
Journal of Econometrics 189 (2015) 272–284
Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

Functional index coefficient models with variable selection✩

Zongwu Cai a,b, Ted Juhl a, Bingduo Yang c,∗

a Department of Economics, University of Kansas, Lawrence, KS 66045, USA
b Wang Yanan Institute for Studies in Economics and Fujian Key Lab of Statistical Sciences, Xiamen University, Xiamen, Fujian 361005, China
c School of Finance, Jiangxi University of Finance and Economics, Nanchang, Jiangxi 330013, China

a r t i c l e i n f o

Article history:
Available online 19 March 2015

JEL classification:
C140
C580
C520

Keywords:
Functional index coefficient autoregressive
model

Model selection
Oracle property
Penalty function
Smoothly clipped absolute deviation

a b s t r a c t

We consider model (variable) selection in a semi-parametric time series model with functional
coefficients. Variable selection in the semi-parametricmodelmust account for the fact that the parametric
part of the model is estimated at a faster convergence rate than the nonparametric component. Our
variable selection procedures employ a smoothly clipped absolute deviation penalty function and consist
of two steps. The first is to select covariates with functional coefficients that enter in the semi-parametric
model. Then, we perform variable selection for variables with parametric coefficients. The asymptotic
properties, such as consistency, sparsity and the oracle property of these two-step estimators are
established. A Monte Carlo simulation study is conducted to examine the finite sample performance of
the proposed estimators and variable selection procedures. Finally, an empirical example exploring the
predictability of asset returns demonstrates the practical application of the proposed functional index
coefficient autoregressive models and variable selection procedures.
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1. Introduction

Linear time series models such as linear autoregressive moving
average models, hereafter ARMA models (Box and Jenkins, 1970),
were well developed in last century. However, linear ARMA
modelsmay not capture some important and potentially nonlinear
features of the data in economics and finance. Many nonlinear
time series models have been proposed. The early work includes
the bilinear models (Granger and Andersen, 1978), the threshold
autoregressive (TAR) models (Tong, 1990), the smooth transition
AR (STAR) models (Chan and Tong, 1986; Teräsvirta, 1994) and
Markov switching models (Hamilton, 1989), among others. One
of the popular semiparametric models is the functional coefficient
autoregressive (FAR)model, whichwas proposed by Chen and Tsay
(1993) and extended by Cai et al. (2000b). The coefficients in FAR

✩ We thank the Guest Editors, Professors Shiqing Ling, Michael McAleer and
Howell Tong, and the anonymous referees for their insightful comments that
greatly improved our paper. Cai’s research was supported, in part, by the National
Nature Science Foundation of China grants #71131008 (Key Project), #70871003
and #70971113. Yang’s research was supported by the National Nature Science
Foundation of China grant #71401066 and Specialized Research Fund for the
Doctoral Program of Higher Education #20130161120023.
∗ Corresponding author.

E-mail addresses: caiz@ku.edu (Z. Cai), juhl@ku.edu (T. Juhl),
bdyang2006@gmail.com (B. Yang).

http://dx.doi.org/10.1016/j.jeconom.2015.03.022
0304-4076/© 2015 Elsevier B.V. All rights reserved.
model are in unknown vector functional formdepending on lagged
terms, which satisfy

rt =

p
j=1

gj(r∗t−1)rt−j + εt ,

where r∗t−1 = (rt−i1 , . . . , rt−id)
T with 1 ≤ i1 < i2 < · · · < td

and gj(·) is an unknown function in Rd for 1 ≤ j ≤ p. The above
FAR model covers several traditional varying coefficient models
as a special case, such as the threshold autoregressive models in
Tong (1990) and the STAR models in Chan and Tong (1986) and
Teräsvirta (1994).

Due to the curse of dimensionality, Chen and Tsay (1993) just
considered one single threshold variable case r∗t−1 = rt−k for some
k, and they proposed an arranged local regression to estimate the
functional coefficients {gj(·)} with an iterative algorithm. In fact,
their method is similar to the local constant semiparametric esti-
mator as pointed out by Cai et al. (2000b). For efficient estimation
of the FAR model, the reader is referred to the papers by Cai et al.
(2000a) and Fan and Zhang (1999).

To overcome the curse of dimensionality and incorporate more
variables in the functional coefficients {gj(·)}, we assume that r∗t−1
is a linear combination of rt−ik ’s, e.g. r

∗

t−1 = βT rt−1, where rt−1 =

(rt−1, . . . , rt−d)
T . We denote this model as the functional index
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coefficient autoregressive (FIAR) model satisfying

rt =

p
j=1

gj(βT rt−1)rt−j + εt ,

where gj(·) is an unknown function in R for 1 ≤ j ≤ p. In fact,
the above FIARmodel can be regraded as a case of functional index
coefficient models of Fan et al. (2003) with

yi =

p
j=1

gj(βTZi)Xji + εi ≡ g(βTZi)TXi + εi, 1 ≤ i ≤ n, (1)

where yi is a dependent variable, Xi = (X1i, X2i, . . . , Xpi)
T is a

p × 1 vector of covariates, Zi is a d × 1 vector of local variables,
εi are independently identically distributed (i.i.d.) with mean 0
and standard deviation σ , β ∈ Rd is a d × 1 vector of unknown
parameters and g(·) = (g1(·), . . . , gp(·))T is a p × 1 vector of
unknown functional coefficients. We assume that ∥β∥ = 1 and
the first element of β is positive for identification, where ∥ · ∥ is
the Euclidean norm (L2-norm). Note that both Xi and Zi can include
the lagged variables of yi. In particular, if X1i ≡ 1, then, model (1)
contains an intercept function term.

Xia and Li (1999) studied the asymptotic properties of model
(1) under mixing conditions when the index part of above model
is not constrained to be a linear combination of Zi. However, due to
the efficiency of estimation and the accuracy of prediction, it is of
importance to select variables in both Zi and Xi, and to potentially
exclude variables in Eq. (1). Fan et al. (2003) provided algorithms
to estimate local parameters β and functional coefficients g(·).
Meanwhile, they deleted the least significant variables in a given
model according to t-value, and selected the bestmodel in terms of
the Akaike information criterion (AIC) of Akaike (1973) in multiple
steps. However, as mentioned in Fan and Li (2001), this stepwise
deletion procedure may suffer stochastic errors inherited in the
multiple stages. Meanwhile, there is no theory on this variable
selection procedure and the authors did not mention how to select
the regressors Xi. These selection issues motivate us to consider
variable selection on both local variables Zi and covariates Xi in
model (1).

The FIAR model reduces the curse of dimensionality since each
of the nonparametric functions has only one argument. However,
there still remain potential areas of dimension reduction. First,
there are several nonparametric functions in the p × 1 vector
g(β⊤Z). In addition, the vector Z is d-dimensional. Hence, by
using model selection methods, there is potential to find a more
parsimonious model that effectively captures the features of our
data. Variable selectionmethods and their algorithms canbe traced
back to four decades ago. Pioneering contributions include the AIC
and the Bayesian information criterion (BIC) of Schwarz (1978).
Various shrinkage type methods have been developed recently,
including but not limited to the nonnegative garrotte of Breiman
(1995), bridge regression of Fu (1998), the least absolute shrinkage
and selection operator (LASSO) of Tibshirani (1996), the smoothly
clipped absolute deviation of Fan and Li (2001), the adaptive LASSO
of Zou (2006), and so on. The reader is referred to the review paper
by Fan and Lv (2010) for details. Here,we recommend the smoothly
clipped absolute deviation (SCAD) penalty function of Fan and Li
(2001) since it merits three properties of unbiasedness, sparsity
and continuity. Furthermore, it has the oracle property; namely,
the resulting procedures perform as well as those that correspond
to the case when the true model is known in advance.

The shrinkage method has been successfully extended to
semiparametricmodels; for example, variable selection in partially
linear models in Liang and Li (2009), partially linear models in
longitudinal data in Fan and Li (2004), single-index models in
Kong and Xia (2007), semiparametric regression models in Brent
et al. (2008) and Li and Liang (2008), varying coefficient partially
linearmodels with errors-in-variables in Zhao and Xue (2010), and
partially linear single-index models in Liang et al. (2010), and the
references therein.

However, the aforementioned papers focused mainly on the
variable selection with parametric coefficients. Also, the shrink-
agemethodwas extended to select significant variables with func-
tional coefficients. Lin and Zhang (2006) proposed component
selection and smoothing operator (COSSO) for model selection and
model fitting in multivariate nonparametric regression models in
the framework of smoothing spline analysis of variance. Mean-
while, they extended the COSSO to the exponential families (Zhang
and Lin, 2006). Wang et al. (2008) proposed the variable selection
procedures with basis function approximations and SCAD, which
is similar to the COSSO, and they argued that their procedures can
select significant variables with time-varying effect and estimate
the nonzero smooth coefficient functions simultaneously. Huang
et al. (2010) proposed to use the adaptive group LASSO for variable
selection in nonparametric additive models based on a spline ap-
proximation, in which the number of variables and additive com-
ponentsmay be larger than the sample size. By adopting the idea of
the groupingmethod in Yuan and Lin (2006), Wang and Xia (2009)
used kernel LASSO to apply shrinkage to functional coefficients in
the varying coefficient models. Their pure nonparametric shrink-
age procedure is different from approaches of using spline and ba-
sis functions (Lin and Zhang, 2006; Wang et al., 2008; Huang et al.,
2010). For a comprehensive survey paper of variable selection in
nonparametric and semiparametric regression models via shrink-
age, the reader is referred to the paper by Su and Zhang (2013).

Almost all the variable selection procedures mentioned above
are based on the assumption that the observations are independent
and identically distributed (i.i.d.). To the best of our knowledge,
there are few papers to consider variable selections under non
i.i.d. settings. It might not be appropriate if it is applied to
analyze financial and economic data directly, since most of the
financial/economic data are weakly dependent. To address this
issue, Wang et al. (2007) extended to the regression model with
autoregressive errors via LASSO. In this paper, we consider variable
selection in functional index coefficientmodels under very general
dependence structure—the strong mixing context. Our variable
selection procedures consist of two steps. The first is to select
covariateswith functional coefficients, and thenweperformmodel
selection for local variables with parametric coefficients.

The rest of this paper is organized as follows. In Section 2,
we present the identification conditions for functional index
coefficient models, our new two-step estimation procedures, and
some properties of the SCAD penalty function and numerical
implementations. In Section 3, we propose variable selection
procedures for both covariates with functional coefficients and
local variables with parametric coefficients. We then establish
the consistency, the sparsity and the oracle property of all the
proposed estimators. A simple bandwidth selection method is also
discussed in the same section. Monte Carlo simulation results for
the proposed two-step procedures are reported in Section 4. An
empirical example of applying the functional index coefficient
autoregressive model and its variable selection procedures is
extensively studied in Section 5. Finally, the concluding remarks
are given in Section 6 and all the regularity conditions and technical
proofs are gathered in the Appendix.

2. Identification, estimation and penalty function

2.1. Identification

The identification problem in single index model was first
investigated by Ichimura (1993), and extensively studied by
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Li and Jeffrey (2007) and Horowitz (2009). Meanwhile, partial
conditions for identification in functional index coefficient models
were showed in Fan et al. (2003). Here we present the conditions
for identification below.

Theorem 1 (Identification in Functional Index Coefficient Models).
Assume that dependent variable Y is generated by Eq. (1), X is a
p-dimensional vector of covariates and Z is a d-dimensional vector
of local variables. β is a d-dimensional vector of unknown parameters
and g(·) is a p-dimensional vector of unknown functional coefficients.
Then, β and g(·) are identified if the following conditions hold:

Assumption I. I1. The vector functions g(·) are continuous and
not constant everywhere.

I2. The components of Z are continuously distributed random
variables.

I3. There exists no perfect multi-collinearity within each compo-
nents of Z and none of the components of Z is constant.

I4. There exists no perfect multi-collinearity within each compo-
nents of X .

I5. The first element of β is positive and ∥β∥ = 1, where ∥ · ∥ is
the standard Euclidean norm.

I6. When X = Z , E(Y |X, Z) becomes to E(Y |X) and it cannot be
expressed in the form as E(Y |X) = αTXβTX + γ TX + c , where
α, γ ∈ Rd and c ∈ R are constant, and α and β are not parallel
to each other.

Remark 1. Assumption I1 is a mild condition since continuous
and bounded functions are commonly assumed in nonparametric
estimation, and it is obvious that β cannot be identified if any
element of g(·) is a constant. We can relax Assumption I2 with
some components of Z being discrete random variables, however,
two more conditions should be imposed, see Ichimura (1993) and
Horowitz (2009) in detail. The perfect multi-collinearity problem
in Assumptions I3 and I4 is similar to those in the classical linear
models. In fact, it would be hard to get accurate estimates if high
correlation of components exists in either Z or X . Meanwhile, it is
not identified if any component of Z is constant. For example, if
Z1=1, E(Y |X, Z) = gT (β1 +β2Z2 +· · ·+βdZd)X = f T (β2Z2 +· · ·+

βdZd)X . An alternative of Assumption I5 is to let the first coefficient
be 1, i.e. β1 = 1. However, it is infeasible to implement variable
selection procedures, since we do not have any prior information
that whether the coefficient β1 of Z1 is zero or not. Assumption I6
can be found in the paper by Fan et al. (2003).

2.2. Estimation procedures

Model (1) can be regarded as a semiparametric model. There-
fore, to estimate both functions g(·) and parameters β , it is com-
mon to use a two-stage approach. To estimate g(·), one needs an
initial estimator of β̂ which might have little effect on the final es-
timation of g(·) if the sample size n is large enough, due to the fact
that the convergence rate of the parametric estimator β̂ is faster
than the nonparametric estimator ĝ(·). Here, we propose variable
selection and estimation in two steps:

Step One: Given an initial estimator β̂ such that ∥β̂ − β∥ =

Op(1/
√
n), minimize the penalized local least squares Q (ĝ, β̂, h)

to obtain ĝ(·), where

Q (ĝ, β̂, h) =

n
j=1

n
i=1


yi − ĝT


β̂TZj


Xi

2
Kh


β̂TZi − β̂TZj



+ n
p

k=1

Pλn


∥ĝ·k∥


, (2)
with K(·) being a kernel function, Kh(z) = K(z/h)/h and Pλn(·)

being a penalty function. {λ1, . . . , λp} are tuning parameters and
ĝ·k = [ĝk(β̂TZ1), . . . , ĝk(β̂TZn)]T is the estimates of kth functional
coefficient at corresponding sample points. As recommended, an
initial estimator β̂ can be obtained by various algorithms such
as the method in Fan et al. (2003), or average derivative esti-
mators such as Newey and Stoker (1993). As long as the initial
estimator satisfies ∥β̂ − β∥ = Op(1/

√
n), as expected, the para-

metric estimator β̂ has little effect on the shrinkage estimation of
functional coefficients ĝ(·) in the above equation if sample size
n is large. We choose penalty term Pλn (·) as the SCAD function,
which is described in Section 2.3, and the L2 functional norm

∥ĝ·k∥ =


ĝ2
k (β̂

TZ1) + · · · + ĝ2
k (β̂

TZn) has the same definition of
standard Euclidean norm. The purpose of using the penalized lo-
cally weighted least squares is to select significant covariates Xi in
model (1).

Note that when the penalty term Pλn (z) = λn|z|, the penalized
local least squares becomes the Lasso type, so that the above object
function in Eq. (2) is reduced to the case in the paper byWang and
Xia (2009).

Step Two: Given the estimator of function ĝ(·), minimize the
penalized global least squares Q (β, ĝ), where

Q (β, ĝ) =
1
2

n
i=1


yi − ĝT (βTZi)Xi

2
+ n

d
k=1

Ψζn(|βk|) (3)

with Ψ (·) being a penalty function. {ζ1, . . . , ζd} are tuning
parameters and |βk| takes the absolute value of βk.

Clearly, the above general setting may cover several other ex-
isting variable selection procedures as a special case. For exam-
ple, when p = 1 and the regressor X = 1, the above procedure
becomes variable selection for the single-index model in Kong
and Xia (2007), which provided an alternative variable selection
method called separated cross validation. When p = 2 and the
only regressor is market return, then the above model reduces to
the case in the paper by Cai et al. (2014a) for an application in
finance. In particular, they considered semiparametric estimates
of time-varying betas and alpha in the conditional capital asset
pricing model with variable selection. Furthermore, the model in-
cludes a special case of variable selection in partially linear single-
index models as addressed in Liang et al. (2010), if only the first
functional coefficient g(·) is nonlinear and all others are constant.
Finally, it transforms to variable selection in semiparametric re-
gression modeling by Li and Liang (2008), if the dimension of lo-
cal variables d = 1 and some of the functional coefficients g(·) are
constant and others are not.

2.3. Penalty function and implementation

As pointed out by Fan and Li (2001), a good penalty function
should enjoy the following three desirable properties, e.g., unbi-
asedness for the large true unknown estimator, sparsity that can
set small estimator to be zero automatically, and continuity of the
resulting estimator to avoid instability in model prediction.

To achieve all the aforementioned three properties, Fan and Li
(2001) proposed the following so called SCAD penalty function,

Pλ(|β|)

=


λ|β|, |β| ≤ λ,

−(|β|
2
− 2aλ|β| + λ2)/[2(a − 1)], λ < |β| ≤ aλ,

(a + 1)λ2/2, |β| > aλ.

(4)
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The important property for the SCAD penalty function is that it has
the following first derivative,

P ′

λ(|β|) =


λ, |β| ≤ λ,
(aλ − |β|)/(a − 1), λ < |β| ≤ aλ,
0, |β| > aλ,

for some a > 2 (5)

so that itmakes the computational implementation easily. It can be
clearly seen that Pλ(|β|) is not differentiable at 0 with respect to β .
Thus, it is not easy to minimize the penalized least squares due to
its singularity. To make implementation easily, Fan and Li (2001)
suggested to approximate the penalty function by a quadratic
function as

Pλ(|βj|) ≈ Pλ(|β
(0)
j |) +

1
2
{P ′

λ(|β
(0)
j |)/|β

(0)
j |}(β2

j − β
(0)2
j )

for βj ≈ β
(0)
j . (6)

Alternatively, Zou and Li (2008) proposed local linear approxima-
tion for non-concave penalty functions as

Pλ(|βj|) ≈ Pλ(|β
(0)
j |) + P ′

λ(|β
(0)
j |)(|βj| − |β

(0)
j |) for βj ≈ β

(0)
j (7)

which can reduce the computational cost without losing any
statistical efficiency. Meanwhile, some other algorithms such as
minorize-maximize algorithm (Hunter and Li, 2005) are also
proposed.

In view of (6), given a good initial value β(0) we can find the
one-step estimator as follow

β(1)
= argmin


1
2
(β − β(0))T [−∇

2ℓ(β(0))](β − β(0))

+ n
d

k=1

P ′

λ(|β
(0)
k |)

2|β(0)
k |

β2
k


, (8)

where ℓ(·) is a loss function and ∇
2ℓ(β(0)) = ∂2ℓ(β(0))/∂β∂βT .

As argued in Fan and Li (2001), there is no need to iterate until it
converges as long as the initial estimator is reasonable. Also, the
MLE estimator from the full model without penalty term can be
regarded as the reasonable initial estimator. For using the local
linear approximation in Zou and Li (2008) and Eq. (7), the sparse
one-step estimator given in Eq. (8) becomes

β(1)
= argmin


1
2
(β − β(0))T [−∇

2ℓ(β(0))](β − β(0))

+ n
d

k=1

P ′

λ(|β
(0)
k |)|βk|


. (9)

As demonstrated in Zou and Li (2008), this one step estimator is
as efficient as the fully iterative estimator, provided that the initial
estimator is good enough. For example, we let β(0) be the maximal
likelihood estimator without the penalty term.

3. Large sample theory

3.1. Penalized nonparametric estimator for functional coefficients

Let {(Xi, Zi, yi)} be a strictly stationary and strong mixing
sequence, and f (·, β) be the density function of βTZ , where β is
an interior point of the compact set B. Assume δ is a small positive
constant and define Az = {Z : f (βTZ, β) ≥ δ, β ∈ B, there exist
a and b such that βTZ ∈ [a, b]} as the domain of Z . Then, βTZ is
bounded and the density of f (·, β) is bounded away from 0. Also,
define the domain of bandwidth h, Hn = {h: there exist C1 and C2
such as C1n−1/5 < h < C2n−1/5
}. For Z ∈ Az, β ∈ B, and h ∈ Hn,

define a n × p matrix penalized estimator as

Ĝ

β̂


=


ĝ

β̂TZ1


, . . . , ĝ


β̂TZn

T
=

ĝ·1, . . . , ĝ·p


,

where

ĝ

β̂TZ


=


ĝ1

β̂TZ


, . . . , ĝp


β̂TZ

T
∈ Rp,

and

ĝ·k =


ĝk

β̂TZ1


, . . . , ĝk


β̂TZn

T
∈ Rn.

Similarly, we define the true value G0 (β) , g0

βTZ


and g0·k,

respectively. Without loss of generality, we assume that the first
p0 functional coefficients are non-zero, and other p−p0 functional
coefficients are zero, i.e. ∥g·k∥ ≠ 0 and g·k are not constant
everywhere for 1 ≤ k ≤ p0, ∥g·k∥ = 0 for p0 < k ≤ p. Let
αn = max{P ′

λ (∥g·k∥) : 1 ≤ k ≤ p0}. Then, by minimizing the
penalized local least squares Q (ĝ, β̂, h) in Eq. (2), one can obtain
the penalized local least squares estimator ĝ(·) for g(·).

To study the asymptotic distribution of the penalized local
least squares estimator, we impose some technical conditions as
follows.

Assumption A. A1. The vector functions g(·) have continuous
second order derivatives with respect to the support of Az .

A2. For any β ∈ B and Z ∈ Az , the density function f (·, β)
is continuous and there exists a small positive δ such that
f (·, β) > δ.

A3. The kernel function K(·) is a bounded density with a bounded
support region. Let µ2 =


v2K(v)dv and ν0 =


K 2(v)dv.

A4. limn→∞ infθ→0+ P ′

λn
(θ)/λn > 0, n−1/10λn → 0, h ∝ n−1/5 and

∥β̂ − β0∥ = Op(1/
√
n).

A5. Define Ω (z, β) = E

XiXT

i |βTZj = z

. Assume that Ω (·) is

nonsingular and has bounded second order derivative on Az .
A6. {(Xi, Zi, yi)} is a strictly stationary and strongly mixing se-

quence with mixing coefficient satisfying α (m) = O (ρm) for
some 0 < ρ < 1.

A7. Assume that the conditional density of f

zi, zs|zj


is continu-

ous and has bounded second order derivative.
A8. Assume that Ω


zi, zs, zj


= E


XiXT

i XsXT
s |βTZi = zi, βTZs = zs,

βTZj = zj

is continuous and has bounded second order

derivative. Define Ω1

zi, zs, zj


= ∂Ω


zi, zs, zj


/∂zi and

Ω2

zi, zs, zj


= ∂Ω


zi, zs, zj


/∂zs.

Remark 2. The conditions in A2 imply that the distances between
two ranked values βTZ(i) are at most order of Op(log n/n) (Janson,
1987). For any value Z ∈ Az , we can find a closest value βTZj to
Λ = βTZ such that |βTZj − Λ| = Op(log n/n). With the conditions
in A1, ∥g(βTZj) − g(Λ)∥ = Op(log n/n), which is smaller order of
nonparametric convergence rate n−2/5. This implies that we only
need to estimate ĝ(βTZi) for i = 1, 2, . . . , n rather than ĝ(Λ) for
all values in the domain Az . For the detailed arguments, we refer
to the paper byWang and Xia (2009). Assumption A3 is a common
assumption in nonparametric estimation. The assumption ∥β̂ −

β0∥ = Op(1/
√
n) in A4 implies that the estimators of β̂ have little

effect in the estimation of ĝ(·) if the sample size n is large, since the
convergence rate of the parametric estimators β̂ is faster than the
nonparametric function estimators ĝ(·). The assumptions inA5–A8
are very standard and used for the proof under mixing conditions;
see Cai et al. (2000b). In particular, Assumptions in A6 are the
common conditions with weekly dependent data. Most financial
models satisfy these conditions, such as ARMA, ARCH and GARCH
models; see Cai (2002).
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Define the nonparametric estimator ĝ(z, β̂) ≡ [ĝa(z, β̂), ĝb(z,
β̂)]T where z = β̂TZ , ĝa(z, β̂) = [ĝ1(z, β̂), . . . , ĝp0(z, β̂)]T ∈ Rp0

and ĝb(z, β̂) = [ĝp0+1(z, β̂), . . . , ĝp(z, β̂)]T ∈ Rp−p0 . Analogously,
we denote the true value g0(z, β0) ≡ [g0a(z, β0), g0b(z, β0)]

T .
The following theorem presents the asymptotic properties for the
penalized nonparametric estimator ĝ(z, β̂), including the oracle
property, sparsity and asymptotic normality of the estimator
ĝ(z, β̂).

Theorem 2 (Oracle Property). Let (Xi, Zi) be a strong mixing and
strictly stationary sequence. Under Assumptions A1–A8, ∥β̂ − β0∥ =

Op(n−1/2), limn→∞ infθ→0+ P ′

λn
(θ)/λn > 0, h ∝ n−1/5 and

n−1/10λn → 0 as n → ∞, then

(a) Sparsity: supZ∈Az ∥ĝk(z, β̂)∥ = 0, for all p0 < k ≤ p.
(b) Asymptotic normality:
√
nh

ĝa(z, β̂) − g0a(z, β0) − h2B(z, β0) + op(h2)


∼ N(0, V (z, β0)),

where V (z, β0) = ν0M−1(z, β0)σ
2, and

B(z, β0) = µ2M−1(z, β0)Ṁ(z, β0)ġ(z, β0) +
1
2
µ2g̈(z, β0)

with M(z, β0) = f (z, β0)Ω(z, β0), Ṁ(z, β0) = ∂M(z, β0)/∂z,
ġ(z, β0) = ∂g(z, β0)/∂z and g̈(z, β0) = ∂ ġ(z, β0)/∂z.

Remark 3. The unpenalized estimator can be written as

ĝu(z, β) =


n

i=1

XiaXT
iaKh(β̂

TZi − z)

−1  n
i=1

XiaY T
i Kh(β̂

TZi − z)


.

Similar to the argument in the paper by Wang and Xia (2009),
under regular conditions, one can show that supZ∈Az ∥ĝa(z, β̂) −

ĝu(z, β̂)∥ = op(n−2/5). It suggests that the difference between
penalized estimator ĝa(z, β̂) and unpenalized estimator ĝu(z, β̂)
is smaller order of optimal nonparametric convergence rate of
n−2/5. Thus, the penalized estimator ĝa(z, β̂)merits the same large
sample properties as the unpenalized estimator ĝu(z, β̂), as the
sample size n goes to infinity.

Sparsity is an important statistical property in high-dimensional
statistics. By assuming that only a small subset of the variables are
important for dependent variable, it can reduce complexity so that
it improves interpretability and predictability of the model. The
sparsity property fromTheorem2demonstrates that our penalized
model can estimate zero components of the true parameter vector
exactly as zero with probability one as sample size goes to infinity.

3.2. Penalized estimator for parametric coefficients

To perform variable selection for variables with parametric
coefficients, we shouldminimize the penalized least squares listed
in Eq. (3). We assume the first d1 coefficients of β are nonzero and
all rest of parameters are zero. That is, β0 = (βT

10, β
T
20)

T , where
all elements of β10 with dimension d1 are nonzero and d − d1
dimensional coefficients β20 = 0. Finally, define Vn =

n
i=1(Zi −

E(Zi|βT
0 Zi))ġ

T (βT
0 Zi)Xiεi, where vector ġ(·) is the first derivative

of function g(·) vector, and εi is independent and identically
distributed (i.i.d.) with mean 0 and standard deviation σ . LetV0 =
1
nVar(Vn)/σ

2, and define e be an asymptotically standard normal
random d-dimensional vector such that Vn = n1/2σV 1/2

0 e. V1n =n
i=1(Z1i − E(Z1i|βT

10Z1i))ġ
T (βT

10Z1i)Xiε1i, where ε1i is the same as
εi since β20 = 0. Similarly, we define V10 =

1
nVar(V1n)/σ

2 and
e1 be an asymptotically standard normal random d1-dimensional
vector such that V1n = n1/2σV 1/2

10 e1.
To study the asymptotic distribution of the penalized least

squares estimator β̂ , we impose some technique conditions as
below.

Assumption B. B1. The vector functions g(·) have continuous
second order derivatives with respect to the support of Az .

B2. For any β ∈ B and Z ∈ Az , the density function f (·, β)
is continuous and there exists a small positive δ such that
f (·, β) > δ.

B3. The kernel function K(·) is a bounded density with a bounded
support region. Let µ2 =


v2K(v)dv and ν0 =


K 2(v)dv.

B4. limn→∞ infθ→0+ P ′

ζn
(θ)/ζn > 0, ζn → 0,

√
nζn → ∞ and

h ∝ n−1/5.
B5. Same as Assumption A6.
B6. E(εi|Xi, Zi) = 0, E(ε2

i |Xi, Zi) = σ 2, E|Xi|
m < ∞ and E|yi|m <

∞ for allm > 0.

Remark 4. The assumptions in B4 indicate the oracle property in
Theorem 4. An alternative condition for bandwidth in Ichimura
(1993) is nh8

→ 0. However, the condition nh8
→ 0 is still

satisfied with our condition h ∝ n−1/5 in B4. For Assumption B6, it
is not hard to extend to the heteroscedasticity case, E(ε2

i |Xi, Zi) =

σ 2(Xi, Zi), and it requires somehighermoment conditions of Xi and
yi so that Chebyshev inequality can be applied.

Now, we have the asymptotic properties for the penalized least
squares estimator β̂ .

Theorem 3. Let {(Xi, Zi, yi)} be a strictly stationary and strong
mixing sequence, an = max{Ψ ′

ζn
(βk) : βk ≠ 0}, and β̂ = argminβ∈B

Q (β, ĝ). Under Assumptions B1–B6 and if max{Ψ ′′

ζn
(βk) : βk ≠

0} → 0, then the order of ∥β̂ − β0∥ is Op(n−1/2
+ an). If the penalty

function is SCAD function, an = 0 as sample size n → ∞, and
∥β̂ − β0∥ = Op(n−1/2).

Theorem 4 (Oracle Property). Let {(Xi, Zi, yi)} be a strictly stationary
and strong mixing sequence. Under Assumptions B1–B6, by assuming
ζn → 0 and

√
nζn → ∞ as n → ∞, then,

(a) Sparsity:

β̂2 = 0.

(b) Asymptotic normality:
√
n(β̂1 − β10) → N


0,V−1

10 V10V−1
10


,

where V10 is defined earlier and V10 = Γ (0) + 2


∞

ℓ=1 Γ (ℓ) with
Γ (ℓ) = Cov (Γi, Γi−ℓ) and Γi =


Z1i − E(Z1i|βT

10Z1i)

ġT (βT

10Z1i)
Xiε1i.

When the randomvariables {Γi}
∞

i=1 are either i.i.d. ormartingale
difference sequence, V10 becomes V10 = Γ (0) = Var(Γi). Other-
wise, the autocovariance function Γ (ℓ) may not be zero at least
for some lag orders ℓ > 0 due to the serial correlation. Theorem 4
shows that our variable selection procedures of minimizing penal-
ized least squares enjoy the oracle property.

3.3. Choosing bandwidth and tuning parameters

To do the nonparametric estimation and variable selection si-
multaneously, we should choose suitable regularization parame-
ters, bandwidth h for nonparametric estimator and λ’s for penalty
terms. For simplicity, we just consider global bandwidth selection
rather than pointwise selection. Recent literature reveals that the
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BIC-type selector identifies the truemodel consistently and the re-
sulting estimator possesses the oracle property. In contrast, the
AIC-type selector tends to be less efficient and over fitting in the
final model; see the papers by Wang et al. (2007) and Zhang et al.
(2010). This motivates us to select the bandwidth h and tuning pa-
rametersλ’s simultaneouslywith BIC-type criterion.Wedefine our
BIC criterion as

BIC(h, λ) = log(SSE(h, λ)) + df(h, λ) log(n)/n,

where SSE(h, λ) is the sum of squared errors obtained from the
penalized least squares with parameters (h, λ), and df(h, λ) is the
number of nonzero coefficients of β̂ conditional on parameters
h and λ. This BIC criterion is reasonable since it can balance
the trade-off between the variance and the number of non-zero
coefficients in terms of the bandwidth h and tuning parameters
λ’s. Further, it enjoys the property of consistency, which indicates
that it can select the correct model with the probability one as
the sample size goes to infinity (Zhang et al., 2010). However,
it is still computationally expensive to choose d-dimensional
tuning parameters λ = (λ1, λ2, . . . , λd)

T . By adopting the idea
of Fan and Li (2004), to reduce the dimension of λ, we let
λn = λ0σ̂ (β̂k

(0)
), where σ̂ (β̂k

(0)
) is the standard deviation of un-

penalized estimator β̂k
(0)

. The theoretical properties of BIC(h, λ)

and dimension reduction technique with λk = λ0σ̂ (β̂k
(0)

) need
further research and they can be regarded as the future research
topics. The reader is referred to the papers by Cai et al. (2000a)
and Fan and Li (2001) more on choosing the bandwidth in
nonparametric estimation and the tuning parameters in variable
selection.

4. Monte Carlo simulations

Example 1. In this example, we study the finite sample perfor-
mance of the variable selection for covariates with functional
coefficients. In our simulations, the optimal bandwidth and the
tuning parameter λn are chosen by BIC criterion in Section 3.3. The
Epanechnikov kernel K(x) = 0.75(1 − x2) if |x| ≤ 1 is used. We
choose the value of a in SCAD to be 3.7 as suggested in Fan and Li
(2001).

In this example, we assume that the data are generated by

yi = (Z1i + Z2i) + (Z1i + Z2i)2X1i + σεi, 1 ≤ i ≤ n,

and the working model is

yi = g0(βTZi) +

6
k=1

gk(βTZi)Xki + ei,

where εi is generated from standard normal distribution and
Z = (Z1, Z2)T with Z1 = Φ(Z∗

1 ), Z2 = Φ(Z∗

2 ) and Φ(·) being
the cumulative standard normal distribution function. The eight
dimensional vector (Z∗

1 , Z∗

2 , X1, . . . , X6)
T follows the following

vector autoregressive process
Z∗

i

Xi


= A


Z∗

i−1

Xi−1


+ ξi,

where Z∗
= (Z∗

1 , Z∗

2 )T , X = (X1, X2, . . . , X6)
T and A is an 8 × 8

matrix with the diagonal elements being 0.15 and all others being
0.05. The initial value of (Z∗

1 , X1)
T and each component of the

random vector term ξi are generated from i.i.d. standard normal
distribution. Note that for this set up, the data generated by the
above autoregressive process are weekly dependent. We consider
three sample sizes as n = 200, n = 400 and n = 1000 and
two standard deviations as σ = 2 and σ = 4. Sample sizes
n = 200, 400, 1000 are corresponding to about one year, two
Table 1
Simulation results for the covariates with functional
coefficients.

σ = 4 σ = 2

n = 200
Shrinkage rate 79.4% 93.4%
Keeping rate 92.0% 99.8%

n = 400
Shrinkage rate 94.5% 100%
Keeping rate 98.6% 100%

n = 1000
Shrinkage rate 100% 100%
Keeping rate 100% 100%

Table 2
Simulation results for the local variable with parametric
coefficients.

σ = 15 σ = 7.5

n = 200
Shrinkage rate 83.2% 91.1%
Keeping rate 93.4% 96.9%

n = 400
Shrinkage rate 92.3% 100%
Keeping rate 97.5% 100%

n = 1000
Shrinkage rate 100% 100%
Keeping rate 100% 100%

years and four years trading days, respectively. For each setting,
we replicate 1000 times. The ‘‘Shrinkage Rate’’ and ‘‘Keeping rate’’
are reported in Table 1, in which ‘‘Shrinkage rate’’ represents the
percentage that five zero functional coefficients correctly shrink
to 0 and ‘‘Keeping rate’’ stands for the percentage that two non-
zero functional coefficients do not set to 0 correctly. Clearly, one
can see from Table 1 that ‘‘Shrinkage rate’’ and ‘‘Keeping rate’’
produce better results with larger sample size and smaller noise.
Meanwhile, it shows that the proposed estimator performs as good
as the oracle estimator if the sample size n = 1000 as well as
the case of n = 400 and σ = 2. This simulation shows that the
proposed variable selection procedures perform fairly well for a
finite sample.

Example 2. To examine the performance of the variable selection
for local variables with parametric coefficients, similar to Tibshi-
rani (1996) and Fan and Li (2001), our data generating process is
given below

yi = ui + u2
i Xi + σεi,

where ui = ZT
i β , β = (3, 1.5, 0, 0, 2, 0, 0, 0)T and εi is generated

from standard normal distribution. Furthermore, the nine dimen-
sional vector (ZT

i , Xi)
T is generated from the following vector au-

toregressive process
Zi
Xi


= A∗


Zi−1

Xi−1


+ ei,

where A∗ is a 9 × 9 matrix with the diagonal elements being 0.15
and all others being 0.05. The initial value of (ZT

1 , X1)
T and each

element of the random vector ei are generated from i.i.d. standard
normal. Similar to the previous example, we consider three sample
sizes as n = 200, 400 and 1000 and for each simulation, we repli-
cate 1000 times. We also consider two values for σ as σ = 7.5
and σ = 15. Table 2 displays the simulation results of SCAD vari-
able selection for the local variables with parametric coefficients.
Similar to the conclusions from Table 1, it can be seen from Table 2
that the ‘‘Shrinkage rate’’ for irrelevant local variables and ‘‘Keeping
rate’’ for relevant local variables perform better with larger sample
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Table 3
Simulation results for the two-step selection procedures.

σ = 2 σ = 1

n = 200
Shrinkage rate for nonsignificant covariates 79.1% 89.7%
Keeping rate for significant covariates 92.0% 96.3%
Shrinkage rate for local nonsignificant covariates 77.0% 82.0%

n = 400
Shrinkage rate for nonsignificant covariates 81.8% 91.2%
Keeping rate for significant covariates 95.7% 99.3%
Shrinkage rate for local nonsignificant covariates 82.5% 93.8%

n = 1000
Shrinkage rate for nonsignificant covariates 88.9% 95.7%
Keeping rate for significant covariates 100% 100%
Shrinkage rate for local nonsignificant covariates 93.6% 100%

size and smaller noise. Specifically, it performs as good as the or-
acle estimator for the cases where n = 400 and σ = 7.5 as well
as sample size n = 1000. The Monte Carlo simulation results indi-
cate that our variable selection for local variablesmerits good finite
sample properties.

Example 3. To investigate the performance of variable selection
for covariates and local variables simultaneously, we do one more
step with variable selection for local variables in Example 1. All the
settings are the same as in Example 1, except the true model is
defined as

yi = g0(Z1i) + g1(Z1i)X1i + σ εi, 1 ≤ i ≤ n,

where g0(u) = u and g1(u) = u2. We assume that the index coef-
ficient depends only on local variable Z1 in this true model. Local
variable Z2 and five covariates (X2, . . . , X6) are not included in the
model but estimated in the working model; see Example 1 for de-
tails. Two-step selection procedures are employed in this simula-
tion. The first is to select six covariates (X1, . . . , X6)with functional
coefficients aswell as constant term. Then, we perform variable se-
lection for local variables Z1 and Z2 with parametric coefficients.
The simulation results for these two-step selection procedures are
tabulated in Table 3. Table 3 shows that with larger sample size
and smaller noise, shrinkage rates for both nonsignificant covari-
ates and local nonsignificant covariates become larger. These indi-
cate that our two-step procedures perform quite well so that the
proposed methods are efficient.

5. Empirical example

In the previous section, we conduct Monte Carlo simulation
studies to illustrate the effectiveness of the proposed estimation
methods. In this section, to demonstrate the practical usefulness
of the proposedmodel and its estimationmethods, we apply these
methodologies to consider the predictability of the asset return.

Our data consist of daily, weekly and monthly returns on the
three indexes of Dow Jones Industrial Average, NASDAQComposite
and S&P 500 Index. The sample of these three indexes comprise
over 30 years between May 1, 1994 and April 30, 2014. They end
in 30 April due to the fact that most listing corporations post their
annual reports at the end of April. The sample size up to 30 years
are considered so that there are enough data for nonparametric
estimation in the model. All the data are downloaded from the
Wind Information database.1 Table 4 shows the summary statistics
of returns for one day horizon, one week horizon and one month
horizon. All horizons show the negative skewness, which indicates
that a relatively long lower tail exists. For one day and one week

1 TheWebSite forWind Information is http://www.wind.com.cn/En/Default.aspx.
horizons, as expected, they appear to have high sample kurtosis,
and it demonstrates thatmore sample points are further away from
the sample mean and their tails are heavier. The Box–Pierce tests
show that the autocorrelations of monthly return of three indexes
are not significantly different from zero. However, others among
daily andweekly horizons are significantly different fromzero. This
phenomena suggests that most financial variables are not i.i.d. To
be precise, they are weakly dependent.

To explore the performance of functional index coefficient
autoregressive models, we assume that our working model is
established below

rt = g0(zt) +

p
j=1

gj(zt)rt−j + εt

εt = σtet et ∼ skewed-t(λ, ν)

σ 2
t = ω + αε2

t−1 + γ ε2
t−1It−1 + ρσ 2

t−1

where zt = β1rt−1 + β2rt−2 + β3rt−3 and we assume β2
1 +

β2
2 + β2

3 = 1 in order to satisfy the identification condition. The
standardized residuals et is skewed-t distributed with skewness
parameter λ and degree of freedom ν, γ captures the leverage
effect. The indicator function It−1 takes value of 1 for εt ≤ 0 and 0
otherwise. This model can be viewed as an extension of the model
by Chen and Tsay (1993). We use the two-step variable selection
procedures to select variables and to estimate unknown coefficient
functions simultaneously. Firstly, we select covariates based on
penalized local least squares and thendo variable selection for local
important variables based on penalized global least squares. After
the two-step variable selection procedures are employed in above
model, the estimated coefficients of local variables and the norms
of covariates are reported in Table 5. Note that zt may include other
financial or state economy variables as in Cai et al. (2014a).

In the columns of local variables, both one day lagged return
and two days lagged return have effect on the daily return of
these three indexes. Three days lagged return does not have any
effect on the daily return of both NASDAQ and S&P 500. Only
one week lagged return contributes to the weekly return of both
NASDAQ and S&P 500. However, twoweeks lagged return does not
have any contribution. Specifically, one week lagged return and
three weeks lagged return perform similar for the weekly return
of DOW. For the monthly horizon, one month lagged return has a
significant effect on these three indexes, twomonths lagged return
forNASDAQand threemonths lagged return for bothDOWand S&P
500.

In the columns of covariates, only one day lagged covariate
and two days lagged covariate contribute to the daily return of
three indexes. Meanwhile, for the weekly horizon, only one week
lagged covariate and three weeks lagged covariate are important
factors for the weekly return of three indexes. Further, for the
monthly horizon, one month lagged covariate has contribution for
the monthly return of three indexes, twomonths lagged return for
NASDAQ, and three months lagged return for DOW and S&P 500.

The coefficients of GJR-GARCH model for error terms are
tabulated in Table 6. The significance for the skewness λ and the
degree of freedom µ for all horizons leads to the non-normality of
standardized residuals. It is interesting that leverage effects exist
in both one day horizon and one week horizon. However, it cannot
be observed in onemonth horizon. Meanwhile, we cannot find any
heteroscedasticity in terms of GJR-GARCH model from one month
horizon.

6. Conclusion

Variable selection technology and its algorithms are well
developed formodels with i.i.d. data and formany fully parametric
models. Specifically, variable selection in both semi-parametric

http://www.wind.com.cn/En/Default.aspx
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Table 4
Summary statistics of returns for different horizons.

Sample size Mean Median StdDev Skewness Kurtosis Min Max ρ1 Box–Pierce test

One day horizon
DOW 7572 0.0414 0.0520 1.1229 −1.0822 29.6289 −22.6100 11.0800 −0.0349 0.0000
NASDAQ 7572 0.0471 0.1064 1.4084 −0.0250 8.2972 −11.3500 14.1700 0.0150 0.0000
S&P 500 7572 0.0392 0.0588 1.1522 −0.8293 21.4268 −20.4700 11.5800 −0.0408 0.0000

One week horizon
DOW 1566 0.1958 0.3499 2.2885 −0.6595 5.3837 −18.1500 11.2900 −0.0682 0.0001
NASDAQ 1566 0.2249 0.3348 2.9844 −0.7072 7.3782 −25.3000 18.9800 0.0209 0.0304
S&P 500 1566 0.1843 0.3133 2.3041 −0.5709 5.2818 −18.2000 12.0300 −0.0703 0.0004

One month horizon
DOW 360 0.8371 1.1460 4.3900 −0.8078 2.8407 −23.2200 13.8200 0.0181 0.9318
NASDAQ 360 0.9957 1.7370 6.4387 −0.5703 1.9663 −27.2300 21.9800 0.1001 0.5826
S&P 500 360 0.7866 1.1430 4.4202 −0.7755 2.3396 −21.7600 13.1800 0.0517 0.9723
Table 5
Coefficients for local variables and covariates.

Local variables Covariatesa

rt−1 rt−2 rt−3 1 rt−1 rt−2 rt−3 rt−4 rt−5 rt−6

One day horizon
DOW 0.7087 0.6385 −0.3000 3.1532 2.8250 2.6166 0 0 0 0
NASDAQ 0.6609 −0.7505 0 5.0515 3.2321 3.7374 0 0 0 0
S&P 500 0.4183 −0.9083 0 4.4862 1.8567 3.9876 0 0 0 0

One week horizon
DOW 0.7716 0 0.6360 16.4212 8.0355 0 6.6187 0 0 0
NASDAQ 1 0 0 30.9023 14.9169 0 4.3741 0 0 0
S&P 500 1 0 0 15.5780 9.5644 0 2.1025 0 0 0

One month horizon
DOW 0.8638 0 −0.5034 70.1698 59.3783 0 34.5686 0 0 0
NASDAQ 0.8488 0.5286 0 189.735 68.8333 42.7579 0 0 0 0
S&P 500 0.8697 0 0.4934 98.7581 48.1937 0 27.6172 0 0 0
a We calculate the norm of the functional coefficients for covariates.
Table 6
Estimation results of GJR-GARCH model for error terms. The skewness λ and the
degree of freedom µ are parameters of skewed-t distribution of standardized
residuals et . Four parameters ω, α, γ and ρ are from GJR-GARCH model. The
corresponding t-ratios based on robust standard errors are reported in parentheses.

λ µ ω α γ ρ

One day horizon
DOW 0.8594* 8.4413* 0.0134* 0.0000 0.1786* 0.9009*

(32.02) (5.02) (3.20) (0.00) (5.53) (49.04)
NASDAQ 0.8592* 12.8651* 0.0263* 0.0000 0.1524* 0.9068*

(31.02) (3.30) (2.44) (0.02) (3.83) (38.27)
S&P 500 0.8534* 8.2578* 0.0201* 0.0000 0.1882* 0.8935*

(28.55) (5.45) (3.14) (0.48) (5.02) (44.84)

One week horizon
DOW 0.8670* 9.1538* 0.2994 0.0131 0.1913* 0.8166*

(29.45) (4.48) (1.79) (0.59) (2.96) (10.40)
NASDAQ 0.8886* 7.6217* 0.2626* 0.0657* 0.1351* 0.8262*

(24.22) (5.47) (1.97) (0.03) (0.06) (0.06)
S&P 500 0.8709* 10.4121* 0.2680 0.0045 0.2322* 0.8119*

(30.73) (3.98) (1.75) (0.24) (3.19) (10.55)

One month horizon
DOW 1.0221* 2.0107* 0.0000 0.4868 1.0000 0.0013

(84.93) (177.50) (0.08) (0.52) (0.59) (0.20)
NASDAQ 1.0304* 2.0100* 0.0036 0.0140 1.0000 0.2310

(69.11) (234.73) (0.70) (0.09) (0.51) (0.34)
S&P 500 1.0056* 2.0344* 0.0918 0.1551 0.4581 0.6138

(53.03) (37.72) (0.61) (0.16) (0.32) (0.72)
* Denotes significance at confidence level 5%.

and nonparametric models has become popular in recent years. In
contrast to the i.i.d. setting in those papers with variable selection,
we considered variable selection in functional index coefficient
models under strong mixing context. Most weakly dependent
financial time series can be analyzed in our procedures under the
general conditions considered in this paper. Our variable selection
procedures select both covariates with functional coefficients
and local variables with parametric coefficients in two steps.
Theoretical properties such as consistency, sparsity, and the oracle
property of these two-step estimators are derived. Monte Carlo
simulations show that our two-step procedures perform fairly
well. To address the issue of stock return predictability, an example
of functional index coefficient autoregressivemodels is extensively
studied and it can be viewed as an extension of the model in Chen
and Tsay (1993).

In financial economics, many of the regressions may suffer
spurious regression due to the presence of highly persistent
regressors. Persistence can be found in many financial variables,
such as book-to-market ratios, dividend–price ratio, earning–price
ratio, short-term Treasury bill rate and yield spread (Campbell and
Yogo, 2006; Phillips and Lee, 2013). The theories for regression
model with persistent variables are very different from the model
with stationary variables; see, for example, Cai and Wang (2014)
and Cai et al. (forthcoming). And there is little literature regarding
variable selection in the model with persistent regressors. For
future research, it would be interesting to consider variable
selection for the linear and nonlinear time series predictionmodels
with persistent and/or nonstationary variables.

Appendix. Mathematical proofs

In this Appendix, we present briefly the derivations of the
main results given in previous sections. Before embracing on the
proofs, we define some notations and list some lemmas that will
be used throughout this appendix. First, let C be a finite positive
constant and Rm denotes ignorable small order term. Both of them
might be different in different appearances. Now, we present
Lemmas 1 and 2.

Lemma 1. Let {Xi, Zi, yi} be a strong mixing and strictly stationary
sequence. Under Assumptions A1–A8. Assume that h ∝ n−1/5,
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n−1/10αn → 0 and ∥β̂ − β0∥ = Op(1/
√
n), we have

n−1
n

i=1

∥ĝ(β̂TZi) − g0(βT
0 Zi)∥

2
= Op(n−4/5).

Proof. By the triangle inequality n−1n
i=1 ∥ĝ(β̂TZi) − g0(βT

0 Zi)∥
2

≤ n−1n
i=1 ∥ĝ(β̂TZi) − g0(β̂TZi)∥2

+ n−1n
i=1 ∥g0(β̂TZi) −

g0(βT
0 Zi)∥

2.
The second term on the right hand side

n−1
n

i=1

∥g0(β̂TZi) − g0(βT
0 Zi)∥

2

= n−1
n

i=1

∥ġ0(βT
0 Zi)(β̂ − β0)

TZi + op(n−1/2)∥2

(by Taylor expansion)

≤ n−1C
n

i=1

(β̂ − β0)
TZiZT

i (β̂ − β0) + op(n−1)

(by Assumption A1)

= C(β̂ − β0)
TE(ZiZT

i )(β̂ − β0) + op(n−1)

= Op(n−1).

In the above equation, C is the maximum value of ∥ġ0(βT
0 Zi)∥

2.
We can conclude that the order of the second term is of order
as Op(n−1). Now, it suffices to show that n−1n

i=1 ∥ĝ

β̂TZi


−

g0

β̂TZi


∥
2

= Op(n−4/5). Following the proof in Wang and Xia

(2009), we let u = (uik) ∈ Rn×p be an arbitrary n × p matrix
with rows ui· and columns u·k and u = (u1·, u2·, . . . , un·)

T
=

(u·1, u·2, . . . , u·p). Set ∥u∥ =


i,k u

2
i,k to be the L2-norm for an

arbitrary matrix u = (uik). For any small ε > 0, if we can show
that there is a large constant C such that P{infn−1∥u∥2=C Q (G0 +

(nh)−1/2u, β̂) > Q (G0, β̂)} > 1 − ε, then the proof is finished.
To this end, define

D ≡ n−1h{Q (G0 + (nh)−1/2u, β̂) − Q (G0, β̂)}

= n−1h


n

j=1

n
i=1


yi − gT

0 (β̂TZj)Xi − (nh)−1/2uT
j·Xi

2
× Kh


β̂TZi − β̂TZj


−

n
j=1

n
i=1


yi − gT

0 (β̂TZj)Xi

2
× Kh


β̂TZi − β̂TZj



+ h
p

k=1


Pλn


∥g0·k + (nh)−1/2u·k∥


− Pλn (∥g0·k∥)


≥ n−1

n
j=1


uT
j·Σ̂(β̂TZj)uj· − 2uT

j· êj


+ h
p0
k=1


Pλn


∥g0·k + (nh)−1/2u·k∥


− Pλn (∥g0·k∥)


,

where Σ̂(β̂TZj) = n−1n
i=1 XiXT

i Kh(β̂
TZi − β̂TZj) and êj = n−1/2

h1/2n
i=1[XiXT

i (g0(βT
0 Zi)−g0(β̂TZi))+XiXT

i (g0(β̂TZi)−g0(β̂TZj))+
Xiεi]Kh(β̂

TZi − β̂TZj). Let λ̂min
j be the smallest eigenvalue of

Σ̂(β̂TZj), λ̂min = min{λ̂min
j , j = 1, . . . , n} and ê = (ê1, . . . , ên)T

= Rn×p. Then, D ≥ n−1n
j=1(∥uj·∥

2λ̂min
j − 2∥uj·∥∥êj∥) −
n−1/2h1/2p0
k=1 P

′

λn
(∥g0·k∥)∥u·k∥, where the first term on the

right hand side is followed by Cauchy–Schwarz inequality and
the second term is followed by Taylor expansion and triangle
inequality. Therefore,

D ≥ λ̂minn−1
n

j=1

∥uj·∥
2
− 2(n−1

∥u∥2)1/2(n−1
∥ê∥2)1/2

− n−1/2h1/2αn

p0
k=1

∥u·k∥

≥ λ̂minn−1
∥u∥2

− 2(n−1
∥u∥2)1/2(n−1

∥ê∥2)1/2

− h1/2α
√
p0


n−1

p0
k=1

∥u·k∥
2

1/2

= λ̂minC − 2
√
C(n−1

∥ê∥2)1/2 − h1/2αn
√
p0

√
C .

As we will show later that

n−1
∥ê∥2

= Op(1) and λ̂min →
P λmin

0 as n → ∞,

where λmin
0 = infz∈[0,1] λmin(f (β̂Z)Ω(β̂Z)), λmin(·) denotes the

minimal eigenvalue of an arbitrary positive definite matrix. By
Assumptions A2 and A4, as λmin

0 > 0 and h1/2αn → 0, we can show
that D > 0 for a sufficient large C . Then, this proof is complete.

To show n−1
∥ê∥2

= O(1), it is easy to see that

n−1
∥ê∥2

→
P E∥êj∥2

and

E∥êj∥2
≤ n−1hE

 n
i=1

[XiXT
i (g0(β̂TZi) − g0(β̂TZj))]

× Kh(β̂
TZi − β̂TZj)


2

+ n−1hE

 n
i=1

[XiεiKh(β̂
TZi − β̂TZj)]


2

+ n−1hE

 n
i=1

[XiXT
i (g0(βT

0 Zi) − g0(β̂TZi))]

× Kh(β̂
TZi − β̂TZj)


2

≡ A + B + D̃

where A denotes the first term, B is for the second term and D̃
stands for the last term. We introduce notations as zi = βTZi,
zs = βTZs and zj = βTZj

A = n−1hE


i≠s≠j

[(g0(β̂TZi) − g0(β̂TZj))TXiXT
i XsXT

s (g0(β̂TZs)

− g0(β̂TZj))

× Kh(β̂
TZi − β̂TZj)Kh(β̂

TZs − β̂TZj)]


+ n−1hE


(i=s)≠j

{· · · }

≡ n−1hE


i≠s≠j

[(g0(zi) − g0(zj))TXiXT
i XsXT

s (g0(zs) − g0(zj))

× Kh(zi − zj)Kh(zs − zj)]


+ n−1hE


(i=s)≠j

{· · · }

≡ A1 + A2,
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where A1 denotes the first term and A2 is for the second term. It is
easy to show that

A1 ≡ nhE{(g0(zi) − g0(zj))TXiXT
i XsXT

s (g0(zs)
− g0(zj))Kh(zi − zj)Kh(zs − zj)} + Rm

= nhE{(g0(zi) − g0(zj))TΩ(zi, zs, zj)(g0(zs)
− g0(zj))Kh(zi − zj)Kh(zs − zj)} + Rm

= nh


E{(g0(zi) − g0(zj))TΩ(zi, zs, zj)

× (g0(zs) − g0(zj))Kh(zi − zj)Kh(zs − zj)|zj}f (zj)dzj + Rm

≡ A11 + Rm,

where the definition of A11 is apparent and Rm is an ignorable small
order term, which might be different in different appearances. Let
zi = zj + wh and zs = zj + vh. Then,

A11 = nh
   

ġ0(zj)wh +
1
2
C1w

2h2
T

× Ω(zj + wh, zj + vh, zj)

ġ0(zj)vh +

1
2
C2v

2h2


× k(w)k(v)f ((zj + wh, zj + vh)|zj)dwdv


f (zj)dzj

≡ nh


A12(zj)f (zj)dzj,

where

A12(zj) =

  
ġ0(zj)wh +

1
2
C1w

2h2
T

[Ω(zj, zj, zj)

+ Ω1(zj, zj, zj)wh + Ω2(zj, zj, zj)vh

+ op(w2h2) + op(v2h2)]

×


ġ0(zj)vh +

1
2
C2v

2h2


[f ((zj, zj)|zj)

+ f1((zj, zj)|zj)wh + f2((zj, zj)|zj)vh

+ op(w2h2) + op(v2h2)]k(w)k(v)dwdv

= I12(Zj)h4


w2v2k(w)k(v)dwdv + op(h4)

where I12(Zj) is an integrable function. Then, A1 = Op(nh5) =

Op(1). Also, we can show that

A2 = n−1hE


i≠j

[(g0(zi) − g0(zj))TXiXT
i XiXT

i

× (g0(zi) − g0(zj))K 2
h (zi − zj)]


= hE{(g0(zi) − g0(zj))TXiXT

i XiXT
i (g0(zi) − g0(zj))

× K 2
h (zi − zj)} + Rm

= hE{(g0(zi) − g0(zj))TΩ(zi, zj)(g0(zi) − g0(zj))

× K 2
h (zi − zj)} + Rm

= h


E{(g0(zi) − g0(zj))TΩ(zi, zj)(g0(zi)

− g0(zj))K 2
h (zi − zj)|zj}f (zj)dzj + Rm

≡ h


A21f (zj)dzj + Rm,
where

A21(zj) ≡


(g0(zi) − g0(zj))TΩ(zi, zj)(g0(zi) − g0(zj))

× K 2
h (zi − zj)f (zi|zj)dzi.

Let zi = zj + wh. Then,

A21(zj) =
1
h


(ġ0(zj)wh + Cw2h2)TΩ(zj + wh, zj)

× (ġ0(zj)wh + Cw2h2)k2(w)f (zj + wh|zj)dw

= I21(Zj)h


w2k2(w)dw + Rm

where I21(Zj) is an integrable function, then A2 = Op(h2) = op(1).
Hence, A = Op(1), Now, we consider the term B as follows.

B = n−1hE




n
i=1

XiεiKh(zi − zj)

T  n
s=1

XsεsKh(zs − zj)


= n−1hE

 
(i=s)≠j

XiXT
s εiεsKh(zi − zj)Kh(zs − zj)



+ 2n−1hE

 
(i=j)≠s

XiXT
s εiεsKh(zi − zj)Kh(zs − zj)



+ n−1hE

 
(i≠s)≠j

XiXT
s εiεsKh(zi − zj)Kh(zs − zj)



+ n−1hE


i=s=j

XiXT
s εiεsKh(zi − zj)Kh(zs − zj)


≡ B1 + B2 + B3 + B4,

where the definitions of Bj’s are apparent. Now,

B1 = hE[XiXT
i ε2

i K
2
h (zi − zj)] + Rm

= hE[XiXT
i K

2
h (zi − zj)E(ε2

i |Xi, zi, zj)] + Rm

= hσ 2E[XiXT
i K

2
h (zi − zj)] + Rm

= hσ 2E[Ω(zi, zj)K 2
h (zi − zj)] + Rm

= hσ 2E{E[Ω(zi, zj)K 2
h (zi − zj)|zj]} + Rm.

Let zi = zj + wh. Then, we have

E[Ω(zi, zj)K 2
h (zi − zj)|zj]

=
1
h2


Ω(zi, zj)k2


zi − zj

h


fzi|zj(zi|zj)dzi

=
1
h


Ω(zj + wh, zj)k2(w)fzi|zj(zj + wh|zj)dw

= IB2(zj)Op(1/h)


k2(w)dw,

where IB1(zj) is an integral function of zj, so that B1 = Op(1),

B2 = 2n−1hE


s≠j

XjXT
s εjεsKh(0)Kh(zs − zj)



= 2n−1h
∞

ℓ=−∞

E[Xs+ℓXT
s εℓ+sεsKh(0)Kh(zs+ℓ − zs)] + Rm

= 2n−1h
∞

ℓ=−∞

E[E(Xs+ℓXT
s εℓ+sεs|zℓ+s, zs)

× Kh(0)Kh(zs+ℓ − zs)] + Rm
= Op(1),
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B3 = n−1hE

 
(i≠s)≠j

XiXT
s εiεsKh(zi − zj)Kh(zs − zj)



= n−1h
∞

ℓ=−∞

E[XiXT
i−ℓεiεi−ℓKh(zi − zj)Kh(zi−ℓ − zj)]

= n−1h
∞

ℓ=−∞

E[E(XiXT
i−ℓεiεi−ℓ|zi, zi−ℓ, zj)

× Kh(zi − zj)Kh(zi−ℓ − zj)]
= Op(h),

and

B4 = n−1hE[XT
j Xjε

2
j K

2
h (0)] = n−1hE[XT

j XjE(ε2
j |Xj)K 2

h (0)]

= n−1hσ 2K 2
h (0)E[XT

j Xj] = Op(n−4/5).

Thus, B = Op(1). Now,

D̃ = n−1hE

 n
i=1

[XiXT
i (g0(βT

0 Zi) − g0(β̂TZi))]Kh(β̂
TZi − β̂TZj)


2

≤ hE∥[XiXT
i (g0(βT

0 Zi) − g0(β̂TZi))]Kh(β̂
TZi − β̂TZj)∥2

= hE∥[XiXT
i (ġ0(βT

0 Zi)(β̂ − β0)
TZi + op(n−1/2))]

× Kh(β̂
TZi − β̂TZj)∥2

≤ C(h/n)E∥XiXT
i Kh(β̂

TZi − β̂TZj)∥2

= Op(1/n).

This proves the lemma. �

Lemma 2. Let {Xi, Zi, yi} be a strong mixing and strictly station-
ary sequence, h ∝ n−1/5, limn→∞ infθ→0+ P ′

λn
(θ)/λn > 0, and

n−1/10λn → 0. Then, ∥ĝ.k∥ = 0 as n → ∞ for k > d0.

Proof. Assume ∥ĝ.k∥ ≠ 0, then,

∂Q (G, β̂, h)
∂g.k

= J1 + J2 = 0,

where J1 = (J11, J12, . . . , J1n)T , J1j = −2
n

i=1 Xik


yi − ĝT (β̂TZj)Xi


Kh(β̂

TZi − β̂TZj), and J2 = nP ′

λn
(∥g.k∥)

g.k
∥g.k∥

. Similar to the proof
of (A.7) in Wang and Xia (2009), by Lemma 1, we can derive that

∥J1∥ = Op(nh−1/2) and we know ∥J2∥ = nP ′

λn
(∥g.k∥) =

P ′
λn (∥g.k∥)

λn
·

√
hλn · nh−1/2. Since

P ′
λn (∥g.k∥)

λn
> 0 and

√
hλn → 0, then P(∥J2∥ <

∥J1∥) → 1 as n → ∞. It contradicts with the assumption. Hence,
∥ĝ.k∥ = 0 as n → ∞. �

Proof of Theorem 2. (a) Following the similar steps in the Proof
of Theorem 1 by Wang and Xia (2009), with Lemma 2 and Hunter
and Li (2005), we can conclude supZ∈Az ∥ĝk(z, β̂)∥ = 0, for all
d1 < k ≤ d.

(b) We want to show that there exists a Ĝa such that it is
the minimizer of Q ((Ga, 0), β̂, h). Taking the first derivative of
Q ((Ga, 0), β̂, h)with respective to ĝa(β̂TZj), we can get the normal
equation as
n

i=1

Xia


yi − ĝT

a (β̂TZj)Xia


Kh(β̂

TZi − β̂TZj) + nΠj = 0,

where Πj is a a-dimensional vector with its kth component given
by

P ′

λn
(∥ĝ.k∥)

ĝk(β̂TZj)
∥ĝ.k∥

.

Since P ′

λn
(∥ĝ.k∥) = 0 when ∥ĝ.k∥ ≠ 0 and n is large, then, Π = 0

follows when n is large. Note that

n
i=1

Xia


yi − ĝT

a (β̂TZj)Xia


Kh(β̂

TZi − β̂TZj) = 0.

In fact, the above normal equation also holds for all z = β̂TZ ,
Z ∈ Az, β̂ ∈ B. It turns out

n
i=1

Xia


yi − ĝT

a (z, β̂)Xia


Kh(β̂

TZi − z) = 0

and

ĝa(z, β̂) =


n

i=1

XiaXT
iaKh(β̂

TZi − z)

−1 n
i=1

XiayiKh(β̂
TZi − z).

Then,

ĝa(z, β̂) − g0a(z, β0) = {ĝa(z, β̂) − ĝa(z, β0)}

+ {ĝa(z, β0) − g0a(z, β0)}.

By Taylor expansion, the first term in the right hand side of the
above equation is the order of Op(n−1/2) and the second term in
the right hand side is the order of Op(n−2/5). Thus the asymptotic
property of the ĝa(z, β̂) − g0a(z, β0) is the same as the second
term. And the asymptotic property of the second term ĝa(z, β0) −

g0a(z, β0) can be found in the proof of Theorem 3 by Xia and Li
(1999). �

Proof of Theorem 3. It follows from Theorem 1 in Xia and Li
(1999) that

Q̂1(β, h) = S̃(β) + T (h) + R1(β, h) + R2(h),

where Q̂1(β, h) =
n

i=1(yi − ĝT (βTZi)Xi)
2, T (h) and R2(h) do not

depend on β , and R1(β, h) is an ignorable term. Furthermore,

S̃(β) = n[Ṽ 1/2
0 (β − β0) − n−1/2σε]T [Ṽ 1/2

0 (β − β0) − n−1/2σε]

+ R3 + R4(β),

where R3 does not depend on β and h, and R4(β) is an ignorable
term.

Let δn = n−1/2
+ an, t = (t1, . . . , td)T . For any small ε > 0, if

we can show there exists a large constant C , such that

P{ inf
∥t∥=C

Q (β0 + δnt, ĝ) > Q (β0, ĝ)} > 1 − ε,

then

∥β̂ − β0∥ = Op(δn).

Define Dn = Q (β0 + δnt, ĝ) − Q (β0, ĝ). Then,

Dn ≥
1
2

n
i=1

(yi − ĝT (βT
0 Zi + δntTZi)Xi)

2

−
1
2

n
i=1

(yi − ĝT (βT
0 Zi)Xi)

2

+ n
d1
k=1

Ψζn(|β10k + δntk|) − n
d1
k=1

Ψζn(|β10k|)

(by β20 = 0)
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and

n
d1
k=1

Ψζn(|β10k + δntk|) − n
d1
k=1

Ψζn(|β10k|)

= n
d0
k=1


δnΨ

′

ζn
(|β10k|)sgn(β10k)tk +

1
2
δ2
nΨ

′′

ζn
(|β10k|)t2k


+ op(nδ2

n)

≤


d1nδnan∥t∥ +

1
2
nδ2

nmax1≤k≤d0{Ψ
′′

ζn
(|β10k|)}∥t∥2

+ op(nδ2
n)

(by Cauchy–Schwarz inequality)

≤ nδ2
n


d0C + Op(nδ2

n)

as n → ∞ and max1≤k≤d0{Ψ
′′

ζn
(|β10k|)} → 0

and

1
2

n
i=1

(yi − ĝT (βT
0 Zi + δntTZi)Xi)

2
−

1
2

n
i=1

(yi − ĝT (βT
0 Zi)Xi)

2

=
1
2
n[Ṽ 1/2

0 δnt − n−1/2σε]T [Ṽ 1/2
0 δnt − n−1/2σε]

−
1
2
n[n−1/2σε]T [n−1/2σε]

+ R1(β0 + δnt, h) − R1(β0, h) + op(1)
(by the theorem in Xia and Li, 1999)

=
1
2
nδ2

n t
T Ṽ0t − n1/2δntT Ṽ

1/2
0 σε + R1(β0 + δnt, h)

− R1(β0, h) + op(1)

=
1
2
nδ2

n t
T Ṽ0t − δntTVn + R1(β0 + δnt, h) − R1(β0, h) + op(1).

Since R1 are negligible terms as n → ∞ and 1
√
nVn = Op(1). then

−δntTVn = C · Op(δn
√
n) = C · Op(δ

2
nn). By choosing a sufficient

large C , the term 1
2nδ

2
n t

T Ṽ0t will dominate others. Hence, Dn ≥ 0
holds. �

Proof of Theorem 4. Let β̂1 −β10 = Op

n−1/2


. We want to show

that

β̂1, 0

T
= argmin

βT
1 ,βT

2
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Q
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T
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
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show that for some constant C and k = q0 + 1, . . . , q,
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βT
1 , βT

2

T
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
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Note that
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1/2
0 ε + Rm

= 2neTk Ṽ0 (β − β0) − 2eTkVn + Rm

where Rm represents small order term and ek is a d-dimensional
vector with kth element being one and all others being zero. Since
β − β0 = Op


1/

√
n

and Vn = Op

√
n

, then,
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+
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Since
√
nζn → ∞ and lim infn→∞,βk→0+

Ψ ′
ζn (|βk|)

ζn
> 0, the sign of

∂Q
∂βk

is determined by the sign of βk. It follows from Part (a) that
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Note that as n → ∞ and ζn → 0, Ψ ′
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