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1. Introduction

The capital asset pricing model (CAPM) plays a cornerstone role
in theoretical and empirical finance. It states that a linear relation-
ship exists between the excess return of a risky asset and the beta
of that asset with respect to the market return. The betas in the
CAPM are commonly assumed to be constant over time. However,
recent empirical studies provide ample evidence against this
assumption because the relative risk of firm’s cash flow varies over
the business cycle and the state of the economy; see, for example,
Fama and French (1997), Ferson and Harvey (1997), Lettau and
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Ludvigson (2001), Zhang (2005), Lewellen and Nagel (2006) and
the references therein. In other words, it is more reasonable to
believe that the CAPM holds under the condition of current
information sets, which leads to the conditional CAPM. In the
conditional CAPM, the corresponding betas should be adjusted
accordingly because information sets are updated over time. This
implies that betas are time-varying. How to estimate the time-
varying betas is of great importance because only when the betas
are estimated appropriately, the pricing errors of the conditional
CAPM are able to be measured correctly and the validity of the
model can be evaluated. For this purpose, in this paper, we propose
a new methodology to estimate the time-varying betas.
Estimation of the time-varying betas has already been discussed
extensively through two different approaches in the finance litera-
ture. First, betas can be regarded as a function of time; for example,
see the papers by Johnstone and Silverman (1997) and Robinson
(1997). For parametric models in this approach, betas are assumed
to be either a discrete function of time such as the threshold CAPM
proposed by Akdeniz et al. (2003), or a continuous function like a
smooth transition model developed by Lin and Terdsvirta (1994).
For nonparametric models, betas are simply a nonparametric func-
tion of time, as described by Ang and Kristensen (2012) and Connor
et al. (2012). This approach is criticized for hiding the economics
driving force behind betas. It does not show how and why betas
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vary over time. The second approach is that betas are assumed to
be affected by some variables. These variables can be the proxies
of latent variables as pointed out by Ang and Chen (2007) or of
some observable macro variables as in Ferson and Harvey (1999).
It is clear that the latter approach can provide more economic
intuition on the movement of betas than the former one. Because
there is no overwhelming argument for either approach, this paper
circumvents this debate and assumes that betas are functions of
some observable variables. These variables are often called finan-
cial instruments.

There are two advantages of using financial instruments to
track the movement of betas. The first advantage is that this
method can reveal the close relationship between the relative risk
of firm’s cash flow as it varies over the business cycle and the state
of the economy. As suggested by Ait-Sahalia and Brandt (2001), all
of potential instrument variables can be combined into an index
that best captures time variations in betas, and the index can be
explained as an economic state variable. This index has a good
interpretation as follows. From a statistical standpoint, the index
avoids the curse of dimensionality because it allows us to reduce
the multivariate problem to one. Therefore, we can implement
the nonparametric approach (see Section 2 later) in a univariate
setting; see Ait-Sahalia and Brandt (2001) for details. From an
economic perspective, this index offers a convenient univariate
summary statistic that describes the current state of the various
time-varying economic indicators related to investment opportu-
nities for portfolio investment. From a normative perspective, the
index can help investors with any set of preferences to determine
which economic variables they should track and, more impor-
tantly, in what single combination. The other advantage is that this
approach considers not only the variation across averages of betas
in each short time window but also the variation of the actual betas
within each window. Indeed, Campbell and Vuolteenaho (2004),
Fama and French (2005) and Lewellen and Nagel (2006), among
others, assumed discrete changes in betas across sub-samples
but constant betas within sub-samples.

However, there are still three pitfalls in this time-varying betas.
First, there is a strict assumption about the relationship between
the betas and the instrument variables. Ferson and Harvey
(1999) imposed the assumption that the betas are linear functions
of the index, whereas Wang (2002, 2003) found strong evidences
against this assumption and argued that this strong assumption
might lead to a model misspecification. As shown in Ghysels
(1998), inference and estimation based on misspecification can
be very misleading. In addition, Ghysels (1998) showed that
among several well-known time-varying beta models, a serious
misspecification might produce time variation in the beta that is
highly volatile, and it might lead to large pricing errors. Thus, it
is important to analyze the time-varying betas by relaxing the
aforementioned assumptions. Second, as pointed out by Ait-
Sahalia and Brandt (2001), it is often in the literature to choose
instruments and to estimate model in two different model frame-
works (under two different objective functions). In such a way, it
might produce an inconsistent estimation or an inappropriate
instrument selection. Therefore, to select instruments and best fit
the model, the selection procedure should be conducted simulta-
neously with the estimation approach. Last, Harvey (2001) showed
that the estimates of betas obtained using instrumental variables
are very sensitive to the choice of instruments used as proxies
for time-variation in the conditional betas.

To address the aforementioned issues, we propose using a
functional coefficient regression (FCR) technique introduced by
Cai et al. (2000) to estimate the time-varying betas and at the same
time, adopting a penalty function to select the instrument vari-
ables. A FCR model estimates betas nonparametrically, by assum-
ing that the coefficients of financial covariates are deterministic

functions of some instrument variables. The estimates are obtained
by using any nonparametric methods such as local linear fitting;
see Fan and Gijbels (1996). Thus, a FCR model can relax the strong
assumption of linearity and avoid model misspecification. The
reader is referred to the survey paper by Cai and Hong (2009) on
how to apply a FCR model in economics and finance. In addition,
we can estimate betas and select instrument variables simultane-
ously by adding a penalty term. For example, we can choose the
smoothly clipped absolute deviation penalty (SCAD) function
introduced by Fan and Li (2001) although other penalty functions
might be applicable. By doing so, the model estimation and
variable selection can be implemented simultaneously so that
important instrument variables are chosen automatically for the
regression model. Thus, all of the potential candidates can be
included into the model without examining whether a relationship
exists between any individual instrument variable and the asset
return. The main contribution of this paper is that a new FCR model
with instrument variable selection is proposed from the condi-
tional CAPM point of view. Also, the mathematical proofs for our
model under time series settings are provided and indeed, they
are different from the linear model set up in the paper by Fan
and Li (2001) for the independent identically distributed (iid) sam-
ple. Moreover, the attractive point of this instruments selection for
the FCR model is that it is not only critical for the conditional
CAPM, but also flexible to be applied to other related economic
and financial areas where the important variables should be
selected from very large scale candidates.

In this paper, a discussion concerning about time-varying betas
is under the framework of the conditional CAPM. However, the
conditional CAPM, as an alternative to the static CAPM, is quite
controversial in the finance literature; see Lewellen and Nagel
(2006) for the detailed arguments. This means that it is difficult
to choose the conditional CAPM or the static CAPM in a real appli-
cation. Theoretically, the conditional CAPM can hold perfectly from
period to period, and it can be regarded as a base for many other
models; for example, the premium-labor model in Jagannathan
and Wang (1996). Conversely, Ferson and Harvey (1999), Wang
(2003) and Lewellen and Nagel (2006) found that the conditional
CAPM is rejected by their empirical analysis, although their results
might not be convincing. As for the aforementioned papers, the
model in Ferson and Harvey (1999) may be misspecified; see
Section 4 later for the detailed arguments. Wang (2003) used four
instrument variables to perform nonparametric estimations and
tests. However, the number of observations in his data might not
be large enough to produce reliable inferences. Finally, Lewellen
and Nagel (2006) did a simple comparison to evaluate whether
the variation in the betas and the equity premium is large enough
to explain important asset-pricing anomalies. However, the size of
their test method is challenged by Li et al. (2015). Thus, the validity
of choosing the conditional CAPM over the static CAPM is still an
open research topic.

Recently, Ferreira et al. (2011) proposed a nonparametric two-
stage estimator for conditional beta pricing models by allowing
for flexibility not only in the betas but also in the risk premium.
Our method can be considered as a generalization of the first stage
estimation in Ferreira et al. (2011) with the advantage that there is
no need to select the instrumental variables in advance. In addi-
tion, Ferreira et al. (2011) used multivariate kernel to estimate
the beta, and their method suffers from the curse of dimensional-
ity. For this reason, in their empirical analysis, they only used two
instrument variables. While, our model can alleviate this problem
in the estimation. Connor et al. (2012) developed a characteristic-
based weighted additive regression for the factor model. Due to the
curse of dimensionality, univariate nonparametric functions are
considered as the characteristic-betas in the paper. In their empir-
ical analysis, four characteristics including size, value, momentum
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and own-volatility are used to estimate the additive nonparametric
characteristic-based functions respectively. Ang and Kristensen
(2012) proposed a nonparametric method for estimating and test-
ing conditional alphas and betas and long-run alphas and betas. In
their paper, the alphas and betas are assumed to be deterministic
functions of time t.

To evaluate the conditional CAPM fairly, there are many aspects
to consider. Due to the infeasibility to analyze all of them, our focus
here is only on the following two points in this paper. The first is to
see whether the data support the time-varying betas and the sec-
ond is to exam whether the pricing error, the alpha, is statistically
insignificant. We do test on these two phenomena based on our
model. By applying the well known Fama-French data sets, we find
that we can not reject the hypotheses that the betas are time
varying and that the alpha is statistically insignificant. Therefore,
at this stage, we do not find any strong evidence against the
conditional CAPM.

The rest of this paper is organized as follows. Section 2 is
devoted to the descriptions of our estimation model and instru-
ment selection as well as the related econometric issues. Section 3
presents some simulation results to demonstrate the finite sample
performance of the proposed model, and Section 4 reports the
empirical analysis of 25 portfolios based on Fama-French data sets.
Finally, Section 5 concludes the paper. All the mathematical proofs
are relegated to the Appendices.

2. Econometric model
2.1. Model and estimation procedure

We consider the model

yi=g'(Z)Xi+e&, 1<i<n, (1)
where y; is a dependent variable, X; = (1,x,»)T, x; is a factor, Z; is a
d x 1 vector of local variables, {¢&;} are iid with mean 0 and standard

deviation ¢,c € R? is a d x 1 vector of unknown parameters and

T
g() = <g1(~),gz(-)r) is a vector of 2-dimensional unknown func-

tional coefficients. In the context of the conditional CAPM, g, () is
the pricing error, or o(-); g,(-) is the factor loading, or (-). Namely,
o(-) =g;(-) and B(-) = g,(-). We assume that ||c|| =1 and the first
element of c is positive for identification. Note that for simplicity,
x; is assumed to be a single factor. Extension to multiple factors is
straightforward and all modeling procedures and theories con-
tinue to hold. Further, the residuals {&} can be extended to
heteroscedasticity case in which the estimators are still consistent
if the sample size is large.

One may consider more general set up with Y; = g(X;,Z;) and
estimate the function by a non-parametric (or semi-parametric)
method. However, by following the CAPM model and its related
literature, we consider this FCCAPM form in this paper since this
setting may cover several other existing conditional CAPM models
(Johnstone and Silverman, 1997; Robinson, 1997; Ferson and
Harvey, 1999; Ang and Kristensen, 2012; Connor et al., 2012) as
a special case. Meanwhile, it can overcome the difficulty of the
so-called curse of dimensionality if there are many conditional
variable Z's.”

The functional coefficient capital asset pricing model (FCCAPM)
is given by

Vi =81(z) + & (z)Xi + &, (2)
where z; = c¢'Z;. By premultiplying X; on (2) and taking E(-|c"Z;) on
both sides, it leads to g(c'Z;) = [E(X,—X§|CTZ,-)]’]E(X,-y;|cTZ,-), which

can be considered as an extension of Eqs. (7)-(10) in the paper by
Wang (2003).

To estimate g,(-) and g,(-) in (2), one can use a local linear fit-
ting scheme (see Fan and Gijbels, 1996). For a given grid point z,
we can approximate g,(z) and g,(z) locally by a linear' function
g1(2) = ap + a1(z — z0) and g,(z) ~ bo + b1 (z — zo), respectively, when
z is in a neighborhood of z,. The local linear estimators of g;(z,) and
2,(z0) are defined as g;(z0) = Go and &(zo) = by, where {G;,b;}
(i =0,1) minimize the following locally weighted least squares

i{yl- — a0 + a1(2 — 20)] — [bo + b1 (2 — 20) X} Kn(zi —20),  (3)
i=1

where K;(-) = K(-/h)/h, K(-) is a kernel function on R' and h is a
bandwidth, which controls the amount of smoothing used in the
estimation. Next, we re-write the minimization problem (3) in a
matrix form. Let B = (ag, bo, a1,b1),Y = (V1,¥2,---»Vn)’s

1 x; (Z] —Z()) (Z] —Z())Xl

1 X2 (Zz *Zo) (Zz *Zo)Xz .
u=|. | . ) ,and W =diag{Ky(zi—20)}
1 Xn (Zn—20) (Zn—20)Xn

Then, the minimization problem can be transformed to
ming(Y — UB)W(Y — UB) and the solution is

B =(Uwu)'Uwy, (4)

which is the well known weighted least squares estimate. Clearly,
(4) provides a formula for computational implementation, which
can be carried out by any standard statistical package. When z,
moves over the domain of z;, the estimated curves of o(-) and f(-)
are obtained. In the practical implementation, zo can be taken any
value in the domain of z;.

To do the estimation and variable selection simultaneously, we
implement the procedures as follows. Given g(-), we minimize the
penalized global least squares Q(c, g) (or maximize the penalized
global likelihood), where

n d
Q(6.8) = 5> 07— 8'(CZ)X)" + Y Pllei) 5)
i=1 k=1

with P(-) being a penalty function. Here, an initial estimator g(-) can
be obtained by various algorithms such as the method in Fan et al.
(2003).

As for the penalty function, we choose the so-called smoothly
clipped absolute deviation (SCAD) penalty, where the first order
derivative of P, ,(-) is defined as

) — |Ck ,
@21aD- ey > 2, ©)

and / and v are two tuning parameters. By choosing two optimal
tuning parameters 4 and v, the resulting estimates from (5) can
be obtained in terms of out-of-sample MSE performance. Note that
other penalty functions can be used in (5); see Fan and Lv (2009) for
more discussions on the choice of various penalty functions. As
shown in Fan and Li (2001), the SCAD penalty function leads to
the estimators with three desired properties that can not be
achieved by either the L, penalty function or the hard penalty func-
tion. The three properties are as follows: unbiasedness for the
non-zero coefficient to avoid unnecessary estimation bias, sparsity
for estimating a coefficient as small as 0 to reduce model complex-
ity, and continuity of the resulting estimator to avoid unnecessary
variation in model prediction. More discussions regarding these
properties can be found in the paper by Fan and Li (2001).

P’ (lckl) = (e < 2) +

1 A polynomial approach is applicable; see Fan and Gijbels, 1996 for details.
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To make our method more adaptive to big data paradigm, we
may use the sure independence screening (Fan and Lv, 2008).
The first is to squeeze down the size of instrumental variables Z
by doing regression on functional coefficient model with each vari-
able Z, respectively. Then we apply SCAD to select the instrumental
variables.

In view of (6), the choices of 4 and » are important in the prac-
tical implementation. Here, we follow the idea from Fan and Li
(2001) and use the following multi-fold cross-validation. Denote
the full data set by 7, and denote cross-validation training and test
set by 7 — 7% and 779, respectively, for ¢ = 1,...,Q. For every /, v
and g, we get the estimators g;(-) and g,(-) by using 7 — 79 train-
ing set. Then, we choose / and v to minimize

Q

VLo = >

q=1(yg.xq.2q)T?

Yy — 81(z0) — 82(20)%)"-

As suggested by Fan and Li (2001), we choose Q = 5.

Intuitively, if instrument variables are not helpful in explaining
the time-varying betas, the estimated coefficients for these instru-
ments are shrunk exactly to zero. Hence, the instruments with the
estimated zero value coefficients are not included in formatting the
state variable. This variable selection method is entirely data-
driven and reveals the potential effects of instrument variables,
while it maintains simultaneously the analysis within the
framework of FCCAPM. Furthermore, because the number of the
instrument variables are no longer restricted, the SCAD method
removes automatically the “useless” instruments and selects the
significant instruments.

2.2. Asymptotic properties

Let {(Xi,Zi,y;)} be a strictly stationary and strong mixing
sequence, f(z,c) be the density function of z=c'Z, where ¢
is an interior point of the compact set (. Define
A, ={Z:f(Z,c) = A,Vc € C}, where A is a small positive constant.
For c an interior point of the compact set C, define penalized least
squares

d

Q.8 = 5> 0~ F'(CZ)X)" + 1Y P au). )

k=1
We assume the first d; coefficients of ¢ are nonzero, and all rest of
parameters are zero, i.e., ¢o = (C{O,cgo)T, all elements of c;p with
dimension d; are nonzero, and d —d; dimensional coefficients
20 = 0. Finally, define V, = Y"1, (Z; — E(Zi|c}Z;))&" (¢} Zi)Xiei, where
£(+) is the first derivative of function g(-) vector, and ¢; is iid with
mean 0 and standard deviation . Let Vo = 1Var(V,)/d2, and define
e be an asymptotically standard normal random d-dimensional
vector such that V, = n'26V%e. Vi, = S0 (Zyi — E(Zui|cloZ1i))8"
(cToZ1i)Xie1i, where &y; is the same as & since czo = 0. Similarly, we
define Vo =1Var(Vy,)/0? and e; be an asymptotically standard
normal random d;-dimensional vector such that V;, = nl/zaV}{fe].

To study the asymptotic distribution of the penalized least

squares estimator ¢, we impose some technical conditions as
below.

(A1) The vector functions g(-) have continuous second order
derivatives with respect to the support of A,.

(A2) For any c € C and Z € A,, the density function f(-, c) is con-
tinuous and there exists a small positive constant A such
that f(-,c) > A.

(A3) The kernel function K(-) is a bounded density with a
bounded support region. Let u, = [v?K(v)dv and

Vo = [K*(v)dv.

(A4) lim,_inf, o P, (0)/4n >0, — 0,
h=0(n"13).
(A5) {(Xi,Zi,y;)} is a strictly stationary and strong mixing
sequence with mixing coefficient satisfying o(m) = 0(p™)
for some 0 < p < 1.
(A6) E(&ilX;,Z;) = 0,E(?|Xi,Zi) = 0, E|Xi|™ < 0o and Ely;|" < oo
for all m > 0.

Vi, — oo and

Remark 1. The second order differentiability of vector functions
g(-) in Al and kernel function K(-) in A3 lead to that the order of
bias term for nonparametric estimator is Op(hz). These assump-
tions are standard for a nonparametric method. The assumptions
in A4 indicate the oracle property in Theorem 2. An alternative
condition for bandwidth in Ichimura (1993) is nh® — 0. However,
the condition nh® — 0 is still satisfied with our condition
h = 0(n"'/) in A4. Assumptions in A5 are the common conditions
with weak dependent data. Most financial models satisfy these
conditions, such as ARCH and GARCH models; see Cai, 2002. For
Assumption A6, it is not hard to extend to the heteroscedasticity
case, E(e?|X;,Z;) = 0%(X;,Z;), and it requires some higher moment
conditions of X; and y; so that Chebyshev inequality can be applied.

Theorem 1. Let {(X;,Z;,y;)} be a strictly stationary and strong mixing
sequence, a, =max{P, (lck|): ¢ #0}, and ¢ =argmin..Q(c,g).
Under Assumptions A1-A6 and if max{P] (|ck|) : ¢, # 0} — O, then
the order of ||C — co|| is Op(n~'/2 + ay). If the penalty function is SCAD,
an, = 0 as sample size n — oo, and ||C — ¢o|| = Op(n~172).

Theorem 2 (Oracle property). Let {(Xi,Zi,y;)} be a strictly stationary
and strong mixing sequence. Under Assumptions A1-A6, by assuming
Jn — 0 and \/ni, — co as n — oo, then,

(a) Sparsity:

c; =0.
(b) Asymptotic normality:
V(€ — ¢10) — N<07 ‘7{& V10Vf3>7

where Vo is defined earlier and Vi, =T(0)+ 250, T(0) with
1"(6) = COV(F,‘7 F,‘,;) and Ii= (Z],' — E(Z]i‘C%Z],‘))gT(C%-OZ“)X,‘S”.

When the random variables {I';};°; are either iid or martingale
difference sequence, V1o becomes V1o = I'(0) = Var(I';). Otherwise,
the autocovariance function I'(¢) may not be zero at least for some
lag orders ¢ > 0 due to the serial correlation. Theorem 2 shows that
our variable selection procedures of minimizing penalized least
squares enjoy the oracle property.

2.3. Bandwidth selection

It is well known that the bandwidth is important in nonpara-
metric estimation since it can balance the trade-off between the
bias and the variance of the nonparametric estimates. There are
several bandwidth selection methods available in the literature,
here we prefer the optimal bandwidth h,,, by minimizing the fol-
lowing nonparametric version of bias-corrected Akaike informa-
tion criterion (AIC) due to its simplicity (Cai and Tiwari, 2000;
Cai, 2002),

AIC(h) = log(G2) +2(ny + 1)/(n — 1y, — 2), (8)

where 62 = " (J; — y;)*/n and ny is the trace of the hat matrix Hy
which makes Y = H,Y.
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This selection criterion counteracts the over/under-fitting ten-
dency of the generalized cross-validation and the classical AIC;
see Cai and Tiwari (2000) and Cai (2002) for more details. However,
the rigorous theoretical properties for the optimality of this bias-
corrected AIC selector need further research and they can be
regarded as the future research topics. Alternatively, one might
use some other existing methods in the time series literature
although they may require more computing (Fan and Gijbels,
1996; Cai et al., 2000).

2.4. Testing the conditional CAPM

In order to check the validity of the conditional CAPM, we have
to test the significance of the pricing error. In the conditional CAPM
given in (2), the pricing error is denoted as g,(-) in the model.
Hence, the testing problem can be formulated as

Ho : g,(2) =0, Hi:g,(z) #0 forall z. 9)

The generalized F-type test statistic proposed by Cai and Tiwari
(2000) can be applied here and is defined as

J, = RSSo/RSS; — 1. (10)

Versus

Here, the sum square residuals (RSS) under the null hypothesis is

n
RSSo =" [y, — &2(z)xil’

i=1
where g,(-) is estimated under the null, and the RSS under the
alternative is

n
RSS; = n’lz Vi—2@) - gz(zi)xi]z-,
i=1

where g;(-) and g;(-) are estimated under the alternative.

For computational simplicity, the following nonparametric
bootstrap approach is used to obtain the p-value of the statistic
J, given in (10):

1. Collect the residuals {&;} by & =y; — 82(zi)xi.

2. Generate the bootstrap residuals {e;} from the empirical distri-
bution of the centered residuals {é; — éi}.

3. Define the bootstrap sample as y; = g(z;)x; + €;.

4. Calculate the bootstrap test statistic J; based on the sample
{y; s Xi Zi}'

5. Compute the p-value of the test based on the relative frequency
of the event {J, > J,} in the replications of the bootstrap
sampling.

Note that the validity of this bootstrap can be found in Cai et al.
(2000) and Kreiss et al. (2008).

It is clear that the hypothesis testing formulation given in (9)
can easily generalized to test if the model proposed in Ferson
and Harvey (1999) is appropriate. That is to test if both g, (z) and
g,(2) in (2) are linear. Then, (9) becomes to

Hy : both g,(z) and g,(z) are linear versus
H, : at least one is not linear. (11)

Similarly, we can define the test statistic for (11). Other types of
testing problems can be formulated in the same fashion.

3. Monte Carlo studies

In this section, we illustrate the proposed modeling methods
using simulated data sets. This data set mimics the actual portfolio
returns and market returns in the conditional CAPM model. In
addition, we generate three instrument variables but assume that

only two of them formulate the state of the economy. We then
determine whether our model can deliver consistent estimates in
terms of the mean absolute deviation (MAD) and determine the
actual instrument variables in the model.

In our simulations, the optimal tuning parameters are chosen
by the fivefold cross-validation as in Section 2.1 and the bandwidth
is selected by AIC as in Section 2.3. The Epanechnikov kernel
K(x) =0.75(1 — x?) if |x| <1 is used. Because the key point to
demonstrate the validity of the conditional CAPM is to test
whether the pricing error is significant, the bootstrap testing pro-
cedure outlined in Section 2.4 should have the appropriate size
and indeed is powerful to make correct inferences. Thus, based
on the simulated data, we also check the size and the power of
our testing procedure given in Section 2.4.

3.1. Linear model

We generate n = 300,n = 500 and n = 1000 data points, respec-
tively. Zy;,Z» and Zs; are drawn from a normal distribution with
mean zero and standard deviation of 0.38 as our instrument vari-
ables.? x; is generated from a uniform distribution on [0, 1]. The data
generating process (DGP) for y; is

Vi = (€124 + C2Zyi + C3Z3:)Xi + €;, (12)

where e; is an error term distributed normally with mean zero and

standard deviation of 0.08, and ¢; = ¢, = \/2/2 but c; = 0. Although
only two instruments are involved in DGP in (12), we consider all
three instrument variables in our estimation procedure. We expect
our model to account for this fact and decrease the effect of the
irrelevant instruments somehow. We repeat the simulation 1000
times, and report the estimates of c;, ¢c; and c; in terms of their
mean absolute deviation (MAD) and the shrinkage rate for ¢,
defined as the number of {C370}/1000, respectively. The median
and the standard deviation of the absolute deviation of the estima-
tors are showed in the column of linear model listed in Table 1.

It is surprising that ¢3 shrinks to 0 in all 1000 simulations. This
indicates that our model can delete the third instrument, which is
not included in the true DGP, from the instrument variables auto-
matically. In addition, the median and standard deviation of 1000
MAD values for the estimates of ¢; and ¢, decrease for all settings
when the sample size n increases. It implies that the estimates of ¢;
and c, are indeed consistent. This finding is consistent with what
our theoretical model indicates.

3.2. Nonlinear Model

We use the same settings to simulate Zi;,Z;,Z3;, X; and e;,
whereas y; is generated nonlinearly as follows

Yi =0.1exp (C1Z1; + C2Zai + C3Z3:)X; + €;. (13)

Similarly, ¢; =¢; = \/2/2 but c3 = 0. The estimation results are
reported in the column of nonlinear model listed in Table 1.

As expected, the estimates of ¢; and c, are consistent and the
estimated c; can be shrunk to zero when the sample size is large.
Also, one can see that for this setting, the shrinkage rate of the esti-
mated c3 is not very high when n = 300 and it is slightly lower than
that for the linear model. This phenomenon is not surprising
because the performance of our model depends on the complexity
of the true DGP. Therefore, in the overall, the performance of our
model works fairly well.

2 We also simulate Z;;,Z,; and Z3; by time series models in this and the following
experiments. The results are similar. In order to save space, we do not report them in
this paper. They are available upon request.
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Table 1

Simulation results: mean absolute deviation and shrinkage rate. We generate three
instruments, and only use the first two to form the instrument variables. The excess
returns are simulated linearly in (12) and nonlinearly in (13), respectively. The
median and standard deviation for the absolute deviation of the estimates are
reported based on 1000 simulations. c;,c; and c¢; are coefficients of three
instruments. “Shrinkage rate” indicates the relative frequency that the estimator of
c; equals exactly to 0.

Linear model Nonlinear model

C1 C2 C3 C1 C2 C3
n=300
Median 0.0022  0.0022 0.0180 0.0160
Std 0.0017  0.0017 0.0186  0.0196
Shrinkage rate 100% 80%
n =500
Median 0.0019 0.0019 0.0112 0.0114
Std 0.0010 0.0010 0.0133  0.0143
Shrinkage rate 100% 95%
n=1000
Median 0.0014  0.0014 0.0106  0.0107
Std 0.0010 0.0010 0.0059  0.0073
Shrinkage rate 100% 98%

3.3. Size and power of test

Because we use the bootstrap method to test the significance of
the pricing error, we need to check if the proposed test has a right
test size and is powerful. If the size or power distortion is large,
then the inferences based on the test results are not reliable.

We still use the DGPs described previously as the representa-
tives of the linear and the nonlinear models for the conditional
CAPM. We simulate n=100,n =300 and n =500 data points,
respectively and test the null hypothesis that the intercept func-
tion is zero. Then we repeat the entire procedure 1000 times and
report the frequency of the rejections of the null hypothesis.
Because the true DGP is based on the conditional CAPM, the rejec-
tion frequency should be close to the nominal level. These results
are summarized in the column of size of test listed in Table 2,
and we can conclude that the proposed test can give a right test
size.

In order to check the power of the test, we consider the so-
called local alternative so that we add a local time-varying inter-
cept function to the linear and the nonlinear models described
before. The reason of considering the local alternative is to remove
the effect of increasing sample size. The local alternative is

¢
Vi= nz_(;f’ (C1Z4i + C2Zyi) + (C1Z4i + C2Z2)X; + €
for the linear model and
C
Y= nz_‘;s (C1Z4i + C2Z2i) + 0.1 €xXp (C1Z4; + C2Z2)X; + €;

for the nonlinear model.> We obtain the rejection frequencies based
on 1000 replications for various values of ¢, which measures the
degree of the alternative hypothesis departing from the null hypoth-
esis. We consider different values of ¢, and n by setting the signifi-
cant level at 5%. The rejection frequencies are reported in the
column of power of test listed in Table 2.

One can find that the power of our test increases sharply with cg
increasing for all sample sizes and it reaches almost 100% when
co = 0.5. As expected, powers for all sizes are almost same due to
the local alternative. Therefore, the power of our test is warranted
to be useful in empirical applications.

3 The convergence rate in the local alternative is based on the convergence rate for
nonparametric estimates of o(-) and f(-).

Table 2

Size and power of test. We use the linear and the nonlinear models with a local
pricing error to generate the data, and test the null hypothesis that the pricing error is
insignificant. The rejection rates with nominal level 1%, 5% and 10% are reported in
the column of size of test. The rejection rates with six different values of ¢, under
o = 5% are showed in the column of power of test.

Size of test Power of test

1% 5% 10% 01 015 02 025 03 05

n=100
Linear model (%) 03 33 76 105 29 435 635 795 98.0
Nonlinear model (%) 1.3 3.7 9.2 11.0 25 42 62 835 975
n =300
Linear model (%) 0.7 39 82 22.0 455 705 86.5 955 99.5

Nonlinear model (%) 0.9 5.7 10.9 17.0 46,5 70.5 86.5 96.0 100
n=>500

Linear model (%) 1.2 46 938 265 49 76 915 97.5 100
Nonlinear model (%) 1.1 4.8 9.5 255 50 76 955 99 100

4. Empirical analysis
4.1. Data

We collect monthly returns of the Fama-French 25 portfolios
from July 1963 to December 2009. The financial instruments, fol-
lowing Ferson and Harvey (1999), are the spread between the
returns of the three-month and the one-month Treasury bill, the
spread between Moody’s Baa and Aaa corporate bond yield, the
spread between a ten-year and one-year Treasury bond yields
and the one-month Treasury bill yield. To match the model, we
obtain the one-month lagged data for the instrument variable.

We do not claim that these instrument variables are the set of
all potential instruments. These are the most popular ones used
in practice because interest rates and spreads are usually bench-
mark indexes for the business cycle. It is believed in the literature
that they are major forces to drive betas to be time-varying. By
putting them into our model, we can estimate which variable plays
a more important role than the others. Certainly, it is feasible to
incorporate more macro variables into the model because the
SCAD penalty criterion can shrink the coefficients of those “use-
less” variables to zero. By doing so. it will not hurt our estimation,
but only needs more computing time.

4.2. Data smoothing

We use our model to model the relationship between the
instrument variables and the asset returns. To compare the relative
performances, we also employ the model in Ferson and Harvey
(1999) (denoted by FH model) to the data. We report the mean
square error (MSE) in Table 3.

The first column demonstrates that the portfolios for studies are
divided into 25 groups which are sorted by the orders of the size
(“S”) and the book-to-market ratio (“B”). “S1” (and “B1”) denotes
the lowest order and “S5” (and “B5”) represents the highest order.
The mean square errors estimated in both our model and FH model
are reported in the second and the third columns, respectively. We
can see that the numbers in the second column are always smaller
than those in the third column for all portfolios. The improvement
of the MSE can be as large as 12% shown in portfolio “S2/B3”. For
the others, our model can decrease the MSE for approximately
7% on average. The relatively poor performance of the FH model
may be explained by the model’s misspecification. The linearity
assumption imposed on the relationship between the instrument
variables and the time-varying betas seems too strong. The fitting
performance increases when this assumption is relaxed, which is
consistent with the findings in Wang (2002, 2003).
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Table 3

Mean square error. The instruments are the spread between the returns of a three-month and a one-month Treasury bill (r3m-rim), the spread between Moody’s Baa and Aaa
corporate bond yield (BmA), the spread between a ten-year and one-year Treasury bond yield (r10y-r1y) and the one-month Treasury bill yield (r1m). In order to compare the
relative performances, we also employ the model in v (FH model) to fit the data. The first column demonstrates that the portfolios for studies are divided into 25 groups which are
sorted by the orders of the size (“S”) and the book-to-market ratio (“B”). “S1” (and “B1”) denotes the lowest order and “S5” (and “B5”) represents the highest order. The second
column reports the MSE when we use FCCAPM with SCAD variable selection to find the state variables and the third column reports the MSE by FH model. The MSE delivered by
FCCAPM using another two state variables are reported in the fourth and the fifth columns, respectively. The coefficients of four instrument variables estimated by our SCAD
method are reported the second panel. We also use the rolling 360-month to estimate the coefficients of the instruments, and then use the nonparametric method to estimate the
portfolio return in the next period. The corresponding out of sample MSE are summarized in the last two columns.

In sample Out of sample
MSE

MSE Parametric coefficients

FCCAPM +SCAD FH FCCAPM +OLS FCCAPM +FH BmA r3m r10y rim FCCAPM +SCAD FH
S1/B1 22.49 23.33 2343 23.15 0.30 0.52 0.80 0 3491 35.96
S1/B2 17.52 17.72 17.45 17.62 0.55 0.59 0.58 0 25.58 26.80
S1/B3 10.77 12.04 11.73 11.63 0.66 0.71 0.22 0 14.01 15.86
S1/B4 10.61 11.42 11.14 11.12 0.60 0.68 0.33 0.21 12.65 14.63
S1/B5 12.33 13.40 13.45 13.36 0.61 0.75 0.18 0.11 13.45 15.44
S2/B1 12.50 13.36 12.97 13.16 0.29 0.52 0.80 0 18.73 19.99
S2/B2 8.19 8.62 8.31 8.46 0.68 0.71 0.16 0 10.56 11.69
S2/B3 6.44 7.38 7.26 7.20 0.48 0.69 0.44 0.29 9.03 9.77
S2/B4 7.35 7.42 7.26 7.29 0.22 0.97 0 0 9.83 11.19
S2/B5 9.83 10.83 10.67 10.66 0.52 0.56 0.39 0.50 14.23 16.04
S3/B1 8.94 9.21 8.89 9.01 0.29 0.51 0.80 0 13.86 14.95
S3/B2 4.98 5.11 491 4.97 0.73 0.45 0.37 0.33 6.78 717
S3/B3 493 5.24 5.08 5.07 0.47 0.51 0.44 0.56 6.82 7.08
S3/B4 5.37 5.81 5.66 5.59 0.30 0.66 0.54 0.41 8.41 9.16
S3/B5 8.13 9.23 9.01 8.79 0.57 0.54 0.34 0.50 10.28 12.46
S4/B1 4.82 5.18 4.98 5.02 0.60 0.21 0.46 0.61 7.75 8.30
S4/B2 3.39 3.51 3.52 3.48 0.18 0.51 0.66 0.50 5.33 5.49
S4/B3 4.14 4.63 433 4.46 0.62 0.34 0.25 0.65 7.29 7.99
S4/B4 4.52 5.09 4.89 4.99 0.43 0.49 0.45 0.60 6.73 7.20
S4/B5 7.53 8.38 8.41 8.14 0.56 0.52 0.39 0.50 10.73 11.86
S5/B1 2.38 2.71 2.67 2.58 0.31 0.49 0.67 0.45 2.44 2.51
S5/B2 2.48 2.61 2.64 2.61 0.61 0.36 0.50 0.48 3.93 4.09
S5/B3 3.60 3.94 3.96 3.85 0.31 0.61 0.61 0.37 5.05 5.49
S5/B4 5.16 5.34 5.37 5.15 0.50 0.56 0.39 0.51 8.28 8.44
S5/B5 8.43 9.02 8.70 8.67 0.50 0.47 0.45 0.56 12.03 12.71

To explore further, we check how the choice of the instrument
variables affects our results. We run FCCAPM by using different
state variables. Another two different state variables are studied
here. For the first state variable, we run a linear regression of the
asset returns on the instrument variables and treat the fitted value
as the state variable. The second is the state variable implied by the
time-varying betas in the FH model.* All of the state variables used
for the smoothing variables are implemented in the framework of
FCCAPM, and we report their MSEs in the fourth and the fifth col-
umns in Table 3.

On average, SCAD gives us the best state variable among these
three models. The majority of the MSE values in the second column
are smaller than those in the other columns. The reason is that
SCAD selects the variables to fit directly the asset returns and
chooses the index that is the best for the model estimation. This
method avoids the problems caused by the separation of instru-
ment selection and model estimation.

When our model is employed, it produces the estimated coeffi-
cients of the instruments summarized in Table 3. To avoid the
identification problem, we search for the estimates over a unit cir-
cle. Interestingly, the coefficients of the one-month interest rate
are zero for many portfolios. This is consistent with the empirical
evidence in Bernanke, 1990 that the interest rate spreads play a
more important role than the rates in financial markets. This fea-
ture can not be observed in the paper by Ferson and Harvey (1999).

Moreover, we also analyze the out-of-sample forecasting for the
Fama-French 25 portfolios. We use the rolling 360-month to esti-
mate the coefficients of the instruments, and then use the nonpara-

4 The FH model allows the betas and alpha to have different state variables.

metric method to estimate the portfolio return in the next period.
The results are summarized in the last two columns in Table 3. We
can see that the MSE for the out-of-sample forecasting are quite
comparable with the MSE for the in-sample fitting. In addition,
our model delivers a smaller MSE than the FH model for all the
25 portfolios.

Knowing whether or not the betas are really time-varying is
crucial to the conditional CAPM. We plot the estimates of both
betas and alpha with their 95% pointwise confidence intervals in
Fig. 1. The confidence intervals are obtained by bootstrapping the
data 1000 times. To save space, we report only the S4/B2 portfolio.
Fig. 1 shows clearly that the alphas and the betas are not constant
over the time period studied. Also, we can see that the pricing
errors fluctuate around zero. These conclude that the conditional
CAPM is appropriate for this data set.

4.3. Model testing

After estimating the time-varying betas and alpha, we are curi-
ous about whether our model is over parametrized and whether
our model is sufficient to explain the portfolio returns. To answer
these two questions, we first test the model specified in Ferson
and Harvey (1999). In addition, we test the significance of the pric-
ing errors using both time series and cross-sectional methods. If
the conditional CAPM is valid and our model estimates the betas
correctly, then the pricing error should be insignificant.

4.3.1. Testing linearity
Ferson and Harvey (1999) used a linear model to describe the
time-varying betas, while our paper uses the nonparametric model
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Fig. 1. Estimated alphas and betas with 95% pointwise confidence intervals for the S4/B2 portfolio.

to fulfill this job. It is necessary for us to test the model specifica-
tion. Namely, the null hypothesis is

Ho:g(Z)=ao+d,Z and g,(Z:) = by +b\Z
and the alternative hypothesis is
1 : either g,(Z) = f1(Zi) or &,(Zi) = f,(Z),

where f,(-) and f,(-) are two unknown functions and at least one of
them is nonlinear so that they can be estimated using the nonpara-
metric method described in (3). The p-values for 25 portfolios are
summarized in Table 4, Panel A.

The portfolios in each row are sorted by the book-to-market
ratios and in each column by the sizes. We find that we can reject
the null hypothesis for 17 out of 25 portfolios at 5% significance
level, which means that the majority of the Fama-French 25 port-
folios do not satisfy the linearity assumption imposed in Ferson
and Harvey (1999). This finding supports partially the conclusion
observed in Wang (2002, 2003). This nonlinearity is even more
prominent for the portfolios that have high book-to-market ratios
or small sizes. This nonlinearity implies the instruments capture
the time lag information mainly through their high-order term.
These findings seem to be new in the literature.

4.3.2. Pricing error of time series analysis

In the conditional CAPM, the alpha represents the abnormal
returns of the assets. The abnormal returns occur when there are
other systematic risks in the market that the model does not cap-
ture. Thus, we need to test the significance of the alpha. When the
estimated alpha is significant, then the model is rejected. Specifi-
cally, if the model is misspecified, the test results may be mislead-
ing. Because we have already rejected the linear time-varying betas
and alpha, we are warranted to test the significance of the alpha
based on our model.

We estimate the time-varying alpha for the entire time period
of the data and then perform a significance test on the alpha. The
null hypothesis is Ho:g;;=g;(Z)=0 and H;:g;;#0 for
i=1,2,...,n. Here, we only impose restrictions on the alpha, and
allow the betas to be time-varying. The p-values are obtained using
the bootstrapping procedure described in Section 2.4 and they are
summarized in Table 4, Panel B which shows that 20 out of 25
(80%) portfolios have insignificant alphas at the level of 5%. This
result is quite different from the results found by Ferson and
Harvey (1999), due to the model specification. As argued in
Ghysels (1998), the inferences made from the misspecified model

Table 4

Testing results. Panel A reports the p-values of testing linearity of the betas and alpha.
The null hypothesis is the linear model in Ferson and Harvey (1999) and the
alternative is our nonparametric model. The p-values are obtained by bootstrapping
the data 1000 times. The portfolios in each row are sorted by the book-to-market ratio
and in each column by the size. Panel B reports the p-values for the test on the
significance of the alphas when the model has time-varying betas. The null
hypothesis is Hp : ¢; =0 and the alternative is H; : o;; # 0. Panel C demonstrates
parameter estimates from the cross-sectional regression of excess returns on
constant, time-varying beta and fitted conditional expected return. The parameters
are estimated by two methods of rolling sample and expanding sample, and the
corresponding Fama-MacBeth t-ratios are reported in parentheses.

B1 B2 B3 B4 B5
Panel A: p-values of testing linearity
S1 0.2500 0.1954 0.0002 0.0000  0.0000
S2 0.2082 0.0125 0.0011 0.0001  0.0088
S3 0.2344 0.0412 0.0168 0.0248  0.0038
S4 0.0050 0.0002 0.0136 0.0184  0.0006
S5 0.2508 0.0360 0.0702 0.2628  0.0806
Panel B: p-values of testing pricing errors: time series approach
S1 0.6840 0.5480 0.0020 0.0000  0.0002
S2 0.6520 0.3980 0.0100 0.1500  0.1060
S3 0.0900 0.2620 0.5300 0.0300  0.1480
S4 0.0860 0.0800 0.7020 0.0500  0.4880
S5 0.5400 0.0940 0.6160 0.6660  0.5480
Panel C: cross-sectional regression

Yo 71 V2
Rolling sample 0.6815 —0.0057 0.8408
(t-statistic) (0.1171)  (-0.0010)  (0.1622)
Expanding sample  0.8599 -0.3111 0.9330
(t-statistic) (0.1166)  (—0.0437) (0.2138)

can be very misleading. Thus, the correct conditional CAPM can
deliver insignificant pricing errors. Conversely, the insignificant
pricing errors also suggest that the conditional CAPM can capture
the systematic risk from period to period. This result also gives a
strong support for the models that are based on the conditional
CAPM, such as the premium-labor model proposed by
Jagannathan and Wang (1996). This finding is innovative in the
literature.

4.3.3. Cross sectional analysis of pricing errors

In addition, we also consider testing the pricing errors using a
cross-sectional regression technique. Since the conditional CAPM
model is expressed as

ER;illi 1] = 714 1Bji-1 (14)


zongwu cai
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where y,; ; is the conditional market risk premium, following
Ferson and Harvey (1999), the cross-sectional regression can be
setup as

Rii =051+ V1B + szflo‘}.mzi—l +ei, j=1,---,25, (15)

where 7,; ; is the intercept, y,; ;, 7,; ; are the slope coefficients
and f;; ; are estimated from our previous time series regression.
&;_1Zi1 is the fitted conditional expected return, where g;; 1 is esti-
mated by regressing the return on the lagged variable Z;_;, using the
data up to time i — 1. y,; ; denotes the pricing error in the cross-
sectional regression, and y,; ; indicates how much information is
not captured by the conditional betas. Therefore, if the conditional
CAPM is valid, 7,; ; and y,; ; should be insignificant.

We run the cross-sectional regression via two methods. One
method uses the rolling 120-month prior estimation period, and
the other uses an expanding sample.’ The time-series averages of
the cross-sectional regression coefficients are shown along
with their Fama-MacBeth t-ratios (two-pass regression) in Table 4,
Panel C.

The results in Panel C suggest that y, is insignificant in both
cases. Although the pricing errors of some portfolios are significant
in the time-series analysis, we can still obtain insignificant pricing
errors for the cross-sectional regression. This is because, in the
time-series analysis, pricing error is a function of the instruments,
g1i = &(Z;). The realized value of this function is not zero, but its
expected value can be zero. Moreover, we find that 7y, is insignifi-
cant as well. This implies that the public information has already
been revealed in the time-varying betas. These two findings can
justify the conditional CAPM from the cross-sectional point of
view.

5. Conclusion

This paper uses a functional coefficient regression with an index
to estimate the time-varying betas and alpha in the conditional
capital asset pricing model. Functional coefficient representation
relaxes the strict assumptions regarding the structure of betas
and alpha by combining the predictors into an index. The index
captures time variations in betas and alpha and can be estimated
in nonparametric way. In such a way, it helps us to determine
which economic variables we should track and, more importantly,
in what combination. We select appropriate index variables by
using a smoothly clipped absolute deviation penalty on functional
coefficients. In this manner, estimation and variable selection can
be performed simultaneously.

Our findings are quite interesting. First, empirical estimation
results show that important instruments are selected automati-
cally in our model, and it has better fit compared with other meth-
ods in terms of mean square error. The 95% pointwise confidence
interval plots for alphas and betas suggest time-varying CAPM
exists for the data set. Second, our testing results show that major-
ity of the Fama-French 25 portfolios do not satisfy the linearity
assumption. Insignificant pricing errors are found from time series
analysis and cross sectional analysis under the framework of
FCCAPM. These support the conventional wisdom about the condi-
tional CAPM, which holds from period to period. It should be
pointed out that our FCCAPM model is established in the CAPM

5 For the expanding sample, we use 120 months for the regression at first. Then, we
add the 121th month into the sample and run the regression again. This procedure is
iterated until all the observations are included in the regression sample.

framework with single market factor. The performances of the
FCCAPM model and the FH model in the framework of Fama and
French (1993) 3-factor model are available from the authors upon
request. For the future research, it would be interesting to consider
its practical performance with other multiple factors, such as the
Fama and French (1993) 3-factor model, the Carhart, 1997
4-factor model, the Fama and French (2015) 5-factor model and
the Hou et al. (2015) empirical g-factor model.

Appendix A. Proofs

Proof of Theorem 1.

Qq(c,h) =S(c) + T(h) + Ry(c,h) + Ry (h),

where Q;(c,h) =", i — §T(CTZ,-)X1-)2,T(h) and R,(h) do not
depend on ¢, and R;(c, h) is an ignorable term. Furthermore,

$(©)=n[VY?(c—co)—n""264] [VY(c— o) —n 26+ Rs + Ra(c),

where R; does not depend on c and h, and R4(c) is an ignorable term.

Let 6, =n~12 4y, t = (t1,...t;)". For any small A > 0, if we
can show there exists a large constant C, such that

P{inf Qe +0,6.8) > Q@) 1A

then
€ = coll = 0p(3n)-
Define D, = Q(co + 6,t, &) — Q(co, 8). Then,

-111

~ A 2 1¢ . 2
D, >EZ(}’i*gT(ngHronthi)xf) *ig(}’i*gT(ngi)Xi)

i=1
dy d
+1Y Py, ([Crok+dntil) =1 Pi,(|ciok]) (by €20=0)
k=1 k=1
and

d

d
TIZP;.,,(|C101< + Snti]) — nZP/‘.n (Ic10k)
k=1

= k=1

do 1
= nz {5nP;,, (Ic10k])sgn(Crox) tr +§5%an(|Clol<\)tﬁ +0,(nd7)
k=1
. 1 " .
<V dindaan || +§n5ﬁmaxlgkgd1 {P (Ic1oe) HItl* + 0p(n02)
(by Cauchy-Schwarz inequality)
<no2V/diC+0,(nd?2) asn — oo and max;<x<g, {P;, (|C10k])} — O

and
n n
1> 0i- 8T (2t 0 2)X) -
i=1 i=1
:%n{\w/é/zént—n*/zosr [Vf)/zént—n”/zag] ~In[n2g¢]" [n"12qe]
+R1(co+dnt,h) —Ry(co,h)+0p(1) (bythe theoreminXiaand Li, 1999)
=1n82tTVot —n'25,t" V2 G+ R (Co+ Snt,h) — Ry (Co,h) +0p(1)
=162tV ot — 5at™ Vi 4Ry (Co+ 0nt,h) — Ry (Co,h) +0,(1).

(vi - 8(chZi)Xi)?

Since R; are negligible terms as n — co and ﬁv,, = 0p(1). then
—0nt"V,y = C- 0,(8n/N) = C - 0,(52n). By choosing a sufficient large
C, the term 1no2t"Vot = C* - 0,(s2n) will dominate others. Hence,
D, > 0Oholds. O
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Proof of Theorem 2. Let T; — c19 = Op(n~'/2). We want to show
that (EI,O)T = argmin(q‘cpreBQ«c{,cg)T,g). It suffices to show

that for some constant Cand k=g, +1,---q,

e~
% >0 for0<c,<Cn'?
<0 for—Cn""? <, <0.
Note that
9Qi(c.h) _0S(c) . _ +95(c)
ac, R = ¢ ac + R

= 2nelVo(c — co) — 2n'?aefVy/*e + Ry
= 2nelVo(c — o) — 2€[Vy + R
where R, represents small order term and e, is a d-dimensional

vector with kth element being one and all others being zero.
Since ¢ — ¢ = 0p(1/+/n) and V, = O, (v/n), then,

aS(c,h)
e = 0(V)
and
2Q((c.)".8) 100,(ch
ack 27 o +nP, (lc]) sgn(ci)
) 1 P, (Jc])
=00 () + 25 |
Since VAt — o0 and minf,...q o ‘y%,‘fk‘) >0, the sign of 52 is

determined by the sign of c;.
It follows from Part (a) that

ac ) =0
=
0
and
105((¢1,0),h) o
§T+HA\P)‘ =0.

where A‘Pf; ={P, (lc1]) sgn(cr), ..., P, (Icq,|) sgn(cm)}T. Note that
asn—ooand Z, — 0,P, (Jc) =0fork=1,...,d; and

105((¢1,0),h)
2 ocq

which implies that

an(& —Ci0) — nl/zo"ﬂéz& +0,(1)=0

=0,

V(€1 = o) = Vig (1/V)Vi

n
Vig (1/V)Y (Z1i — E(ZuilchoZ1))g" (CloZun)Xitni
i=1

so that
\/ﬁ(E1 — C][))—>DN(O7 ‘71_(} V]oVﬁ})

where Vm is defined earlier and Vi, =1'(0)+23,°,I'(¢) with
F(Z) = COV(F,‘7 F,;,,) and F,‘ = (Z],‘ — E(Z],‘|C{OZ“))gT(C{OZ“)X,‘S],‘. O
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