ0/(1+δ0)
+ m4

n

nhδ0/(1+δ0)

))

+ O

(
1

n

(
1+ n4β

δ0/(1+δ0)
mn

h2δ0/(1+δ0)
+ m4

n

nh2δ0/(1+δ0)

))
= O

(
n−2h−1)+ O

(
n−1),

where we use the same proof method as used in the proof of Lemma A.2, and we apply
Assumption A1 (ii) to obtain the last line for properly chosen δ0 ∈ (0,1) and C0 > 0.

Therefore, we obtain σ 2
n,a − S2

n = Op

(
n−1/2

)
by Markov’s inequality as nh → ∞ when

n → ∞. This completes the proof of this lemma. n

LEMMA A.4. Under the assumptions given in Theorem 3.1, we obtain Ga
2n = Oe(n)

and Ga
3n = Op(1), where Ga

2n and Ga
3n are defined in (A.3) and (A.4), respectively.

Proof. Using exactly the same arguments as those used in the proof of Lemma A.2, we
obtain

n−1Ga
2n = 2

n

n∑
t=2

X T
t√
n

1

n

t−1∑
s=1

Xs X T
s

n

Xt√
n

E
(
Kt,s1n,t,s

)
h

+op(1)
d→ 2E[ f (Z1)]

∫ 1

0

∫ s

0
(Bη(s)T Bη(r))2drds = Oe(1).

Hence, Ga
2n = Oe(n). Next, we write Ga

3n = Ga
3n,1 + Ga

3n,2, where

Ga
3n,1 =

(
n3h
)−1 n∑

t=2

ut

t−1∑
s=1

X T
t Xs Xs Kt,s1n,t,s

and Ga
3n,2 = (n3h

)−1∑n−1
t=1

∑n
s=t+1 X T

t Xsus Xt Kt,s1n,t,s . By Assumption A1 (iii) we
have EGa

3n, j = 0 for j = 1,2, and applying the same proof method used in the proof of
Lemma A.2 gives

E
[
Ga

3n,1

(
Ga

3n,1

)T ]= σ 2
u

n6h2

n∑
t=2

t−1∑
s=1

E
(

X T
t Xs Xs X T

s X T
s Xt K 2

t,s1n,t,s

)

+ σ 2
u

n6h2

n∑
t=3

t−1∑
s1=2

s1−1∑
s2=1

E
(

X T
t Xs1 Xs1 X T

s2
X T

s2
Xt Kt,s1 Kt,s2 1n,t,s1 1n,t,s2

)
= O

(
n−1h−1)+ O(1) = O(1).
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Then, applying Markov’s inequality gives Ga
3n,1 = Op(1). Similarly, we can show Ga

3n,2 =
Op(1). This completes the proof of Lemma A.4. n

LEMMA A.5. Under the assumptions given in Theorem 3.1 (i), we have σ̂ 2
n,a −σ 2

n,a =
op(1), where σ̂ 2

n,a is defined by (10).

Proof. Replacing ut in σ 2
n,a by ũt = Yt − X T

t θ̂ (−t)(Zt ) = ut − X T
t
[
θ̂ (−t)(Zt

)−θ
(
Zt
)]

gives σ̂ 2
n,a . Applying Lemma C.1 we verify Lemma A.5. n

Remark 5. Here we emphasize that it is important to use the nonparametric residuals
in computing σ̂ 2

na . If the nonparametric residual ũt is replaced by the parametric residual
ût = Yt − X T

t θ̂0 = ut + X T
t
[
θ̂0 − θ

(
Zt
)]

, then under H1, ût = Op
(√

n
)

and Lemma A.5
does not hold; the resulting test may have only trivial power even as n → ∞. The same
argument also applies to Theorem 3.2.

Proof of Theorem 3.1 (ii). Under H1, we express θ̂0 as θ̂0 = θ̂0 − E[θ(Zt )]+ E[θ(Zt )],
where

θ̂0 − E[θ(Zt )] =
(∑

t

Xt X T
t

)−1∑
t

Xt X T
t et +

(∑
t

Xt X T
t

)−1∑
t

Xt ut (A.16)

with et = θ
(
Zt
)− E

[
θ
(
Zt
)]

. By Assumption A1 (ii), White (2001, Thm. 3.49), McLeish
(1975, Lem. 2.1) and the fact that a β-mixing sequence is also an α -mixing sequence, we
have as m → ∞,

sup
t

E |Et−m (et )| ≤ 6β
1−1/q
m ‖et‖q = o(1) for some q > 1, (A.17)

which implies that max1≤t≤n

∥∥∥n−2∑t
s=1 Xs X T

s es

∥∥∥ = op(1) by Hansen (1992b, Thm.

3.3). Hence, we have

θ̂0 − E
[
θ
(
Zt
)]= op(1)+ Op

(
n−1

)
= op(1), (A.18)

which means that the OLS estimator converges to the mean value of the random coefficient
under the alternative hypothesis. Since ût = Yt − X T

t θ̂0 = ut − X T
t
(
θ̂0 − θ

(
Zt
))

, simple
calculations lead to

Î a
n = 1

n3h

n∑
t=1

∑
s �=t

X T
t Xs

[
ut us + (θ̂0 − θ (Zt )

)T Xt X T
s
(
θ̂0 − θ (Zs)

)
−2ut X T

s
(
θ̂0 − θ (Zs)

)]
Kt,s1n,t,s

≡ I a
1n + I a

2n −2I a
3n , (A.19)

where the definitions of I a
jn ( j = 1,2,3) should be apparent. As I a

1n is the same as that

defined under H0, we obtain I a
1n = Op

(
n−1h−1/2) by Lemma A.1. Next, we consider

n−1 I a
2n ≡ 2

n4h

n∑
t=2

t−1∑
s=1

X T
t XseT

t Xt X T
s es Kt,s1n,t,s
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+n−1 {θ̂0 − E [θ (Zt )]
}T Ga

2n

{
θ̂0 − E

[
θ
(
Zt
)]}

+{θ̂0 − E
[
θ
(
Zt
)]}T 2

n4h

n∑
t=1

∑
s �=t

X T
t XseT

t Xt Xs Kt,s1n,t,s , (A.20)

where the second term equals op(1) by (A.18) and Ga
2n = Op(n) by Lemma A.4. Applying

vec(ABC) = (CT ⊗ A
)
vec(B) and Lemma B.2, we have

1

n

n∑
t=2

1

n

t−1∑
s=1

X T
t Xs

n
eT

t
Xt X T

s
n

es
Kt,s1n,t,s

h

= 1

n

n∑
t=2

1

n

t−1∑
s=1

X T
t Xs

n

(
X T

s ⊗ X T
t

n

)
vec
(

et eT
s

) Kt,s1n,t,s

h

= 1

n

n∑
t=2

1

n

t−1∑
s=1

X T
t Xs

n

(
X T

s ⊗ X T
t

n

)
E

[
vec
(

et eT
s

) Kt,s1n,t,s

h

]
+op(1)

d→
∫ 1

0

∫ r

0
Bη (r)T Bη (s) Bη (r)T E

[
e1eT

1 f (Z1)
]

Bη (s)dsdr , (A.21)

which is an almost surely positive random variable. Similarly, we have

n−4h−1
n∑

t=1

∑
s �=t

X T
t XseT

t Xt Xs Kt,s1n,t,s = Op (1) .

Combining the above result with (A.18), one can easily see that the third term in (A.20) is
of order op(1). Hence, we obtain I a

2n = Oe (n).

Finally, we consider I a
3n ≡ {θ̂0 − E

[
θ (Z1)

]}T Ga
3n − I a

3n,2, where Ga
3n is defined by

(A.4) and I a
3n,2 ≡ (n3h

)−1∑n
t=1
∑

s �=t X T
t Xsut X T

s es Kt,s1n,t,s . Following the proof of
Lemma A.4 we can show that I a

3n,2 = Op (1). As Ga
3n = Op(1) by Lemma A.4. Also, by

(A.18), we have I a
3n = Op(1). Therefore, under H1, I a

2n = Oe(n) is the leading term of Î a
n .

Consequently, n
√

h Î a
n = n

√
hOe(n) diverges to +∞ at the rate of n2√

h. Combining this
result with Lemmas A.2 and A.5 completes the proof of Theorem 3.1 (ii). n

Proof of Theorem 3.2. Under H0, we have ût = Yt − X T
t θ̂0 = ut − X T

t
(
θ̂0 − θ0

)
. Then

Î b
n has the same decomposition as Î a

n given by (A.1), viz.

Î b
n = I b

1n + (θ̂0 − θ0)T Gb
2n(θ̂0 − θ0)−2(θ̂0 − θ0)T Gb

3n,

where I b
1n , Gb

2n , and Gb
3n are defined the same as in (A.2), (A.3), and (A.4), respectively.

Lemma A.6 below shows that, under H0, n
√

hI b
1n/
√

σ 2
n,b

d→ N (0,1), where σ 2
n,b and σ 2

b

have exactly the same mathematical formula as σ 2
n,a and σ 2

a , respectively. Lemma A.7 be-

low shows that (θ̂0 −θ)T Gb
2n(θ̂0 −θ) = Op

(
n−1) and (θ̂0 −θ)T Gb

3n = Op
(
n−1). Hence,

n
√

h Î b
n /
√

σ 2
n,b = n

√
hI b

1n/
√

σ 2
n,b + Op(

√
h)

d→ N (0,1) .
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As σ̂ 2
n,b = σ 2

n,b + op(1) by Lemma A.8 below, we have n
√

h Î b
n /
√

σ̂ 2
n,b

d→ N (0,1) by

Slutsky’s lemma. In addition, σ 2
n,b = σ 2

b +op(1) by Lemmas B.2, A.2, and A.3. This com-
pletes the proof of Theorem 3.2. n

The following lemma gives the asymptotic distribution of a degenerate U-statistic when
Xt contains both I(0) and I(1) variables.

LEMMA A.6. Under Assumptions B1, A2, B3, A5 (i), and A6, we obtain

n
√

hI b
1n/
√

σ 2
n,b

d→ N (0,1).

Proof. A simple calculation gives

I b
1n = 2

n3h

n∑
t=2

t−1∑
s=1

X T
1,t X1,sut us Kt,s1n,t,s + 2

n3h

n∑
t=2

t−1∑
s=1

X T
2,t X2,sut us Kt,s1n,t,s

≡ I b
1n,1 + I b

1n,2,

where E
(
I b
1n, j

) = 0 for j = 1,2 by Assumption A1 (iii). Applying Lemma B.1, one

can show that V ar
(
I b
1n,1

) = O
(
n−4h−1). Hence, n

√
hI b

1n,1 = n
√

hOp
(
n−2h−1/2)

= Op
(
n−1) = op(1). Following closely the proof of Lemma A.1, we have

n
√

hI b
1n,2/

√
σ 2

n,b,2
d→ N (0,1) under Assumptions B1, A2, B3, A5 (i), and A6, where

σ 2
n,b,2 = 2

(
n4h
)−1∑n

t=1
∑n

s �=t u2
t u2

s
(
X T

2,t X2,s
)2 K 2

t,s1n,t,s . Note that

σ 2
n,b = 2

n4h

n∑
t=1

n∑
s �=t

u2
t u2

s

(
X T

t Xs

)2
K 2
(

Zt − Zs

h

)
1n,t,s

= 2

n4h

n∑
t=1

n∑
s �=t

u2
t u2

s

[(
X T

1,t X1,s
)2 +2X T

1,t X1,s X T
2,t X2,s + (X T

2,t X2,s
)2]

× K 2
(

Zt − Zs

h

)
1n,t,s

= σ 2
n,b,2 + Op

(
n−1

)
by Lemma B.2. This completes the proof of this lemma. n

LEMMA A.7. Under the assumptions given in Lemma A.6, we have

(
θ̂0 − θ0

)T Gb
2n

(
θ̂0 − θ0

)= Op

(
n−1

)
,

and(
θ̂0 − θ0

)T Gb
3n = Op

(
n−1

)
,

where Gb
2n and Gb

3n are defined in (A.3) and (A.4), respectively.
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Proof. A simple calculation gives

Gb
2n = 1

n3h

n∑
t=2

t−1∑
s=1

X T
1,t X1,s

(
X1,t X T

1,s X1,t X T
2,s

X2,t X T
1,s X2,t X T

2,s

)
Kt,s1n,t,s

+ 1

n3h

n∑
t=2

t−1∑
s=1

X T
2,t X2,s

(
X1,t X T

1,s X1,t X T
2,s

X2,t X T
1,s X2,t X T

2,s

)
Kt,s1n,t,s

=
⎛⎝ Op

(
n−1

)
Op

(
n−1/2

)
Op

(
n−1/2

)
Op(1)

⎞⎠+
(

Op(1) Op
(√

n
)

Op
(√

n
)

Op (n)

)
, (A.22)

where the last line can be obtained by following the proof of Lemma B.2. As the model be-
comes Yt = X T

1,tθ10 + X T
2,tθ20 +ut under H0, it is well known that θ̂10 −θ10 = Op

(
n−1/2)

and θ̂20 −θ20 = Op
(
n−1) given the assumptions imposed in this paper. We therefore obtain(

θ̂0 − θ0
)T Gb

2n

(
θ̂0 − θ0

)= Op
(
n−1). Next, we consider

Gb
3n =

(
n3h
)−1 n∑

t=2

t−1∑
s=1

ut X T
t Xs Xs Kt,s1n,t,s

+
(

n3h
)−1 n−1∑

s=1

n∑
t=s+1

us X T
t Xs Xt Kt,s1n,t,s ≡ Gb

3n,1 + Gb
3n,2.

Below we will only calculate the stochastic order of Gb
3n,1 in details as the proof for Gb

3n,2
is similar. First, by Assumption A1 (iii) we have E

(
Gb

3n, j

)= 0 for j = 1,2. Applying the
same method used to prove Lemma A.2 gives

E

[
Gb

3n,1

(
Gb

3n,1

)T
]

= σ 2
u

n6h2

n∑
t=2

t−1∑
s=1

E
[

X T
t Xs Xs X T

s X T
t Xs K 2

t,s1n,t,s

]

+ σ 2
u

n6h2

n∑
t=2

t−1∑
s1=1

t−1∑
s2=1,s2 �=s1

E
[

X T
t Xs1 Xs1 X T

s2
X T

t

Xs2 Kt,s1 Kt,s2 1n,t,s1 1n,t,s2

]

=

⎡⎢⎢⎣ O
(

n−1
)

O

((
nh2δ0/(1+δ0)

)−1
)

O

((
nh2δ0/(1+δ0)

)−1
)

O(1)

⎤⎥⎥⎦
for some δ0 ∈ (0,1). Hence, we have Gb

3n,1 = (
Op
(
n−1/2), Op(1)

)T by Markov’s

inequality. Similarly, Gb
3n,2 has the same order as Gb

3n,1. Hence, (θ̂0 − θ0)T Gb
3n =

Op(n−1). This completes the proof of this lemma. n

LEMMA A.8. Under the assumptions given in Theorem 3.2, we obtain

σ̂ 2
n,b = 2

n4h

n∑
t=1

n∑
s �=t

ũ2
t ũ2

s

(
X T

t Xs

)2
K 2
(

Zt − Zs

h

)
1n,t,s = σ 2

n,b +op(1),
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where ũt = Yt − X T
t θ̂ (−t)(Zt

)
is the semiparametric residual, and replacing ũt by ut for

all t in σ̂ 2
n,b gives σ 2

n,b.

Proof. Note that ũt = Yt − X T
t θ̂ (−t)(Zt

)= ut − X T
t

[
θ̂ (−t)(Zt

)− θ
(
Zt
)]

. The result in

Lemma C.1 implies that σ 2
n,b is the leading term of σ̂ 2

n,b. This completes the proof of this
lemma. n

Proof of Theorem 3.3. Under H1 we decompose the least squares estimator θ̂0 as

θ̂0 =
⎛⎝ n∑

t=1

Xt X T
t

⎞⎠−1 n∑
t=1

Xt X T
t θ
(
Zt
)+
⎛⎝ n∑

t=1

Xt X T
t

⎞⎠−1 n∑
t=1

Xt ut . (A.23)

It is well established that (from the linear regression model with I (0) and I (1) regressors)⎛⎝ n∑
t=1

Xt X T
t

⎞⎠−1 n∑
t=1

Xt ut =
(

Op
(
n−1/2)

Op
(
n−1) ) , (A.24)

which has a smaller order compared with the first term on the right-hand side of (A.23).
Therefore, we only consider the leading term of θ̂0 and show that the stochastic order of
θ̂0 depends on whether θ2(Zt ) is a constant vector or not. For notational simplicity, we
will only consider the case that both X1,t and X2,t are scalars. We denote θ1t ≡ θ1(Zt )

, θ2t ≡ θ2(Zt ), and Dn = ∑n
t=1 Xt X T

t =
(

d1n d2n
d2n d3n

)
, where d1n = ∑n

t=1 X2
1,t , d2n =∑n

t=1 X1,t X2,t and d3n =∑n
t=1 X2

2,t . It is straightforward to show that

[
n−1/2 0

0 1

]( n∑
t=1

Xt X T
t

)−1 n∑
t=1

Xt X T
t θ
(
Zt
)

= 1

det (Dn)

(
n−1/2d3n −n−1/2d2n

−d2n d1n

)(∑n
t=1 X2

1,tθ1t +∑n
t=1 X1,t X2,tθ2t∑n

t=1 X1,t X2,tθ1t +∑n
t=1 X2

2,tθ2t

)

= 1

det (Dn)

⎛⎜⎜⎜⎜⎜⎜⎝
n−1/2d3n

(∑n
t=1 X2

1,tθ1t +∑n
t=1 X1,t X2,tθ2t

)
−n−1/2d2n

(∑n
t=1 X1,t X2,tθ1t +∑n

t=1 X2
2,tθ2t

)
d1n

(∑n
t=1 X1,t X2,tθ1t +∑n

t=1 X2
2,tθ2t

)
−d2n

(∑n
t=1 X2

1,tθ1t +∑n
t=1 X1,t X2,tθ2t

)

⎞⎟⎟⎟⎟⎟⎟⎠
= 1

det (Dn)

(
n−1/2d3n

∑n
t=1 X1,t X2,tθ2t −n−1/2d2n

∑n
t=1 X2

2,tθ2t

d1n
∑n

t=1 X2
2,tθ2t −d2n

∑n
t=1 X1,t X2,tθ2t

)
+ Op

(
n−1/2

)
d→
(

D−1G1

D−1G2

)
, (A.25)

where D = μ2W(2) − (μ1W(1))
2, G1 = W(1)W(2)

(
μ1,θ2 −μ1μθ2

)
, G2 = μ2μθ2 W(2) −

μ1μ1,θ2 W 2
(1), and for j = 1,2 and s = 1,2, we denote

W( j) =
∫ 1

0
Bη(r) j dr, μj = E

(
X j

1,t

)
, μs,θj = E[Xs

1,tθj (Zt )], and μθj = E[θj (Zt )].
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Therefore, combining (A.23), (A.24), and (A.25) gives

n−1/2θ̂10
d= D−1G1 + Op

(
n−1/2

)
and θ̂20

d= D−1G2 + Op

(
n−1/2

)
, (A.26)

where θ̂0 = (θ̂10, θ̂20
)T and an

d= bn means that the two random sequences an and bn
have the same distribution asymptotically. Evidently, θ̂20 = Op(1). If Cov

(
X1,t ,θ2

(
Zt
))

= μ1,θ2 − μ1μθ2 �= 0, we have θ̂10 = Oe
(√

n
)

as Pr(G1 = 0) = Pr(W(1)W(2) = 0) = 0
by the fact that W(1)W(2) is a continuous random variable. We have θ̂10 = Oe(1)
if Cov

(
X1,t ,θ2

(
Zt
)) = 0 holds true. However, if θ2t ≡ θ20, a constant, for all t , simple

calculations lead to

θ̂0 = 1

det (Dn)

(
d3n

∑n
t=1 X2

1,t θ1t −d2n
∑n

t=1 X1,t X2,tθ1t

d1n
∑n

t=1 X1,t X2,tθ1t −d2n
∑n

t=1 X2
1,tθ1t + (d1nd3n −d2

2n)θ20

)

=
(

0
θ20

)
+ 1

det (Dn)

(
d3n

∑n
t=1 X2

1,tθ1t −d2n
∑n

t=1 X1,t X2,tθ1t

d1n
∑n

t=1 X1,t X2,tθ1t −d2n
∑n

t=1 X2
1,tθ1t

)
, (A.27)

which implies, by Lemma B.2,[
1 0
0

√
n

](
θ̂10

θ̂20 − θ20

)
d→
(

D−1G3
D−1G4

)
, (A.28)

where G3 = W(2)μ2,θ1 −μ1μ1,θ1 W 2
(1) and G4 = (μ2μ1,θ1 −μ1μ2,θ1

)
W(1). Therefore,

combining (A.23), (A.24), and (A.28) gives

θ̂10
d= D−1G3 + Op

(
n−1/2

)
and

√
n
(
θ̂20 − θ20

) d= D−1G4 + Op

(
n−1/2

)
, (A.29)

which implies θ̂10 = Oe(1) and θ̂20 = θ20 + Op
(
n−1/2). Compared with the OLS estima-

tor when the true model has a varying coefficient for the integrated variable, the OLS
estimator here has a stochastic order lowered by a factor of n−1/2. Consequently, the
OLS estimator for the coefficient of the integrated variable is

√
n-consistent if θ1(z) is

not constant over nonnegligible intervals, and the OLS estimator for the coefficient for the
stationary covariate is not explosive any more although it is still inconsistent. Moreover,
(A.29) indicates that the OLS estimator of the coefficient for the integrated variable is not
super-consistent any more if the stationary covariate has a varying coefficient.

Below we will show that I b
2n = Oe(n) in case (I) and that I b

2n = Oe(1) in case (II).

Therefore, the leading term of n
√

h Î b
n is n

√
hI b

2n = Oe(n2√
h) for case (I), and it becomes

Oe(n
√

h) for case (II).

Case (I): Pr{θ2(Zt ) �= θ2} > 0 for any θ2 ∈ �2 ⊂ R. Define θ̄1 = D−1G1 and θ̄2 =
D−1G2. Then obviously, θ̄j = Op(1) for j = 1,2. Then, by (A.26), we have θ̂10

d= n1/2θ̄1

and θ̂20
d= θ̄2. Hence, the leading term in I b

2n can be obtained by replacing θ̂10 and θ̂20 by

n1/2θ̄1 and θ̄2, respectively. We have

n−1 I b
2n = 2

n4h

n∑
t=2

t−1∑
s=1

X T
t Xs X T

t (θ̂0 − θt )X T
s (θ̂0 − θs)Kt,s1n,t,s
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d= 2

n3h

n∑
t=2

t−1∑
s=1

(
X1,t X1,s + X2,t X2,s

)
[X1,t (θ̄1 − θ1t√

n
)+ X2,t√

n
(θ̄2 − θ2t )]

× [X1,s(θ̄1 − θ1s√
n

)+ X2,s√
n

(θ̄2 − θ2s)]Kt,s1n,t,s
[
1+op(1)

]
= 2

n3h

n∑
t=2

t−1∑
s=1

X2,t X2,s

(
X1,t θ̄1 + X2,t√

n
θ̄2 − X2,t√

n
θ2t

)

×
(

X1,s θ̄1 + X2,s√
n

θ̄2 − X2,s√
n

θ2s

)
Kt,s1n,t,s

[
1+op(1)

]
, (A.30)

where the leading term of (A.30) equals a summation of six distinct components, and each

component has exactly the same order of Oe(1); for example,
(
n4h
)−1∑n

t=2
∑t−1

s=1 X2
2,t

X2
2,sθ2tθ2s Kt,s1n,t,s

d→ ∫ 1
0
∫ r

0
(
Bη(r)Bη(s)

)2 dsdr E
[
θ2

2

(
Z1
)

f
(
Z1
)] = Oe(1) by

Lemma B.2. Therefore, I b
2n = Oe(n). In addition, by the symmetry of (A.30) and the

fact that

(
n3h
)−1 n∑

t=1

X2
2,t

(
X1,t θ̄1 + X2,t√

n
θ̄2 − X2,t√

n
θ2t

)2
K (0) = Oe

(
n−1h−1

)
= op(1)

imply that n−1 I b
2n converges in distribution to a positive random variable. Similarly,

one can show that I b
3n = op(n). Because we have already shown I b

1n = op(1), we have

n
√

h Î b
n = Oe(n2√

h), which diverges to +∞ at the rate of n2√
h. Evidently, whether

Cov
(
X1,t ,θ2 (Zt )

) = 0 or not does not change the result as X2,t θ̄2/
√

n dominates the

order of both n−1 I b
2n and I b

3n .

Case (II): Pr{θ2(Zt ) ≡ θ20} = 1. Define θ̃1 = D−1G3 and θ̃2 = D−1G4, where θ̃j =
Op(1) for j = 1,2. Then, by (A.29), we get θ̂10

d= θ̃1 and
√

n
(
θ̂20 − θ20

) d= θ̃2. Hence, the

leading term in I b
2n can be obtained by replacing θ̂10 and θ̂20 − θ20 by θ̃1 and n−1/2θ̃2,

respectively. Therefore, we have

I b
2n = 2

n3h

n∑
t=2

t−1∑
s=1

X T
t Xs(θ̂0 − θt )Xt X T

s (θ̂0 − θs)Kt,s1n,t,s

d= 2

n3h

n∑
t=2

t−1∑
s=1

(X1,t X1,s + X2,t X2,s)[X1,t (θ̃1 − θ1t )+ X2,t θ̃2/
√

n)]

× [X1,s(θ̃1 − θ1s)+ X2,s θ̃2/
√

n)]Kt,s1n,t,s
[
1+op(1)

]
= 2

n2h

n∑
t=2

t−1∑
s=1

X2,t√
n

X2,s√
n

[
X1,t (θ̃1 − θ1t )+ X2,t√

n
θ̃2

]

×
[

X1,s(θ̃1 − θ1s)+ X2,s√
n

θ̃2

]
Kt,s1n,t,s

[
1+op(1)

]
, (A.31)
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where the leading term of equation (A.31) equals a summation of four components,
and each component has exactly the same order of Oe(1); e.g., applying Lemma B.2

gives
(
n4h
)−1∑n

t=2
∑t−1

s=1 X2
2,t X2

2,s Kt,s1n,t,s
d→ ∫ 1

0
∫ r

0
[
Bη(r)Bη(s)

]2 dsdr E
[

f
(
Z1
)]

= Oe(1). Therefore, I b
2n = Oe(1). In addition, by the symmetry of (A.31) and the fact that

(
n4h
)−1 n∑

t=1

X2,t X2,s

[
X1,t (θ̃1 − θ1t )+ X2,t√

n
θ̃2

]2
K (0) = Oe

(
n−2h−1

)
= op(1),

which implies that I b
2n converges in distribution to a positive random variable. Similarly,

one can show that I b
3n = op(1). Taking these results together lead to n

√
h Î b

n = n
√

hI b
2n

+op(n
√

h) = Oe(n
√

h), which diverges to +∞ at the rate of n
√

h.
Finally, when X1,t and X2,t are vectors of dimensions d1 × 1 and d2 × 1, respectively,

it is easy to show that the conclusion in Theorem 3.3 still holds true. All one needs to do is

to replace Bη(r)2 by Bη(r)BT
η (r), E

(
X1,t X T

2,t

)
rather than E(X1,t X2,t ), and so on. This

completes the proof of Theorem 3.3. n

APPENDIX B: Some Useful Lemmas

LEMMA B.1. Suppose that {ξi } is a q-dimensional strictly stationary process satisfying
the β-mixing condition with coefficients βτ . For any j (1 ≤ j ≤ k − 1 ) and arbitrary
integers i1 < i2 < · · · < ik , (ξi1 , ..., ξik ), (ξi1 , ..., ξi j ), and (ξi j +1, ..., ξik ) have cumulative

distribution functions F(x1, ..., xk), F(1)(x1, ..., xj ), and F(2)(xj+1, ..., xk), respectively.
Let G(x1, ..., xk) be a Borel measurable function such that for some δ0 > 0,∫

. . .

∫
Rqk

|G(x1, ..., xk)|1+δ0 d F(1)(x1, ..., xj )d F(2)(xj+1, ..., xk) ≤ C < ∞.

Then∣∣∣∣∫ . . .

∫
Rqk

G(x1, . . . , xk)d F(x1, . . . , xk)

−
∫

. . .

∫
Rqk

G(x1, . . . , xk)d F(1)(x1, . . . , xj )d F(2)(xj+1, . . . , xk)

∣∣∣∣
≤ 4C1/(1+δ0)β

δ0/(1+δ0)
τ , where τ = i j+1 − i j .

Proof. This is Lemma 1 in Yoshihara (1976). n

To simplify notation, the following lemma takes X1,t and X2,t as scalars.

LEMMA B.2. Let g(·) and m(·) be Borel measurable functions. Denote μg(z) =
E
[
g(X1,t )|Zt = z

]
, μm(z) = E

[
m(X1,t )|Zt = z

]
, ψg,δ (z) = E

[∣∣g (X1,t
)∣∣1+δ |Zt = z

]
,

and ψm,δ (z) = E
[∣∣m (X1,t

)∣∣1+δ |Zt = z] for some δ > 0. If μg(z), μm(z), ψg,δ (z), and
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ψm,δ (z) all have bounded uniformly continuous derivatives up to the second order, under
Assumptions B1, A2, B3, A5(i), and A6, we obtain, for any positive integers j , j ′, and l,

An = 1

n2n( j+ j ′)/2h

n∑
t=2

t−1∑
s=1

X j
2,t X j ′

2,s g(X1,t )m(X1,s)K l
t,s1n,t,s

d→ νl E[μg(Z1)μm(Z1) f (Z1)]
∫ 1

0

∫ r

0
B j

η (r)B j ′
η (s)dsdr,

where νl = ∫ K l (u)du.

Proof. Applying the same proof method used in the proof of Lemma A.2, we obtain

An = 1

n2

n∑
t=2

t−1∑
s=1

(
X2,t√

n

) j ( X2,s√
n

) j ′
E[h−1g(X1,t )m(X1,s)K l

t,s1n,t,s ]+op(1),

where 1n,t,s = 1n,t 1n,s and 1n,t = 1(Zt ∈ Sn), and 1(A) is a trimming indicator function
which equals 1 if A holds and 0 otherwise.

By Lemma B.1, we have∣∣∣h−1 E[g(X1,t )m(X1,s)K l
t,s1n,t,s ]−χt,s

∣∣∣≤ Ch
−δ

1+δ β
δ/(1+δ)
|t−s| ,

where letting ω = (Zt − Zs)/h and applying the change of variables gives

χt,s = h−1
∫ ∫

μg(Zt )μm(Zs)K l
(

Zt − Zs

h

)
f
(
Zt
)

f (Zs)1(Zt ∈ Sn)1(Zs ∈ Sn)d Zt d Zs

=
∫ ∫

μg (hω+ Zs)μm(Zs)K l (ω) f (hω+ Zs) f (Zs)1(hω+ Zs ∈ Sn)1(Zs ∈ Sn)dωd Zs

=
∫

K l (ω)dωE
[
μg (Z1)μm(Z1) f (Z1)1(Z1 ∈ Sn)

]+ O (h) ,

and

h−(1+δ)
∫ ∫

ψg,δ
(
Zt
)
ψm,δ (Zs) K l(1+δ)

(
Zt − Zs

h

)
f
(
Zt
)

f (Zs)d Zt d Zs

= h−δ
∫ ∫

ψg,δ (hω+ Zs)ψm,δ (Zs) K l(1+δ) (ω) f (hω+ Zs) f (Zs)dωd Zs

= h−δ
∫

K l(1+δ) (ω)dωE
[
ψg,δ (Z1)ψm,δ (Z1) f (Z1)

]+ O
(

h2−δ
)
.

Therefore, we have

1

n2

n∑
t=2

t−1∑
s=1

(
X2,t√

n

) j ( X2,s√
n

) j ′ (
h +h

−δ
1+δ β

δ/(1+δ)
|t−s|

)
= Op (h)+ Op

(
(nh)

−δ
1+δ n− 1

1+δ

)
= op(1)

as max1≤t≤n
∥∥X2,t

∥∥= Op
(√

n
)

by (8) ,
∑∞

l=1 β
δ/(1+δ)
l ≤ C < ∞ by Assumption A1 (ii),

and nh → ∞ and h → 0 as n → ∞ by Assumption A6. Since Pr (Z1 ∈ Sn) → 1 as n → ∞,
we complete the proof of this lemma. n
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APPENDIX C: Proof of Weak Uniform Convergence
under Case (b)

In this appendix we extend Hansen’s (2008, Thm. 2) weak uniform convergence results
of kernel estimator derived for absolutely regular (β-mixing) time series to time series with
both integrated and absolutely regular variables. The following proof is derived for the case
that Zt has an unbounded support.

LEMMA C.1. Under Assumptions B1, A2, B3, and A4-A6, we obtain supz∈Sn
||θ̂1(z)−

θ1(z)|| = op(1) and supz∈Sn
||θ̂2(z)−θ2(z)|| = op

(
n−1/2), where Sn = S∩[−cn,cn] and

cn = O
(
nφ lnn

)
is a sequence of nondecreasing positive numbers for any φ > 0.

Proof. The kernel estimator of θ (z) in (4) can be rewritten as θ̂ (z) − θ(z) =
�n1(z)−1�n2(z), where

�n1(z) = 1

nh

n∑
t=1

(
X1,t X T

1,t X1,t X T
2,t

X2,t X T
1,t X2,t X T

2,t

)
Kt (z) ≡

(
�n1,11(z) �n1,12(z)

�n1,12(z)T �n1,22(z)

)
, (C.1)

and �n2(z) = (nh)−1∑n
t=1 Xt

[
X T

t �(Zt , z)+ut

]
Kt (z) with �(Zt , z) = θ

(
Zt
)− θ (z).

Applying Hansen (2008, Thm. 2) to �n1,11(z) gives supz∈ Sn

∣∣�n1,11(z)− E�n1,11(z)
∣∣=

Op (bn), where bn = √
lnn/(nh). By Assumptions B1 and B3 and applying the change

of variables gives E�n1,11(z) = g1(z)+ O
(
h2), which holds uniformly over z ∈ Sn with

g1(z) = E
(

X1,t X T
1,t | Zt = z

)
f (z).

Therefore, we have

sup
z∈Sn

∥∥�n1,11(z)− g1(z)
∥∥= Op

(
bn +h2

)
. (C.2)

As for �n1,12(z), it can be expressed as

�n1,12(z) = (nh)−1
n∑

t=1

X1,t X T
2,t Kt (z)

= (nh)−1 E
[
X1,t Kt (z)

] n∑
t=1

X T
2,t +n−1

n∑
t=1

et (z)X T
2,t ,

where et (z) = h−1 {X1,t Kt (z)− E
[
X1,t Kt (z)

]}
. Denoting

g2(z) = E
(
X1,t | Zt = z

)
f (z), (C.3)

we obtain that h−1 E
[
X1,t Kt (z)

] = g2 (z) +O
(
h2) holds uniformly over z ∈ Sn . Hence,

(nh)−1 E
[
X1,t Kt (z)

] n∑
t=1

X2,t = g2 (z)n−1
n∑

t=1

X2,t + Op

(
h2√

n
)

(C.4)
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as max1≤t≤n
∥∥X2,t

∥∥ = Op
(√

n
)
. For the second term of �n1,12(z), we set τn ∈ (0,1),

N = [1/τn], tk = [kn/N ] + 1, t∗k = tk+1 − 1, and t∗∗
k = min

(
t∗k ,n

)
. To simplify notation

and without loss of generality, we give the proof of (C.5) for scalar case. We have∣∣∣∣∣n−3/2
n∑

t=1

X2,t et (z)

∣∣∣∣∣
=
∣∣∣∣∣∣n−3/2

N−1∑
k=0

t∗∗
k∑

t=tk

X2,t et (z)

∣∣∣∣∣∣
≤
∣∣∣∣∣∣n−3/2

N−1∑
k=0

X2,tk

t∗∗
k∑

t=tk

et (z)

∣∣∣∣∣∣+
∣∣∣∣∣∣n−3/2

N−1∑
k=0

t∗∗
k∑

t=tk

(
X2,t − X2,tk

)
et (z)

∣∣∣∣∣∣
≤ sup

r∈[0,1]

∣∣Bn,η (r)
∣∣n−1

N−1∑
k=0

∣∣∣∣∣∣
t∗∗
k∑

t=tk

et (z)

∣∣∣∣∣∣+ sup
|r−r ′|≤τn

∣∣Bn,η (r)− Bn,η

(
r ′)∣∣n−1

n∑
t=1

|et (z)| ,

where supr∈[0,1]
∣∣Bn,η (r)

∣∣ = Op(1) by Assumption A2 and supz∈S n−1∑n
t=1 |et (z)| =

Op(1). Simple calculations give

sup
z∈Sn

n−1
N−1∑
k=0

∣∣∣∣∣∣
t∗∗
k∑

t=tk

et (z)

∣∣∣∣∣∣≤ N

n
sup

z∈Sn

sup
0≤k≤N−1

∣∣∣∣∣∣
t∗∗
k∑

t=tk

et (z)

∣∣∣∣∣∣
≤ sup

z∈Sn

sup
t+τnn≤n

∣∣∣∣∣∣ 1

τnn

t+τnn∑
i=t

ei (z)

∣∣∣∣∣∣= Op
(
bτn ,n

)
,

where bτn ,n = √
ln(nτn)/(nτnh) and the last equality follows from Hansen (2008, Thm.

2). As sup|r−r ′|≤τn

∣∣Bn,η (r)− Bn,η
(
r ′)∣∣ = Op

(√
τn
)
, we have

sup
z∈Sn

∣∣∣∣∣∣n−3/2
n∑

t=1

X2,t et (z)

∣∣∣∣∣∣= Op
(
b∗

n
)
, (C.5)

where b∗
n = √

ln(nτn)/(nτnh)+√
τn . Combining (C.4) and (C.5) gives

sup
z∈Sn

1√
n

∥∥∥∥∥∥�n1,12(z)− g2(z)n−1
n∑

t=1

X T
2,t

∥∥∥∥∥∥= Op

(
h2
)

+ Op
(
b∗

n
)
. (C.6)

Next, we consider �n1,22(z) = (nh)−1∑n
t=1 X2,t X T

2,t Kt (z) = h−1 E [Kt (z)]n−1∑n
t=1 X2,t X T

2,t +n−1∑n
t=1 X2,t X T

2,t et (z), where et (z) = h−1 [Kt (z)− E (Kt (z))] and

h−1 E [Kt (z)] = f (z)+ O
(

h2
)

. Applying the same method used above, we obtain

sup
z∈Sn

n−1

∥∥∥∥∥∥�n1,22(z)− f (z)n−1
n∑

t=1

X2,t X T
2,t

∥∥∥∥∥∥= Op

(
h2
)

+ Op
(
b∗

n
)
. (C.7)
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Letting Dn = diag{Id1 ,
√

nId2 } and combining (C.2), (C.6), and (C.7), we obtain

sup
z∈Sn

∥∥∥D−1
n �n1(z) D−1

n − S(z)
∥∥∥= Op

(
h2
)

+ Op (bn)+ Op
(
b∗

n
)
,

where

S(z) =
(

g1 (z) g2 (z)n−3/2∑n
t=1 X T

2,t
n−3/2∑n

t=1 X2,t g2 (z)T f (z)n−2∑n
t=1 X2,t X T

2,t

)
.

Finally, we consider �n2(z). Simple mathematical manipulations give

D−1
n �n2(z) = 1

nh

n∑
t=1

D−1
n Xt X T

t D−1
n Dn�(Zt , z)Kt (z)+ 1

nh

n∑
t=1

D−1
n Xt ut Kt (z)

= 1

nh

n∑
t=1

⎛⎜⎝X1,t X T
1,t�1(Zt , z)+ X1,t

X T
2,t√
n

√
n�2(Zt , z)

X2,t√
n

X T
1,t�1(Zt , z)+ X2,t X T

2,t
n

√
n�2(Zt , z)

⎞⎟⎠ Kt (z)

+ 1

nh

n∑
t=1

(
X1,t ut
X2,t√

n
ut

)
Kt (z)

≡
(

�n2,11(z)+�n2,12(z)
�T

n2,12(z)+�n2,22(z)

)
+
(

�n2,13(z)
�n2,23(z)

)
.

Again, applying the same method used in the proof of the weak uniform convergence rate
for �n1 (z), we have that(

�n2,11(z)+�n2,12(z)
�T

n2,12(z)+�n2,22(z)

)
−h2 μ2(K )

[
S(1) (z) Dnθ(1) (z)+ S (z) Dnθ(2) (z)/2

]
= Op

(√
n
(

h4 +hb∗
n

))
holds uniformly over z ∈ Sn , where μ2(K ) = ∫ u2 K (u)du, and that

sup
z∈Sn

∥∥�n2,13(z)
∥∥= Op (bn) and sup

z∈Sn

∥∥�n2,23(z)
∥∥= Op

(
b∗

n
)
. (C.8)

Therefore, we obtain that

Dn

{
θ̂ (z)− θ(z)−h2 μ2(K )D−1

n S (z)−1
[

S(1) (z) Dnθ(1) (z)+ S (z) Dnθ(2) (z)/2
]}

= Op

(√
nδ−1

n

(
h4 +hb∗

n

))
+ Op

(
δ−1

n
(
bn +b∗

n
))

or

Dn

[
θ̂ (z)− θ(z)−h2 μ2(K )θ(2) (z)/2

]
= h2 μ2(K )S (z)−1 S(1) (z) Dnθ(1) (z)+ Op

(√
nδ−1

n

(
h4 +hb∗

n

))
+ Op

(
δ−1

n

(
bn +b∗

n

))
= Op

(
δ−1

n

√
nh2
)

+ Op

(
δ−1

n

√
nhb∗

n

)
+ Op

(
δ−1

n

(
bn +b∗

n

))
(C.9)
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holds uniformly over z ∈ Sn , where δn = infz∈Sn
f (z). Let τn = O

(
n−ς

)
, δn =

O
(
n−ε

)
, and h = O

(
n−α

)
. Taking α ∈ (1/3,1), ς ∈ (1 − 2α,min(1 − α,α)), and

ε ∈ min{2α −1/2, (α −ς)/2, (ς −1+2α)/2, (1−ς −α)/2,ς/2}, we can show that
Dn
[
θ̂ (z)−θ(z)−h2 μ2(K )θ(2)(z)/2

]= op(1). This completes the proof of this lemma. n

Remark 6. When Zt has an unbounded support, δn → 0 as cn → ∞, and the rate at
which cn can go to +∞ is determined by the tail behavior of the density function f (z).
When Zt has a bounded support, Sn trims out the data within ςn distance to the boundary
of S, where ςn > 0 and ςn → 0 as n → ∞; for example, if S = [0,1], we can choose
Sn = [ςn,1−ςn], where ςn → 0 and h/ςn → 0 as n → ∞.


