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It is well known that allowing the coefficients to be time-varying in a predictive
model with possibly nonstationary regressors can help to deal with instability in
predictability associated with linear predictive models. In this paper, an L2-type test
statistic is proposed to test the stability of the coefficient vector, and the asymp-
totic distributions of the proposed test statistic are developed under both null and
alternative hypotheses. A Monte Carlo experiment is conducted to evaluate the fi-
nite sample performance of the proposed test statistic and an empirical example is
examined to demonstrate the practical application of the proposed testing method.

1. INTRODUCTION

A standard predictive regression has the following linear structural model

yt = α0 +α1 xt−1 + εt and xt = ρxt−1 +ut for 1 ≤ t ≤ n, (1)

where yt is the dependent variable, say excess asset return at time t , xt−1 is a
financial variable, such as the log dividend–price (d–p) ratio or the log earnings–
price (e–p) ratio at time t − 1, which is commonly formulated by an autoregres-
sive model with order 1 (denoted by AR(1))1 as in the second equation in (1),
and innovations {(εt ,ut )} in (1) are usually assumed in the finance literature
to be independently and identically distributed (i.i.d.) bivariate normal N (0,�)
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with � =
(

σ 2
ε σεu

σεu σ 2
u

)
. Model (1) is commonly called a predictive regression. Note

that it is easy to generalize model (1) to the multiple regression case; see Amihud,
Hurvich, and Wang (2009) and Phillips, Li, and Gao (2013) for further discus-
sions. For simplicity, it is assumed that xt is one-dimensional.

As discussed in Amihud and Hurvich (2004), Phillips and Lee (2013), and
Cai and Wang (2014), the ordinary least squares (OLS) estimator of model (1)
is asymptotically unbiased with stationary regressors. However, when regressors
are persistent, the OLS estimator has uncorrectable bias and the limiting theory
is nonstandard. Many studies have proposed solutions of these problems; see,
for example, Amihud and Hurvich (2004), Phillips and Lee (2013), and Cai and
Wang (2014).

Note that the correlation coefficient between εt and ut in (1) is γ = σεu/σεσu ,
which, unfortunately, is nonzero in many empirical studies; see, for example,
Table 4 in Campbell and Yogo (2006) and Table 1 in Torous, Valkanov, and Yan
(2004) for some real applications. This nonzero correlation between two innova-
tions creates the so-called embedded endogeneity problem where xt−1 and εt may
be correlated which leads to biased estimates (see Campbell and Yogo, 2006).

In the last decade, many empirical studies have shown significant in-sample ev-
idence of predictability in asset returns, while the evidence of out-of-sample pre-
dictability appears to be very weak. In particular, Paye and Timmermann (2006)
attributed this strong in-sample predictability, but weak out-of-sample predictabil-
ity, to different predictive relations over time with possible structural changes. To
examine this instability embedded in a predictive model, they studied the follow-
ing model:

yt = α0t +α1t xt−1 + εt and xt = ρxt−1 +ut for 1 ≤ t ≤ n (2)

by assuming that both α0t and α1t change over time with possible structural
breaks, and that xt is stationary (|ρ| < 1). In other words, both α0t and α1t in (2)
are assumed to be piecewise constant. They concluded that there is evidence of in-
stability for the vast majority of models for international equity indices. However,
as pointed out by Hansen (2001), Cai (2007), and Chen and Hong (2012), this
assumption might be inappropriate in some real applications due to some leading
driving forces of structural changes usually exhibiting evolutionary changes in
the long term, and it is more reasonable to allow smooth structural changes over a
period of time rather than sudden structural changes. Therefore, one could expect
that both the trend and the prediction coefficient are smooth functions of time.
Therefore, Wang (2010) applied the linear projection between two innovations to
remove embedded endogeneity from the model, i.e., εt = β1t ut + vt , and then
considered

yt = β0t +β1t ut +β2t xt−1 + vt ≡ βT
t Xt + vt and

xt = ρ xt−1 +ut for 1 ≤ t ≤ n, (3)

zongwu cai




TESTING INSTABILITY IN A PREDICTIVE REGRESSION MODEL 955

where βi t , i = 0,1,2 are smooth functions of t , βt = (β0t ,β1t ,β2t )
T , Xt =

(1,ut , xt−1)
T , ρ = 1 + c/n with c ≤ 0, and the error term {(ut ,vt )} is a strictly

stationary mixing process. When c = 0, xt is a unit root, or integrated, process,
denoted by I(1). When c < 0 and is fixed, xt is a nearly unit root, or integrated, pro-
cess, denoted by NI(1) (see Phillips, 1988). Indeed, model (3) incorporates several
known models as special cases; see Robinson (1989, 1991), Cai (2007), and Chen
and Hong (2012) for the case where xt is stationary. There are some papers in the
literature that discuss the time-varying coefficient model when regressors are per-
sistent and nonstationary; see Park and Hahn (1999), Wang (2010), and Phillips,
Li, and Gao (2013). Especially, Philips, Li, and Gao (2013) generalized model (3)
to a nonstationary multivariate regression that includes predictive regression and
nonlinear cointegration.

In applications of (3), it is important to determine if coefficient βt = (β0t ,
β1t ,β2t ) is constant, i.e., to determine if a parametric linear model is appropri-
ate. Therefore, the hypotheses can be formulated as

H0 : βt = β for some β = (β0,β1,β2) ∈R3, versus Ha : βt �= β for all t ≥ 0. (4)

Clearly, the testing hypothesis formulated in (4) covers the special case H0 :
β2t = 0 in (3), which is similar to the well-known test H0 : α1 = 0 associated
with the linear predictive model (1). Therefore, the testing hypothesis in (4) is
more general than test H0 : α1 = 0 in the literature.

The motivation of this study is to apply (3) and (4) to an analysis of the monthly
S&P 500 excess return to test if it is predictable by some particular financial
variables, such as the log e–p ratio and the log d–p ratio. If predictability exists,
then this study will also test its stability. The detailed analysis of this dataset is
reported in Section 4.3.

In the literature, there are several discussions about hypothesis H0 : α1 = 0
based on (1). Stambaugh (1999) proved that the OLS estimation of the predictive
slope coefficient in (1) is biased in finite samples, which renders the traditional
t-test invalid. Using the bootstrap method in Kothari and Shanken (1997) to test
the slope coefficient in (1) avoids the unknown distribution problem. Meanwhile,
Lewellen (2004) not only proposed a hypothesis testing method based on the
empirical observation that the autoregressive coefficient ρ in (1) is close to one,
but also showed that the proposed method can dramatically improve the power
of the test under the assumption that ρ ≈ 1. The method in Lewellen (2004) was
modified by Amihud and Hurvich (2004) to remove the assumption that ρ ≈ 1.
Also, a new method, called the augmented regression method, was proposed by
Amihud et al. (2009) to test the predictive coefficients in (1). A compari-
son of the aforementioned methods can be found in Amihud et al. (2009).
Recently, for nonstationary and/or heavy-tailed regressors, Cai and Wang
(2014) derived the asymptotic theory and suggested using a Monte Carlo
simulation to find the appropriate critical values for testing predictability,
whereas Zhu, Cai, and Peng (2014) proposed novel empirical likelihood methods
based on some weighted score equations to test predictability. In addition,
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an earlier work of Cavanagh, Elliott, and Stock (1995) proposed a Bonferroni
t-test derived under local-to-unity asymptotics to obtain a valid inference for the
coefficient α1 and their method was revised by Campbell and Yogo (2006) to
find a more powerful test. However, as demonstrated in Phillips (in press), the
approach proposed by Campbell and Yogo (2006), based on confidence intervals,
has zero coverage probability asymptotically as the sample size goes to infinity
in the stationary regressor case with spurious predictability. These results may
raise potential problems for practical applications when regressors are stationary.
In fact, all of the aforementioned methods are based on the assumption that
the predictive coefficients are simple constants instead of smooth functions
of time t .

To test the instability of time-varying parameters in a nonparametric regression,
Cai (2007) and Chen and Hong (2012) studied two consistent tests for smooth
structural changes as well as for abrupt structural breaks by assuming that the
predictor is stationary and uncorrelated to the innovation in the model. However,
to the best of our knowledge, nothing in the literature discusses the hypothesis
testing problem in (4), when regressors are highly persistent, possibly endoge-
nous, and even nonstationary.

Here are two methods to consider the testing problem in (4), based on the non-
parametric estimation procedure. The first is the conditional moment test pro-
posed by Fan and Li (1996, 1999) and Zheng (1996), which may not be suitable
for the testing problem in (4) because it is not formulated in a conditional mo-
ment, and the second is based on the integrated squared difference of the estimated
function and the true function (see Li, Huang, Li, and Fu, 2002; Sun, Cai, and Li,
2008). We use the second method to construct the test statistic and to derive its
asymptotic distribution.

Using alternative hypotheses to ours, other tests have been developed to test
a linear/nonlinear cointegrating model, including the nonparametric specification
tests of Sun et al. (2008), Xiao (2009), Wang and Phillips (2012), and Wu (2013).
Without requiring {xt−1} to be independent of {ut }, Wang and Phillips (2012)
considered the problem of testing a linear cointegration model, yt = θ0 +θ1 xt−1 +
ut , against a nonlinear cointegration model, yt = g(xt−1)+ ut , where g(·) is an
unknown function and {xt } is a random walk process, while Wu (2013) tested
a nonlinear cointegration model, yt = g0(xt−1,θ) + ut , against a nonparametric
cointegration model, yt = g(xt−1)+ut , where g0(·) is a known function and {xt }
is a nearly integrated process. See Sun et al. (2008), Wang and Phillips (2012),
and Wu (2013) for a summary of these tests.

The rest of this paper is organized as follows. Section 2 is devoted to deriving
the test statistic, and its asymptotic results are presented in Section 3. We conduct
a Monte Carlo simulation and present its results in Section 4. Also, an application
of predictive regression with nonstationary regressors to an empirical example is
reported in Section 4 to highlight the practical usefulness of the proposed testing
procedure. Section 5 concludes the paper. All theoretical proofs of the asymptotic
results are given in the Appendix.
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2. TEST STATISTIC

Following Robinson (1989, 1991) and Cai (2007), we assume that βt = β(st ),
where st = t/T , and also that the second order derivative of β(·) is continuous in
[0,1]; see Robinson (1989, 1991) and Cai (2007) for detailed discussions. Then,
(4) becomes

H0 : β(s) = β for some β = (β0,β1,β2) ∈ R3, versus

Ha : β(s) �= β for all 0 ≤ s ≤ 1. (5)

Now, following Li et al. (2002), we construct a test statistic based on the L2-type
test statistic as follows∫ 1

0
[β̂(s)− β̂]T ω(s)[β̂(s)− β̂]ds,

where β̂ is the OLS estimator of β under the null hypothesis, ω(s) is a weighting
function, and β̂(s) is a nonparametric estimator of β(s) for any 0 ≤ s ≤ 1; for
example, the local linear or local constant estimator. If β̂(s) is the local linear
estimator, then(

β̂ll(s)

β̂
(1)
ll (s)

)
= argminβ̂,β̂(1)

n∑
t=1

[yt − X T
t β̂ − (st − s)X T

t β̂(1)]2 Kh(st − s), (6)

where Kh(·) = K (·/h)/h, K (·) is a kernel function and h = h(n) is the bandwidth
satisfying h → 0 and nh → ∞ as n → ∞. It is easy to show that the minimizer
in (6) is given by(

β̂ll(s)

β̂
(1)
ll (s)

)
=

(
Sn,0(s) ST

n,1(s)
Sn,1(s) Sn,2(s)

)−1 (
Tn,0(s)
Tn,1(s)

)
≡ S−1

n (s)Tn(s),

where Sn, j (s) = ∑n
t=1(st − s) j Kh(st − s)Xt X T

t for 0 ≤ j ≤ 2 and Tn, j (s) =∑n
t=1(st − s) j Kh(st − s)Xt yt for 0 ≤ j ≤ 1. Alternatively, if β̂(s) is the local

constant estimator, then β̂lc(s) = Sn,0(s)−1Tn,0(s). To avoid the random denomi-
nator problem, we consider the following. When β̂(s) is the local linear estimator,
we have

Sn(s)

(
β̂ll(s)− β̂

β̂
(1)
ll (s)−0

)
=

n∑
t=1

Kh(st − s)Xt v̂t

(
1

st − s

)
,

where v̂t = yt − X T
t β̂ is the parametric residual. When β̂(s) is the local constant

estimator, we have

Sn,0(s)
(
β̂lc(s)− β̂

) =
n∑

t=1

Kh(st − s)Xt v̂t .
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This implies that by taking an appropriate ω(s), the test statistic has the form∫
[β̂(s)− β̂]T ω(s)[β̂(s)− β̂]ds =

n∑
t=1

n∑
r=1

X T
t Xr v̂t v̂r

∫
Kh(st − s)Kh(sr − s)ds.

Similar to Li et al. (2002), by removing the global center, i.e., the sum where t = r
in the above equation, and by replacing convolution kernel function

∫
Kh(st − s)

Kh(sr − s)ds with Ktr ≡ K ((st − sr )/h), we obtain the final test statistic

În = 1

n3h

n∑
t=1

n∑
r �=t

X T
t Xr v̂t v̂r Ktr . (7)

In the next section, we discuss the asymptotic properties of În under H0 and
Ha , respectively. Note that ut is unknown in practice so that Xt in (7) should
be (1, ût , xt−1)

T , where ût = xt − ρ̂ xt−1.

3. ASYMPTOTIC THEORY

Before presenting the asymptotic distribution of the test statistic in (7), we need
to list some assumptions.

Assumptions:

C.1 The error term {ut } has a zero mean and is a strictly stationary α-mixing
sequence of size −r/(r −2) with r = 2+δ for some δ > 0 and E |ut |r < ∞.

C.2 Functions β(·) are twice continuously differentiable on [0,1] and
‖β(·)‖2q < M < ∞ for some q > 1.

C.3 The kernel function K (·) is symmetric and has a compact support [−1,1].
Also, K (·) satisfies |K (u)− K (u

′
)| ≤ M |u −u

′ | for some M < ∞.

C.4 The bandwidth h satisfies that h → 0, nh → ∞, and n h4 → 0.

C.5 Error term vt satisfies E(vt ) = 0, E(v2
t ) = σ 2

v with σ 2
v a positive constant,

and E(v4
t ) < ∞. In addition, {vt } is independent of {xt } for all 1 ≤ t ≤ n.

C.6 Error term {(ut ,vt )} is a strictly stationary β-mixing process with the mix-

ing coefficient satisfying βk = O
(
ρ−k

1

)
for some ρ1 > 1.

Further, we assume the uniform consistency from Theorem 3.2 in Wang (2010),
where

sup|s|≤1|β̂i (s)−βi (s)| = Op(qn), i = 0,1 and

sup|s|≤1|β̂2(s)−β2(s)| = Op(n
−1/2 qn)

under some regularity conditions, where qn = √
lnn/nh + h2. If nh4 → 0 as

n → ∞, it follows that qn → 0 so that

sup|s|≤1|β̂i (s)−βi (s)| = op(1), i = 0,1 and

sup|s|≤1|β̂2(s)−β2(s)| = op(n
−1/2), (8)
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which will be used in the proof of the asymptotic properties of the test statistic
În . Also, the conditions given in Lemma A1 (see Appendix) and Assumption C.6
imply that

ξn(r) ≡ x[nr ]/
√

n ⇒ Kc(r), (9)

where Kc(r) = ∫ r
0 exp((r − s)c)dWu(s) is a diffusion process and Wu(·) is a one-

dimensional Brownian motion with variance σ 2
u = Var(ut )+2

∑∞
k=2 Cov(u1,uk).

Clearly, Kc(r) becomes Wu(r) when c = 0. Here, and in what it follows, ⇒ rep-

resents weak convergence, and
d→ denotes convergence in distribution.

THEOREM 1. Suppose that Assumptions C.1–C.6 hold. Then, under H0,
we have

Jn = n
√

h În
d→ MN(0,σ 2), (10)

where MN(0,σ 2) is a mixed normal distribution with zero mean and conditional
variance

σ 2 = 2σ 2
v σ 2

u R2(K )

∫ 1

0

∫ r

0
K 2

c (r)T K 2
c (s)dsdr, (11)

where R2(K ) = ∫ 1
−1

∫ r
0 K 2(s)dsdr and Kc(·) is given in (9). In addition, if (10)

and (11) hold, then

σ̃ 2 = 1

n4h

n∑
t=1

n∑
r �=t

ṽ2
t ṽ2

r

(
X T

t Xr

)2
K 2

tr
p→ σ 2, (12)

where ṽt = yt − X T
t β̂t is the nonparametric residual.

Remark 1. In the consistent estimate of σ 2, ṽt must be nonparametric residual.
If a parametric residual is used, say, v̂t ≡ yt − X T

t β̂, then v̂t = O(
√

n) under
Ha , and σ̂ 2 may not be a consistent estimate of σ 2. See Phillips (1988) for the
definition of a mixed normal distribution.

Next, to examine the power of test statistic Jn , we introduce Oe(an) to denote
an exact probability order of an → +∞. For example, An = Oe(an) means that
An = Op(an) but An �= op(an). Theorem 2 shows that Jn is a consistent test.

THEOREM 2. Suppose that Assumptions C.1–C.6 hold. Then, under Ha,
we have

Jn = Oe(n
2
√

h), i.e., P(Jn > Cn) → 1

as n → ∞ for any nonstochastic sequence Cn = o(n2
√

h).

Theorem 2 shows that, under Ha , the test statistic Jn diverges to +∞ at the
same rate whether or not β2(s) is constant.
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4. APPLICATIONS

In this section, we conduct a simulation to examine the finite sample performance
of the proposed test statistic. We first describe the simulation procedure and then
report the simulation results under both null and alternative hypotheses.

4.1. Simulation Procedure

We use the test statistic given by (7) and its standard form, according to (10) in
Theorem 1, can be constructed as

Ĥn = n
√

h În/
√

σ̃ 2, (13)

where σ̃ 2 is the estimator of the conditional variance of Jn in Theorem 1, based
on a nonparametric residual. From Section 3, we know that the asymptotic dis-
tribution of Ĥn is conditional normal with zero mean and unit variance. The
critical values of the proposed test statistic are simulated to compute the em-
pirical size and power of the test. The simulation procedure is briefly described
as follows.

(1) Under H0, estimate the coefficients in model yt = X T
t β + vt using the OLS

method and obtain residual v̂t . Also, run regression xt = ρxt−1 +ut to obtain
residual ût .

(2) Apply the proposed two-stage estimation procedure on the simulated sample
in Step (1) to obtain estimates of the time-varying coefficients, calculate
the estimated nonparametric residual ṽt , and then find the estimate of the
conditional variance of Jn in Theorem 1, say σ̃ 2.

(3) Replace with v̂t and σ̃ 2 in (13) and calculate the test statistic Ĥn .
(4) Perform a large number of iterations, say 1,000, to find the empirical dis-

tribution of {Ĥn}. The critical value at significance level α is given by the
(1−α)th quantile.

4.2. Simulation Results

To find the empirical size and power of our proposed test statistic, we consider
the data generating process

yt = β0(st )+β1(st )ut +β2(st ) xt−1 + vt , st ∈ [0,1]; xt = ρxt−1 +ut , ρ = 1+ c/n.

To estimate the size of this model, we choose β0(st ) = 0, β1(st ) = δ with
δ = −0.75 or −0.95, and β2(st ) = 0 for st ∈ [0,1]. We also choose different val-
ues for the persistency parameter c, i.e., c = 0,−2, or −20, corresponding to the
state variable xt being an I(1), NI(1), or stationary process. The two innovations,
ut and vt , are generated from the AR(1) models

ut = 0.3ut−1 + e1t and vt = 0.3vt−1 + e2t ,
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where e1t and e2t are independently generated from normal distributions with
zero mean and variances σ 2

e1
= 0.91 and σ 2

e2
= 0.4 when δ = −0.75 or σ 2

e2
= 0.09

when δ = −0.95, respectively, which guarantee that both ut and vt have a standard
normal distribution.

We choose four sample sizes of n = 250, 500, 750, and 1,000 and repeat the
simulation m = 1,000 times for each sample size. When applying the proposed
two-stage estimation procedure, we need to specify the bandwidths at both stages.
For the first stage, the bandwidth is h1 = d1 n−2/5 with d1 = 1.0, 2.5, and 5.0.
Based on the mean absolute deviation error for estimating all three coefficients,
d1 = 2.5 is chosen for our test since d1 = 1.0 and d1 = 5.0 generate a bandwidth
that is either too small or too large. At stage two, the bandwidth is selected by the
cross-validation method. We also consider hypothesis testing at different nominal
sizes of 10%, 5%, and 1% to check the effectiveness of the proposed test statistic
at different significance levels. The simulated sizes at different bandwidths are
listed in Tables 1–3. Note that we also conducted simulations for δ = 0.75 and
the results were similar to those in Tables 1–3. To save space, the results are not
reported here. However, they are available from the authors upon request.

From Table 1, we observe clearly the convergence of the simulated size to the
corresponding nominal size as the sample size increases, no matter how persistent
the state variable is or which setting is chosen. In addition, there is no significant
difference among the sizes when δ takes different values, no matter which band-
width, d1, is selected. Similar conclusions can be drawn from Tables 2 and 3.
By comparing the results in Tables 1–3, we see that d1 = 2.5 (Table 2) performs
the best among the three bandwidth values. This shows that the proposed test
statistic is consistent under the null hypothesis so that it delivers a right test size.

TABLE 1. The empirical test size for testing constant predictability at d1 = 1.0

δ = −0.75 δ = −0.95

c = 0 c = −2 c = −20 c = 0 c = −2 c = −20

n = 250 0.188 0.184 0.162 0.184 0.180 0.164
10% n = 500 0.136 0.130 0.126 0.130 0.130 0.126

n = 750 0.116 0.116 0.110 0.114 0.111 0.112
n = 1000 0.100 0.100 0.101 0.100 0.100 0.100

n = 250 0.110 0.108 0.094 0.108 0.104 0.096
5% n = 500 0.074 0.072 0.066 0.070 0.070 0.069

n = 750 0.058 0.060 0.054 0.060 0.058 0.058
n = 1000 0.050 0.052 0.050 0.050 0.050 0.050

n = 250 0.036 0.034 0.028 0.032 0.032 0.030
1% n = 500 0.020 0.019 0.016 0.020 0.018 0.018

n = 750 0.014 0.014 0.012 0.014 0.014 0.014
n = 1000 0.012 0.012 0.010 0.012 0.012 0.012
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TABLE 2. The empirical test size for testing constant predictability at d1 = 2.5

δ = −0.75 δ = −0.95

c = 0 c = −2 c = −20 c = 0 c = −2 c = −20

n = 250 0.108 0.108 0.138 0.108 0.108 0.138
10% n = 500 0.100 0.100 0.112 0.100 0.100 0.110

n = 750 0.100 0.100 0.104 0.100 0.100 0.107
n = 1000 0.100 0.100 0.100 0.100 0.100 0.100

n = 250 0.054 0.053 0.072 0.052 0.054 0.072
5% n = 500 0.050 0.050 0.056 0.050 0.050 0.056

n = 750 0.050 0.050 0.052 0.050 0.050 0.053
n = 1000 0.050 0.050 0.050 0.050 0.050 0.050

n = 250 0.012 0.012 0.018 0.010 0.012 0.018
1% n = 500 0.010 0.010 0.012 0.010 0.010 0.012

n = 750 0.010 0.010 0.012 0.010 0.010 0.012
n = 1000 0.010 0.010 0.010 0.010 0.010 0.010

TABLE 3. The empirical test size for testing constant predictability at d1 = 5.0

δ = −0.75 δ = −0.95

c = 0 c = −2 c = −20 c = 0 c = −2 c = −20

n = 250 0.052 0.062 0.104 0.052 0.064 0.102
10% n = 500 0.072 0.076 0.086 0.072 0.080 0.084

n = 750 0.092 0.092 0.092 0.090 0.094 0.092
n = 1000 0.102 0.100 0.100 0.100 0.100 0.100

n = 250 0.022 0.028 0.052 0.024 0.028 0.050
5% n = 500 0.034 0.036 0.042 0.032 0.038 0.040

n = 750 0.046 0.046 0.048 0.044 0.046 0.046
n = 1000 0.050 0.050 0.050 0.050 0.050 0.050

n = 250 0.004 0.006 0.012 0.004 0.006 0.010
1% n = 500 0.006 0.008 0.008 0.007 0.008 0.008

n = 750 0.010 0.010 0.010 0.010 0.010 0.010
n = 1000 0.010 0.010 0.010 0.010 0.010 0.010

Next, to compute the power of the proposed test, we consider a sequence of
alternatives indexed by b ∈ [0,1] as

Ha : β(st ) = β +b(β0(st )−β), st ∈ [0,1],

where β0(·) ∈ R3 with β0
0 (st ) = 0.02exp(−0.8 + 4st ) − 0.12, β0

1 (st ) = 0.2sin
(4st + 20), and β0

2 (st ) = 0.3st − 0.3exp(−7s2
t )− 0.05. Notice that when b = 0,
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the specified alternative collapses to the null hypothesis and the power becomes
the test size. Similar to the test size investigation, here we also consider three
different bandwidth values. For sample size, we choose n = 250, 500, and 750.
Figure 1 reports the results for d1 = 2.5 and nominal size 5%. The results for
d1 = 1.0 and d1 = 5.0 and nominal sizes 1% and 10% are similar and so are not
presented here to save space.

The plots on the left-hand side (when δ = −0.75) of Figure 1 illustrate the
power curves when the correlation between two innovations is relatively weak.
From these plots, we see that the test becomes more powerful as the sample size
increases. Also, the power curves in the top two panels approach to one much

FIGURE 1. Plots of the empirical power curves against b for the test hypothesis when
d1 = 2.5 with nominal size 5% in Section 4.2. The dashed, solid, and dashed-dotted lines
represent n = 250, 500, and 750, respectively. (a) c = 0 and δ = −0.75; (b) c = 0 and
δ = −0.95; (c) c = −2 and δ = −0.75; (d) c = −2 and δ = −0.95; (e) c = −20 and
δ = −0.75; and (f) c = −20 and δ = −0.95.
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faster when the state variable is nonstationary (c = 0 or c = −2). This is reason-
able since the proposed test should be more powerful when the state variable in
(3) is highly persistent, or even nonstationary. From the plots on the right-hand
side (when δ = −0.95) of Figure 1, similar conclusions can be made, except that
the power curves converge to one quicker than in those on the left-hand side of
Figure 1. Finally, for c = 0 and c = −2 with n = 500 and n = 750, when b is
greater than or equal to 0.2, the power is approximately one. For c = −20, the
power is approximately one when b ≥ 0.3 for n = 500 and n = 750. This implies
that the proposed test is quite powerful.

4.3. An Empirical Application

In this section, we apply the proposed test procedure to analyze the monthly S&P
500 excess return. We use the log e–p ratio as the univariate predictor during the
time period 1938:12 to 1998:12 and use the log d–p ratio to predict asset return
from 1945:12 to 2005:12. The monthly S&P 500 stock price, dividends, and earn-
ings data were obtained from Professor Robert Shiller’s website.2 The d–p ratio
is calculated as the ratio of average dividends during the last year over the current
stock price. The e–p ratio is computed as the average earnings over the past ten
years divided by the current price. The one-month T-bill from the CRSP is used
to calculate the excess return. See Cai and Wang (2014) for details on variable
definitions and calculations. We investigate the predictability of these two time
series on asset return. Both sample periods selected have a length of 721 months,
which makes the sample size possibly large enough to obtain a reliable test result.

First, we examine the persistency of the predictors. To this end, we consider
the AR(1) model with an intercept term as the working model for both predictors;
that is

xt = θ +ρxt−1 +ut ,

where xt stands for the log e–p ratio or the log d–p ratio for the two time peri-
ods described above. Then, we consider testing the null hypothesis that θ = 0 and
ρ = 1. The least squares method is applied to find the estimates θ̂O L S and ρ̂O L S .
Based on Hamilton (1994), neither has a limiting Gaussian distribution. By us-
ing a Monte Carlo simulation as suggested in Hamilton (1994), we find the 95%
confidence intervals of the coefficients. We summarize the OLS estimates and
their confidence intervals in Table 4. For both predictors, the confidence interval

TABLE 4. OLS estimates (95% C.I.) for the AR(1) models

log e–p ratio (1938:12–1998:12) log d–p ratio (1945:12–2005:12)

θ̂O L S −0.0039 (−0.0076, 0.0084) −0.0070 (−0.0077, 0.0082)
ρ̂O L S 0.9992 ( 0.9841, 1.0005) 0.9983 ( 0.9839, 1.0005)
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for θ covers zero and for ρ covers one. Thus, we cannot reject the random walk
null hypothesis for either time series.

Next, we apply the least squares method to rerun the AR(1) model without
the constant term, xt = ρxt−1 + ut , for both predictors to get ût . Then, we apply
the two-step estimation method proposed in Cai and Wang (2014) to estimate the
constant coefficients in

rt = β0 +β1ût +β2xt−1 + vt . (14)

The estimates of the coefficients, together with their 95% confidence intervals,
are listed in Table 5. From these results, we see that the log d–p ratio can be used
to predict asset return during its sample period since zero is not covered by the
confidence interval for β2. However, the log e–p ratio may not have predictive
power.

One can conclude from the above testing results that the constancy of the
coefficient is uncertain. So, we now apply the proposed test procedure to test
if the coefficient vector is a constant vector. To this end, we propose the following
varying coefficient model

rt = β0(st )+β2(st )xt−1 + εt , xt = ρxt−1 +ut , ρ = 1+ c/n,

where εt = β1(st ) ût + vt , and st ∈ [0,1].
We apply a two-stage estimation procedure to estimate the functional coeffi-

cients. To find an appropriate bandwidth in the first stage, we set h1 = d1n−2/5

with d1 selected from 0.2 to 10 in increments of 0.2. The bandwidth which gen-
erates the lowest mean square error is used for testing. Hence, we select d1 = 1.2
and d1 = 2.2 for the log e–p ratio and the log d–p ratio, respectively. Following
the proposed test procedure, we calculate the values of the test statistic and ob-
tain their corresponding p-values by repeating the simulation m = 1,000 times.
The results are listed in Table 6. For both predictors, the p-values are close to
zero which implies that we have a strong evidence to reject the null of constant
coefficient vectors. Together with the results in Table 5, we conclude that both
the log e–p ratio and the log d–p ratio have time-varying predictability to forecast
asset return, although their predictability may be weak at some points during the
sample periods.

TABLE 5. Two-step estimates (95% C.I.) for constant coefficients in (14)

log e–p ratio (1938:12–1998:12) log d–p ratio (1945:12–2005:12)

β̂0 0.0042 (0.0037, 0.0047) 0.0098 (0.0091, 0.0104)
β̂1 −1.0045 (−1.0048, −1.0042) −0.9903 (−0.9907, −0.9900)
β̂2 0.0005 (−0.0004, 0.0014) 0.0022 (0.0009, 0.0036)
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TABLE 6. The value of test statistic and its p-value for the empirical example

State variable Test statistic p-Value

log e–p ratio 6.179 0.007
log d–p ratio 14.286 <0.001

5. CONCLUSION

In this paper, we propose a consistent nonparametric test for testing the null hy-
pothesis of constant coefficients against the alternative of nonparametric smooth
coefficients in a varying coefficient predictive regression model. We show that
the proposed test statistic converges to a mixed normal distribution under the null
hypothesis.

There are several issues related to our paper which should be addressed. First,
we only consider the case where xt−1 might be correlated with εt through ut

since εt and ut are correlated. It would be of interest to generalize the results
of this paper to where xt−1 and εt are directly correlated, similar to Wang and
Phillips (2012) for regression model. Additionally, it would be of further interest
to consider testing problems such as whether structural changes exist as argued
by Paye and Timmermann (2006); that is, to test if nonparametric coefficients
are piecewise constant (model (3) versus the model considered in Paye and Tim-
mermann, 2006). Furthermore, when xt is a multiple predictor, testing whether a
portion of varying coefficients are constant is challenging since the model under
the null hypothesis becomes a semiparametric varying-coefficient model. This is
similar to Sun et al. (2008) for regression model. Finally, in practice, selecting the
bandwidth in the proposed test statistic is of great importance. These issues are
left as future research topics.

NOTES

1. A higher order of AR model for xt is possible. For simplicity, our focus here is on the AR(1)
model.

2. http://www.econ.yale.edu/shiller/data.htm.
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APPENDIX: Mathematical Proofs

To prove the theorems in Section 3, we need the following two lemmas.

LEMMA A1. Let a∗
n = n−θ∗(lnn)λ∗ , where θ∗ = 1/2−1/(2+ δ∗) with 0 < δ∗ ≤ 2 and

λ∗ > 0 is a function of δ∗. Under the assumption that ut is a stationary α-mixing sequence
with mixing coefficient α(n) that satisfies

E |ut |r < ∞, and
∞∑

n=1

α(n)1/(2+δ∗)−1/r < ∞

for some r > 2+ δ∗, it follows that the nearly I(1) process ξn(r) = x[nr ]/
√

n for 0 ≤ r ≤ 1
has the following strong approximation

sup
0≤r≤1

|ξn(r)− Kc(r)| = Oas(a
∗
n ),

where Kc(·) is the diffusion process given in (9) and Oas(1) means almost surely (a.s.).

Proof of Lemma A1. See Lemma 3.3 in Wang (2010). n

LEMMA A2. Let {Sni ,Fni ,1 ≤ i ≤ kn,n ≥ n} be a zero-mean, square-integrable mar-
tingale array with differences Xni , and let η2 be an a.s. finite random variable (r.v.)
Suppose that

V 2
nkn

=
∑

E(X2
ni |Fn,i−1)

p→ η2,
∑

i

E[X2
ni I (|Xni | > ε)|Fn,i−1]

p→ 0 for all ε > 0,

and the σ -fields are nested, that is Fn,i ⊆ Fn+1,i for 1 ≤ i ≤ kn, n ≥ 1, then

Sn,kn =
∑

i

Xni
d→ Z ,

where the r.v. Z has the characteristic function E
[
exp(− 1

2η2t2)
]
.

Proof of Lemma A2. See Corollary 3.1 in Hall and Heyde (1980). n

Proof of Theorem 1. Under H0, v̂t = yt − X T
t β̂ = vt − X T

t
(
β̂ −β

)
. Decompose În as

follows:

În = 1

n3h

n∑
t=1

n∑
r �=t

X T
t Xr v̂t v̂r Ktr

= 1

n3h

n∑
t=1

n∑
r �=t

X T
t Xr

[
vt − X T

t (β̂ −β)
][

vr − (β̂ −β)T Xr

]
Ktr
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= 1

n3h

n∑
t=1

n∑
r �=t

X T
t Xr

[
vtvr + (β̂ −β)T Xr X T

t (β̂ −β)−2vr X T
t (β̂ −β)

]
Ktr

= In,1 + (β̂ −β)T Mn,2(β̂ −β)−2Mn,3(β̂ −β), (A.1)

where

In,1 = 1

n3h

n∑
t=1

n∑
r �=t

X T
t Xr vtvr Ktr , Mn,2 = 1

n3h

n∑
t=1

n∑
r �=t

X T
t Xr Xr X T

t Ktr ,

and Mn,3 = 1

n3h

n∑
t=1

n∑
r �=t

X T
t Xr vr X T

t Ktr .

We now discuss the above three parts in (A.1) separately. First, let us consider In,1. By the
fact that ût = ut − (ρ̂ − ρ)xt−1 = ut + Op(n−1/2), Xt = (1,ut , xt−1)T + Op(n−1/2).
By ignoring the higher order term, to abuse the notation, we still use Xt to denote
(1,ut , xt−1)T here, and in what it follows. Then, In,1 can be written as

In,1 = 1

n3h

n∑
t=1

n∑
r �=t

vtvr Ktr + 1

n3h

n∑
t=1

n∑
r �=t

ut ur vtvr Ktr + 1

n3h

n∑
t=1

n∑
r �=t

xt−1xr−1vtvr Ktr

≡ In,11 + In,12 + In,13, (A.2)

where the definitions of In,11, In,12, and In,13 are clearly apparent. For In,11, we have
E(In,11) = 0 and

E(In,11)2 = E

⎡⎣ 2

n6h2

n∑
t=2

t−1∑
r=1

v2
t v2

r K 2
tr

⎤⎦ = 4σ 4
v

n6h

n∑
t=2

t−1∑
r=1

K 2
tr

h

= 2σ 4
v

n4h

[∫ 1

0

∫ t

0
K 2(

t − r

h
)drdt +o(1)

]

= 2σ 4
v

n4h

[∫ 1

0

∫ t/h

0

1

h
K 2(s)dsdt +o(1)

]

= 2σ 4
v

n4h

[∫ 1

0

∫ 1

0
K 2(s)dsdt +o(1)

]
= O(n−4h−1). (A.3)

Therefore,

In,11 = Op(n−2h−1/2). (A.4)

Similarly, it is easy to obtain E(In,12) = 0. Based on the assumption that ut and vt are
uncorrelated, we have

E(In,12)2 = E

⎡⎣ 4

n6h2

n∑
t=1

t−1∑
r=1

u2
t u2

r v2
t v2

r K 2
tr

⎤⎦ = 2σ 4
v

n6h

n∑
t=1

t−1∑
r=1

K 2
tr

h
E

[
u2

t u2
r

]
= O(n−4h−1).
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Hence, we obtain

In,12 = Op(n−2h−1/2). (A.5)

As for In,13, let zt = n−2h−1/2xt−1vt
∑t−1

r=1 xr−1vr Ktr . Then, n
√

hIn,13 = 2
∑n

t=2 zt .

Given E(vt |Fn,t ) = 0, we can show that Et−1(zt ) = 0, which implies that {n√
hIn,13,

Fn,t } is a martingale. We use the martingale central limit theorem in Lemma A2 to estab-
lish its asymptotic distribution. More specifically, we need to show that

V 2
n =

n∑
t=2

Et−1

(
z2

t

) p→ σ 2/2 (A.6)

and
n∑

t=2

Et−1

[
z2

t I (|zt | > ε)
] p→ 0 for all ε > 0. (A.7)

First, we prove (A.6). Indeed,

V 2
n =

n∑
t=2

Et−1(z2
t ) = 1

n4h

n∑
t=2

Et−1

⎡⎢⎣
⎛⎝xt−1vt

t−1∑
r=1

xr−1vr Ktr

⎞⎠2
⎤⎥⎦

= 1

n4h

n∑
t=2

t−1∑
r=1

t−1∑
s=1

vr vs xr−1xs−1 Ktr Kts x2
t−1v2

t

= σ 2
v

n4h

n∑
t=2

t−1∑
r=1

t−1∑
s=1

xr−1xs−1x2
t−1 Kts Ktr vr vs

= σ 2
v

n4h

n∑
t=2

t−1∑
r=s

x2
t−1x2

r−1 K 2
tr v2

r + σ 2
v

n4h

n∑
t=2

t−1∑
r �=s

vr vs x2
t−1xr−1xs−1 Kts Ktr

≡ V 2
n,1 + V 2

n,2, (A.8)

where the definitions of V 2
n,i , i = 1,2, are obvious. The strong approximation in Lemma A1

and Condition C.3 give

1

n4h

n∑
t=2

x2
t−1

t−1∑
r=1

x2
r−1 K 2

tr v
2
r = 1

n

n∑
t=2

(
xt−1√

n

)2 1

n

t−1∑
r=1

(
xr−1√

n

)2 K 2
tr

h
v2

r

p→
∫ 1

0

∫ t

0
K 2

c (t)K 2
c (r)K 2

(
t − r

h

)
v2

r drdt

=
∫ 1

0

∫ t/h

0
K 2

c (t)K 2
c (t − sh)K 2(s)v2

r dsdt

=
∫ 1

0

∫ 1

0
K 4

c (t)K 2(s)dsdt
∫ 1

0
v2

s ds + s.o.

= σ 2
u

∫ 1

0

∫ 1

0
K 4

c (t)K 2(s)dsdt + s.o.,
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where the last equation is obtained by applying a Taylor expansion and σ 2
u = ∫ 1

0 v2
s ds.

Combined with E(v2
r ) = σ 2

v , we have

V 2
n,1

p→ σ 2

2
≡ σ 2

v σ 2
u

∫ 1

0

∫ 1

0
K 4

c (t)K 2(s)dsdt.

= σ 2
v σ 2

u R2(K )

∫ 1

0

∫ r

0
K 2

c (s)K 2
c (r)dsdr. (A.9)

Second, similar to the proof of (A.9), we show that

V 2
n,2 = σ 2

v

n4h

n∑
t=2

t−1∑
r �=s

vr vs xr−1xs−1x2
t−1 Kts Ktr

= σ 2
v h × 1

n3

n∑
t=2

(
xt−1√

n

)2 t−1∑
r=2

xr−1vr

t−1∑
s �=r

xs−1vs
Kts Ktr

h2
= Op(h). (A.10)

Applying (A.9) and (A.10) to (A.8) gives

V 2
n = σ 2/2+op(1), which proves (A.6). (A.11)

Now let us check (A.7). A basic calculation similar to (A.10) shows that

n∑
t=2

Et−1(z4
t ) = 1

n8h2

n∑
t=2

Et−1

⎡⎢⎣
⎛⎝xt−1vt

t−1∑
r=1

xr−1vr Ktr

⎞⎠4
⎤⎥⎦

= μ2
4

n8h2

n∑
t=2

t−1∑
r=1

Et−1(xt−1xr−1 Ktr )4

+ μ4σ 4
v

n8h2

n∑
t=2

t−1∑
r �=s

Et−1

(
x4

t−1x2
r−1x2

s−1 K 2
ts K 2

tr

)

= μ2
4

n4h

n∑
t=2

(
xt−1√

n

)4 t−1∑
r=1

(
xr−1√

n

)4 K 4
tr

h

+ μ4σ 4
v

n4

n∑
t=2

(
xt−1√

n

)4 t−1∑
r=1

(
xr−1√

n

)2 t−1∑
s �=r

(
xs−1√

n

)2 K 2
ts K 2

tr

h2

= Op

(
(log logn)4

)
[Op(n−2h−1)+ Op(n−1)] → 0,

where the last equation holds since K 4
tr = O(h) and K 2

ts K 2
tr = O(h2). Theorem 2 in Rio

(1995) implies that

sup|r |≤1|ξn(r)| = Op(
√

log logn). (A.12)
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Then, applying Chebyshev’s inequality, we have, for any ς > 0,

P

⎛⎝ n∑
t=2

Et−1

[
z2

t I (|zt | > ε)
]

> ς

⎞⎠ = P

⎛⎝ n∑
t=2

Et−1

[
z2

t I

( |zt |
ε

> 1

)]
> ς

⎞⎠
≤ P

⎛⎝ 1

ε2

n∑
t=2

Et−1

(
z4

t

)
> ς

⎞⎠
≤ 1

ε2ς

n∑
t=2

E
[

Et−1

(
z4

t

)]
= 1

ε2ς

n∑
t=2

E
(

z4
t

)
→ 0.

This implies that (A.7) holds. According to Lemma A2, we have

n
√

hIn,13 = 2
n∑

t=2

zt
d→ MN(0,σ 2). (A.13)

By combining (A.2), (A.4), (A.5), and (A.13), we conclude that

n
√

hIn,1
d→ MN(0,σ 2). (A.14)

Next, we focus on the second term in (A.1). Let X1t = (1 ut )
T . We decompose Mn,2

such that

Mn,2 = 1

n3h

n∑
t=1

n∑
r �=t

X T
t Xr Xr X T

t Ktr

= 1

n3h

n∑
t=1

n∑
r �=t

(
X T

1t X1r + xt−1xr−1

)(
X1r X T

1t X1r xt−1

X T
1t xr−1 xt−1xr−1

)
Ktr

= 1

n3h

n∑
t=1

n∑
r �=t

(
X T

1t X1r X1r X T
1t X T

1t X1r X1r xt−1

X T
1t X1r X T

1t xr−1 X T
1t X1r xt−1xr−1

)
Ktr

+ 1

n3h

n∑
t=1

n∑
r �=t

(
X1r X T

1t xt−1xr−1 X1r x2
t−1xr−1

X T
1t xt−1x2

r−1 x2
t−1x2

r−1

)
Ktr . (A.15)

We check each component. First, we have

E

∣∣∣∣∣∣ 1

n3h

n∑
t=1

n∑
r �=t

X T
1t X1r X1r X T

1t Ktr

∣∣∣∣∣∣ ≤ 1

n3h

n∑
t=1

n∑
r �=t

E
∣∣∣X T

1t X1r X1r X T
1t Ktr

∣∣∣
= O(n−1), (A.16)

which implies that

1

n3h

n∑
t=1

n∑
r �=t

X T
1t X1r X1r X T

1t Ktr = Op(n−1).
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In addition, recall that ξnt = xt/
√

n and ξn(r) = ξn,[nr ] ⇒ Kc(r). Then, (A.14) implies
that

E

∣∣∣∣∣∣ 1

n3h

n∑
t=1

n∑
r �=t

X T
1t X1r X1r xt−1 Ktr

∣∣∣∣∣∣ = 1

n5/2h
E

∣∣∣∣∣∣
n∑

t=1

n∑
r �=t

X T
1t X1r X1r

xt−1√
n

Ktr

∣∣∣∣∣∣
= O(

√
log logn)

1

n5/2h

n∑
t=1

n∑
r �=t

E
∣∣∣X T

1t X1r X1r Ktr

∣∣∣
= O(n−1/2

√
log logn) = o(1). (A.17)

Similarly,

E

∣∣∣∣∣∣ 1

n3h

n∑
t=1

n∑
r �=t

X T
1t X1r xt−1xr−1 Ktr

∣∣∣∣∣∣ = 1

n2h
E

∣∣∣∣∣∣
n∑

t=1

n∑
r �=t

X T
1t X1r

xt−1√
n

xr−1√
n

Ktr

∣∣∣∣∣∣
= O(log logn)

1

n2h

n∑
t=1

n∑
r �=t

E
∣∣∣X T

1t X1r Ktr

∣∣∣
= O(log logn),

E

∣∣∣∣∣∣ 1

n3h

n∑
t=1

n∑
r �=t

X1r x2
t−1xr−1 Ktr

∣∣∣∣∣∣ = 1

n3/2h
E

∣∣∣∣∣∣
n∑

t=1

n∑
r �=t

X1r
x2

t−1

n

xr−1√
n

Ktr

∣∣∣∣∣∣
= O(n1/2(log logn)3/2),

and

E

∣∣∣∣∣∣ 1

n3h

n∑
t=1

n∑
r �=t

x2
t−1x2

r−1 Ktr

∣∣∣∣∣∣ = 1

nh
E

∣∣∣∣∣∣
n∑

t=1

n∑
r �=t

x2
t−1

n

x2
r−1

n
Ktr

∣∣∣∣∣∣
= O(n(log logn)2). (A.18)

Together with (A.15), we have

Mn,2 =
(

1 n1/2(log logn)1/2

n1/2(log logn)1/2 n(log logn)

)
Op(log logn).

Further, under H0, it can be proved that β̂i − βi = Op(n−1/2) for i = 0,1 and that
β̂2 − β2 = Op(n−1) based on the central limit theorem and the properties of a nearly
integrated process. These, combined with the above result, imply that(
β̂ −β

)T Mn,2
(
β̂ −β

)
=

(
n−1/2 n−1

)(
n−1(log logn)−1 n−1/2(log logn)−1/2

n−1/2(log logn)−1/2 1

)(
n−1/2

n−1

)
× Op

(
n−1(log logn)2

)
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=
(

n−1/2(log logn)−1 n−1
)(

n−1/2

n−1

)
Op

(
n−1(log logn)2

)
= Op

(
n−1(log logn)

)
. (A.19)

Finally, we analyze the last term in (A.1). Clearly, E(Mn,3) = 0 since E(vt ) = 0.
So, we consider the second moment. First, decompose Mn,3 to

Mn,3 = 1

n3h

n∑
t=1

n∑
r �=t

X T
t Xr vr X T

t Ktr = 1

n3h

n∑
t=1

n∑
r �=t

(
X T

t Xr X T
1t , X T

t Xr xt−1

)
vr Ktr

≡ (H1, H2),

where the definitions of H1 and H2 are obvious. In addition, recall that X T
t Xr = X T

1t X1r +
xt−1xr−1 is dominated by xt−1xr−1. Then, applying a similar method to that used for
(A.16)–(A.18), we have

E

∣∣∣∣∣∣ 1

n6h2

n∑
t=1

n∑
r �=t

(X T
t Xr )2 X T

1t X1t K 2
tr

∣∣∣∣∣∣ = O
(

n−2h−1(log logn)2
)
,

E

∣∣∣∣∣∣ 1

n6h2

n∑
t=1

n∑
r �=t,r �=t ′

(X T
t Xr )2x2

t−1 K 2
tr

∣∣∣∣∣∣ = O
(

n−1h−1(log logn)3
)
,

E

∣∣∣∣∣∣ 1

n6h2

n∑
t=1

n∑
t ′ �=t

n∑
r �=t,r �=t ′

X T
t Xr X T

r Xt ′ Ktr Kt ′r

∣∣∣∣∣∣ = O
(

n−1(log logn)3
)
,

and

E

∣∣∣∣∣∣ 1

n6h2

n∑
t=1

n∑
t ′ �=t

n∑
r �=t,r �=t ′

X T
t Xr X T

r Xt ′ xt−1xt ′−1 Ktr Kt ′r

∣∣∣∣∣∣ = O
(
(log logn)3

)
.

Hence,

E |H1 H T
1 | = σ 2

v

n6h2
E

∣∣∣∣∣∣
n∑

t=1

n∑
t ′=1

n∑
r �=t,r �=t ′

X T
t Xr X T

r Xt ′ X T
1t X1t Ktr Kt ′r

∣∣∣∣∣∣
= σ 2

v

n6h2
E

∣∣∣∣∣∣
n∑

t=1

n∑
r �=t

(X T
t Xr )2 X T

1t X1t K 2
tr

∣∣∣∣∣∣
+ σ 2

v

n6h2
E

∣∣∣∣∣∣
n∑

t=1

n∑
t ′ �=t

n∑
r �=t,r �=t ′

X T
t Xr X T

r Xt ′ X
T
1t X1t ′ Ktr Kt ′r

∣∣∣∣∣∣+ (s.o.)

= O
(

n−2h−1(log logn)2
)

+ O
(

n−1(log logn)2
)

+ (s.o.)

= O
(

n−1(log logn)2
)

+ (s.o.),
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where (s.o.) denotes some smaller order term. Similarly,

E |H2
2 | = σ 2

v

n6h2
E

∣∣∣∣∣∣
n∑

t=1

n∑
r �=t

(X T
t Xr )2x2

t−1 K 2
tr

∣∣∣∣∣∣
+ σ 2

v

n6h2
E

∣∣∣∣∣∣
n∑

t=1

n∑
t ′ �=t

n∑
r �=t,r �=t ′

X T
t Xr X T

r Xt ′ xt−1xt ′−1 Ktr Kt ′r

∣∣∣∣∣∣+ (s.o.)

= O
(

n−1h−1(log logn)3
)

+ O
(
(log logn)3

)
+ (s.o.)

= O
(
(log logn)3

)
+ (s.o.).

These imply that Mn,3 =
(

n−1/2(log logn)−1/2,1
)

Op

(
(log logn)3/2

)
, and that

Mn,3(β̂ −β) = Op

(
n−1(log logn)

)
. (A.20)

By applying (A.14), (A.19), and (A.20) to (A.1) and applying Assumption C.4, we obtain
the asymptotical distribution of Jn in (10).

Finally, we need to prove the consistency of the estimate of σ 2. Note that ṽt = (yt −
X T

t βt )+ (X T
t βt − X T

t β̂t ) = vt − X T
t [β̂t −βt ] = vt + op(1) by (8). Hence, applying the

same method used to obtain (A.9), we have

σ̃ 2 = 1

n4h

n∑
t=1

n∑
r �=t

ṽ2
t ṽ2

r

(
X T

t Xr

)2
K 2

tr

= 1

n4h

n∑
t=1

n∑
r �=t

[vt +op(1)]2[vr +op(1)]2
(

X T
t Xr

)2
K 2

tr

= 1

n4h

n∑
t=1

n∑
r �=t

[vt +op(1)]2[vr +op(1)]2
(

X T
1t X1r + xt−1xr−1

)2
K 2

tr

= 1

n4h

n∑
t=1

n∑
r �=t

[vt +op(1)]2[vr +op(1)]2

×
[
(X T

1t X1r )2 + x2
t−1x2

r−1 +2X T
1t X1r xt−1xr−1

]
K 2

tr

= 1

n4h

n∑
t=1

n∑
r �=t

v2
t v2

r x2
t−1x2

r−1 K 2
tr +op(1),

and

Et−1(σ̃ 2) = σ 2
v

n4h

n∑
t=2

t−1∑
r=1

x2
t−1x2

r−1 Et−1(K 2
tr v

2
r )+op(1)

p→ σ 2.

Therefore, we finish the proof of Theorem 1. n
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Proof of Theorem 2. Under Ha , we have yt = X T
t βt +vt . So, we decompose the OLS

estimate of β to

β̂ =
(∑

t

ut X T
t

)−1 ∑
t

Xt

(
uT

t βt + vt

)

=
(∑

t

Xt X T
t

)−1 ∑
t

Xt X T
t βt +

(∑
t

Xt X T
t

)−1 ∑
t

Xtvt . (A.21)

Based on the well-known properties of a stationary and nearly unit root process, we obtain
the order of each element in the second term of (A.21) as

(∑
t

Xt X T
t

)−1 ∑
t

Xtvt =
⎛⎝ n

∑
t ut

∑
t xt−1∑

t ut
∑

t u2
t

∑
t ut xt−1∑

t xt−1
∑

t ut xt−1
∑

t x2
t−1

⎞⎠−1 ⎛⎝ ∑
t vt∑

t utvt∑
t xt−1vt

⎞⎠
=

⎛⎝ n−1 n−1 n−3/2

n−1 n−1/2 n−3/2

n−3/2 n−3/2 n−2

⎞⎠⎛⎝n1/2

n1/2

n

⎞⎠ Op(1) =
⎛⎝ Op(n−1/2)

Op(1)

Op(n−1)

⎞⎠ .

This implies that the second term in (A.21) has a smaller order than does the first term.
So we only focus on the first term in the remaining proof. First, let

Dn = n−4
[
n�u2

t �x2
t−1 +2�ut�xt−1�ut xt−1 −�u2

t (�xt−1)2

−n(�ut xt−1)2 − (�ut )
2�x2

t−1

]
,

Sn =
⎛⎝ Sn,11 Sn,12 Sn,13

Sn,12 Sn,22 Sn,23
Sn,13 Sn,23 Sn,33

⎞⎠ , and Rn =
⎛⎝ Rn,1

Rn,2
Rn,3

⎞⎠ ,

where

Sn,11 = n−3
[
�u2

t �x2
t−1 − (�ut xt−1)2

]
, Sn,12 = n−3

[
�ut xt−1�xt−1 −�ut�x2

t−1

]
,

Sn,13 = n−3
[
�ut�ut xt−1 −�u2

t �xt−1

]
, Sn,22 = n−3

[
n�x2

t−1 − (�xt−1)2
]
,

Sn,23 = n−3 [
�xt�xt−1 −n�xt xt−1

]
, Sn,33 = n−3

[
n�u2

t − (�ut )
2
]
,

Rn,1 = n−1 [
�β0t +�utβ1t +�xt−1β2t

]
,

Rn,2 = n−1
[
�utβ0t +�u2

t β1t +�ut xt−1β2t

]
,

and

Rn,3 = n−1
[
�xt−1β0t +�ut xt−1β1t +�x2

t−1β2t

]
.

Then, let β̂ =
(∑

t Xt X T
t

)−1 ∑
t Xt X T

t βt + (s.o.) = D−1
n Sn Rn + (s.o.). Define

B1 = ∫ 1
0 Kc(r)dr , B2 = ∫ 1

0 K 2
c (r)dr , B3 = ∫ 1

0 Kc(r)dWu(r) + �1, σ 2
a = E(u2

t ), and
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ωj = E(βj t ), where Kc(r) is defined in (9), and �1 = ∑∞
k=2 E(u1uk). Then, it can be

easily proved that Dn = σ 2
a (B2 − B1)+op(1) ≡ D +op(1). Also, we have that

Sn,11 = σ 2
a B2 −n−1 B2

3 + (s.o.), Sn,12 = n−1/2 B3 B1 + (s.o.),

Sn,13 = n−1/2σ 2
a B1 + (s.o.),

Sn,22 = (B2 − B2
1 )+ (s.o.), Sn,23 = n−1 B3 + (s.o.), Sn,33 = n−1σ 2

a + (s.o.),

Rn,1 = ω0 +n1/2 B1ω2, Rn,2 = σ 2
a ω2 + B3ω2, and

Rn,3 = n1/2ω0 B1 + B3ω1 +nB2ω2.

Now we consider the order of β̂ under the different scenarios given in Theorem 2.
Case (I1): β1t �= β1 or β2t �= β2. We split this case into two subcases: (I1a) neither

β1t nor β2t is constant, and (I1b) only one is constant.
(I1a): Neither β1t nor β2t is constant. By extracting the leading term of n−4Sn Rn ,

we have

β̂ = D−1

⎛⎜⎜⎝
Sn,11 Rn,1 + Sn,12 Rn,2 + Sn,13 Rn,3

Sn,12 Rn,1 + Sn,22 Rn,2 + Sn,23 Rn,3

Sn,13 Rn,1 + Sn,23 Rn,2 + Sn,33 Rn,3

⎞⎟⎟⎠+ (s.o.)

= D−1

⎛⎜⎝n1/2C1 +op(n1/2)

C2 +op(1)

C3 +op(1)

⎞⎟⎠ ,

where C1 = 2σ 2
a B1 B2ω2, C2 = B2

1 B2ω2 + B2 B3ω2 + (B2 − B2
1 )(σ 2

a + B3)ω2, and

C3 = σ 2
a (B2

1 + B2)ω2. Therefore, recalling the last two terms in (A.1), we have

In,2 = (
β̂ −βt

)T Mn,2
(
β̂ −βr

) = 1

n3h

n∑
t=1

n∑
r �=t

X T
t Xr X T

t
(
β̂ −βt

)(
β̂ −βr

)T Xr Ktr

= 1

n3h

n∑
t=1

n∑
r �=t

(1+ut ur + xt−1xr−1)

×
[
(n1/2 D−1C1 −β0t )+ut (D−1C2 −β1t )+ xt−1(D−1C3 −β3t )

]
×

[
(n1/2 D−1C1 −β0r )+ur (D−1C2 −β1r )+ xr−1(D−1C3 −β2r )

]
Ktr + (s.o.)

= n

n2h

n∑
t=1

n∑
r �=t

(
1

n
+ ut ur

n
+ xt−1xr−1

n
)

×
[

D−1C1 + ut√
n

(D−1C2 −β1t )+ xt−1√
n

(D−1C3 −β3t )

]
×

[
D−1C1 + ur√

n
(D−1C2 −β1r )+ xr−1√

n
(D−1C3 −β2r )

]
Ktr + (s.o.)

= Op(n).
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Similarly,

In,3 = 2Mn,3(β̂ −βt ) = 2

n3h

n∑
t=1

n∑
r �=t

X T
t Xr vr X T

t (β̂ −βt )Ktr

= 2

n3h

n∑
t=1

n∑
r �=t

[
(n1/2 D−1C1 −β0t )+ut (D−1C2 −β1t )+ xt−1(D−1C3 −β3t )

]
× (1+ut ur + xt−1xr−1)vr Ktr + (s.o.)

= 2
√

n

n2h

n∑
t=1

n∑
r �=t

[
D−1C1 + ut√

n

(
D−1C2 −β1t

)
+ xt−1√

n

(
D−1C3 −β3t

)]
×

(ut ur

n
+ xt−1xr−1

n

)
vr Ktr + (s.o.)

= Op(
√

n).

Recall that In,1 = Op(n−1h− 1
2 ). Hence, In,2 is the leading term of In and it follows that

Jn = n
√

hIn = Op(n2√
h), and it diverges to +∞ at the rate of n2√

h.
(I1b): One of β1t or β2t is constant, say, β1t = β1, but β2t �= β2. Define

R∗
n,1 =

∑
t

β0t +
∑

t

xt−1β2t ; R∗
n,2 =

∑
t

utβ0t +
∑

t

ut xt−1β2t ;

and R∗
n,3 =

∑
t

xt−1β0t +
∑

t

x2
t−1β2t .

Then, by a simple calculation and a similar method to that used above, we have

β̂ = D−1n−1

⎛⎜⎜⎝
Sn,11 R∗

n,1 + Sn,12 R∗
n,2 + Sn,13 R∗

n,3
Sn,12 R∗

n,1 + Sn,22 R∗
n,2 + Sn,23 R∗

n,3 +nDnβ1

Sn,13 R∗
n,1 + Sn,23 R∗

n,2 + Sn,33 R∗
n,3

⎞⎟⎟⎠

= D−1n−1

⎛⎜⎜⎝
Sn,11 R∗

n,1 + Sn,12 R∗
n,2 + Sn,13 R∗

n,3
Sn,12 R∗

n,1 + Sn,22 R∗
n,2 + Sn,23 R∗

n,3
Sn,13 R∗

n,1 + Sn,23 R∗
n,2 + Sn,33 R∗

n,3

⎞⎟⎟⎠+
⎛⎝ 0

β1
0

⎞⎠+ (s.o.)

= D−1

⎛⎜⎝n1/2C∗
1 +op(n1/2)

C∗
2 +op(1)

C∗
3 +op(1)

⎞⎟⎠+
⎛⎝ 0

β1
0

⎞⎠+ (s.o.),

where C∗
1 = B1σ 2

a ω2(B2 + 1), C∗
2 = B3ω2(B2 + 1), and C∗

3 = B3ω2(B2
1 + 1). Then, the

analyses of the orders of In,2, In,3, and Jn are similar.
Case (I2): β1t =β1, β2t =β2 but β0t �=β0. When β1t and β2t are constants, a simple

calculation shows that

β̂ = D−1n−1

⎛⎜⎜⎝
Sn,11

∑
t β0t + Sn,12

∑
t xtβ0t + Sn,13

∑
t xt−1β0t

Sn,12
∑

t β0t + Sn,22
∑

t xtβ0t + Sn,23
∑

t xt−1β0t +nDnβ1t

Sn,13
∑

t β0t + Sn,23
∑

t xtβ0t + Sn,33
∑

t xt−1β0t +nDnβ2t

⎞⎟⎟⎠+ (s.o.)
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= D−1n−1

⎛⎜⎜⎝
Sn,11

∑
t β0t + Sn,12

∑
t xtβ0t + Sn,13

∑
t xt−1β0t

Sn,12
∑

t β0t + Sn,22
∑

t xtβ0t + Sn,23
∑

t xt−1β0t

Sn,13
∑

t β0t + Sn,23
∑

t xtβ0t + Sn,33
∑

t xt−1β0t

⎞⎟⎟⎠+
⎛⎝ 0

β1t
β2t

⎞⎠+ (s.o.)

= D−1

⎛⎜⎜⎝
C∗∗

1 +op(1)

C∗∗
2 +op(1)

C∗∗
3 +op(1)

⎞⎟⎟⎠+
⎛⎝ 0

β1t
β2t

⎞⎠ ,

where C∗∗
1 = n1/2 B1 B2σ 2

a ω0, C∗∗
2 = n1/2 B1ω0(B2 − B2

1 ), and C∗∗
3 = σ 2

a B2
1ω0. Applying

these on the last two terms in (A.1), we obtain

In,2 = 1

n3h

n∑
t=1

n∑
r �=t

X T
t Xr X T

t
(
β̂ −βt

)(
β̂ −βr

)T Xr Ktr

= 1

n3h

n∑
t=1

n∑
r �=t

(1+ut ur + xt−1xr−1)Ktr

×
[(

D−1C∗∗
1 −β0t

)
+ut

(
n−1/2 D−1C∗∗

2 −β1t

)
+ xt−1

(
n−1/2 D−1C∗∗

3 −β3t

)]
×

[
(D−1C∗∗

1 −β0r )+ur (n−1/2 D−1C∗∗
2 −β1r )+ xr−1(n−1/2 D−1C∗∗

3 −β3r )
]

+ (s.o.)

= 1

n2h

n∑
t=1

n∑
r �=t

[
(D−1C∗∗

1 −β0t )+ut D−1C∗∗
2 + xt−1√

n
D−1C∗∗

3

]

×
[
(D−1C∗∗

1 −β0r )+ut D−1C∗∗
2 + xt−1√

n
D−1C∗∗

3

]
×

(
1

n
+ ut ur

n
+ xt−1xr−1

n

)
Ktr + (s.o.)

= Op(n),

and

In,3 = 2

n3h

n∑
t=1

n∑
r �=t

X T
t Xr vr X T

t
(
β̂ −βt

)
Ktr

= 2

n3h

n∑
t=1

n∑
r �=t

(1+ut ur + xt−1xr−1)vr Ktr

×
[
n1/2

(
D−1C∗∗

1 −β0t

)
+ut

(
n1/2 D−1C∗∗

2 −β1t

)
+ xt−1

(
n−1/2 D−1C∗∗

3 −β3t

)]
+ (s.o.)
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= 2
√

n

n2h

n∑
t=1

n∑
r �=t

[(
D−1C∗∗

1 −β0t

)
+ut D−1C∗∗

2 + xt−1√
n

D−1C∗∗
3

]

×
[

1

n
+ ut ur

n
+ xt−1xr−1

n

]
vr Ktr + (s.o.)

= Op(
√

n).

Therefore, for this case, In,2 is the leading terms of In , Jn = n
√

hIn = Op(n2√
h), and it

diverges to +∞ at the rate of n2√
h. Theorem 2 is proved. n


