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Abstract In this article, motivated by an analysis of the monthly number of tourists
visiting Hawaii, we propose a new class of nonparametric seasonal time series models
under the framework of the functional coefficient model. The coefficients change over
time and consist of the trend and seasonal components to characterize seasonality. A
local linear approach is developed to estimate the nonparametric trend and seasonal
effect functions. The consistency of the proposed estimators is obtained without spec-
ifying the error distribution and the asymptotic normality of the proposed estimators
is established under the α-mixing conditions. A consistent estimator of the asymp-
totic variance is also provided. The proposed methodologies are illustrated by two
simulated examples and the model is applied to characterizing the seasonality of the
monthly number of tourists visiting Hawaii.
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1 Introduction

Seasonal time series are commonly observed in various applications, including eco-
nomic and business data, meteorological data and environmental data as well as other
fields. There is a vast literature on seasonal time series analysis, ranging from sto-
chastic seasonality models such as the seasonal ARIMA models (Box et al. 1994;
Shumway and Stoffer 2000; Pena et al. 2001), the deterministic seasonal models such
as the linear or polynomial additive or multiplicative seasonal component models
(Shumway 1988; Brockwell and Davis 1991; Franses 1996, 1998). The books by
Hylleberg (1992), Franses (1996, 1998), and Ghysels and Osborn (2001) provide a
comprehensive review on the traditional seasonal time series analysis methods. Most
of these methods are linear (or polynomial) and parametric in nature. However, it has
been documented that time series are often nonlinear (Tong 1990; Tjøstheim 1994;
Hylleberg 1992; Franses 1996, 1998) and often there is not enough information to
determine a suitable parametric form for the nonlinear structure. Härdle et al. (2004)
discussed and reviewed many the popular statistical nonparametric and semipara-
metric methods. These methods have been widely utilized for nonlinear time series
analysis (e.g. Härdle and Vieu 1992; Tjøstheim 1994; Härdle et al. 1997; Fan and Yao
2003). To avoid the curse of dimensionality, nonparametric time series models with
special structure have been proposed and applied to real applications, including the
nonlinear additive ARXmodels (Chen and Tsay 1993b), the functional coefficient AR
models (Chen and Tsay 1993a; Xia and Li 1999a; Cai 2007; Cai et al. 2000, 2009),
the single index coefficient AR models (Härdle et al. 1993; Xia and Li 1999b; Fan
and Yao 2003; Fan et al. 2003; Lu et al. 2007) and others. There was no system-
atic research done on nonparametric approaches to seasonal time series models, until
Burman and Shumway (1998) proposed a nonparametric/semiparametric approach to
seasonal time series, which opened the door in this area.

In this paper, to characterize the seasonality of the monthly number of tourists visit-
ing Hawaii, we propose a nonparametric seasonal time series model with a functional
coefficient structure. Different from a linear autoregressive seasonal model with pos-
sible regression terms, the coefficients in the proposed model change over time and
consist of the trend and seasonal components to characterize the seasonality. This
class of models includes, as its special cases, the standard additive trend and seasonal
component models as well as other seasonal time series models. We use the local
linear approach to estimate the trend and seasonal effect functions nonparametrically
and study the asymptotic properties of the proposed estimators. The detailed analysis
of this data set is reported in Sect. 4.

The rest of the paper is organized as follows. In Sect. 2 we first introduce the
model and its motivation, and then we present the estimation procedure, followed
by the asymptotic properties of the proposed estimators. Section 3 presents a Monte
Carlo simulation study to illustrate the finite sample performance of the proposed
estimation procedures and in Sect. 4, the proposed model and its modeling procedures
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Functional coefficient seasonal time series models… 721

are apply to an analysis of the monthly number of tourists visiting Hawaii. Finally, the
mathematical Proof of the Theorem is given in the “Appendix”.

2 Functional coefficient seasonal time series models

2.1 The model

Denote a seasonal time series as

yt1, . . . , ytd , t = 1, 2, . . . , n, (1)

where d is the number of seasons within a period and n is the number of periods. We
assume that there exist p other time series {xkt j }, k = 1, . . . , p, and j = 1, . . . , d that
are related to the time series yt j , and indexed according to yt j . Those time series can
be the lagged series of yt j (in an AR fashion), or some exogenous variables.

The proposed functional-coefficient seasonal time series model assumes the form
as

yt j =
p∑

k=1

[αk(t) + βk j (t)] xkt j + et j , (2)

where {αk(·)} are the trend functions for the coefficients, and {β jk(·)} are the seasonal
effect functions in the coefficient functions, satisfying constraints for the identification,

d∑

j=1

βk j (t) = 0, for each 1 ≤ k ≤ p and all t,

and the error term {et j } is stationary and satisfies E(et j |Xt j ) = 0 with Xt j =
(x1t j , . . . , xpt j )T .

Remark 1 There is another way to denote seasonal time series with only one subscript
as

y1, . . . , ym, . . . , yT , m = 1, 2, . . . , T . (3)

Both (1) and (3) are used in this paper exchangeably, identified by the number of
subscripts. Time series denoted by the two different indexed methods satisfies the
formula as ym = yt j , where m = d(t − 1) + j for 1 ≤ t ≤ n and 1 ≤ j ≤ d.

Model (2), where coefficients combine of nonlinear trend and seasonal effect chang-
ing over time, is a generalization of the functional-coefficient time series model, a
popular nonlinear time seriesmodel in the time series literature (Chen and Tsay 1993a;
Xia and Li 1999a; Cai et al. 2000; Cai and Tiwari 2000), and the varying-coefficient
model (Hastie and Tibshirani 1993; Yang et al. 2006) for i.i.d. samples.

This model is also motivated by the standard additive time trend and seasonal
component model as

yt j = Tt + St j + et j ; (4)
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see Cleveland et al. (1990) and Cai and Chen (2006) where Tt is the common trend
same to different seasons within a period, and St j is the seasonal effect, satisfying∑d

j=1 St j = 0. A standard parametric model assumes a parametric function for the
common trend Tt , such as linear or polynomial functions. The seasonal effects are
usually assumed to be the same for different periods; that is, St j = S j for j = 1, . . . , d
and all t . Note that if p = 1 and x1t j = 1 for all t and j , then model (2) becomes

yt j = α(t) + β j (t) + et j , (5)

where {β j (t)} satisfy the condition
∑d

j=1 β j (t) = 0; see Cai and Chen (2006) for
details. This is the exact same as (4). Here, we assume nonparametric forms for both
trend and seasonal component. If we further assume that β j (t) = γ jβ(t), then we
obtained themodel proposedbyBurmanandShumway (1998),where {γ j } are seasonal
factors. Hence, the overall seasonal effect changes over periods in accordance with
the modulating function β(t). Implicitly, this model assumes that the seasonal effect
curves have the same shape (up to a multiplicative constant) for all seasons.

The AR model with trend and seasonal component is also commonly used in mod-
eling seasonal time series (e.g., Hylleberg 1992; Franses 1996, 1998; Ghysels and
Osborn 2001),

yt j = Tt + St j + φyt j−1 + et j . (6)

Our model allows both AR terms and exogenous variables to enter the model in a
linear fashion. The AR coefficients and the coefficients of the exogenous variables
are commonly assumed to be constant over different periods. However, for seasonal
time series models, it is difficult to justify that the relationships between yt and its
lag variables and exogenous variables are the same for different periods. Allowing
different functions for different periods (hence seasonality) has an ability to enhance
themodel to adopt the nature of the underlying time series and to capture the seasonality
better.

In addition, if p = 1 and xt is the lag d variable of yt , say xm = ym−d , or
xt j = y(t−1) j , then this model assumes a pure seasonal AR model with d different
series, each with seasonality of 1 as

yt j = (α(t) + β j (t))y(t−1) j + et j , j = 1, . . . , d, (7)

where the coefficients change over time, with α(t) being the common trend and β j (t)
being the seasonal effect, special to each season j in the period.Both trend and seasonal
effect functions are nonparametric. An extreme case is that β j (t) = 0 and α(t) = α,
a constant. In this case, Eq. (7) becomes

ym − αym−d = em,

which is a pure seasonal AR model. Therefore, with certain combinations of the
variables xm and the coefficient functions, the proposedmodel in (2) is flexible enough
to cover many existing seasonal models.
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2.2 Estimation procedure

For technical reasons, we change the time unit in the coefficient functions to st = t/n.
Then, we can express (2) in a matrix notation,

Yt = X t θ(st ) + et ,

where

Yt =
⎛

⎜⎝
yt1
...

ytd

⎞

⎟⎠ , Xt =

⎛

⎜⎜⎜⎜⎝

XT
t1 XT

t1 0 0
... 0

. . . 0
XT
t,d−1 0 0 XT

t,d−1

XT
td −XT

td . . . −XT
td

⎞

⎟⎟⎟⎟⎠
, et =

⎛

⎜⎝
et1
...

etd

⎞

⎟⎠ ,

and θ(st ) =

⎛

⎜⎜⎜⎝

α(st )
β1(st )

...

βd−1(st )

⎞

⎟⎟⎟⎠ ,

with α(st ) = (α1(st ) . . . αp(st ))T and β j (st ) = (β1 j (st ) . . . βpj (st ))T . Again, the
error term {et } is assumed to be stationary with E(et ) = 0 and var(et ) = �e.

For estimating α(·) and {β j (·)}, a local linear method is employed, although a
general local polynomialmethod is also applicable. Local linear (polynomial)methods
have beenwidely used in nonparametric regression due to their attractivemathematical
efficiency, bias reduction and adaptation of edge effects (see Fan andGijbels 1996).We
assume throughout that the trend functions {αk(·)} and the seasonal effect functions
{βk j (·)} have a continuous second derivative. Then, based on the local linear fitting
scheme of Fan and Gijbels (1996), the locally weighted least squares is given by

n∑

t=1

[Yt − Xt θ0 − (st − s)Xt θ1]
T [Yt − Xt θ0 − (st − s)Xt θ1] Kh(st − s), (8)

where Kh(u) = K (u/h)/h, K (·) is a kernel function and h is the bandwidth satisfying
h → 0 and n h → ∞ as n → ∞. Let θ̂0 and θ̂1 be the minimizer of (8). Then,

(
θ̂0
θ̂1

)
=

(
G0 G1
G1 G2

)−1 (
M0
M1

)
, (9)

where

Gk = 1

n

n∑

t=1

X T
t Xt (st−s)k Kh(st−s) and Mk = 1

n

n∑

t=1

X T
t Yt (st−s)k Kh(st−s).

Therefore, the local linear estimates of θ(s) and θ ′(s) (the first order derivative of
θ(s)) are θ̂(s) = θ̂0 and θ̂

′
(s) = θ̂1, respectively.
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724 X. Liu et al.

Remark 2 Note that many other nonparametric smoothing methods can be used here.
The locally weighted least square method is just one of the choices. There is a vast
amount of literature in theory and empirical study on the comparison of different
methods (see Fan and Gijbels 1996).

Remark 3 The restriction to the locally weighted least squaremethod suggests that the
normality is at least being considered as a baseline. However, when the non-normality
is clearly present, a robust approach would be considered. Cai and Ould-Said (2001)
considered this aspect in nonparametric regression estimation for time series.

Remark 4 The bandwidth selection is always one of the most important parts of
any nonparametric procedure. There are several bandwidth selectors in the literature,
including the leave-one-out cross validation of Härdle and Marron (1985), the gen-
eralized cross-validation of Wahba (1977), the plug-in method of Jones et al. (1996),
and the empirical bias method of Ruppert (1997), among others. They all can be used
here. A comparison of different procedures can be found in Jones et al. (1996). In
this article we use a procedure proposed in Fan et al. (2003), which combines the
generalized cross-validation and the empirical bias method.

Remark 5 In the above estimation procedure, one bandwidth is used for all functions. It
is possible to use different bandwidths for different seasons by a more computational
intensive two-step method (see Cai 2002). We can also incorporate the covariance
structure of et in the estimation.

Remark 6 Since data are observed in time order as in Burman and Shumway (1998),
we assume that st = t/n for simplicity although the theoretical results developed later
still hold for non-equally spaced design points.

2.3 Asymptotic properties

The estimation method described above can accommodate both fixed and random
designs of the time index (at which the time series are observed). In this paper we focus
on fixed-design since time series are commonly observed over a fixed time interval and
we now use ent to denote et . In such a case, we assume that, for each n, {en1, . . . , enn}
have the same joint distribution as {ξ1, . . . , ξn}, where ξ t , t = . . . ,−1, 0, 1, . . ., is
a strictly stationary time series defined on a probability space (�,A, P) and taking
values on �d . This type of assumption is commonly used in fixed-design regression
for time series contexts. Detailed discussions on this respect can be found in Roussas
(1989), Roussas et al. (1992), and Tran et al. (1996) for nonparametric regression
estimation for dependent data.

Traditionally, the error component in a deterministic trend and seasonal component
model (4) is assumed to follow certain linear time series models such as an ARMA
process. Here we consider a more general structure—the α-mixing process, which
includes many linear and nonlinear time series models as special cases (see Remark 7
later). The theoretical results are derived under this assumption. For reference conve-
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nience, the mixing coefficient is defined as

α(t) = sup
{
|P(A ∩ B) − P(A) P(B)| : A ∈ F0−∞, B ∈ F∞

t

}
,

where Fb
a is the σ -algebra generated by {ξ t }bt=a . If α(t) → 0 as t → ∞, the process

is called strongly mixing or α-mixing.

Remark 7 Among various mixing conditions used in the literature, α-mixing is rea-
sonably weak and is known to be fulfilled for many linear and nonlinear time series
models under some regularity conditions. Gorodetskii (1977) and Withers (1981)
derived the conditions under which a linear process is α-mixing. In fact, under very
mild assumptions, linear autoregressive andmore generally bilinear time seriesmodels
are α-mixing with mixing coefficients decaying exponentially. Auestad and Tjøs-
theim (1990) provided illuminating discussions on the role of α-mixing (including
geometric ergodicity) for model identification in nonlinear time series analysis. Chen
and Tsay (1993a) showed that the functional autoregressive process is geometrically
ergodic under certain conditions. Further, Masry and Tjøstheim (1995, 1997) and Lu
(1998) demonstrated that under somemild conditions, both autoregressive conditional
heteroscedastic processes and nonlinear additive autoregressive models with exoge-
nous variables, particularly popular in finance and econometrics, are stationary and
α-mixing. Roussas (1989) considered linear processes without satisfying the mixing
condition. Potentially our results can be extended to such cases.

To establish the asymptotic properties of θ̂(s), denote G = E
(X T X )

, where X
has the same distribution as Xt for all t . Define e∗

t = X T
t et . Then, {e∗

t } is stationary
by Assumption A2 in the “Appendix”. Also, define R(k − l) = cov(e∗

k , e
∗
l ) and

�0 = ∑∞
k=−∞ R(k). Then, �0 exists by Assumption A2 in the “Appendix”. Finally,

define, for k ≥ 0,μk = ∫
ukK (u) d u and νk = ∫

uk K 2(u) d u.Wehave the following
theorem with its sketch proof given in the “Appendix”.

Theorem 1 Assume that Assumptions A1–A3 in the “Appendix” hold, then,

√
n h

{
θ̂(s) − θ(s) − h2

2
μ2 θ ′′(s) + op(h

2)

}
−→ N (0, �θ ),

where �θ = ν0 G−1 �0 G−1 and θ ′′(s) is the second order derivative of θ(s).

Remark 8 As a consequence of Theorem 1, θ̂(s) − θ(s) = Op
(
h2 + (n h)−1/2

)
, so

that θ̂(t) is a consistent estimator of θ(s). Also, the asymptotic variance of the estimator
does not depend on the grid point t . More importantly, it shows that the asymptotic
variance of the estimator depends not only on the covariance structure of the seasonal
effects (R(0) = var(e∗

i )) but also the autocorrelations over periods (
∑∞

k=1R(k)).
Further, it is interesting to note that in general,�θ might not be diagonal. This implies
that α̂(s) and β̂ j (s) (1 ≤ j ≤ d − 1) may be asymptotically correlated. Finally, the
asymptotic mean square error (AMSE) of θ̂(s) is given by

AMSE = h4

4
μ2
2

∣∣∣∣θ ′′(s)
∣∣∣∣2
2 + tr(�θ )

n h
,
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which gives the optimal bandwidth,

hopt = n−1/5
{
tr(�θ ) μ−2

2

∣∣∣∣θ ′′(s)
∣∣∣∣−2
2

}−1/5
,

by minimizing the AMSE. Hence, the optimal convergence rate of the AMSE for θ̂(t)
is of the order of n−4/5, as one would have expected.

Remark 9 In practice, it is desirable to have a quick and easy implementation to
estimate the asymptotic variance of θ̂(s) to construct a pointwise confidence interval.
The explicit expression of the asymptotic variance in Theorem 1 provides two direct
estimators. From Lemma A1 in the “Appendix”, for any 0 < s < 1, we have

�0 = lim
n→∞

h

n
var

(
n∑

t=1

e∗
nt Kh(st − s)

)
.

Hence a direct (naive) estimator of �0 is given by

�̂0 = P̂n0 P̂T
n0,

where P̂n0 = (h n−1)1/2
∑n

t=1 X T
t

{
Yt − Xt θ̂(st )

}
Kh(st − s). However, in the

finite sample, �̂θ might depend on s. To overcome this shortcoming, an alternative
way to construct a consistent estimation of�0 is to use the sample autocovariance type
estimation methods to estimate {R(k)}, such as the heteroscedasticity and autocorre-
lation consistent (HAC) methods; see Newey and West (1987) and Andrews (1991)
for further discussions. But it seems that they might require more data points than the
previous method.

3 Simulated examples

In this section, a Monte Carlo simulation study is conducted to examine the finite
sample performance of the proposed procedures. Throughout this section, we use the
Epanechnikov kernel, K (u) = 0.75 (1 − u2) I (|u| ≤ 1) and the bandwidth selector
mentioned in Remark 4. For simulated examples, the performance of the estimators
is evaluated by the mean absolute deviation error (MADE):

Ek = n−1
0

n0∑

j=1

∣∣̂αk(v j ) − αk(v j )
∣∣ and Ek j = n−1

0

n0∑

j=1

∣∣β̂k j (v j ) − βk j (v j )
∣∣

for αk(·) and βk j (·), respectively, where k = 1, . . . , p, j = 1, . . . , d, and {v j , j =
1, . . . , n0} are the grid points from (0, 1]. When p = 1, the subscript k can be
omitted. Simulation is repeated 500 times for each model with different sample sizes.
For demonstration purposes, when showing results of a particular simulated series,
we use the series with median total MADE value (sum of all MADE values) equals
among the 500 MADE values. Such a sample is referred to as a typical sample.
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Example 1 We begin with a simple additive trend and seasonal component model

yt j = α(st ) + β j (st ) + et j , t = 1, . . . , n, j = 1, . . . , 4,

where st = t/n, α(x) = exp(−0.7 + 3.5x), β1(x) = −3.1x2 + 17.1x4 − 28.1x5 +
15.7x6, β2(x) = −0.5x2 + 15.7x6 − 15.2x7, β3(x) = −0.2 + 4.8x2 − 7.7x3, and
β4(x) = −β1(x) − β2(x) − β3(x), for 0 < x ≤ 1. Here, the error {em} are generated
from the following AR(1) model:

em = 0.9em−1 + εm,

and εt is generated from N (0, 0.12).

The sample sizes are n = 50, 100, and 300, respectively. Figure 1 gives the time
plot of a typical sample with the sample size n = 100. Figure 2 shows the estimated
α(·) and {β j (·)} (dashed lines) from the typical sample, together with their true val-
ues (solid lines), and it can be seen that estimated values are very close to the true

0 100 200 300 400

0
5

10
15

Time

y

Fig. 1 Time series plot of a typical sample from Example 1 with n = 100
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0.0 0.2 0.4 0.6 0.8 1.0
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0

0.
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0.
4

0.
6
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0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

1.
0

1.
4

β3

Fig. 2 Estimation results for a typical sample from Example 1 with n = 100. The local linear estimator
(dashed line) of the trend function {α(·)} and seasonal effect functions {β j (·)} (solid line)
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Table 1 The median and standard deviation of the 500 MADE values for Example 1

n E E1 E2 E3 E4
50 0.1511 (0.0309) 0.0409 (0.0064) 0.0301 (0.0049) 0.0407 (0.0067) 0.0301 (0.0048)

100 0.1324 (0.0241) 0.0263 (0.0037) 0.0212 (0.0032) 0.0262 (0.0035) 0.0210 (0.0031)

300 0.0931 (0.0137) 0.0131 (0.0018) 0.0125 (0.0018) 0.0130 (0.0018) 0.0121 (0.0018)

0 200 400 600 800 1000 1200

−3
−2

−1
0

1
2

3

Time

y

Fig. 3 Time plot of a typical sample from Example 2, with n = 300

values. The median and standard deviation (in parentheses) of the 500 MADE val-
ues are summarized in Table 1, which confirms that all the MADE values decrease
as n increases, as dictated by the asymptotic theory. Clearly, the proposed modeling
procedure performs fairly well.

Example 2 In this example, a seasonal AR model with functional coefficients is con-
sidered.

yt j = (α1(st ) + β1 j (st ))yt, j−1 + (α2(st ))

+β2 j (st ))yt−1, j + et j , t = 1, . . . , n, j = 1, . . . , 4,

where st = t/n, yt,0 = yt−1,4, α1(x) = 0.5x2 + 0.5x + 0.13, β11(x) = −0.8x2 +
0.5, β12(x) = 0.2x3 + 0.8x2 − 0.4x , β13(x) = 0.7x4 − 0.1x3 − 0.15x , α2(x) =
0.17 sin(2πx)−0.2, β21(x) = −0.5 cos(πx)+0.1, β22(x) = −0.5 sin(0.5πx)+0.3,
β23(x) = −0.5 cos(0.5πx), and βk4(x) = −βk1(x) − βk2(x) − βk3(x), k = 1, 2, for
0 < x ≤ 1. The errors, {et j }, are i.i.d. distributed as N (0, 1). The seasonal AR
coefficients at lag 1 are polynomial functions, and the seasonal AR coefficients at lag
4 are a combination of trigonometric functions plus some constants.

The sample sizes used are n = 300, 500, and 1000, respectively. For a typical
sample with the sample size n = 300, Figs. 3 and 4 give the time plots of {yt } and the
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Fig. 4 Time plots of subseries yt j for each season of a typical sample from Example 2 shown in Fig. 3
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Fig. 5 ACF and PACF for a typical sample from Example 2 shown in Fig. 3

subseries {yt j } for each season. The seasonal pattern of the time series is not revealed
here. However, the ACF and PACF of the time series (Fig. 5) demonstrate a clear
indication of seasonality.

Figure 6 plots the estimated αk(·) and {βk j (·)} (dashed lines) from a typical sample
with n = 300, together with their true values (solid lines). It is seen that the estimation
is reasonable, considering the small sample size. Note that the main function αk(·) has
a much smaller scale than the rest of the functions. The median and standard deviation
(in parentheses) of the 500 MADE values are summarized in Table 2.

4 An analysis of the Hawaiian tourism data

As a major international tourist site, Hawaii’s economy relies heavily on tourism. For
planning, marketing and pricing purposes, a deep understanding of the dynamics and
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Fig. 6 Estimation results for a typical sample from Example 2 with n = 300. The local linear estimator
(dashed line) of the trend function {αk (·)} and seasonal effect functions {βk j (·)} (solid line)

Table 2 The median and standard deviation of the 500 MADE values for Example 2

n E1 E11 E12 E13 E14
300 0.0345 (0.0146) 0.0577 (0.0247) 0.0607 (0.0273) 0.0614 (0.0270) 0.0636 (0.0263)

500 0.0275 (0.0108) 0.0447 (0.0177) 0.0487 (0.0207) 0.0517 (0.0193) 0.0508 (0.0206)

1000 0.0209 (0.0072) 0.0342 (0.0128) 0.0378 (0.0135) 0.0385 (0.0130) 0.0379 (0.0133)

n E2 E21 E22 E23 E24

300 0.0534 (0.0131) 0.0581 (0.0256) 0.0590 (0.0245) 0.0540 (0.0251) 0.0593 (0.0233)

500 0.0455 (0.0120) 0.0474 (0.0187) 0.0466 (0.0200) 0.0414 (0.0174) 0.0475 (0.0177)

1000 0.0312 (0.0095) 0.0369 (0.0131) 0.0355 (0.0135) 0.0336 (0.0125) 0.0363 (0.0133)

a capability of accurate prediction of the number of tourists visiting Hawaii are very
important to the tourist business and local economy in Hawaii. Due to weather, school
schedule and other factors, the number of tourists often shows seasonality. Chen and
Fomby (1999) used the stable seasonal pattern model to fit the monthly time series of
number of tourists visiting Hawaii. Here we apply the proposed functional-coefficient
seasonal time series model to analyze an updated version of Hawaiian tourism data
(1970–2012), obtained from the Hawaii Visitors Bureau. Hence, n = 43, d = 12 and
T = 516.

For expositional convenience, we re-scale the data by dividing 105. Figure 7a
presents the monthly observations from January 1970 through December 2012 with
the yearly averages (thick line). It demonstrates that the number of tourists visiting
Hawaii experienced two growing stages. In the first stage, it increased rapidly from
1970 to 1990. In the second stage, the number of tourists still rose steadily from 1991
to 2012 although there were three down turns, which happened in the early 1990s
(the economy recession), September 2001 (the 9/11 tragedy), and 2007–2010 (after
the financial crisis), respectively. Figure 7b plots the monthly subseries {yt j } for each

123



Functional coefficient seasonal time series models… 731

1970 1980 1990 2000 2010

Time

N
um

be
r o

f t
ou

ris
ts

observations
yearly average

(a)

1970 1980 1990 2000 2010

10
20

30
40

50
60

70
10

20
30

40
50

60
70

Year

N
um

be
r o

f T
ou

ris
ts

Jan
Feb
Mar
Apr
May
June
Average

July
Aug
Sep
Oct
Nov
Dec

(b)

Fig. 7 Hawaiian tourism data from 1970 to 2012. a Time series plot of number of visitors (solid line) with
yearly average (thick line), b time series plot of number of visitors for each month with yearly average
(thick line)

month over the years. To see more clearly the seasonality, Fig. 8 gives the boxplot of
deviations from the yearly average for each month. It shows that the heaviest travelled
months in Hawaii are March, December and the summer.

We first use the nonparametric seasonal model

yt j = α(st ) + β j (st ) + et j , t = 1, . . . , 43, j = 1, . . . , 12, (10)

to fit the series, with the constraint
∑12

j=1 β j (s) = 0 for all s ∈ (0, 1]. Figure 9a
plots the estimated trend function (solid line) plus/minus twice estimated pointwise
standard errors (dashed lines) with the bias ignored. The yearly average (thick line)
is also included. We can see that the 95% confidence interval covers most of the
observed yearly averages except these in 1990–1992, in 2001 and around 2008 due
to the economy recessions and the terrorist attack. Such sudden changes may cause
additional bias in the estimation.
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Fig. 9 Hawaiian tourism data from 1970 to 2012. a Estimated trend function (solid line) plus/minus twice
estimated standard errors (dashed lines) with bias ignored and the yearly average (thick line) for model
(10), b estimated trend function (dashed line) with the yearly average for model (11)

Figure 10 shows the estimated seasonal effect functions, and it can be seen that the
seasonal effect functions ofMarch, December and the summer months are all positive,
and for the rest of them are negative. Also, the range of the seasonal effect functions
increases over time, as the yearly average. Such dynamics are expected. In addition,
economy downturn in 1990 has the largest negative impact on February and March;
the 9/11 tragedy decreases the tourists severely on September, October, November
and December in 2001; and financial crisis after 2007 does not make some very sharp
turning points for seasonal functions, because its influence lasts for a few years (yearly
average reduces greatly in 2008–2010). It is also interesting to see that December is
becoming more and more popular to visit Hawaii in the recent years.

To model more accurately the negative impacts of tourism around 1991–1992 and
2008–2010, partially due to the economy recessions in the U.S. around these two
periods, we incorporate some economic indices as exogenous variables. Since U.S.
and Japan are the major regions that contribute about 85% of the tourists to visit
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Fig. 10 Hawaiian tourism data from 1970 to 2012. Estimated seasonal functions (solid line) with the zero
line (dashed line) for model (10)

Hawaii, we add the growth rate of annual personal disposable income (PDI) of both
countries to the model, as in Chen and Fomby (1999). They are denoted by x1t and
x2t for U.S. and Japan, respectively.

Specifically, we consider the following seasonal functional-coefficient model

yt j = [α0(st ) + β0 j (st )] + [α1(st ) + β1 j (st )]x1t + [α2(st ) + β2 j (st )]x2t + et j , (11)

t = 1, . . . , 43, j = 1, . . . , 12, subject to the constraints

12∑

j=1

βk j (s) = 0 for each k = 0, 1, 2 and all s ∈ (0, 1].

Comparing to model (10), the two extra terms in model (11) try to make adjustments
using the economic variables. In Fig. 9b, the dash line shows the estimated overall
trend function α̂0(st ) + α̂1(st ) x1t + α̂2(st ) x2t against t , calculated with the observed
values of x1t and x2t . The solid line shows observed yearly average. It is roughly
the same as that using the simpler model (10) before 2005, but the adjustment to the
overall annual trend improves the estimation for years after 2005 significantly. The
estimated seasonal functions β̂0 j (st ) + β̂1 j (st ) x1t + β̂2 j (st ) x2t , plotted against time,
again calculated with the observed values of x1t and x2t , are depicted in Fig. 11. The
basic shapes of the seasonal functions remain similar as those shown in Fig. 10, but
the extra terms using economic indices make the seasonal functions less smooth and
reflect the significant influence of the financial crisis.
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Fig. 11 Hawaiian tourism data from 1970 to 2012. Estimated seasonal functions (solid line) with the zero
line (dashed line) for model (11)

Figure 12 shows the estimated seasonal trend, β0i for i = 1, . . . , 12. Comparing
with Fig. 10, we can see that for most months, the pattern of the trend remains similar.
However, β01 and β08 estimated for model (11) have different trend from these esti-
mated for model (10). They increased in 1970s, and decreased after 2000 for model
(11), while they basically remained at the same level for model (10). It partially indi-
cates that the increases of tourism in January and August are due to the growth of PDI
from 2000 to 2012 based on model (11).

Figures 13 and 14 display the estimated seasonal income effects of U.S. and Japan,
respectively. For most months, the income effect of U.S. was weakened from 1970 to
1985, and then was strengthen until subprime mortgage crisis. For Japan, the income
effect for the first half of the year was rather weak. However, PDI had a very strong
impact on the number of tourists for the second half of the year, especially after 1995,
and it had been increasing over the whole period.

We select two sets of estimated functions which have the larger variations among
12 months, and whose estimated seasonal trend functions are different from these for
model (10), plotted inFig. 15.The estimation results give us somedetailed explanations
of the Hawaiian tourism data. Figure 15a presents α1, the overall income effect of U.S.
over time. It is seen that the income effect decreased in the period of 1970–1988, then
gradually increased until the financial crisis. However, the additional income effect
of U.S. in the month of January β11 decreased in the period of 1970–1988, and then
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Fig. 12 Hawaiian tourism data from 1970 to 2012 for model (11). Estimated seasonal trend β0i for
i = 1, . . . , 12

increased, shown in Fig. 15b. The overall income effect on U.S. in January over time is
plotted in Fig. 15c. The overall income effect for Japan α2 increases consistently over
time, shown in Fig. 15d. The income effect of the month of August β28 decreased after
1995, and then rose very sharply after 2007 (Fig. 15e). Overall, the income growth
becomes a more and more deciding factor on the number of Japanese tourists visiting
Hawaii in August.

We compare model (11) with the seasonal ARIMAmodel by out-of-sample rolling
forecasting. Specifically, for m0 = T0, . . . , T − �, we use data observed at time m0,
{y j , j = 1, . . . ,m0} to predict number of tourists visiting Hawaii at time m0 + �,
{ym0+�}, where the forecast horizon is � months. Here we set T0 = 408, and let �

take values from 1 to 48. For computational convenience, when the forecast origin
is m0, where m0 = 12(t0 − 1) + j0, 1 ≤ j0 ≤ 12, data is separated into (t0 − 1)
periods, not by the calendar year, but by the following rule: the months j0 +1, . . . , 12
in the year h, and the months 1, . . . , j0 in the year h + 1 are defined as the h-th
period, for each h = 1, . . . , t0 − 1. In other words, data is separated into periods as
{y j0+1, . . . , y j0+12}, . . . , {ym0−11, . . . , ym0}, when the forecast origin is m0.

Figure 16 shows the time series plot and sample autocorrelations of residuals {̂em}
by model (11). There is no significant seasonality but serial dependence in the data
after extracting seasonal trend and income effects. Hence, we specify an AR(1) model
for the residuals
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Fig. 13 Hawaiian tourism data from 1970 to 2012 for model (11). Estimated seasonal income effect of
U.S. for each month, estimated α1 + β1i for i = 1, . . . , 12

êm = φêm−1 + ηm,

where {ηm} is a white noise process.
When the forecast origin is m0, φ can be estimated by least squares, i.e., φ̂ =

argmin
∑m0

m=2(̂em − φêm−1)
2, and ym0+� can be predicted as

ŷm0+� =[̂α0(st )+β̂0 j (st )]+[̂α1(st ) + β̂1 j (st )]x1t+[̂α2(st ) + β̂2 j (st )]x2t + φ̂� êm0 ,

(12)

where the (m0 + �)-th month is the j-th month in the t-th period, i.e. m0 + � − j0 =
12(t − 1) + j , 1 ≤ j ≤ 12, {̂αk(st ), β̂k j (st ), k = 0, 1, 2} are estimates of trend and
seasonal components in j-th month and t-th period based on data observed at timem0
with Eq. (9), and êm0 is the residual at time m0.

For the seasonal ARIMA model, we select the following model based on AIC to
fit the data

(1 − φ1B)(1 − φ12B
12)(1 − B12)ym = am, (13)

where B is the back-shift operator, φ1 and φ12 are the AR coefficient and the seasonal
AR coefficient respectively, and {am} is a white noise process.
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Fig. 14 Hawaiian tourism data from 1970 to 2012 for model (11). Estimated seasonal income effect of
Japan for each month, estimated α2 + β2i for i = 1, . . . , 12
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Fig. 15 Hawaiian tourism data from 1970 to 2012 for model (11). Top panel shows the seasonal income
effect of U.S. in January: a estimated α1, b estimated β11, c estimated α1 + β11. Bottom panel shows the
seasonal income effect of Japan in August: d estimated α2, e estimated β28, f estimated α2 + β28
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Fig. 16 Hawaiian tourism data from 1970 to 2012. a Time series plot of residuals for model (11), b sample
auto-correlations of residuals for model (11)
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Fig. 17 Hawaiian tourism data from 1970 to 2012. The mean squared forecasting error for Model (11) and
the seasonal ARIMA model against different forecast horizon

Figure 17 plots the out-of-sample mean squared prediction error against different
forecast horizon for two models. Although the seasonal ARIMA model predicts the
number of tourists less than 1-year ahead better than our model, it suffers severely
from the increase of forecast horizon. Predictions by our model are more stable, and
outperformwhen forecast horizon is longer. The functional-coefficient seasonalmodel
characterizes the long-term trend of the series, and describes the dynamic relationship
between growth of PDI and the number of tourists visiting Hawaii.

5 Concluding remarks

In this article, we propose a nonparametric seasonal time series model with functional
coefficients. By allowing the coefficients to change over time, it describes the time-
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varying impact the trend and possible exogenous variables exert on the process. The
seasonal components in the model help to characterize the periodic behaviors of the
time series data. The paper focuses on the nonparametric approach, with its flexibility
and minimum subjective assumptions. It should be pointed out that the results from
the nonparametric approach can be used as a first step for building more parsimonious
models whichmay lead tomore accurate and stable estimation and better performance.
The proposed method is implemented to analyze the Hawaii tourism data, and results
show that our model provides easier interpretation and better long term prediction than
a linear seasonal ARIMA models.

Appendix: Mathematical proofs

We first list all the assumptions needed for the asymptotic theory in Sect. 2.2 although
some of themmight not be theweakest possible. Note that the same notations in Sect. 2
are used here. Throughout this appendix, we denote by C a generic constant, which
may take different values at different appearances.

Assumption A A1. The kernel K (u) is symmetric and satisfies the Lipschitz condi-
tion and u K (u) is bounded.

A2. For each n, {(Xt , ent )}nt=1 have the same joint distribution as {(Xt , ξ t )}nt=1,
where the time series {(Xt , ξ t )} is strictly stationary α-mixing. Assume that
there exists δ > 0 such that E |ξ t |2(1+δ) < ∞, E |Xt |4(1+δ) < ∞, and the mixing
coefficient α(n) = O

(
n−(2+δ)(1+δ)/δ

)
.

A3. n h1+4/δ → ∞.

Remark 10 Let r jm(k) denote the ( j,m)-th element of R(k). By the Davydov’s
inequality (see, e.g., Corollary A.2 in Hall and Heyde 1980), Assumption A2 implies
that |r jm(k)| ≤ C αδ/(2+δ)(k) so that

∑∞
k=−∞ |r jm(k)| < ∞.

Lemma A1 Under the assumptions of Theorem 1, we have

Var(Pn0) = ν0 �0 + o(1) and Pn1 = op(1),

where, for k = 0, 1,

Pnk = h1/2 n−1/2
n∑

t=1

(st − s)k e∗
nt Kh(st − s)

with e∗
nt = X T

t ent .

Proof By the stationarity of {ξ j } and Xt ,

var(Pn0) = n−1 h
∑

1≤k, l≤n

R(k − l) Kh(sk − s) Kh(sl − s)

= n−1 h R(0)
n∑

k=1

K 2
h (sk − s)
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+2 n−1 h
∑

1≤l<k≤n

R(k − l) Kh(sk − s) Kh(sl − s)

≡ I1 + I2.

Clearly, by the Riemann sum approximation of an integral,

I1 ≈ R(0) h
∫ 1

0
K 2
h (u − s)du ≈ ν0 R(0).

Since n h → ∞, there exists cn → ∞ such that cn/(n h) → 0. Let S1 = {(k, l) :
1 ≤ k − l ≤ cn; 1 ≤ l < k ≤ n} and S2 = {(k, l) : 1 ≤ l < k ≤ n}\S1. Then, I2 is
split into two terms as

∑
S1(· · · ), denoted by I21, and

∑
S2(· · · ), denoted by I22. Since

K (·) is bounded, then, Kh(·) ≤ C/h and n−1 ∑n
k=1 Kh(tk − t) ≤ C . In conjunction

with the Davydov’s inequality (see, e.g., Corollary A.2 in Hall and Heyde 1980), we
have, for the ( j,m)-th element of I22,

|I22( jm)| ≤ 2n−1h
∑

S2

|r jm(k − l)| Kh(sk − s) Kh(sl − s)

≤ C n−1 h
∑

S2

αδ/(2+δ)(k − l)Kh(sk − s) Kh(sl − s)

≤ C n−1
n∑

k=1

Kh(sk − s)
∑

k1>cn

αδ/(2+δ)(k1)

≤ C
∑

k1>cn

αδ/(2+δ)(k1)

≤ C c−δ
n → 0

by Assumption A2 and the fact that cn → ∞. For any (k, l) ∈ S1, by Assumption A1

|Kh(sk − s) − Kh(sl − s)| ≤ C h−1 (sk − sl)/h ≤ C cn/(n h
2),

which implies that

|I212( jm)| ≡
∣∣∣∣∣∣
2 n−1 h

n−1∑

l=1

∑

1≤k−l≤cn

r jm(k − l) {Kh(sk − s) − Kh(sl − s)} Kh(sl − s)

∣∣∣∣∣∣

≤ C cn n
−2 h−1

n−1∑

l=1

∑

1≤k−l≤cn

|r jm(k − l)| Kh(sl − s)

≤ C cn n
−2 h−1

n−1∑

l=1

Kh(sl − s)
∑

k≥1

|r jm(k)|

≤ C cn/(n h) → 0
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by Remark 10 and the fact that cn/(n h) → 0. Therefore,

I21( jm) = 2 n−1 h
n−1∑

l=1

∑

1≤k−l≤cn

r jm(k − l) Kh(sk − s) Kh(sl − s)

= 2 n−1 h
n−1∑

l=1

K 2
h (sl − s)

∑

1≤k−l≤cn

r jm(k − l) + I212( jm)

→ 2 ν0

∞∑

k=1

r jm(k).

Thus,

var(Pn0) → ν0

(
R(0) + 2

∞∑

k=1

R(k)

)
= ν0 �0.

On the other hand, by Assumption A1, we have

var(Pn1) = n−1 h
∑

1≤k, l≤n

R(k − l) (sk − s)(sl − s)Kh(sk − s) Kh(sl − s)

≤ C n−1 h
∑

1≤k, l≤n

|R(k − l)|

≤ C h
∞∑

k=−∞
|R(k)| → 0.

This proves the lemma. ��
Proof of Theorem 1 Similar to the proof used in Lemma A1, we have

h−k Gk(s) = μk G + op(1), (14)

where Gk for k ≥ 0 is defined in (9), so that

(
G0 G1/h

G1/h G2/h2

)
= diag{G, μ2 G} + op(1).

We re-write Mk as

Mk = M∗
k + (nh)−1/2Pnk,

where Mk is defined in (9), Pnk is defined in Lemma A1, and M∗
k = n−1 ∑n

t=1(st −
s)k X T

t θ(st ) Kh(st −s). By a Taylor expansion, for any k ≥ 0 and st in a neighborhood
of s,
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M∗
k = Gk θ(s) + Gk+1 θ ′(s) + 1

2
Gk+2 θ ′′(s) + op(h

2),

so that by (9),

(̂
θ0

θ̂
′
1

)
−

(
θ0
θ ′
1

)

= 1

2

(
G0 G1
G1 G2

)−1 (
G2
G3

)
θ ′′(s) + op(h

2) + (nh)−1
(
G0 G1
G1 G2

)−1 (
Pn0
Pn1

)
,

which implies that

√
n h

{
θ̂(s) − θ(s) − h2

2
μ2 θ ′′(s) + o(h2)

}
= G−1 Pn0 + op(1). (15)

Therefore, it follows from (15) that the term 1
2 h

2 μ2 θ ′′(t) on the right hand side of (15)
serves as the asymptotic bias, and that to establish the asymptotic normality of θ̂(s), one
only needs to establish the asymptotic normality forPn0 . To this end, theCramér-Wold
device is used. For any unit vector d ∈ �d , let Zn,t = n−1/2 h1/2 dT ent Kh(st − s).
Then, dT Pn0 = ∑n

t=1 Zn,t and by Lemma A1,

var
(
dT Pn0

)
= ν0 dT �0 d {1 + o(1)} ≡ θ2d {1 + o(1)}. (16)

Now, the Doob’s small-block and large-block technique is used. Namely, partition
{1, . . . , n} into 2 qn + 1 subsets with large-block of size rn = ⌊

(n h)1/2
⌋
and small-

block of size sn = ⌊
(n h)1/2/ log n

⌋
, where qn =

⌊
n

rn+sn

⌋
. Then, qn α(sn) ≤

C n−(τ−1)/2 h−(τ+1)/2 logτ n, where τ = (2 + δ)(1 + δ)/δ, and qn α(sn) → 0
by Assumption A3. Let r∗

j = j (rn + sn) and define the random variables, for
0 ≤ j ≤ qn − 1,

η j =
r∗
j +rn∑

t=r∗
j +1

Zn,t , ζ j =
r∗
j+1∑

t=r∗
j +rn+1

Zn,t , and Qn,3 =
n∑

t=r∗
qn+1

Zn,t .

Then, dT Pn0 = Qn,1 +Qn,2 +Qn,3, whereQn,1 = ∑qn−1
j=0 η j andQn,2 = ∑qn−1

j=0 ζ j .
Next we prove the following four facts: (i) as n → ∞,

E(Qn,2)
2 → 0, E(Qn,3)

2 → 0, (17)

(ii) as n → ∞ and θ2d (t) defined as in (16), we have

qn−1∑

j=0

E
(
η2j

)
→ θ2d , (18)
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(iii) for any s and n → ∞,

∣∣∣∣∣∣
E

[
exp(i sQn,1)

] −
qn−1∏

j=0

E
[
exp(i s η j )

]
∣∣∣∣∣∣
→ 0, (19)

and (iv) for every ε > 0,

qn−1∑

j=0

E
[
η2j I

{|η j | ≥ ε θd
}] → 0. (20)

(17) implies that Qn,2 and Qn,3 are asymptotically negligible in probability. (19)
shows that the summands {η j } in Qn,1 are asymptotically independent, and (18) and
(20) are the standard Lindeberg-Feller conditions for asymptotic normality ofQn,1 for
the independent setup. The rest proof is to establish (17)–(20) and it can be done by
following the almost same lines as those used in the Proof of Theorem 2 in Cai et al.
(2000) with some modifications. This completes the Proof of Theorem 1. ��
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