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Panel data models with cross-sectional dependence: a

selective review

XU Qiu-hua1 CAI Zongwu2,1 FANG Ying1,∗

Abstract. In this review, we highlight some recent methodological and theoretical develop-

ments in estimation and testing of large panel data models with cross-sectional dependence.

The paper begins with a discussion of issues of cross-sectional dependence, and introduces the

concepts of weak and strong cross-sectional dependence. Then, the main attention is primarily

paid to spatial and factor approaches for modeling cross-sectional dependence for both linear

and nonlinear (nonparametric and semiparametric) panel data models. Finally, we conclude

with some speculations on future research directions.

§1 Introduction

The analysis of panel (longitudinal) data has attracted considerable attention in many ap-

plied fields as economics and finance as well as biomedicine during the last three decades. Panel

data models provide researchers with multiple observations on each individual considered in a

given sample and thus have the ability to control unobserved heterogeneity and uncover dy-

namic relationships that can not be obtained by using either pure cross-sectional or time series

data. Baltagi (2013) and Hsiao (2014) provide comprehensive surveys to the existing models for

panel data analysis. However, most of the existing models in the literature assume that there is

no correlation among cross-sectional units and it might not be appropriate for many real appli-

cations. For example, in empirical studies using panel data sets of regions, states or countries,

the cross-sectional units could be interdependent (termed as cross-sectional dependence) due

to competition, spill-overs, externalities, etc. Moreover, theoretically, estimators obtained by

ignoring cross-sectional dependence could be inconsistent. These facts prompt the swift grow-

ing demand for modeling cross-sectional dependence in both theoretical and methodological

research and real applications.
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As pointed out by Chudik et al. (2011), characterizing cross-sectional dependence for panel

data lies on the size of the time series dimension (T ) of the panel relative to its cross-sectional

dimension (N). When N is fixed and T is large, cross-sectional dependence can be modeled

using the so-called seemingly unrelated regression method (SUR) as in Zellner (1962). How-

ever, when N is large relative to T , the SUR method is no longer feasible. There are two

major methods proposed recently in the literature: spatial and factor approaches. Contrary to

time series analysis, where the past and distant future are always assumed to be asymptotically

independent, there is no such natural ordering among different cross-sectional units. Conse-

quently, to deal with cross-sectional dependence, a correlation structure has to be imposed. For

example, in spatial econometrics, the cross-sectional correlation structure is modeled through

a pre-specified spatial weighting matrix which often depends on the geographic locations of

cross-sectional units or some more general economic variables. In panel data models with fac-

tor structure, the correlation among cross-sectional individuals is introduced by a finite number

of unobserved common factors that influence each individual.

In this paper, we aim to provide a resource that surveys the state of art in estimation

and testing of panel data models with cross-sectional dependence for both linear and nonlinear

models. Indeed, Sarafidis and Wansbeek (2012) provide an excellent survey on linear panel data

models with cross-sectional dependence. Differently from Sarafidis and Wansbeek (2012), we

include some more recent developments in this area and in particular, we provide an overview

of nonparametric and semiparametric estimation and testing of panel data models with cross-

sectional dependence, which are not covered in Sarafidis and Wansbeek (2012).

The rest of the paper is organized as follows. In Section 2 we discuss potential problems

when ignoring cross-sectional dependence and then introduce the concepts of weak and strong

cross-sectional dependence. Section 3 reviews the various estimation methods available for lin-

ear panel data models with cross-sectional dependence. Section 4 focuses on the estimation and

testing of nonparametric and semiparametric panel data models with cross-sectional depen-

dence. Section 5 concludes with discussions on some open and interesting research problems.

§2 Weak and strong cross-sectional dependence

2.1 Inconsistency when ignoring cross-sectional dependence

There have been many studies in the literature on the impact of ignoring cross-sectional

dependence on panel data regression models; see, for example, Phillips and Sul (2007), Hsiao

and Tahmiscioglu (2008) and the references therein. In this subsection, we illustrate this issue

by recalling one of the examples used in Phillips and Sul (2007).

Consider the following linear dynamic panel data model:

yit = ρyi,t−1 + eit, |ρ| < 1 with eit = γift + εit, i = 1, 2, . . . , N, t = 1, 2, . . . , T, (1)

where yit is the observed dependent variable on the ith cross-sectional unit at time t, the error

eit in (1) has a single factor (ft) structure, γi is the factor loading for unit i, and εit is the
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idiosyncratic error of yit, which is assumed to be IID(0, σ2). Model (1) can be rewritten as

yit = y0it + γiGt, y0it = ρy0i,t−1 + εit, Gt = ρGt−1 + ft.

Phillips and Sul (2007) show that the probability limit of the pooled least squares estimate is

plim
N→∞

(ρ̂− ρ) =

plim
N→∞

(1/N)
∑N

i=1

∑T
t=1 yi,t−1eit

plim
N→∞

(1/N)
∑N

i=1

∑T
t=1 y

2
i,t−1

=
m2

γ(
∑T

t=1 Gt−1ft)

T [σ2/(1− ρ2)] +m2
γ

∑T
t=1 G

2
t−1

, (2)

where m2
γ ≡ limN→∞(1/N)

∑N
i=1 γ

2
i is assumed to be finite. In view of (2), it is evident to

see that the pooled least squares estimator, ρ̂, which ignores the presence of cross-sectional

dependence, is inconsistent and it converges to a random variable rather than a constant when

T is fixed andN → ∞. Moreover, the inconsistency of ρ̂ depends on the degree of cross-sectional

dependence. In fact, Hsiao (2014) points out that the bias of panel estimators could vanish

when the degree of cross-sectional dependence is weak. More specifically, let et = (e1t, . . . , eNt)
′

be the N × 1 vector which stacks the errors of N cross-sectional units at time t and Σ be its

covariance matrix which is N × N . If the number of nonzero elements in each row of Σ is

bounded by hN and hN/N → 0 as N → ∞, estimators which ignore cross-sectional dependence

could still be consistent when T is finite. However, if hN/N converges to a nonzero constant

as N → ∞, the asymptotic bias of estimators which ignore cross-sectional dependence could

be random as shown in (2) no matter how large N is when T is finite. The above two cases

correspond to the notions of weak and strong cross-sectional dependence in the literature which

we will discuss in the next subsection.

2.2 Weak and strong cross-sectional dependence

Since the degree of cross-sectional dependence has a major impact on estimation of panel

data models, many researchers have proposed some methods to define weak and strong cross-

sectional dependence. For example, Forni and Lippi (2001) and Deistler et al. (2010) define

these concepts for covariance stationary processes. In this subsection, we introduce more general

definitions for these concepts given by Chudik et al. (2011) which do not assume covariance

stationary for the underlying processes.

Let {eit, 1 ≤ i ≤ N, 1 ≤ t ≤ T} be any double index process and It be the information set

available at time t. For each t, suppose that E(et|It−1) = 0 and Var(et|It−1) = Σt, where Σt

is an N ×N non-negative definite matrix whose elements are uniformly bounded. In addition,

let wt = (w1t, . . . , wNt)
′, 1 ≤ i ≤ N, 1 ≤ t ≤ T , be a non-stochastic weight vector. For any t,

{wt} satisfies the following granularity conditions as N → ∞:

∥wt∥ = O(N−1/2), (3)
wjt

∥wt∥
= O(N−1/2) for any j, 1 ≤ j ≤ N, (4)

where ∥ · ∥ denotes the Euclidean norm.

Definition 2.1. (Weak and strong cross-sectional dependence, Chudik et al. (2011)). The

process {eit, 1 ≤ i ≤ N, 1 ≤ t ≤ T} is said to be weakly dependent at a given point in time t
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conditional on It−1, if for any sequence of weight vectors {wt} satisfying (3) and (4) we have

lim
N→∞

Var(w′
tet|It−1) = 0.

{eit, 1 ≤ i ≤ N, 1 ≤ t ≤ T} is said to be strongly dependent at a given point in time t conditional

on It−1, if there exists a sequence of weight vectors {wt} satisfying (3) and (4) and a constant

K independent of N such that for any N sufficiently large

Var(w′
tet|It−1) ≥ K > 0

as N → ∞.

Let λmax(A) be the maximum eigenvalue of A. Chudik et al. (2011) further show that

(i) {eit} is weakly dependent at a point in time t, if λmax(Σt) is bounded in N , and (ii)

{eit} is strongly dependent at a point in time t, if and only if for any N sufficiently large,

N−1λmax(Σt) ≥ K > 0 as N → ∞.

In the following section, we will see that the spatial correlation and the cross-sectional

dependence introduced by factor structure are weakly and strongly dependent, respectively.

§3 Linear panel data models with cross-sectional dependence

In this section, we survey the existing literature for estimation of linear panel data models

with cross-sectional dependence. We first focus on the SUR method which is appropriate for

small N and large T panels. Then we discuss the spatial and factor approaches when the SUR

method can not be used.

3.1 SUR approach

When N is fixed and T → ∞, cross-sectional dependence can be modeled using the SUR

approach proposed by Zellner (1962). Specifically, consider the following model

yit = αi + x′
itβi + eit,

where αi is an individual-specific effect, βi is a p × 1 vector of unknown coefficients, and

xit is a p × 1 vector of explanatory variables on the ith cross-sectional unit at time t. The

regressors satisfy the strongly exogenous condition; that is, E(eit|X1, . . . ,XT ) = 0, where

Xt = (x1t, . . . ,xNt)
′. The SUR approach results in a feasible generalized least squares (FGLS)

estimator in which OLS is conducted to each individual-specific equation to get consistent

estimators of {βi}Ni=1 at the first stage. The estimators of {βi}Ni=1 are then used to compute

the residuals {êit}1≤i≤N,1≤t≤T which are employed to estimate the covariance between units i

and j using 1
T

∑T
t=1 êitêjt. At the second stage, the coefficient estimators are obtained using

generalized least squares with the inverse of the estimated covariance matrix as a weighting

matrix. The iterative procedure may then be continued until the coefficient estimators converge.
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3.2 Spatial approaches

When N > T , it is well known that the SUR approach can not be used. One of the major

approaches to modeling cross-sectional dependence in panel data models is the spatial method,

which was developed mainly for cross-sectional regression models; see, for example, Anselin

(1988), Kelejian and Prucha (1999) and Anselin et al. (2008). The correlation among different

individuals in the spatial approach is captured by means of a so-called spatial weights matrix,

W = (wij)N×N , whose specification is often ad hoc. According to the “first law of geography”

of Tobler (1970), that is, “Everything is related to everything else, but near things are more

related than distant things”, in practice, the spatial weights matrix is typically pre-specified

by geographical factors such as contiguity or distance. In economic applications, more general

“economic distance” are often adopted to set the spatial weights matrix as well (see Conley

(1999) and Conley and Topa (2002)). By convention, wii = 0 for all i, which indicates that the

“distance” between unit i and itself is zero. Moreover, W is often row-normalized so that the

sum of each row is 1. In general, W satisfies the following uniformly boundedness condition

(see Kapoor et al. (2007) and Lee (2007))

max
i=1,...,N

N∑
j=1

|wij | ≤ M and max
j=1,...,N

N∑
i=1

|wij | ≤ M for some constant M > 0. (5)

The dependence relation among cross-sectional units captured by W may pertain to different

components in regression models, such as the dependent variable, the explanatory variables and

the error terms, via the so-called spatial lag operator which creates a weighted average of the

neighboring observations. According to the specific form of the spatial variables, two classes

of specifications for spatial panel models can be distinguished: the spatial error panel models

(SEM) and the spatial autoregression panel models (SAR).

3.2.1 Spatial error panel models

According to Elhorst (2003), a spatial error panel model can be specified as follows:

yt = Xtβ + α+ ϕt, ϕt = ρWϕt + εt, E(εt) = 0, E(εtε
′
t) = σ2IN ,

where yt = (y1t, . . . , yNt)
′, Xt = (x1t, . . . ,xNt)

′, ϕt and εt can be defined accordingly, α =

(α1, . . . , αN )′ is the vector of individual-specific effects, IN is the identity matrix of dimension

N and ρ is the spatial autocorrelation coefficient. Thus, a spatial error panel model applies

the spatial lag operator to the error terms. If condition (5) holds, it is obvious that the largest

eigenvalue of the covariance matrix of ϕt is bounded in N , which implies that the cross-sectional

dependence among error terms is weak.

If elements in α are treated as fixed effects, the SEM model with fixed effects can be

estimated by maximum likelihood estimation (MLE). First, yt and Xt are demeaned to get rid

of the fixed effects. Then, the log-likelihood function is set up as follows

lnL(y|ρ, σ2, β) = −NT

2
ln(2πσ2) + T

N∑
i=1

ln(1− ρλi)−
1

2σ2

T∑
t=1

ε̃′tε̃t, (6)
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where ε̃t = (IN − ρW )[yt − ȳ − (Xt − X̄)β], ȳ = (y1., . . . ,yN.)
′, X̄ = (X̄′

1., . . . , X̄
′
N.)

′, yi. =
1
T

∑T
t=1 yit, X̄i. = 1

T

∑T
t=1 xit for all i, and {λi}Ni=1 are the eigenvalues of W . An iterative

two-stage procedure has to be used to maximize (6), since at the first stage, the closed-form

expressions of β̂(ρ) and σ̂2(ρ) can not be derived; see, for example, Elhorst (2010) for details.

3.2.2 Spatial autoregression panel models

A spatial autoregression panel model incorporates a spatially lagged dependent variable as

an explanatory variable in the regression specification and it can be rewritten as

yt = δWyt +Xtβ + α+ εt, E(εt) = 0, E(εtε
′
t) = σ2IN ,

where δ is often called the spatial autoregressive coefficient.1

Similar to SEM models, the MLE can be applied to estimating SAR models with fixed

effects. Consider the following log-likelihood function

lnL(y|δ, σ2, β) = −NT

2
ln(2πσ2) + T

N∑
i=1

ln(1− δλi)−
1

2σ2

T∑
t=1

ε̃′tε̃t, (7)

where ε̃t = (IN −δW )(yt−ȳ)−(Xt−X̄)β. A simple two-stage procedure suffices for estimating

the unknown parameters. Specifically, in the first step, the closed-form expressions of β̂(δ) and

σ̂2(δ) can be obtained by maximizing (7) with respect to β and σ2. In the second step, we

substitute β̂(δ) and σ̂2(δ) into (7) and get the concentrated log-likelihood function. We then

maximize this function with respect to δ which yields the MLE estimator of δ.

The reader is referred to the papers by Elhorst (2003, 2010) for estimation of SEM and SAR

models with random effects.

3.2.3 Further developments

If the number of cross-sectional units is large, the MLE involves substantial computational

issues. Kapoor et al. (2007) introduce a generalized moments (GM) procedure and develop an

FGLS estimator for a SEM panel model with error components disturbances. They show that

the FGLS estimator is consistent and asymptotic normality when T is fixed and N → ∞.

Lee and Yu (2010a) study a spatial panel data model with fixed effects which incorporates

spatial autoregression and spatial error structures simultaneously with possible different spatial

weights matrices for these two components. They show that the MLE estimator of variance

parameter (σ2) is inconsistent if N is large and T is small. However, if the model also includes

time effects, all parameters are inconsistently estimated using MLE even when both N and T

are large. Instead, they propose a data transformation approach and establish consistency and

asymptotic normality of the quasi-maximum likelihood estimators (QMLE) for either large N

or large T .

All the aforementioned models are static panel data models. There has been increased

interests in estimation of spatial dynamic panel data models over the past decade. Yu et al.

1In both SEM and SARmodels, stationarity requires that 1/λmin(W ) < ρ < 1/λmax(W ) and 1/λmin(W ) <
δ < 1/λmax(W ), where, similar to the definition of λmax(A), λmin(A) denotes the minimum eigenvalue of A.
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(2008) consider a dynamic SAR panel data model with fixed effects which includes individual

time lags (that is, yt−1) and spatial time lags (that is, Wyt−1). They investigate the asymptotic

properties of QMLE for their model when bothN and T are large. Moreover, Lee and Yu (2010b,

2014) extend this study to include time effects, where, in Lee and Yu (2014), a generalized

method of moments (GMM) is developed. Su and Yang (2015) propose QMLE for a dynamic

SEM panel data model when N is large and T is fixed. Both the random effects and fixed

effects are considered in their model. The reader is referred to the paper by Lee and Yu (2010c)

for more details about recent developments in spatial panel data models.

With regard to robust inference for spatial panel data models, there is a rich literature on

estimation of covariance matrix which accounts for spatial correlation. In particular, recently,

Bester et al. (2016) extend the time series fixed-b approach of Kiefer and Vogelsang (2005) to

allow for spatial dependence.

3.3 Factor approaches

The spatial correlation is not the only pattern of cross-sectional dependence. For example,

in macroeconomics, common shocks (e.g., financial crises, oil price shocks, technological shocks)

may affect all cross-sectional units and thus cause cross-correlation. Factor approach, which

assumes that the error terms contain a finite number of unobserved common factors that influ-

ence each individual, is widely used to model cross-sectional dependence of this kind. When N

is large and T is small, Ahn et al. (2001) consider a linear panel data model with time-varying

individual effects which are, in essence, a factor structure. They propose a number of GMM

estimators that utilize the first- and second-order moment conditions implied by exogeneity of

the regressors and by homoskedasticity and nonautocorrelation of the error terms. Bai (2003)

develops an inferential theory for pure factor models of large N and T based on the principal

components analysis (PCA) estimator. The recent literature mainly focuses on the estimation

of the slope coefficients of regressors in linear panel data models with multifactor error structure

when both N and T are large. For example, Pesaran (2006) provides the common correlated

effect estimator (CCE) and Bai (2009) proposes the interactive fixed effects estimator (IFE),

respectively.

3.3.1 CCE estimation

Pesaran (2006) considers the following heterogeneous panel data model

yit = α′
idt + β′

ixit + eit with eit = γ′
ift + εit, (8)

where dt is anm×1 vector of observed common factors which may include intercepts or seasonal

dummies, and ft is an r × 1 vector of unobserved common factors. Chudik et al. (2011) show

that the process {eit} is strongly dependent across i.

In general, regressors and unknown factors can be correlated. Simply regressing yit on xit

leads to inconsistent estimation. The rationale of the CCE estimation is to replace (approxi-
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mate) the unobserved factors ft with observed variables. To this end, let

xit = A′
idt + Γ′

ift + vit, (9)

where Ai and Γi are m× p and r × p factor loadings of xit. Combining (8) and (9) yields

zit =

(
yit

xit

)
=

(
α′
i + β′

iA
′
i

A′
i

)
dt +

(
γ′
i + β′

iΓ
′
i

Γ′
i

)
ft +

(
εit + β′

ivit

vit

)
≡ B′

idt +C′
ift + uit. (10)

The weighted cross-sectional average of (10) leads to

z̄wt = B̄′
wdt + C̄′

wft + ūwt,

where z̄wt =
∑N

i=1 wizit with some weights {wi}Ni=1 and B̄w, C̄w, ūwt are defined accordingly.

Therefore, if

rank(C̄w) = r ≤ p+ 1, (11)

we have, for each t,

ft − (CC′)−1C(z̄wt − B̄′
wdt)

p→ 0, as N → ∞ (12)

by the law of large numbers under certain regularity conditions, where C ≡ plim
N→∞

C̄w. (12)

implies that ft can be approximated by a linear combination of z̄wt and dt. Thus, βi can be

consistently estimated by considering the following working model

yit = β′
ixit + ϑ′

ihwt + ε∗it, (13)

where hwt = (d′
t, z̄

′
wt)

′. The CCE estimator of the individual slope coefficients is given by

β̂i = (X′
iM̄wXi)

−1X′
iM̄wyi, (14)

where Xi = (xi1, . . . ,xiT )
′, yi = (yi1, . . . , yiT )

′, M̄w = IT − H̄w(H̄
′
wH̄w)

−1H̄′
w and H̄w =

(hw1, . . . ,hwT )
′. If βi = β for all i, efficiency can be achieved by pooling all observations over

the cross-sectional units. Such a pooled CCE (CCEP) estimator is given by

β̂CCEP =

[
N∑
i=1

wiX
′
iM̄wXi

]−1 N∑
i=1

wiX
′
iM̄wyi. (15)

Pesaran (2006) shows that, under some general conditions, β̂i and β̂CCEP are
√
T and

√
NT

consistent, respectively, and both estimators are asymptotically normally distributed, provided

that the rank condition in (11) is satisfied; see Theorems 1 and 4 in Pesaran(2006).

3.3.2 IFE estimation

When βi = β and αi = 0 for all i, the model setup in (8) corresponds to the model in

Bai (2009), where the term “interactive fixed effects” is employed to indicate that ft and γi

enter into the model multiplicatively. Instead of filtering unobserved common factors by cross-

sectional average of observed variables as in Pesaran (2006), Bai (2009) proposes to estimating

the factors and factor loadings together with the structural parameter β using PCA, which

requires a priori knowledge of the number of factors. Specifically, let F = (f1, . . . , fT )
′ and
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Γ = (γ1, . . . , γN )′, which satisfy

F′F/T = Ir, and Γ′Γ = diagonal.

Define

MF = IT − F(F′F)−1F′ = IT − FF′/T.

Then, the estimator (β̂, F̂) is the solution of the set of nonlinear equations

β̂ = (
N∑
i=1

X′
iMF̂Xi)

−1
N∑
i=1

X′
iMF̂yi

and [
1

NT

N∑
i=1

(yi −Xiβ̂)(yi −Xiβ̂)
′

]
F̂ = F̂VNT ,

where VNT is a diagonal matrix which consists of the r largest eigenvalues of 1
NT

∑N
i=1(yi −

Xiβ̂)(yi−Xiβ̂)
′ arranged in decreasing order. Therefore, given F, one can estimate β, and given

β, one can estimate F. The solution (β̂, F̂) can be simply obtained by an iterative algorithm.

Bai (2009) shows that, under some regularity conditions, β̂ is
√
NT consistent and is asymp-

totically normally distributed. However, the limiting distribution will not be centered at zero

when correlation and heteroskedasticity of εit present in both dimensions. Furthermore, the

zero mean asymptotic distribution can be achieved when there is no heteroskedasticity and

correlation is absent in at least one dimension; see Theorems 2 and 3 in Bai (2009) for details.

3.3.3 Further developments

The CCE approach has gained a lot of attentions during the last a few years, which does

not require a priori knowledge of the number of unobserved common factors and leads to a

simple OLS estimation of an augmented regression. A number of papers has extended the

CCE type estimators in several dimensions. For example, Pesaran and Tosetti (2011) show the

consistency and asymptotic normality for the CCE estimators of the slope coefficients when

{εit} in (8) are generated by a spatial process. Kapetanios et al. (2011) extend the analysis of

Pesaran (2006) to the case where the unobserved common factors are integrated of order 1. By

distinguishing among the concepts of weak, strong and semi-strong common factors based on

Definition 2.1, Chudik et al. (2011) study the CCE estimation of slope coefficients when the

errors consist of a finite number of strong factors and an infinite number of weak and/or semi-

strong factors. Westerlund and Urbain (2013) show the inconsistency of the CCEP estimator

when factor loadings γi in (8) and Γi in (9) are correlated. Finally, Harding and Lamarche

(2011) introduce endogeneity into model (8) and (9) by allowing εit and vit to be correlated,

and develop a two-step instrumental variables CCE estimation procedure for the homogeneous

slope coefficients.

In some empirical studies, researchers may also be interested in the estimation of latent

factors and their loadings. However, both of them are treated as nuisance parameters in the CCE

approach. In order to extract the information about factor structures, a two-step procedure is

proposed by Castagnetti et al. (2015), in which the first step is to estimate the slope coefficients
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using the CCE estimator, and then the second step is to compute the residuals to which the

PCA is applied to obtain the estimators of factors and loadings. Greenaway-McGrevy et al.

(2012), instead, try to uncover the conditions under which factor estimates using PCA can

be used to replace the common factors without affecting the limiting distribution of the slope

coefficients. They find that T/N → 0 and N/T 3 → 0 are sufficient for this replacement under

some regularity conditions.

Also, Everaert and Groote (2016) extend the analysis of Pesaran (2006) by investigating

the asymptotic properties of the CCEP estimator in a dynamic panel data setting. They point

out that the CCEP estimator is no longer consistent for N → ∞ and fixed T , and derive

the asymptotic bias of the CCEP estimator in the case of dynamic homogeneous panel data

models. Chudik and Pesaran (2015) propose a dynamic CCE estimation approach for the

following heterogeneous dynamic panel data model with weakly exogenous regressors

yit = αyi + ϕiyi,t−1 + β′
0ixit + β′

1ixi,t−1 + eit with eit = γ′
ift + εit,

ωit =

(
xit

git

)
= αωi + ϑiyi,t−1 + Γ′

ift + vit,

where αyi and αωi are individual-specific fixed effects, xit is px×1 vector of regressors, git is pg×1

vector of additional covariates that are affected by the same set of unobserved common factors,

ϑi is a (px + pg) × 1 vector of unknown feed-back coefficients that can be used to distinguish

between strictly (ϑi = 0) and weakly exogenous regressors. Performing similar procedure as in

Section 3.3.1, Chudik and Pesaran (2015) show that under some general conditions,

yit = α∗
yi + ϕiyi,t−1 + β′

0ixit + β′
1ixi,t−1 + δ′i(L)z̄wt + εit +Op(N

−1/2),

where δi(L) =
∑∞

l=0 δilL
l, z̄wt = (ȳwt, x̄

′
wt, ḡ

′
wt)

′ =
∑N

i=1 wizit and zit = (yit,x
′
it,g

′
it)

′, provided

that the number of cross-sectional averages is at least as large as the number of unobserved

common factors. This result indicates that a sufficient number of lags of cross-sectional averages

z̄wt must be included in the augmented regression. Therefore, the dynamic CCE estimator of

πi ≡ (ϕi, β
′
0i, β

′
1i)

′ is obtained by considering the OLS estimation of the following augmented

regression

yit = α∗
yi + ϕiyi,t−1 + β′

0ixit + β′
1ixi,t−1 +

kT∑
l=0

δ′ilz̄w,t−l + ε∗it,

where kT is the number of lags. Define

Ξi =


yikT

x′
i,kT+1 x′

i,kT

yi,kT+1 x′
i,kT+2 x′

i,kT+1
...

...
...

yi,T−1 x′
iT x′

i,T−1

 , Q̄w =


1 z̄′w,kT+1 z̄′w,kT

. . . z̄′w,1

1 z̄′w,kT+2 z̄′w,kT+1 . . . z̄′w,2

...
...

...
...

1 z̄′w,T z̄′w,T−1 . . . z̄′w,T−kT

 ,

and

M̄q = IT−kT − Q̄w(Q̄
′
wQ̄w)

+Q̄′
w

where “+” denotes the Moore-Penrose generalized inverse. A routine computation gives rise to

π̂i = (Ξ′
iM̄qΞi)

−1Ξ′
iM̄qyi,
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where yi = (yi,kT+1, yi,kT+2, . . . , yi,T )
′. The estimator of π(≡ E(πi)) is given by

π̂MG =
1

N

N∑
i=1

π̂i,

which is called the mean group (MG) estimator. Chudik and Pesaran (2015) show that π̂i and

π̂MG are consistent estimators of πi and π, respectively, provided that the (px+pg+1)×r matrix

C = (E(γi), E(Γi))
′ is full of column rank and k3T /T → χ, 0 < χ < ∞ as (N,T, kT ) → ∞.

If the rank condition does not hold, π̂i is inconsistent, and π̂MG is still consistent, as long as

ft is serially uncorrelated. Chudik and Pesaran (2015) further prove that π̂MG is asymptotic

normality as (N,T, kT ) → ∞ such that N/T → χ1 and k3T /T → χ2, 0 < χ1, χ2 < ∞. However,

the convergence rate of π̂MG is
√
N .

Another practical issue in implementing the CCE approach is related to the rank condition in

(11). Although no information about the number of factors is required when applying the CCE

approach, (11) implies that choosing the number of regressors (p) actually makes restriction on

the number of common factors (r). Indeed, Pesaran (2006) assumes that the slope coefficients

βi follow a random coefficient specification

βi = β + υi, υi ∼ IID(0,Ωυ),

for i = 1, 2, . . . , N , where Ωυ is a symmetric nonnegative definite matrix. The cross-sectional

mean of βi, namely β, can be estimated by the MG estimator; that is,

β̂MG =
1

N

N∑
i=1

β̂i,

where β̂i is defined in (14). Pesaran (2006) proves that when the rank condition (11) is not

satisfied, β̂i is inconsistent. However, β̂MG is still
√
N -consistent and asymptotically normally

distributed regardless of (11), as long as γi and Γi follow similar random coefficient models as

βi. Similar result holds for the CCEP estimator if it is used to estimate the expectation of

βi. Unfortunately, if βi’s are homogeneous (Ωυ = 0), there are no general results available for

the CCEP estimator except for the special case when r = 1; see Theorem 4 in Pesaran (2006).

Indeed, as what Karabiyik et al. (2014) point out, it is not clear from Pesaran (2006) whether

one can permit p+1 < r when Ωυ = 0 in order to achieve a faster convergence rate. Karabiyik

et al. (2014) show that, if p + 1 < r, the rate of consistency is at best
√
N . Furthermore, if

γi is non-IID and/or correlated with Γi, then the CCEP estimator for the homogeneous slope

coefficients is inconsistent. Therefore, Karabiyik et al. (2014) propose a combination-augmented

CCE, termed as C3E to overcome the limitation of (11). The idea behind this method is to

augment the regression in (13) with different combinations of {z1t, . . . , zNt}, where zit is defined
in (10).

On the other hand, there have also been some papers to extend the work in Bai (2009)

to many dimensions. Recall that Bai (2009) assumes that the error term εit is independent

of regressors xjs, factor loadings γj and common factors fs for all i, t, j and s, which rules

out the possibility of dynamic panel data models, and the number of factors is assumed to

be known. To relax these assumptions, Moon and Weidner (2013) relax the strict exogeneity
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assumption by allowing some of the regressors to be predetermined but still assuming that

the number of factors is known. They propose the Gaussian QMLE of the homogeneous slope

coefficients, denoted as β̂QMLE . Moon and Weidner (2013) show that β̂QMLE is consistent as

(N,T ) → ∞ without any restrictions on the ratio N/T . The asymptotic distribution of β̂QMLE

is derived under additional requirements which include N/T → κ2, 0 < κ < ∞ and cross-

sectional independence of {(xit, εit), t = 1, 2, . . . , T} conditional on the σ-algebra generated by

{(γi, ft), i = 1, 2, . . . , N ; t = 1, 2, . . . , T}. It turns out that β̂QMLE is asymptotically biased

and there are two sources of the bias. The first is the correlation or heteroskedasticity of the

error terms {εit}, which has already manifested itself in Bai (2009), and the second is due to

the predetermined regressors. Furthermore, Moon and Weidner (2015) relax the requirement

of knowing the number of factors as priori. They investigate the asymptotic properties of the

QMLE when the true number of factors r is unknown and r∗(≥ r) number of factors are used

in the estimation. Let this estimator denoted by β̂∗
QMLE . Under some conditions such as the

error terms are IID and follow normal distribution, they derive the asymptotic normality of the

proposed estimator as follows:
√
NT (β̂∗

QMLE − β) =
√
NT (β̂QMLE − β) + op(1)

as (N,T ) → ∞ with N/T → κ2, 0 < κ < ∞, which implies that β̂∗
QMLE has the same limiting

distribution as β̂QMLE .

Song (2013) extends the IFE approach in Bai (2009) to the case of heterogeneous dynamic

panel data models with interactive fixed effects. The estimator ({β̂i}Ni=1, F̂) can be obtained by

solving the following set of nonlinear equations

β̂i = (X′
iMF̂Xi)

−1X′
iMF̂yi

and [
1

NT

N∑
i=1

(yi −Xiβ̂i)(yi −Xiβ̂i)
′

]
F̂ = F̂VNT ,

where VNT is a diagonal matrix which consists of the r largest eigenvalues of 1
NT

∑N
i=1(yi −

Xiβ̂i)(yi−Xiβ̂i)
′ arranged in decreasing order. Song (2013) establishes the consistency of β̂i as

(N,T ) → ∞. The asymptotic normality with convergence rate
√
T is also derived under some

additional assumptions including independence of {εit, t = 1, 2, . . . , T} over i and T/N2 → 0.

From the above discussions of two major estimations: CCE and IFE, a natural question

that arises is, for a given application, which method should be used in practice. To answer

this question, it is interesting to note that, Westerlund and Urbain (2015) recently provide a

formal comparison between CCE and IFE by considering “the same data generating process

and the same implementation approach, but different factor estimates”, which implies that

the estimators they consider are not identical to those considered in Pesaran (2006) and Bai

(2009). Therefore, they actually compare the relative merits of two methods of estimating

the unobserved common factors: cross-sectional averages and principal components. As a

result, they remind researchers not to extrapolate too widely the conclusions drawn from their

paper. In sum, they find that, if T/N → 0, these two estimators are asymptotically equivalent.

However, when T/N → χ > 0, the performance of the two estimators relies on the value of β.
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IFE is subject to a relatively small bias when β = 0. Otherwise, CCE is expected to outperform

IFE.

§4 Nonparametric and semiparametric panel data models with

cross-sectional dependence

It is clear that all of the aforementioned methods focus on the linear specification of regres-

sion relationship. However, these simple parametric panel data models may be misspecified,

which possibly results in misleading inference. There exists a rich literature on nonparametric

and semiparametric panel data models which assume independence among cross-sectional units.

To name just a few examples, Cai and Li (2008), Henderson et al. (2008) and Lin et al. (2014)

and the references therein.

The first nonparametric panel data model with cross-sectional dependence, to the best of

our knowledge, is the following model proposed by Su and Jin (2012), given by

yit = gi(xit) + α′
idt + eit with eit = γ′

ift + εit, (16)

xit = A′
idt + Γ′

ift + vit, (17)

where gi(·) is an unknown continuous function from Rp to R, which may assume different form

for different i. It is apparent from (8) and (9) that the above model includes the models in

Pesaran (2006) and Bai (2009) as a special case. Su and Jin (2012) propose using a sieve

estimation for the nonparametric heterogeneous functions by extending the CCE approach to

this nonparametric framework. They find that ht = (d′
t, z̄

′
t)

′ can still be used as observable

proxies for ft under regularity conditions, where z̄t =
1
N

∑N
i=1 zit given in (10). Let {pl(x), l =

1, 2, . . .} denote a sequence of known basis functions employed in sieve estimation. Therefore, for

any given grid point x, gi(x) is approximated by α′
gip

K(x), where pK(x) = (p1(x), . . . , pK(x))

and K → ∞ as T → ∞. To estimate αgi , the following augmented regression is considered

yit = α′
gip

K(xit) + ϑ′
iht + ε∗it. (18)

By rewriting (18) in a vector form, we obtain

yi = piαgi +Hϑi + ε∗i ,

where pi = (pi1, . . . , piT )
′, pit = pK(xit) and H = (h1, . . . ,hT )

′. It follows that

α̂gi = (p′iMpi)
+p′iMyi

and

ĝi(x) = pK(x)′α̂gi ,

where M = IT −H(H′H)−1H′. If gi(·) = g(·) for all i, a similar argument leads to

α̂g =

(
N∑
i=1

p′iMpi

)+ N∑
i=1

p′iMyi

so that ĝ(x) = pK(x)′α̂g. Su and Jin (2012) derive the convergence rate and the asymptotic

normality for both ĝi(x) and ĝ(x) when both N and T are large. It is well known that a sieve

method is a global approximation which can not well capture the local properties of functionals.



140 Appl. Math. J. Chinese Univ. Vol. 31, No. 2

Huang (2013) also considers the model in (16) with gi(·) = g(·) for all i, without imposing

(17) and mainly concentrates on the case where dt = 1 under which the model reduces to

yit = g(xit) + αi + γ′
ift + εit, (19)

where, if correlated with xit, αi is treated as fixed effect. Following a similar argument as

in Pesaran (2006), Huang (2013) shows that the cross-sectional averages ȳt =
1
N

∑N
i=1 yit and

x̄t =
1
N

∑N
i=1 xit can be used to filter unobserved common factors and proposes to estimating

g(xit) using a local linear approach to capture the local properties of functionals. Without

assuming 1
N

∑N
i=1 αi = 0, g(·) is not identified. He further shows that ȳi = 1

T

∑T
t=1 yit and

x̄i =
1
T

∑T
t=1 xit can be used to filter fixed effects. Based on these facts, Huang (2013) indeed

considers the following oversimplified model with common parameters across i; that is,

yit = g(xit) + β1ȳt + β′
2x̄t + β3ȳi + β′

4x̄i + ε∗it,

and derives the consistency and the asymptotic normality of the local linear estimator of g(·)
whose convergence rate relies on NT and bandwidth h.

Su and Zhang (2013) consider homogeneous model (19) with αi = 0 and propose using

sieve estimation approach together with the QMLE in Moon and Weidner (2013) to estimate

the nonparametric function g(·). They derive the convergence rate for the sieve based QMLE

estimator, g̃(·), under some general conditions which are widely used in the literature on panel

data models with factor structure. To establish the asymptotic normality of g̃(·), they further

impose conditionally cross-sectional independence between (xit, εit) and (xjs, εjs) for all i ̸= j

and all t, s = 1, 2, . . . , T , and conditionally strong mixing of {(xit, εit), t = 1, 2, . . . , T} for

each i, conditional on the σ-algebra generated by {(γi, ft), i = 1, 2, . . . , N ; t = 1, 2, . . . , T}.
The asymptotic distribution of g̃(·) involves a bias term based on what they propose a bias-

corrected estimator for g(·), which is denoted as g̃bc(·). They also propose a specification test for

the linearity of the functional form by considering the following null hypothesis and sequences

of Pitman local alternatives:

H0 : Pr [g(xit) = x′
itβ0] = 1 for some β0 ∈ Rp versus H1 : g(xit) = x′

itβ0 + γNT∆(xit),

where ∆(·) is a measurable nonlinear function and γNT → 0 as (N,T ) → ∞. They construct

the test statistic based on the L2-distance between the linear and bias-corrected estimators,

i.e.,

ΓNT =
1

NT

N∑
i=1

T∑
t=1

[
g̃bc(xit)− x′

itβ̂QMLE

]2
w(xit),

where w(·) is a nonnegative weighting function. After being appropriately normalized, they

show that ΓNT follows the standard normal distribution asymptotically and has nontrivial

power to detect sequences of Pitman local alternatives that converge to the null at certain rate.

Su et al. (2015) also propose a residual-based test for H0 against H1 in panel data models with

interactive fixed effects.

Models given in (16) and (19) are fully nonparametric with respect to gi(·) and g(·), re-
spectively. It is well known that nonparametric estimation suffers the so-called “curse of di-

mensionality” and lacks economic explanations. To overcome this difficulty, some dimension
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reduction models are developed recently. For example, recently, Dong et al. (2015) consider a

semiparametric single-index panel data model which is specified as follows:

yit = g(x′
itθ0) + αi + eit,

where g(·) is an unknown link function. The cross-sectional dependence among {xit, eit} is

characterized using a general spatial mixing structure that integrates the correlation across

individuals and time. Let xt = (x1t, . . . ,xNt)
′ and et = (e1t, . . . , eNt)

′. The process {(xt, et) :

1 ≤ t ≤ T} is assumed to be strictly stationary and α-mixing. Dong et al. (2015) impose the

following conditions on the α-mixing coefficient αij(|t− s|) between {xit, eit} and {xjs, ejs}:
N∑
i=1

N∑
j=1

∞∑
t=1

(αij(t))
η/(4+η)

= O(N), and

N∑
i=1

N∑
j=1

(αij(0))
η/(4+η)

= O(N), (20)

where η > 0 is chosen such that E
[
|eit|4+η

]
< ∞ and E

[
∥xit∥4+η

]
< ∞. It is to easy to see

that the strength of correlation among both dimensions is controlled by the first equation in

(20), while the strength of cross-sectional dependence at any given time is controlled by the

second equation in (20). Dong et al. (2015) use a single factor model structure to show that

the above conditions are verifiable. However, this requires that γi converges to 0 at a certain

rate as i increases.

Finally, Cai et al. (2016) consider a varying-coefficient panel data model that gi(xit) is

replaced by βi(uit)
′xit in (16), where uit ∈ Rd is a vector of smooth variables. To allow for the

possibility of correlation between uit and common factors, Cai et al. (2016) adopt the following

fairly general model for both xit and uit,

zit =

(
xit

uit

)
= A′

idt + Γ′
ift + vit.

Based on the idea of CCE approach, they show that dt and the cross-sectional average of zit

can be utilized as observable proxies for ft, provided that

rank[E(Γi)] ≤ p+ d.

They study the estimation of both heterogeneous and homogeneous coefficient functions us-

ing local linear estimation approach. For the estimation of βi(·), they consider the following

augmented regression

yit = β′
i(uit)xit + ϑ′

iqt + ε∗it,

where qt = (d′
t,

1
N

∑N
i=1 z

′
it)

′. Then, for any fixed u0 ∈ R, βi(u0) and its first order derivative

β
(1)
i (u0) can be estimated by 2

β̂∗
i (u0) ≡

(
β̂i(u0)

hβ̂
(1)
i (u0)

)

= argmin
a,b

T∑
t=1

[
yit − (x′

it,x
′
it(

uit − u0

h
)

(
a

b

)
− ϑ′

iqt

]2
kh(uit − u0),

2For ease of notation, Cai et al. (2016) only consider the case d = 1. They point out that extension to the
case d > 1 involves no fundamentally new ideas and models with large d are not practically useful due to “curse
of dimensionality”.
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where h is the bandwidth, k(·) is a kernel function and kh(·) = k(·/h)/h. Note that the above

local linear estimator can be viewed as the OLS estimator of the working linear model

K
1/2
i,h (u0)yi = K

1/2
i,h (u0)X̃iβ

∗
i (u0) +K

1/2
i,h (u0)Qϑi +K

1/2
i,h (u0)ε

∗
i ,

where Ki,h(u0) = diag(kh(ui1 −u0), . . . , kh(uiT −u0)), X̃i is the T × 2p matrix whose t-th row

is (x′
it,x

′
it(

uit−u0

h )), and Q = (q1, . . . ,qT )
′. Let

Mi(u0) = IT −K
1/2
i,h (u0)Q[Q′Ki,h(u0)Q]−1Q′K

1/2
i,h (u0).

By the formula for partitioned regression, one can easily obtain

β̂∗
i (u0) =

[
X̃′

iK
1/2
i,h (u0)Mi(u0)K

1/2
i,h (u0)X̃i

]−1

X̃′
iK

1/2
i,h (u0)Mi(u0)K

1/2
i,h (u0)yi.

By the same token, Cai et al. (2016) propose a CCEP type estimator for the homogeneous

coefficient function β(·) and its derivative, which is given by

β̂∗(u0) ≡

(
β̂(u0)

hβ̂(1)(u0)

)

=

[
N∑
i=1

X̃′
iK

1/2
i,h (u0)Mi(u0)K

1/2
i,h (u0)X̃i

]−1 N∑
i=1

X̃′
iK

1/2
i,h (u0)Mi(u0)K

1/2
i,h (u0)yi.

Cai et al. (2016) show that β̂i(u0) and β̂(u0) are
√
Th and

√
NTh consistent, respectively, and

both estimators are asymptotic normality when (N,T ) → ∞ at certain rate; see Theorems 4.2

and 5.2 in Cai et al. (2016).

More importantly, Cai et al. (2016) propose a novel nonparametric test for a parametric

specification of the homogeneous coefficient function β(·) against a nonparametric alternative.

Specifically, they consider the following null and alternative hypotheses

H0 : β(u) = β0(u) versus H1 : β(u) ̸= β0(u),

where β0(u) is an known parametric function of u. They construct the test statistic based on

the integrated squared difference between the parametric specification and varying coefficient;

that is, L ≡
∫
[β(u) − β0(u)]

′[β(u) − β0(u)]du. A feasible test statistic can be obtained by

replacing β(u) with β̂(u) and replacing β0(u) with a
√
NT consistent estimate β̂0(u). After

several steps of simplification, they obtain a test statistic which is of the following form

L̂NT =
1

N2T 2h

N∑
i=1

N∑
j ̸=i

ν̃′iK(zi, zj)ν̃j ,

where ν̃i = (ν̃i1, . . . , ν̃iT )
′ = MQ(yi − Fi(Xi,Ui)), MQ = IT − Q[Q′Q]−1Q′, Fi(Xi,Ui) =

(x′
i1β̂0(ui1), . . . ,x

′
iT β̂0(uiT ))

′, andK(zi, zj) is a matrix whose (t, s)th element is x′
itxjsk(

uit−ujs

h ).

Under certain regularity conditions, they show that (NTh1/2)L̂NT /
√
V̂ is asymptotically stan-

dard normal under H0, where

V̂ =
2

N2T 2h

N∑
i=1

N∑
j ̸=i

∑
1≤t,s≤T

ν̃2itν̃
2
js(x

′
itxjs)

2k2(
uit − ujs

h
)

is a consistent estimator of the asymptotic variance of (NTh1/2)L̂NT . Also, they establish the

consistency of the test statistic under fixed alternatives.

In other directions, there are also a number of papers in the nonparametric and semipara-
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metric literature to address cross-sectional dependence by directly imposing certain moment

conditions on error terms. For example, Robinson (2012) was the first to consider the following

model

yit = αi + βt + eit, (21)

where αi and βt are individual and time effects, and eit are unobserved random variables such

that E(eit) = 0 for all i, t; E(eitejt) = ωij for all i, j, t; E(eiteju) = 0, t ̸= u for all i, j, t, u.

The main interest in Robinson (2012) is to estimating the time trend, which is represented

by βt, when T is large and N is fixed. Taking cross-sectional average of (21) and imposing∑N
i=1 αi = 0, one can get

ȳt = βt + ēt,

where ȳt = N−1
∑N

i=1 yit and ēt = N−1
∑N

i=1 eit. Robinson (2012) points out that ȳt is a mean-

square consistent estimator for βt if N is large and the degree of cross-sectional dependence is

limited by

lim
N→∞

1

N

N∑
i=1

N∑
j=1

ωij < ∞. (22)

Unfortunately, (22) does not hold for the multifactor error structure model given in (8), unless

further restrictions are imposed on the factor loadings. Instead of estimating βt using ȳt,

Robinson (2012) treats βt as a smooth function of t; that is, βt = β(t/T ), and estimates β(·)
using a kernel method.

Chen et al. (2012) extend the work of Robinson (2012) to a semiparametric partially linear

panel data model with cross-sectional dependence,

yit = x′
itβ + ft + αi + eit, and xit = gt + χi + vit,

where ft = f(t/T ) and gt = g(t/T ) are unknown time trend functions, αi and χi are individual

specific effects that satisfy
∑N

i=1 αi = 0 and
∑N

i=1 χi = 0, respectively. A pooled semiparametric

profile likelihood dummy variable estimation method is developed to estimate β and f(·). To

this end, based on the local linear estimation approach, for a given grid point τ , f(τ) and its

first order derivative f (1)(τ) can be estimated by(
f̂α,β(τ)

f̂
(1)
α,β(τ)

)
= arg min

(a,b)′

N∑
i=1

T∑
t=1

[
yit − x′

itβ − αi − a− b

(
t

T
− τ

)]2
k

(
t− τT

Th

)

for given α = (α2, . . . , αN )′ and β. Then, α and β can be estimated by

(α̂′, β̂′)
′

= arg min
(α′,β′)′

N∑
i=1

T∑
t=1

[
yit − x′

itβ − αi − f̂α,β(
t

T
)

]2
.

For the purpose of deriving the asymptotic properties of β̂ and f̂(τ), Chen et al. (2012) impose

the following moment conditions on {vit}, which allow for cross-sectional dependence,

1

N

N∑
i=1

E(vitv
′
it) → Σv,

N∑
i=1

N∑
j=1

σv(i, j) = O(N), and E

∥∥∥∥∥
N∑
i=1

vit

∥∥∥∥∥
δ

= O(Nδ/2)

as N → ∞, where Σv is a positive definite matrix and σv(i, j) = E(vi1v
′
j1)+2

∑∞
t=2 E(vi1v

′
jt).
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Similar conditions are also imposed on {eit}. Under fairly general conditions, Chen et al. (2012)

show that β̂ is asymptotic normality and achieves
√
NT convergence rate as both N and T tend

to infinity, while the local linear estimator of the trend function is also asymptotically normally

distributed with a
√
NTh convergence rate.

§5 Conclusion

Since the pioneer papers by Pesaran (2006) and Bai (2009) on panel data models with cross-

sectional dependence, both linear and nonlinear (nonparametric and semiparametric) panel data

modeling with cross-sectional dependence has become an integral part of research in economet-

rics. The literature is already vast and continues to grow swiftly, involving a full spread of

participants for both econometricians and statisticians and engaging a wide sweep of academic

journals, including some top economics journals. The field has left indelible mark on almost

all core areas in econometrics. The popularity of this field is also witnessed by the fact that

graduate students and young researchers in economics, finance, mathematics, and statistics are

expected to take courses in this discipline or the like and review the important research papers

in this area to search for their own research interests, particularly dissertation topics for doctor-

al students. On the other hand, this area also has made an impact in the applied economics and

financial economics. We hope that this selective review has provided the reader a perspective

on this important field in econometrics and statistics and some open research problems.

Finally, we would like to point out some interesting and challenging future research topics in

this field. For panel data models with cross-sectional dependence, it assumes commonly that T is

large so that for each individual, regressors xit may be possibly nonstationary such as integrated

processes and trending stationary as in (22) considered by Chen at al. (2012). Therefore, a

variety of panel data models with cross-sectional dependence when regressors are integrated are

still open. These can be regraded an extension of the papers for functional coefficient time series

models by Cai et al. (2009) and Sun et al. (2013) and time varying coefficient models in Cai and

Wang (2014) and Cai at al. (2015) when regressors are integrated. Secondly, although there

are some testing procedures available in the literature on testing whether the cross-sectional

independence holds for real applications, as mentioned earlier, the misspecification test issues as

in Su and Zhang (2013) and Cai at al. (2016) are of great importance in economics when panel

models are applied to the real applications. Therefore, more research on hypothesis testing is

in demand. Finally, the other type models for panel data with cross-sectional dependence such

as quantile regression models as in Cai et al. (2015) are deserved for an investigation in the

future.
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