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a b s t r a c t

Marginal effect in nonparametric quantile regression is of special interest as it quantitatively measures
how one unit change in explanatory variable heterogeneously affects dependent variable ceteris paribus
at distinct quantiles. In this paper, we propose a data-driven bandwidth selection procedure based on the
gradient of an unknown quantile regression function. Ourmethod delivers the bandwidth with the oracle
property in the sense that it is asymptotically equivalent to the optimal bandwidth if the true gradient
were known. The results of Monte Carlo simulations are reported, and the finite sample performance
of our proposed method confirms our theoretical analysis. An empirical application is also provided,
showing that our proposed method delivers more reasonable and reliable quantile derivative estimates
than traditional cross validation method.
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1. Introduction

Since the introduction of quantile regression by Koenker and
Bassett’s (1978) seminal paper and acknowledgment of its main
advantages in robustness to outliers and in characterization of
heterogeneous effects, quantile regression model has been widely
used in a variety of research fields including economics, finance,
medical and environmental sciences etc., and at the same time
further developed in multiple important directions, such as cen-
sored data and time series data analysis etc. For example, Powell
(1986) and Buchinsky and Hahn (1998) consider regression quan-
tiles for censored data. Chernozhukov and Hansen (2004) study
the effects of 401(k) participation on the wealth distribution us-
ing instrumental quantile regressionmodel. Buchinsky (1994) uses
quantile regression approach to describe conditional wage distri-
bution and studied within-groupwage inequality and heterogene-
ity of returns to schooling and experience. Cai (2002) considers
quantile regressions with time series data. Engle and Manganelli
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(2004) propose estimating value at risk (VaR) with quantile re-
gression. Koenker and Xiao (2002) propose quantile autoregres-
sive (QAR) model, and study inference on unit root quantile re-
gression models. Xiao (2009) proposes quantile cointegrating re-
gression and studied the relationship between prices and market
fundamentals using the US stock index data. For other quantile re-
gressionmodels and empirical applications in different areas, read-
ers are referred to Yu et al. (2003), Koenker (2005),Wei et al. (2006)
and Cade and Noon (2003).

In the analysis of conditional quantile regression,marginal effect
is of special interest in economic analysis as it provides a good
approximation to the amount of change of dependent variable at
distinct quantiles in response to a unit change in the regressors.
For example, Buchinsky (1994) finds that the returns to education
are higher at the higher quantiles of conditional wage distribution,
while the returns to experience are higher at the lower quantiles,
especially during the early 1970s. Chernozhukov and Hansen
(2004) find that there is significant heterogeneity in the effect of
401(k) participation on net financial assets.

Parametric quantile regression models employed in the litera-
ture have the common caveat that they may suffer from misspec-
ification in the functional form of conditional quantiles. Leaving
conditional quantile function unspecified in the model, nonpara-
metric quantile regression is an immediate remedy for such mis-
specification. Among the many research directions of quantile
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analysis, nonparametric techniques in quantile regression devel-
ops almost in parallel with the parametric approach. Stone (1977)
introduces locally constant nonparametric quantile estimator and
establishes its consistency and rates of convergence. Chaudhuri
(1991) generalizes the results to locally polynomial quantile re-
gression models using local Bahadur type representation. Chaud-
huri et al. (1997) consider nonparametric estimation of average
derivative of conditional quantile function. Their estimator is the
weighted average of pointwise derivatives at each observations,
and has root-n convergence rate. Yu and Jones (1998) consider lo-
cal linear quantile regression using check function approach and
double-kernel approach. Li and Racine (2008) introduce nonpara-
metric estimation of conditional quantile functions based on esti-
mates of cumulative distribution functionwhen regressors include
both continuous and discrete variables; and later on, Li et al. (2013)
propose a data-driven least-square cross-validationmethod to op-
timally select smoothing parameters. Cai and Xu (2008) propose
quantile regression methods for a class of smooth coefficient time
seriesmodels. Lin and Li (2007) consider the estimation of quantile
function with association dependence based on the L1-norm ker-
nel and establish asymptotic normality for their estimator. Hallin
et al. (2009) propose spatial quantile regression model, which
introduces nonparametric quantile method to spatial modeling
framework. Cai and Xiao (2012) study both parametric and non-
parametric quantile regression estimation for dynamic models
with partially varying coefficients in which some coefficients are
functions of covariates.

It is well known that the result of nonparametric estimation de-
pends sensitively on the choice of smoothing parameter or band-
width. For nonparametric conditional mean regression there are
rich literature on bandwidth selection. See Rice (1984), Härdle and
Vieu (1992), Hall et al. (1995), Xia and Li (2002), and Leung (2005)
forcontinuous regressors case; see Li and Racine (2004), Racine and
Li (2004), Racine and Li (2004), and Li, Simar and Zelenyuk (2014)
for mixed continuous and categorical regressors case. However,
there is not much work done on this issue for nonparametric esti-
mate of conditional quantile function. Yu and Jones (1998) and Yu
and Lu (2004) propose a selectionmethod based on the ad hoc rela-
tionship of optimal bandwidths for conditional mean and quantile
regression under the assumption that the second order derivatives
of the quantile function are parallel. This assumption, although
simplifying bandwidth selection for nonparametric quantile esti-
mation, might not be valid for many applications because of non-
linear heteroskedasticity in conditional quantile functions. Alter-
natively, Cai and Xu (2008) construct a nonparametric version of
the bias-corrected AIC to select the bandwidth. Their method ad-
dress the structure of time series data and the overfitting or under-
fitting tendency. Each of the bandwidth selection methods men-
tioned above either depends on stringent restrictions on curva-
tures of quantile functions or is in need of pilot bandwidth under
researcher’s judgment. To our best knowledge, there is no pub-
lished work on bandwidth selection for local polynomial quantile
estimator or the quantile derivative estimator under check func-
tion approach with continuous covariates and mixed type (con-
tinuous and categorical) covariates. Recently, Li et al. (submit-
ted for publication) propose a fully data driven cross validation
bandwidth selection method for the local linear quantile estima-
tor with mixed continuous and discrete data.

The contribution of this paper is to propose a fully automatic
and data-driven bandwidth selection method for a local linear
quantile derivative estimator. Borrowing the idea from Henderson
et al. (2015), we propose to use local cubic derivative estimator
to replace the unknown true gradient in the oracle LSCV setup
for the gradient in Müller et al. (1987) with the local linear
estimator. After this modification, the leading bias term in cross
validation (CV) function is unchanged as the bias from local cubic
estimator has a much smaller order than local linear estimator;
and the leading variance in CV function becomes the variance
of difference between the two estimators. After rescaling by a
constant which only depends on kernel function, the variance of
this difference is the same as the variance in the oracle LSCV
setup with unknown oracle gradient. Therefore, the proposed
bandwidth selection method possesses the oracle property that
selected bandwidth is asymptotically equivalent to that selected
with unknown oracle gradient.

The main advantage of this gradient based bandwidth selection
method lies within the fact that it is fully data driven, and conve-
niently implemented without heavy computational burden or the
need of pilot estimates/bandwidths under the researchers’ subjec-
tive judgment which might strongly influences the results of non-
parametric estimates. With a clear intuition, this selection method
also readily applies to multivariate cases.

The remainder of this paper is organized as follows. Section 2
gives the formal details of our cross validation procedure and the
asymptotic result of our proposed method. After that, we provide
Monte Carlo simulation results in Section 3, comparing the finite
sample performance of our bandwidth selection method to the or-
acle selectionmethod for the estimation of nonparametric quantile
derivative functions. An illustrative example is presented in Sec-
tion 4, and Section 5 concludes this paper. All the technical details
of derivations are relegated to the Appendix.

2. Methodology

Without loss of generality, we first consider the general univari-
ate nonparametric quantile regression model
yi = qτ (xi) + ei,
where the covariate xi in the equation is a scalar variable, qτ (xi) is
the τ th quantile of yi conditioned on xi, i.e., Pr(yi ≤ qτ (xi)|xi) = τ ,
and the functional form of quantile function qτ (·) is unknown and
unspecified in the model. The multivariate case, in which xi in-
cludes multiple variables, will be discussed at the end of Section 2.
We are interested in the first order derivative of conditional quan-
tile function, denoted as β(x) ≡ dqτ (x)/dx. Let β̂LL(x) be the local
linear estimator of β(x) obtained from1

min
a,b

n
i=1

ρτ (yi − a − b(xi − x))Kh,ix (1)

where ρτ (v) = v[τ − 1(v ≤ 0)] with 0 < τ < 1, b estimates
dqτ (x)/dx, Kh,ix = h−1K((xi − x)/h) is kernel function, and h is the
smoothing parameter.

Theoretically, the bandwidth h for derivative estimator should
be chosen so that it minimizes the expected mean squared error
E{[β̂LL(x) − β(x)]2}. In practice, we can choose bandwidth h that
minimizes its sample analogue,

CV (h) ≡
1
n

n
i=1

[β̂LL(xi) − β(xi)]2M(xi), (2)

where M(·) is a weight function with bounded support that trims
out data that are close to the boundary of the support of x. The
leading term of CV (h) in (2), denoted as CV0(h), is

CV0(h) =


E[β̂LL(x) − β(x)]2M(x)f (x)dx

=

 
Bias20(β̂LL(x)) + Var0(β̂LL(x))


M(x)f (x)dx + (s.o.) (3)

1 It is obvious that the derivative β(x) and its estimate β̂LL(x) depend on quantile
level τ . The appearance of τ in the subscripts is suppressed in this paper for
notational convenience.
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where f (x) is the density function of x, Bias0(β̂LL(x)) and
Var0(β̂LL(x)) are the leading bias and leading variance terms of
β̂LL(x), and (s.o.) are terms that have smaller order in probability
than the first leading term, see Racine and Li (2004), Li and Racine
(2006) and Hall et al. (2007). Although the true value of β(x) is
unknown, one can calculate the leading bias and leading variance
terms of β̂LL(x), which are2

Bias0(β̂LL(x)) = h2 (µ4 − µ2
2)ξ

′(x)q′′
τ (x)

2µ2ξ(x)
≡ h2B1(x) (4)

Var0(β̂LL(x)) =
1

nh3

τ(1 − τ)ν2

µ2
2

f (x)
ξ 2(x)

≡
1

nh3
V1Ω(x) (5)

where

B1(x) =
(µ4 − µ2

2)ξ
′(x)q′′

τ (x)
2µ2ξ(x)

, V1 =
τ(1 − τ)ν2

µ2
2

,

Ω(x) =
f (x)
ξ 2(x)

, ξ(x) = fe(0|x)f (x),
(6)

fe(·|x) is conditional pdf of e given x, µj =

K(v)vjdv, and νj =

K 2(v)vjdv. Therefore, it is easy to see that the optimal bandwidth
h0,opt for derivative estimator that minimizes CV0(h) is

h0,opt =


3V1


Ω(x)M(x)f (x)dx

4

B2
1(x)M(x)f (x)dx

 1
7

n−
1
7 . (7)

However, the result of h0,opt is infeasible and cannot be used di-
rectly, as there are unknown functions, such as f (x), ξ(x), ξ ′(x),
and q′′

τ (x), in the expression. One need to estimate these unknown
functions with some initial bandwidths first, then plug those pi-
lot estimates into the formula (7), which is known as the ‘‘plug-in’’
method proposed by Fan and Gijbels (1995). This method has two
disadvantages. Theoretically, the ‘‘plug-in’’ formula in (7) can be
too complicated to use especially when there are multiple regres-
sors of different types (continuous and discrete) involved in the
model. In practice, the ‘‘plug-in’’ method is not fully automatic as it
depends on the initial bandwidths which are needed for estimat-
ing those unknown functions. If the initial selection of bandwidth
is poor, the ‘‘plug-in’’ will also behave poorly.

In this paper, we borrow the idea from Henderson et al. (2015)
to devise an alternative procedure for the selection of bandwidth,
denoted by ĥ0,opt , which is fully data-driven without selection of
initial bandwidth, and it is equivalent to the infeasible h0,opt in the
sense that it nearly minimizes the CV0(h) in (3), i.e., ĥ0,opt/h0,opt =

1 + oP(1).
The idea of constructing feasible version of h0,opt is clear: we

use a consistent estimate β̂(x) of the derivative function β(x) to
replace the true value in (3). The objective function used to select
h now becomes

CVLCB(h) ≡
1
n

n
i=1

[β̂LL(xi) − β̂(xi)]2M(xi). (8)

The natural candidate for β̂(x) can be local polynomial quantile
derivative estimator with higher orders. In this paper, we choose
local cubic estimator, i.e., β̂(x) = β̂LCB(x) (the subscript ‘‘LCB’’
stands for Local Cubic) obtained from

min
a,b

n
i=1

ρτ (yi − a − b1(xi − x) − b2(xi − x)2 − b3(xi − x)3)Kh,ix

2 The derivations are in the Appendix.
where b1 estimates dqτ (x)/dx. Similarly, the leading term of
CVLCB(h) is

CV0,LCB(h) =


MSE0[β̂LL(x) − β̂LCB(x)]M(x)f (x)dx (9)

=

 
Bias20(β̂LL(x) − β̂LCB(x))

+ Var0

β̂LL(x) − β̂LCB(x)


M(x)f (x)dx. (10)

It is easy to see that Bias0(β̂LL(x)) dominates the bias term
Bias0(β̂LL(x) − β̂LCB(x)) as the leading bias of local linear quantile
derivative estimator is O(h2) while that of local cubic one is O(h4).
In addition, to calculate the variance of β̂LL(x) − β̂LCB(x), one needs
to know the leading variances of both estimators and their covari-
ance. Here we summarize the results

Bias0[β̂LCB(x)] = O(h4), (11)

Var0[β̂LCB(x)] =
1

nh3

τ(1 − τ)(µ2
6ν2 + µ2

4ν6 − 2µ4µ6ν4)

(µ2µ6 − µ2
4)

2

f (x)
ξ 2(x)

≡
1

nh3
V3Ω(x), (12)

Cov0[β̂LL(x), β̂LCB(x)] =
1

nh3

τ(1 − τ)(µ6ν2 − µ4ν4)

µ2(µ2µ6 − µ2
4)

f (x)
ξ 2(x)

≡
1

nh3
V2Ω(x), (13)

where

V2 =
τ(1 − τ)(µ6ν2 − µ4ν4)

µ2(µ2µ6 − µ2
4)

,

V3 =
τ(1 − τ)(µ2

6ν2 + µ2
4ν6 − 2µ4µ6ν4)

(µ2µ6 − µ2
4)

2
.

Substitute (4), (5), (11), (12), (13) into (10), we have that

CV0,LCB(h) =

 
h4B2

1(x) +
V1,3

nh3
Ω(x)


M(x)f (x)dx

where

V1,3 ≡ V1 + V3 − 2V2

=
τ(1 − τ)µ2

4(µ
2
2ν6 − 2µ2µ4ν4 + µ2

4ν2)

µ2
2(µ2µ6 − µ2

4)
2

. (14)

Correspondingly, the optimal choice of bandwidth h that mini-
mizes CV0,LCB(h) is

h0,cubic =


3V1,3


Ω(x)M(x)f (x)dx

4

B2
1(x)M(x)f (x)dx

 1
7

n−
1
7 . (15)

Note that the ratio of h0,opt to h0,cubic is a constant and free from
unknown functions

h0,opt

h0,cubic
=


V1

V1,3

 1
7

=


ν2(µ2µ6 − µ2

4)
2

µ2
4(µ

2
2ν6 − 2µ2µ4ν4 + µ2

4ν2)

 1
7

. (16)

Given such result, one can first obtain the bandwidth ĥcubic bymin-
imizing the feasible cross validation objective function (8), then
rescale ĥcubic by the ratio in (16) to obtain ĥ0,opt which nearly min-
imizes the infeasible cross validation objective function (2) in the
sense that

ĥ0,opt

h0,opt
=

(V1/V1,3)
1/7ĥcubic

h0,opt
=

(V1/V1,3)
1/7

[h0,cubic + oP(h0,cubic)]

h0,opt

= 1 + oP(1),
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where the second equality holds under some regularity conditions
that are similar to those in Hall et al. (2007).

It is easy to compute the ratio (V1/V1,3)
1/7 for commonly used

kernel functions. For the Epanechnikov kernel, K(v) = 0.75(1 −

v2)1(|v| ≤ 1), µ2 = 1/5, µ4 = 3/35, µ6 = 1/21, ν2 = 3/35,
ν4 = 1/35, ν6 = 1/77, and (V1/V1,3)

1/7
= (44/135)1/7 ≈ 0.8520.

For theGaussian kernel,wehave thatK(v)=(
√
2π)−1 exp(−v2/2),

µ2 = 1, µ4 = 3, µ6 = 15, ν2 = 1/(4
√

π), ν4 = 3/(8
√

π),
ν6 = 15/(16

√
π), and (V1/V1,3)

1/7
= (16/15)1/7 ≈ 1.0093,

which, being very close to 1, implies that ĥcubic can be almost
regarded as ĥ0,opt without further adjustment. The two ratio values
for theGaussian and Epanechnikov kernels are the same as those in
Henderson et al. (2015)which considers nonparametric estimation
of derivatives of conditional mean function. This coincidence
occurs not only for these two specific kernel functions but also for
any other kernel functions, as we show in the Appendix that the
expression for the ratio (V1/V1,3)

1/7 given in (16) is the same as
that in Henderson et al. (2015).

Although demonstrated in univariate case, after proper adap-
tation with heavier notations, this method can be also applied to
multivariate cases. Because of space limitations, we only outline
the bandwidth selection procedure for practical implementation,
and report themain asymptotic results for the selected bandwidth.

Suppose that there are p regressors in the conditional quantile
function qτ (x) where x = (xi1, xi2, . . . , xip). We want to choose
bandwidth vector h = (h1, . . . , hp) optimally in the sense that
theyminimize themean squared error for the first order derivative
quantile functions qτ (x). Let βs(x) = ∂qτ (x)/∂xs for s = 1, . . . , p
denote the first order partial derivative functions, and we consider
each partial derivative separately and, without loss of generality,
focus on the partial derivative with respect to the first regressor
i.e. s = 1. The oracle (infeasible) cross validation function is

CV1(h) ≡
1
n

n
i=1


β̂1,LL(xi) − β1(xi)

2
M(xi). (17)

Similar to the univariate case, replacing the true unknown partial
derivative function with its consistent estimate from local cubic
quantile regression, we propose to choose h to minimize the fol-
lowing feasible cross validation function,

CV1,f (h) ≡
1
n

n
i=1


β̂1,LL(xi) − β̂1,LCB(xi)

2
M(xi) (18)

where β̂1,LL(xi) and β̂1,LCB(xi) is the local linear and local cubic esti-
mator of β1(x) = ∂qτ (x)/∂x1. For β̂1,LL(xi), it can be obtained from

min
a,b

n
i=1

ρτ


yi − a − b(x)′(xi − x)


Kh,ix

where b estimates (∂qτ (x)/∂x1, . . . , ∂qτ (x)/∂xp)′, the p×1 vector
of first order derivative functions,Kh,ix =

p
s=1 h

−1
s K((xis −xs)/hs)

is the product kernel function. Before defining β̂1,LCB(xi), we intro-
duce some additional notations that are in line with Masry (1996).
Assume that the multivariate quantile function qτ (x) has deriva-
tives of total order 4 at the point x, and we can approximate qτ (x)
locally by a multivariate polynomial of total order 3,

qτ (x) =


0≤|k|≤3

1
k!

Dkqτ (x0)(x − x0)k (19)

where k = {k1, . . . , kp}, |k| =
p

ℓ=1 kℓ, k! = k1! × · · · × kp!,
xk = xk11 × · · · × xkpp ,
0≤|k|≤3

=

3
j=0

j
k1=0

· · ·

j
kp=0

k1+···+kp=j

, and Dkqτ (x) =
∂kqτ (x)

∂xk11 · · · ∂xkpp
.

Given the notations above, the local cubic conditional quantile es-
timation solves the following minimization problem

min
b0,...,b3

n
i=1

ρτ


yi −


0≤|k|≤3

bk(x)′(xi − x)k

Kh,ix,

where k! · bk(x) estimates Dkqτ (x). Therefore, we use β̂1,LCB(xi) to
denote the first component of the solution b1.

To simplify the notations, we assume that all the elements in
the bandwidth vector are equal, i.e., h1 = h2 = · · · = hp = h.
Let h0,opt and h0,cubic denote the values of the leading term in h that
minimizes (17) and (18), and they have the following relationship
with generalizes the univariate case in (16),

h0,opt/h0,cubic = (V1/V1,3)
1/(p+1). (20)

Therefore, one first minimizes (18) to obtain the bandwidth ĥcubic ,
then rescale it by the ratio (20). Define ĥ0,opt = (V1/V1,3)

1/(p+1)ĥcubic
as the final selected bandwidth,which is asymptotically equivalent
to the optimal bandwidth selected from the infeasible cross valida-
tion as if the true quantile partial derivative function were known,
i.e., ĥ0,opt/h0,opt = 1+oP(1). In practice, the ratio (V1/V1,3)

1/(p+1) is
even closer to one than the univariate case as p increases, therefore
no adjustment is needed if one uses the Gaussian kernel function.

3. Simulation

In this section, we numerically study the finite sample perfor-
mance of local cubic based CV method. We consider the following
two data generating processes (DGP),

DGP1: yi = 2 + sin(xi) + xiui, i = 1, . . . , n,
DGP2: yi = 1 + ln(1 + xi) + [1 + sin(xi)]ui, i = 1, . . . , n,

where xi ∼ i.i.d.Uniform[0, π] and ui ∼ i.i.d.N(0, 0.64). The num-
ber of replication is 500 and the sample sizes are 100 and 200. For
each simulation, we calculate themean squared errors andmedian
squared errors as follows,

Mean Squared Error =
1
n

n
i=1

[β̂LL(xi) − β(xi)]2,

Median Squared Error = median
1≤i≤n


[β̂LL(xi) − β(xi)]2


.

The reason why we consider median squared error is that there
may be some outliers producing huge squared errors and skewing
the mean, while median is robust to outliers.

For the purpose of comparison, we consider three different
ways of selecting the bandwidth h:

(i) infeasible method: h is selected by minimizing n−1n
i=1[β̂LL

(xi)−β(xi)]2. This method uses the true β(xi) in the objective
function which is infeasible in practice. It serves as an optimal
benchmark method.

(ii) Our proposed LL–Local Cubic basedmethodwhich selects h by
minimizing n−1n

i=1[β̂LL(xi) − βLCB(xi)]2.
(iii) Least squares method which selects bandwidth h byminimiz-

ing
n

i=1

ρτ (yi − α̂−i,LL(xi))

where α̂−i,LL is the leave-one-out estimator of qτ (xi).
We expect that the infeasible method to give the best estima-

tion result, followed by our LL–Local Cubic based method because
our method is asymptotically efficient in selecting h. The least
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Table 1
Simulation results for DGP1.

CV method n = 100 n = 200 n = 100 n = 200

Mean Mean Median Median
τ = 0.25
Infeasible 0.167 0.103 0.059 0.037
Local Cubic 0.173 0.121 0.064 0.044
Least Squares 0.267 0.156 0.098 0.049

τ = 0.50
Infeasible 0.140 0.098 0.057 0.035
Local Cubic 0.145 0.111 0.060 0.038
Least Squares 0.190 0.162 0.071 0.048

τ = 0.75
Infeasible 0.171 0.100 0.068 0.038
Local Cubic 0.182 0.107 0.071 0.042
Least Squares 0.241 0.128 0.088 0.053

Table 2
Simulation results for DGP2.

CV method n = 100 n = 200 n = 100 n = 200

Mean Mean Median Median
τ = 0.25
Infeasible 0.046 0.024 0.030 0.015
Local Cubic 0.047 0.027 0.031 0.017
Least Squares 0.059 0.036 0.036 0.022

τ = 0.50
Infeasible 0.039 0.028 0.023 0.016
Local Cubic 0.041 0.033 0.025 0.018
Least Squares 0.054 0.039 0.029 0.021

τ = 0.75
Infeasible 0.108 0.067 0.066 0.036
Local Cubic 0.117 0.081 0.071 0.044
Least Squares 0.137 0.081 0.083 0.047

squares method selects an h that is asymptotically efficient for es-
timating the conditional quantile function, but it is not optimal for
estimating the derivative function β(xi).

Tables 1 and 2 report the results for DGP1 and DGP2 respec-
tively with the Gaussian kernel. For the Gaussian kernel, the ratio
(V1/V1,3)

1/7
= 1.009 is very close to 1, which means it is not nec-

essary for us to adjust the bandwidth selected by local cubic based
CV method. Row 1–3, 4–6 and 7–9 are for τ = 0.25, τ = 0.50
and τ = 0.75 respectively. For each quantile, we report the mean
andmedian of squared errors of the three CVmethods and the two
sample sizes.

We can see that the median squared errors are much less than
the mean squared errors, which confirms our concern of the out-
lier problem. However, our conclusion remains consistent no mat-
ter in consideration of mean squared errors or median squared
errors. As a benchmark, infeasible CV method takes advantage of
the true value of β and always gives the smallest MSEs, as ex-
pected. Without the information of true β , local cubic based CV
method gives roughly 5% more of MSEs than infeasible CV method
does. Meanwhile, LS-CV performs the worst. However, note that
the comparisons here is for the derivatives of conditional quantile
function, and the usual LS-CV method should outperform our pro-
posed method since the optimal h for derivative estimation is not
optimal for conditional quantile function estimation.

4. Empirical application

In order to complement the simulation results on finite sam-
ple performance, we give a simple illustrative example in univari-
ate case, which compares the results with real data between tradi-
tional least squares cross validation (LSCV) and our proposed gra-
dient based cross validation (GBCV) methods. For this purpose, we
use a subset of hedonic housing price data from Anglin and Gençay
(1996), inwhich the houses have less than 15,000 squared feet lots.
Table 3
Descriptive statistics.

pricea lotsizeb

Minimum 0.250 0.165
1st Quartile 0.490 0.360
Median 0.620 0.458
3rd Quartile 0.820 0.636
Maximum 1.900 1.320
Mean 0.680 0.511
Std. Dev. 0.2654 0.207
Correlation 0.532
Skewness 1.208 1.059
Kurtosis 4.974 4.289
Sample size: 544
a In 100,000 Canadian Dollars.
b In 10,000 squared feet.

Parmeter et al. (2007) studied the same data set in a nonparamet-
ric framework. Table 3 shows the descriptive statistics for the two
variables in the data set, and it is observed that the two variables,
price and lotsize, have a strong positive correlation.

In this application, we focus on the relationship between the
housing price (price, measured in 100,000 Canadian Dollars) and
the size of the lot the house resides on (lotsize, in 10,000 squared
feet). Economic theory suggests that the housing price should in-
creases as lot size increases. This monotonically increasing rela-
tionship implies that the gradient function should be positive ev-
erywhere. Therefore, in the local linear nonparametric estimation
of the τ th conditional quantile function of the price y = price, given
x = lotsize,

y = qτ (x) + ε with τ ∈ (0, 1),

we expect that the derivative of the conditional quantile function
β(x) ≡ dqτ (x)/dx > 0 for all x in the support of lotsize and 0 <

τ < 1. Therefore, its local linear estimate β̂LL(x), obtained from

(q̂τ (x), β̂LL(x)) ≡ argmin
a,b

n
i=1

ρτ (yi − a − b(xi − x))Kh,ix (21)

is also expected to be greater than zero, i.e., β̂LL(x) > 0, for all x
and τ .

To compare the performance of LSCV and GBCV methods, we
estimate the local linear conditional quantile model given in (21)
at five different quantiles (τ = 0.1, 0.25, 0.5, 0.75, and 0.9), select
smoothing parameters hLS and hGB by LSCV and GBCV methods re-
spectively,3 and plot the estimated conditional quantile functions
and their corresponding derivatives. Fig. 1 shows the results for the
three quartiles, i.e., τ = 0.25, 0.5, and 0.75; and Fig. 2 for two ex-
treme quantiles, τ = 0.1 and 0.9. First, on the left panel of the
two figures, we observe that the estimated conditional quantile
functions using GBCVmethod aremuch smoother than those using
LSCVmethod. This is reasonable as the gradient based cross valida-
tion tends to deliver larger optimal smoothing parameter hGB than
least squares cross validation does, and larger smoothing param-
eter hGB means smoother conditional quantile estimates. Second,
on the right panel of the two figures, we observe that the estimated
conditional quantile derivatives using GBCVmethod are alsomuch
smoother than those derivative estimates from LSCV method. This
is especially the case when the quantiles are τ = 0.25 and 0.5,
as LSCV method delivers wiggly derivative estimates. Third, be-
sides the smoothness, the derivative estimates from GBCVmethod

3 Both cross validation methods select the smoothing parameter h for each
quantile by univariate grid search on the range [0.02, 3]. In the selection range, the
increment is 0.02 from 0.02 to 0.1, and 0.1 from 0.1 to 3. The values of selected
smoothing parameters are reported in Figs. 1 and 2.
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(a) Quantile functions (τ = 0.25, hLS = 0.06, hGB = 0.5). (b) Quantile derivatives (τ = 0.25).

(c) Quantile functions (τ = 0.50, hLS = 0.04, hGB = 1.1). (d) Quantile derivatives (τ = 0.50).

(e) Quantile functions (τ = 0.75, hLS = 0.22, hGB = 2.0). (f) Quantile derivatives (τ = 0.75).

Fig. 1. Estimates of quantile functions and their derivatives on different quantiles with τ = 0.75, 0.5, and 0.25. The cyan plus signs denote the actual data. hLS and hGB are
selected smoothing parameters by the least squares cross validation (LSCV) and gradient based cross validation (GBCV)methods respectively. The broken blue curves denote
the estimated conditional quantile functions using hLS on the left panel and their corresponding derivatives on the right panel. The solid red curves denote those estimates
using hGB .
are all positive on the support of regression variable x = lotsize,
which is consistent with the monotonically increasing relation-
ship between the price and lot size in economic theory; while
the derivative estimates from LSCV method at all quantiles except
τ = 0.1 have one or multiple negative value regions. At quantile
level τ = 0.25 and τ = 0.5, the derivative estimates are neg-
ative in three intervals shown in Fig. 1(b) and 1(d) respectively;
and there is one negative derivative region at each quantile level
τ = 0.75 and τ = 0.9 shown in Fig. 1(f) and 2(d). The ranges
of negative derivative regions at each quantile are summarized in
Table 4. Only at low quantile τ = 0.1, both LSCV and GBCV meth-
ods produce similar estimates of conditional quantile function and
their derivative estimates are nonnegative.

This simple illustrative example implies that, in local linear con-
ditional quantile regression, traditional least squares cross valida-
tion method tends to select a smoothing parameter h smaller than
the optimal one for conditional quantile derivatives estimator, and
hence produces unreliable estimation results because of under-
smoothing with this too small and suboptimal h. Therefore, if the
marginal effects of regression variables or the derivatives of condi-
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(a) Quantile functions (τ = 0.10, hLS = 0.40, hGB = 0.7). (b) Quantile derivatives (τ = 0.10).

(c) Quantile functions (τ = 0.90, hLS = 0.14, hGB = 0.3). (d) Quantile derivatives (τ = 0.90).

Fig. 2. Estimates of quantile functions and their derivatives on different quantiles with τ = 0.1 and 0.9. The cyan plus signs denote the actual data. hLS and hGB are selected
smoothing parameters by the least squares cross validation (LSCV) and gradient based cross validation (GBCV) methods respectively. The broken blue curves denote the
estimated conditional quantile functions using hLS on the left panel and their corresponding derivatives on the right panel. The solid red curves denote those estimates using
hGB .
Table 4
Negative derivatives regions for twomethods at different quantiles.

LSCV methoda GBCV method

τ = 0.1 None None
τ = 0.25 [0.7, 0.82], [0.9, 1], [1.18, 1.3] None
τ = 0.5 [0.6, 0.82], [0.9, 1], [1.18, 1.3] None
τ = 0.75 [1.05, 1.3] None
τ = 0.9 [0.95, 1.18] None
a Negative value regions are identified approximately by visual

inspection of Figs. 1 and 2.

tional quantiles are of interest, the gradient based cross validation
should be preferred to the least squares cross validation for the se-
lection of optimal smoothing parameter.

5. Conclusion

In this paper, we propose a fully data-driven optimal band-
width selection procedure for local linear conditional quantile
regression using check function. Different from traditional least
squares cross validation method which selects optimal bandwidth
for conditional quantiles, we propose gradient based cross vali-
dation method which selects optimal bandwidth for the deriva-
tives of conditional quantiles. The estimation of marginal effect of
regression variables at different quantiles, or derivative of quan-
tile functions, is of special interest as it quantifies the amount of
change of dependent variable at different quantiles in response to
a unit change in regression variables. Theoretically, our procedure
is shown to deliver bandwidths with the optimal rate for deriva-
tive estimators. Both simulation and empirical application results
substantiate the superiority of our gradient based procedure in the
estimation of quantile derivatives over standard least squares cross
validation method which produces undersmoothed derivative es-
timates. Finally, our proposed method can be further extended in
many different directions: such as selecting optimal smoothing pa-
rameter for estimating higher order derivatives, applying to the
models with weakly dependent data and various semiparametric
models etc.

Appendix

A.1. Leading bias and variance terms of local linear quantile derivative
estimator

In this subsection, we derive the leading bias and variance of
local linear quantile estimator presented in Eqs. (4) and (5).

The local linear estimator of (qτ (x), q′
τ (x))

T in quantile regres-
sion with check loss function can be obtained by solving the mini-
mization problem in (1). To facilitate derivation, we define bh = bh
so that

â(x)
b̂h(x)


≡ argmin

a,bh
S(a, bh)

≡ argmin
a,bh

1
n

n
i=1

ρτ


yi − a −


xi − x

h


bh


Kh,ix, (22)



W. Lin et al. / Journal of Econometrics 188 (2015) 502–513 509
and the local linear quantile derivative estimator is

β̂LL(x) = b̂h(x)/h.

By Taylor expansion of

yi = qτ (xi) + ei = qτ (x) + hq′

τ (x)

xi − x

h


+

h2q′′
τ (x)
2


xi − x

h

2

+ Rm(x, xi) + ei

and add-and-subtracting n−1n
i=1 ρτ (ei)Kh,ix we can rewrite

S(a, b) as

S(a, b) =
1
n

n
i=1

ρτ (ei)Kh,ix

+
1
n

n
i=1


ρτ


qτ (x) + hq′

τ (x)

xi − x

h



+
h2q′′

τ (x)
2


xi − x

h

2

+ Rm(x, Xi) + ei

− a −


xi − x

h


bh


Kh,ix − ρτ (ei)Kh,ix


≡ S1 + S2(a, b),

where only S2(a, b) depends on a and b. Also, note that following
equality holds,

ρτ (x − y) − ρτ (x) = y[1(x ≤ 0) − τ ]

+

 y

0
[1(x ≤ z) − 1(x ≤ 0)]dz,

and therefore, we obtain the equation given in Box I.

Substitute it into S2(a, b), we have the equation given in Box II.
In addition, we require the bias of the conditional quantile
estimator converges to zero in probability, i.e., a − qτ (x) + (bh −

hq′
τ (x))

 xi−x
h


−

h2q′′
τ (x)
2

 xi−x
h

2
− Rm = op(1), so that

E[S2,2(a, b)|X]

=
1
2n

n
i=1

Kh,ixfe(0|xi)


a − qτ (x) + (bh − hq′

τ (x))

xi − x

h



−
h2q′′

τ (x)
2


xi − x

h

2

− Rm

2

+ (s.o.)

and

S2,1(a, b) + S2,2(a, b) = S2,1(a, b) + E[S2,2(a, b)|X] + (s.o.)

=
1
n

n
i=1


a − qτ (x) + (bh − hq′

τ (x))

xi − x

h



−
h2q′′

τ (x)
2


xi − x

h

2

− Rm


[1(ei ≤ 0) − τ ]Kh,ix

+
1
2n

n
i=1

Kh,ixfe(0|xi)


a − qτ (x) + (bh − hq′

τ (x))

xi − x

h



−
h2q′′

τ (x)
2


xi − x

h

2

− Rm

2

+ (s.o.). (23)

Minimizing S(a, b) in (22) is equivalent tominimizing S2,1(a, b)
+ E[S2,2(a, b)|X] in (23). To simplify notation, define δ0(x) ≡
a − q(x) and δ1(x) ≡ bh − hq′
τ (x). The first order conditions for

a and b are

1
n

n
i=1

[1[ei≤0] − τ ]Kh,ix +
1
n

n
i=1

Kh,ixfe(0|xi)

×


δ0(x) + δ1(x)


xi − x

h


−

h2q′′
τ (x)
2


xi − x

h

2

− Rm


= 0

1
n

n
i=1

[1[ei≤0] − τ ]Kh,ix


xi − x

h


+

1
n

n
i=1

Kh,ixfe(0|xi)

×


δ0(x) + δ1(x)


xi − x

h


−

h2q′′
τ (x)
2


xi − x

h

2

− Rm



×


xi − x

h


= 0.

In matrix form, we have

1
n

n
i=1

Kh,ixfe(0|xi)

 1
xi − x

h
xi − x

h


xi − x

h

2

δ0(x)
δ1(x)



=
1
n

n
i=1

Kh,ixfe(0|xi)


1

xi − x
h


h2q′′

τ (x)
2


xi − x

h

2

−
1
n

n
i=1

[1(ei ≤ 0) − τ ]Kh,ix


1

xi − x
h


+ (s.o.)

where (s.o.) are smaller order terms that do not contribute to the
leading bias or variance. Under the assumption of independent and
identical distribution, the summations in (24) converges to their
expected values respectively, and the FOCs can be written as

A · δ(x) = B − C

where

A = A0 + Ah =


ξ(x) 0
0 µ2ξ(x)


+


0 hµ2ξ

′(x)
hµ2ξ

′(x) 0


=


ξ(x) hµ2ξ

′(x)
hµ2ξ

′(x) µ2ξ(x)


,

δ(x) =


δ0(x)
δ1(x)


, B =


h2µ2ξ(x)q′′

τ (x)/2
h3µ4ξ

′(x)q′′

τ (x)/2


,

C =
1
n

n
i=1

[1(ei ≤ 0) − τ ]Kh,ix


1

xi − x
h


where µj =


K(v)vjdv and ξ(x) = fe(0|x)f (x). Note that the

expectations of those elements in C are zero. Therefore, when
calculating the leading bias of the local linear quantile derivative
estimator Bias0(β̂LL(x)), we have

Bias0(β̂LL(x)) = E[β̂LL(x) − q′

τ (x)] = h−1E[b̂h(x) − hq′

τ (x)]

= h−1E[δ1(x)]
= h−1 0 1


A−1B

= h2 (µ4 − µ2
2)ξ

′(x)q′′(x)
2µ2ξ(x)

≡ h2B1(x).

Note that the O(h) terms in A (i.e., Ah) cannot be omitted in order
to obtain the correct expression for Bias0(β̂LL(x)).

The leading variance of the derivative estimator Var0(β̂LL(x)) is

Var0(β̂LL(x)) = Var0

0 1


Dhδ(x)


= h−2Var0


0 1


A−1
0 C


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ρτ


ei −


a − qτ (x) + (bh − hq′

τ (x))

xi − x

h


−

h2q′′
τ (x)
2


xi − x

h

2

− Rm


− ρτ (ei)

=


a − qτ (x) + (bh − hq′

τ (x))

xi − x

h


−

h2q′′
τ (x)
2


xi − x

h

2

− Rm


[1(ei ≤ 0) − τ ]

+

 a−qτ (x)+(bh−hq′
τ (x))


xi−x
h


−

h2q′′τ (x)
2


xi−x
h

2
−Rm

0
[1(ei ≤ z) − 1(ei ≤ 0)]dz

Box I.
S2(a, b) =
1
n

n
i=1


a − qτ (x) + (bh − hq′

τ (x))

xi − x

h


−

h2q′′
τ (x)
2


xi − x

h

2

− Rm


[1(ei ≤ 0) − τ ]Kh,ix

+
1
n

n
i=1

Kh,ix

 a−qτ (x)+(bh−hq′
τ (x))


xi−x
h


−

h2q′′τ (x)
2


xi−x
h

2
−Rm

0
[1(ei ≤ z) − 1(ei ≤ 0)]dz

≡ S2,1(a, b) + S2,2(a, b)

Box II.
= h−2E


1

µ2ξ(x)
1
n

n
i=1

[1(ei ≤ 0) − τ ]Kh,ix


xi − x

h

2

=
1

nh2
E


1

µ2
2ξ

2(x)
[1(ei ≤ 0) − τ ]

2K 2
h,ix


Xi − x

h

2


=
1

nh3

τ(1 − τ)ν2

µ2
2

f (x)
ξ 2(x)

≡
1

nh3
V1Ω(x)

where

Dh =


1 0
0 h−1


, νj =


K 2(v)vjdv,

Ω(x) =
f (x)
ξ 2(x)

, V1 =
τ(1 − τ)ν2

µ2
2

.

Note that the O(h) terms in A do not enter the leading variance of
the derivative estimator, and they can be omitted safely (i.e., re-
garded as zeros) to simplify the calculation.

A.2. Leading variance term of local cubic quantile derivative estimator

In this subsection, we show the proofs for (11) and (12), and
(13).

The local cubic estimator of (qτ (x), q′
τ (x), q

′′
τ (x), q

′′′
τ (x)) in quan-

tile regression with check loss function solves the following mini-
mization problem

γ̂ (x) ≡


â(x)
b̂h(x)


= argmin

a,bh
S(a, bh)

≡ argmin
a,bh

1
n

n
i=1

ρτ


yi − a −


xi − x

h


b1h

−


xi − x

h

2

b2h −


xi − x

h

3

b3h


Kh,ix (24)

where the estimate of first, second, and third order derivatives are
defined as

β̂1,LCB(x) = b̂1h(x)/h, β̂2,LCB(x) = b̂2h(x)/h2,

β̂3,LCB(x) = b̂3h(x)/h3.
Using Knight’s (1998) identity and fourth order Taylor expan-
sion of q(xi) around x, we can reformulate the objective function
(24) in the minimization problem as S2,1(a, b) + E(S2,2(a, b)|X)

S2,1(a, b) + E(S2,2(a, b)|X) =
1
n

n
i=1


δ0(x) + δ1(x)


xi − x

h



+ δ2(x)

xi − x

h

2

+ δ3(x)

xi − x

h

3

−
h4q(4)

τ (x)
24


xi − x

h

4

− Rm(x, xi)


[1(ei ≤ 0) − τ ]Kh,ix

+
1
2n

n
i=1

Kh,ixfe(0|xi)


δ0(x) + δ1(x)


xi − x

h



+ δ2(x)

xi − x

h

2

+ δ3(x)

xi − x

h

3

−
h4q(4)

τ (x)
24


xi − x

h

4

− Rm(x, xi)

2

where
δc(x) =


δ0c(x)δ1c(x) δ2c(x) δ3c(x)

′
=

a − qτ (x) b1h − hq′

τ (x) b2h − h2q′′

τ (x)/2 b3h − h3q′′′

τ (x)/6
′

and Rm(x, xi) are higher order remainder terms in Taylor expan-
sion. Minimizing S(a, b) in (24) is asymptotically equivalent to
minimizing S2,1(a, b) + E(S2,2(a, b)|X). Therefore, similar to the
local linear quantile estimator, the FOCs for (a, b) can be written is
the matrix form
1
n

n
i=1

Kh,ixfe(0|xi)

×



1
xi − x

h


xi − x

h

2 
xi − x

h

3

xi − x
h


xi − x

h

2 
xi − x

h

3 
xi − x

h

4


xi − x

h

2 
xi − x

h

3 
xi − x

h

4 
xi − x

h

5


xi − x

h

3 
xi − x

h

4 
xi − x

h

5 
xi − x

h

6


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×

δ0c(x)
δ1c(x)
δ2c(x)
δ3c(x)



=
1
n

n
i=1

Kh,ixfe(0|xi)



1
xi − x

h
xi − x

h

2


xi − x

h

3


h4q(4)

τ (x)
24


xi − x

h

4

−
1
n

n
i=1

[1(ei ≤ 0) − τ ]Kh,ix



1
xi − x

h
xi − x

h

2


xi − x

h

3


. (25)

Under the assumption of independent and identical distribution,
the summation terms in (25) converges in probability to their
expectation values, and the FOC eqnarrays can be simplified as

Ac · δc(x) = Bc − Cc

with

Ac = Ac,0 + Ac,h =

 ξ(x) 0 µ2ξ(x) 0
0 µ2ξ(x) 0 µ4ξ(x)

µ2ξ(x) 0 µ4ξ(x) 0
0 µ4ξ(x) 0 µ6ξ(x)


+

 0 hµ2ξ
′(x) 0 hµ4ξ

′(x)
hµ2ξ

′(x) 0 hµ4ξ
′(x) 0

0 hµ4ξ
′(x) 0 hµ6ξ

′(x)
hµ4ξ

′(x) 0 hµ6ξ
′(x) 0


=

 ξ(x) hµ2ξ
′(x) µ2ξ(x) hµ4ξ

′(x)
hµ2ξ

′(x) µ2ξ(x) hµ4ξ
′(x) µ4ξ(x)

µ2ξ(x) hµ4ξ
′(x) µ4ξ(x) hµ6ξ

′(x)
hµ4ξ

′(x) µ4ξ(x) hµ6ξ
′(x) µ6ξ(x)



δc(x) =

δ0(x)
δ1(x)
δ2(x)
δ3(x)

 , Bc =


h4µ4ξ(x)q(4)(x)/24
h5µ6ξ

′(x)q(4)(x)/24
h4µ6ξ(x)q(4)(x)/24
h5µ8ξ

′(x)q(4)(x)/24

 ,

Cc =
1
n

n
i=1

[1(ei ≤ 0) − τ ]Kh,ix



1
xi − x

h
xi − x

h

2


xi − x

h

3


,

where the subscript c denotes local cubic estimation.
We are interested in the leading variance of local cubic quantile

derivative estimator β̂LCB(x) and leading covariance between
β̂LCB(x) and β̂LL(x), i.e., Var0( ˆbetaLCB(x)) and Cov0(β̂LCB(x), β̂LL(x)).
Define Dhc = diag(1, h−1, h−2, h−3). The leading variance is,

Var0(β̂LCB(x)) = Var0

0 1 0 0


Dchδc(x)


= h−2Var0


0 1 0 0


A−1
c,0Cc


= h−2Var0


0

µ6

(µ2µ6 − µ2
4)ξ(x)

0
−µ4

(µ2µ6 − µ2
4)ξ(x)


Cc


= h−2Var0


µ6

(µ2µ6 − µ2
4)ξ(x)

1
n

n
i=1

[1(ei ≤ 0) − τ ]Kh,ix


xi − x

h



−
µ4

(µ2µ6 − µ2
4)ξ(x)

1
n

n
i=1

[1(ei ≤ 0) − τ ]Kh,ix


xi − x

h

3


=
1

nh2
E


µ6

(µ2µ6 − µ2
4)ξ(x)

[1(ei ≤ 0) − τ ]Kh,ix


Xi − x

h

2
+

1
nh2

E


µ4

(µ2µ6 − µ2
4)ξ(x)

[1(ei ≤ 0) − τ ]Kh,ix


Xi − x

h

3
2

−
2

nh2
E


µ4µ6

(µ2µ6 − µ2
4)

2ξ 2(x)
[1(ei ≤ 0) − τ ]

2K 2
h,ix


Xi − x

h

4


=
1

nh3

τ(1 − τ)(µ2
6ν2 + µ2

4ν6 − 2µ4µ6ν4)

(µ2µ6 − µ2
4)

2

f (x)
ξ 2(x)

≡
1

nh3
V3Ω(x),

where the fourth equality holds because of the assumption of in-
dependent and identical distribution. The first expectation is

E


µ6

(µ2µ6 − µ2
4)ξ(x)

[1(ei ≤ 0) − τ ]Kh,ix


Xi − x

h

2
=

µ2
6

(µ2µ6 − µ2
4)

2ξ 2(x)
E


[1(ei ≤ 0) − τ ]

2K 2
h,ix


Xi − x

h

2


=
µ2

6

(µ2µ6 − µ2
4)

2ξ 2(x)
E

×


E

[1(ei ≤ 0) − τ ]

2
|Xi

K 2
h,ix


Xi − x

h

2


=
τ(1 − τ)µ2

6

(µ2µ6 − µ2
4)

2ξ 2(x)


K 2
h,ix


xi − x

h

2

f (xi)dxi

=
τ(1 − τ)µ2

6

(µ2µ6 − µ2
4)

2ξ 2(x)
1
h2


K 2

xi − x

h


xi − x

h

2

f (xi)dxi

=
1
h

τ(1 − τ)µ2
6

(µ2µ6 − µ2
4)

2ξ 2(x)


K 2(v)v2f (vh + x)dv

=
1
h

τ(1 − τ)µ2
6ν2

(µ2µ6 − µ2
4)

2

f (x)
ξ 2(x)

,

and the other two expectations can be derived in the same way.
Similarly, the leading covariance can be calculated as,

Cov0(β̂LL(x), β̂LCB(x))
= h−2Cov


0 1


A−1C,


0 1 0 0


A−1
c,0Cc


= h−2E


1

µ2ξ(x)
1
n

n
i=1

[1[ei≤0] − τ ]Kh,ix


xi − x

h



×


µ6

(µ2µ6 − µ2
4)ξ(x)

1
n

n
i=1

[1[ei≤0] − τ ]Kh,ix


xi − x

h



−
µ4

(µ2µ6 − µ2
4)ξ(x)

1
n

n
i=1

[1[ei≤0] − τ ]Kh,ix


xi − x

h

3


=
1

nh3

τ(1 − τ)(µ6ν2 − µ4ν4)

µ2(µ2µ6 − µ2
4)

f (x)
ξ 2(x)

≡
1

nh3
V2Ω(x)

where A−1
c,0 is given by the expression in Box III.

A.3. The ratio of bandwidth h0,opt to h0,cubic

This subsection shows the proofs for (7) and (15).
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A−1
c,0 =

 ξ(x) 0 µ2ξ(x) 0
0 µ2ξ(x) 0 µ4ξ(x)

µ2ξ(x) 0 µ4ξ(x) 0
0 µ4ξ(x) 0 µ6ξ(x)


−1

=



µ4

(µ4 − µ2
2)ξ(x)

0
−µ2

(µ4 − µ2
2)ξ(x)

0

0
µ6

(µ2µ6 − µ2
4)ξ(x)

0
−µ4

(µ2µ6 − µ2
4)ξ(x)

−µ2

(µ4 − µ2
2)ξ(x)

0
1

(µ4 − µ2
2)ξ(x)

0

0
−µ4

(µ2µ6 − µ2
4)ξ(x)

0
µ2

(µ2µ6 − µ2
4)ξ(x)


Box III.
The bandwidth h chosen by the cross-validation minimizes the
leading term of integrated mean square error,

CV0(h) =


MSE0


β̂LL(x) − q′

τ (x)

M(x)f (x)dx

=

 
[Bias0(β̂LL(x))]2 + Var0(β̂LL(x))


M(x)f (x)dx

=

 
h4B2

1(x) +
V1

nh3
Ω(x)


M(x)f (x)dx (26)

where M(x) is a weight function with bounded support that trims
out data near the boundary of the support of x. Let h0,opt denote the
values of h that minimizes CV 0(h), and we have

h0,opt =


3V1


Ω(x)M(x)f (x)dx

4

B2
1(x)M(x)f (x)dx

 1
7

n−
1
7 .

The value of h0,opt is unknown because of unknown functions in
Ω(x) and B2

1(x).
Alternatively, we replace the unknown derivative function

q′
τ (x) in CV0(h) with local cubic quantile derivative estimator

β̂LCB(x), a consistent estimate of q′
τ (x), we have

CVLCB,0(h) =


MSE0


β̂LL(x) − β̂LCB(x)


M(x)f (x)dx

=

 
[Bias0(β̂LL(x) − β̂LCB(x))]2

+ Var0(β̂LL(x) − β̂LCB(x))

M(x)f (x)dx

=

 
[Bias0(β̂LL(x))]2 + Var0(β̂LL(x)) + Var0(β̂LCB(x))

− 2Cov0(β̂LL(x), β̂LCB(x))

M(x)f (x)dx

=

 
h4B2

1(x) +
V1,3

nh3
Ω(x)


M(x)f (x)dx

where
V1,3 = V1 + V3 − 2V2

=
τ(1 − τ)ν2

µ2
2

+
τ(1 − τ)(µ2

6ν2 + µ2
4ν6 − 2µ4µ6ν4)

(µ2µ6 − µ2
4)

2

− 2
τ(1 − τ)(µ6ν2 − µ4ν4)

µ2(µ2µ6 − µ2
4)

=
τ(1 − τ)µ2

4(µ
2
2ν6 − 2µ2µ4ν4 + µ2

4ν2)

µ2
2(µ2µ6 − µ2

4)
2

.

The optimal h0,cubic based on minimizing CVLCB,0(h) is

h0,cubic =


3V1,3


Ω(x)M(x)f (x)dx

4

B2
1(x)M(x)f (x)dx

 1
7

n−
1
7 ,
and the ratio h0,opt/h0,cubic is a constant

h0,opt

h0,cubic
=


V1

V1,3

 1
7

=


ν2(µ2µ6 − µ2

4)
2

µ2
4(µ

2
2ν6 − 2µ2µ4ν4 + µ2

4ν2)

 1
7

.

A.4. Simplification of the bandwidth ratio h0,opt/h0,cubic in Henderson
et al. (2015)

In this section, we show that the results of the bandwidth ratio
h0,opt/h0,cubic derived in Henderson et al. (2015) for conditional
mean regression can be further simplified, and it coincides with
the results in our paper for conditional quantile regression.

The two terms V1 and V1,3, which characterize the bandwidth
ratio h0,opt/h0,cubic , are given in Eqs. (8) and (10) in Henderson et al.
(2015) as follows,

V1 =
ν2

µ2
2

(27)

V1,3 =
K1

K 2
2

+
ν2

µ2
2

− 2
(µ4µ6 − µ2

2µ6)ν2 + (µ2
2µ4 − µ2

4)ν4

µ2K2
(28)

where µj =

K(v)vjdv, νj =


K 2(v)vjdv, K(v) the kernel

function; and the two constant terms K1 and K2 represent

K1 = (µ4µ6 − µ2
2µ6)

2ν2 + (µ2
2µ4 − µ2

4)
2ν6

+ 2(µ4µ6 − µ2
2µ6)(µ

2
2µ4 − µ2

4)ν4

= (µ4 − µ2
2)

2µ2
6ν2 + (µ4 − µ2

2)
2µ2

4ν6 − 2(µ4 − µ2
2)

2µ4µ6ν4

= (µ4 − µ2
2)

2(µ2
6ν2 + µ2

4ν6 − 2µ4µ6ν4),

and

K2 = µ2µ4µ6 − µ3
4 + µ2

2µ
2
4 − µ3

2µ6

= µ2µ6(µ4 − µ2
2) − µ2

4(µ4 − µ2
2)

= (µ4 − µ2
2)(µ2µ6 − µ2

4).

Substituting the values of K1 and K2 into (28) and simplifying the
expression of V1,3, we have

V1,3 =
K1

K 2
2

+
ν2

µ2
2

− 2
(µ4µ6 − µ2

2µ6)ν2 + (µ2
2µ4 − µ2

4)ν4

µ2K2

=
(µ2

6ν2 + µ2
4ν6 − 2µ4µ6ν4)µ

2
2

µ2
2(µ2µ6 − µ2

4)
2

+
ν2(µ2µ6 − µ2

4)
2

µ2
2(µ2µ6 − µ2

4)
2

− 2
(µ2µ6ν2 − µ2µ4ν4)(µ2µ6 − µ2

4)

µ2
2(µ2µ6 − µ2

4)
2

=
1

µ2
2(µ2µ6 − µ2

4)
2
(µ2

2µ
2
6ν2 + µ2

2µ
2
4ν6 − 2µ2

2µ4µ6ν4
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+ µ2
2µ

2
6ν2 + µ4

4ν2 − 2µ2µ
2
4µ6ν2

− 2µ2
2µ

2
6ν2 + 2µ2µ

2
4µ6ν2 + 2µ2

2µ4µ6ν4 − 2µ2µ
3
4ν4)

=
µ2

2µ
2
4ν6 − 2µ2µ

3
4ν4 + µ4

4ν2

µ2
2(µ2µ6 − µ2

4)
2

=
µ2

4(µ
2
2ν6 − 2µ2µ4ν4 + µ2

4ν2)

µ2
2(µ2µ6 − µ2

4)
2

.

After simplification, it is easy to see that the valuesV1 andV1,3 in
(27) and (28) for conditionalmean regression, after rescaling by the
same constant τ(1−τ), equal to V1 and V1,3 in (6) and (14) derived
for conditional quantile regression. Therefore, the bandwidth ratio
h0,opt/h0,cubic in Henderson et al. (2015) is

h0,opt

h0,cubic
=


V1

V1,3

 1
7

=


ν2(µ2µ6 − µ2

4)
2

µ2
4(µ

2
2ν6 − 2µ2µ4ν4 + µ2

4ν2)

 1
7

,

which coincides with the bandwidth ratio h0,opt/h0,cubic for condi-
tional quantile regression in our paper.
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