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This paper investigates a general semiparametric stochastic discount factor formula-
tion that avoids functional form misspecification. A new semiparametric estimation
procedure is proposed which combines orthogonality conditions and local linear fit-
ting to give a semiparametric generalized estimating equation approach. Asymptotic
properties of the estimators are established and we explore the empirical usefulness
of the proposed approach to value-weighted stock returns.

1. INTRODUCTION

Asset pricing models are a cornerstone of finance. They reveal how portfolio re-
turns are determined and which factors affect returns. They also imply stochastic
discount factors (SDFs) that can be used to determine current market prices of
portfolios by discounting future payoffs, state by state. Since many asset pricing
models assume a simple and stable linear relationship between assets’ systematic
risks and their expected returns, the SDFs in these models are a linear combination
of the systematic factors with time-invariant coefficients.

However, this simple and stable relationship assumption in asset pricing
models has been challenged by several recent studies based on empirical evi-
dence of time variation in betas and expected returns (as well as return volatili-
ties). Related works include Bansal, Hsieh, and Viswanathan (1993), Bansal and
Viswanathan (1993), Cochrane (1996), Jaganathan and Wang (1996, 2002), Reyes
(1999), Ferson and Harvey (1991, 1993, 1998, 1999), Cho and Engle (2000),
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Wang (2002, 2003), Akdeniz, Altay-Salih, and Caner (2003), Ang and Liu (2004),
Fraser, Hamelink, Hoesli, and MacGregor (2004), Gagliardini, Ossola, and
Scaillet (2011), and the references therein. In particular, Ferson (1989), Harvey
(1989), Ferson and Harvey (1991, 1993, 1998, 1999), Ferson and Korajczyk
(1995), and Jaganathan and Wang (1996) concluded that beta and market risk
premia indeed vary over time. Therefore, asset pricing models should incorporate
time variation in their parameters.

Although there is a vast amount of empirical evidence on time variation in betas
and risk premia, there is little theoretical guidance on how SDFs vary with time
or what variables represent conditioning information. Bansal et al. (1993) and
Bansal and Viswanathan (1993) were the first to advocate a flexible SDF model
in empirical asset pricing and focused on nonlinear arbitrage pricing theory (APT)
models by assuming that the SDF is a nonlinear function of some underlying state
variables. Dumas and Solnik (1995) and Dittmar (2002) treated the coefficients of
the factors in an SDF as linear functions of some instrument variables. Cochrane
(1996) justified this specification by the so-called scaling factors.

Parametric models for time-varying betas and a nonlinear pricing kernel can be
most efficient if the underlying models are correctly specified. However, a mis-
specification may cause serious bias and model constraints may distort the model
in the local area, as discussed by Ghysels (1998). Nonparametric or semiparamet-
ric modeling is appealing in these situations. One of their main advantages is that
little or no restrictive prior information on pricing kernels is needed. In a mean-
covariance efficiency framework, Wang (2002, 2003) explored a nonparametric
form of the SDF model by using the Nadaraya–Watson kernel regressions. More
recently, Gourieroux and Monfort (2007) considered a class of nonlinear para-
metric and semiparametric SDF models for derivative pricing by assuming that
the SDFs are exponential-affine functions of an underlying state variable.

In this paper, we estimate SDFs based on the conditional capital asset pricing
model (CAPM). We propose a new semiparametric estimation procedure, termed
the semiparametric generalized estimating equations (SPGEEs), which combines
two techniques: local linear fitting and generalized estimating equations. This pro-
cedure avoids the potential model misspecification associated with the strong as-
sumption of linearity. In addition, in contrast to Wang (2002, 2003), our approach
does not require a mean-covariance efficiency framework. Using a simulation
study and an empirical analysis, we compare our model with the GMM approach
discussed in Dittmar (2002), which treats the smoothing variables as instruments
of the conditional moments. We find that the proposed estimators are superior to
the GMM estimators in terms of the mean square error (MSE) of pricing errors.
This highlights the practical usefulness of our model and its estimation procedure.

Our paper is related to the work of Chen and Ludvigson (2009), Escanciano
and Hoderlein (2010), Lewbel, Linton, and Srisuma (2011), Fang, Ren, and Yuan
(2011), and Chen, Favilukis, and Ludvigson (2012), among others. However, ours
differs in the following aspects. First, they estimate SDFs using the Euler equa-
tions, whereas the SDFs in our paper are derived from the conditional CAPM.
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Also, our model and its estimating procedure can be easily extended to other APT
models. Second, our proposed estimation method is in the spirit of local gener-
alized estimating equations (GEEs) originally proposed by Carrol, Ruppert, and
Welsh (1998), Cai (2003), and Cai and Li (2008). In contrast, their estimation
methods are based on local GMM or the sieve minimum distance procedure. Lo-
cal GEEs do not use the sandwich formula and use the kernel weight only once,
whereas local GMM uses the sandwich formula and hence uses the kernel weight
twice.

The rest of this paper is organized as follows. Section 2 describes our estimation
model and presents the asymptotic results. Section 3 presents numerical results
based on simulation and an empirical application. Section 4 concludes the paper.
All the mathematical proofs are contained in the Appendix.

2. ECONOMETRIC MODEL AND ESTIMATION PROCEDURE

2.1. Model

We generalize the models studied by Bansal et al. (1993), Bansal and Viswanathan
(1993), Ghysels (1998), Jagannathan and Wang (1996, 2002), Wang (2002, 2003),
and some other models in the finance literature, under a very flexible framework.
Specifically, we assume that the nonlinear pricing kernel has the form mt+1 =
1−m(Zt )rp,t+1,1 where m(·) is unspecified. Our approach focuses on estimating
the semiparametric model

E[{1−m(Zt )rp,t+1} ri,t+1 |�t ] = 0, (1)

where m(·) is an unknown function of Zt and Zt is an L ×1 vector of conditioning
variables from �t , and rp,t+1 is the factor. Indeed, model (1) can be regarded as a
conditional moment (orthogonal) condition. It is unnecessary to require rp,t+1 to
satisfy mean-variance efficiency, unlike in Wang (2002, 2003) and others. Hence,
one of our main interests is to identify and estimate the nonlinear function m(·).
Clearly, an alternative expression for (1) when m(·) is a scalar function is

m(Zt ) = E(ri,t+1|�t )/E(rp,t+1ri,t+1|�t ), (2)

and under mean-variance efficiency, m(Zt ) reduces to b(Zt ) = E(rp,t+1|Zt )/
E(r2

p,t+1|Zt ) as in Wang (2002, 2003).

Remark 1 (Extension to multifactor models). It is easy to extend model (1) to
cover multiple factor models. In such a case, rp,t+1 is a vector. Then, model (1)
becomes

E[{1−m(Zt )
� rp,t+1} ri,t+1 |�t ] = 0. (3)

For simplicity, our focus here is on the one-dimensional case.
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In the famous three-factor model of Fama and French (1993), rp,t+1 can be
expressed as

rp,t+1 = M K Tt+1 + θ1SM Bt+1 + θ2 H M Lt+1 =
⎛⎝ 1

θ1
θ2

⎞⎠�⎛⎝ M K Tt+1
SM Bt+1
H M Lt+1

⎞⎠
≡ θ�rm f,t+1.

Then, the model becomes a special case of the model

E[{1−m∗(Zt )
� rm f,t+1} ri,t+1 |�t ] = 0, (4)

where m∗(Zt ) = m(Zt )θ(t). Here, θ is allowed to vary over time and can be
identified and estimated in a fully semiparametric way. Indeed, a simple version
of model (4) was considered by Wang (2003).

Note that the estimation of model (1) and its econometric theory as applied
in the next two sections to a single market portfolio also hold for models (3)
and (4); however, the details are omitted due to their similarity. Also, note that,
unfortunately, the results do not extend to the nonparametric pricing kernel in (2).

2.2. Semiparametric GEE

For ease of notation, our focus in this section is on model (1) with a single market
portfolio. Let It be a q × 1 (q ≥ L) vector of conditioning variables from �t ,
including Zt , satisfying the orthogonal condition

E[{1−m(Zt )rp,t+1} ri,t+1 | It ] = 0, (5)

which can be regarded as an approximation of model (1). It follows from the
orthogonality condition in (5) that, for any vector function Q(It ) ≡ Qt with di-
mension dq (specified later),

E
[
Qt {1−m(Zt )rp,t+1} ri,t+1 | It

]= 0,

with sample version

1

T

T∑
t=1

Qt {1−m(Zt )rp,t+1} ri,t+1 = 0. (6)

Therefore, this is an estimation approach similar to the GMM of Hansen (1982)
for parametric models and the estimation equations in Cai (2003) for nonparamet-
ric models. We propose a semiparametric estimation procedure to combine the or-
thogonality conditions given in (6) with the local linear fitting scheme of Fan and
Gijbels (1996) to estimate the unknown function m(·). This estimation approach
is termed the semiparametric generalized estimating equations (SPGEEs).
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It is well known in the literature (see, for example, Fan and Gijbels, 1996)
that local linear fitting has several nice properties, when compared to the classical
Nadaraya–Watson (local constant) method, such as high statistical efficiency in an
asymptotic minimax sense, design-adaptation, and automatic edge correction. To
estimate m(·) using local linear fitting from observations

{
(ri,t+1, rp,t+1, Zt )

}T
t=1,

we assume throughout that m(·) is twice continuously differentiable. Then, for
a given point z0 and for {Zt } in a neighborhood of z0, by a Taylor expansion,
m(Zt ) is approximated by the linear function a + b� (Zt − z0) with a = m(z0)
and b = m′(z0) (the derivative of m(z0)), so that model (6) is approximated by the
orthogonality condition

E[Qt {1− (a +b� (Zt − z0))rp,t+1} ri,t+1 | Zt ] ≈ 0.

Therefore, for {Zt } in a neighborhood of z0, the orthogonality conditions in (6)
can be approximated by the locally weighted orthogonality conditions

T∑
t=1

Qt [1− (a +b� (Zt − z0))rp.t+1] ri,t+1 Kh(Zt − z0) = 0, (7)

where Kh(·) = h−L K (·/h), K (·) is a kernel function in RL , and h = hT > 0
is a bandwidth which controls the amount of smoothing used in the estimation.
Equation (7) can be viewed as a generalization of the nonparametric estimation
equations in Cai (2003) and the locally weighted version of (9.2.29) in Hamilton
(1994, p. 243) or (14.2.20) in Hamilton (1994, p. 419) for parametric instrumental
variable models. To ensure that the equation in (7) has a unique solution, the
dimension of Q(·) must be greater than L + 1, the number of parameters in (7).
Therefore, solving the above equation leads to the so-called SPGEE estimate of
m(z0), denoted by m̂(z0), and the SPGEE estimate of m′(z0), denoted by m̂′(z0).
That is,(

m̂(z0)

m̂′(z0)

)
=
(

â

b̂

)
= (S�

T ST )−1 S�
T LT , (8)

where ST = 1
T

∑T
t=1 Qt Q∗

t
� rp,t+1 Kh(Zt − z0) ri,t+1, LT = 1

T

∑T
t=1 Qt Kh

(Zt − z0)ri,t+1, and Q∗
t =

(
rp,t+1ri,t+1

rp,t+1ri,t+1(Zt − z0)

)
. Clearly, when dq = L + 1

and ST is nonsingular,

(
m̂(z0)
m̂′(z0)

)
becomes S−1

T LT . Note that (8) provides a for-

mula for computational implementation, which can be carried out by any standard
statistical package. By moving z0 over the whole domain of m(·), the entire esti-
mated curve of m(·) is obtained.

We now turn to the choice of Qt in (7). Motivated by the estimation equations
in Cai (2003) and following a similar idea in Cai and Li (2008), we choose Qt as

Qt = Q∗
t ; (9)
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see Remark 5 later for further discussion on this choice. Thus,

(
m̂(z0)
m̂′(z0)

)
becomes

S−1
T LT for Qt = Q∗

t . Finally, we note that the method proposed in Cai (2003) can
be regarded as a special case of the SPGEE estimation procedure.

2.3. Asymptotic Theory

In this subsection, we discuss the large sample theory for the proposed estimator
based on the semiparametric generalized estimating equations. Let et = ei,t+1 =
mt+1 ri,t+1 = [1 − m(Zt )rp,t+1]ri,t+1, which is known as the pricing error in the
finance literature.

Assumption A.

A1. {Zt ,ri,t+1,rp,t+1,et } is a strictly stationary α-mixing process with the
mixing coefficient satisfying α(k) = O(k−τ ), where τ = (2+ δ)(1+ δ)/δ,
for some δ > 0. Also, assume that E(rp,t+1) < ∞, E(ri,t+1) < ∞, and
E(r2

i,t+1r2
p,t+1) < ∞.

A2. (i) Assume that for each t and s, supz1,z2
|E(et es |Zs = z1, Zt = z2)| < ∞.

(ii) Define M(z) = E(rp,t+1ri,t+1|Zt = z) and σ 2
0 (z) = E(e2

t |Zt = z). As-
sume that m(·) and M(·) are twice differentiable, and that σ 2

0 (·) is
continuous. Furthermore, assume that σ 2

0 (z) and M(z) are positive for
all z.

(iii) Assume that σ 2
0 (z) satisfies the Lipschitz condition. Also, assume that

there exists some δ > 0 such that E{|et |2+δ|Zt = z} is continuous at z0.

(iv) Assume that for all τ , fτ (·, ·) exists and satisfies the Lipschitz condi-
tion, where fτ (·, ·) is the joint probability density function of Z1 and
Zτ . Also, assume that the marginal density function f (·) of Zt is con-
tinuous.

A3. The kernel K (·) is symmetric, bounded, and compactly supported.

A4. Assume that h → 0 and T hL → ∞ as T → ∞.

A5. Assume that T hL[1+2/(1+δ)] → ∞.

Remark 2 (Discussion of conditions). A similar discussion of these assump-
tions has been given by Cai (2003) and Cai and Li (2008). Assumption A1 re-
quires that observations are stationary, which is a standard assumption in the
literature. The α-mixing condition is one of the weakest mixing conditions for
weakly dependent stochastic processes. Many stationary time series or Markov
chains, including many financial time series fulfilling certain (mild) conditions,
are α-mixing with exponentially decaying coefficients; see Cai (2002), Carrasco
and Chen (2002), and Chen and Tang (2005) for additional examples. Assump-
tion A1 also imposes some standard moment conditions. Assumption A2 requires
some smoothness conditions on the functionals involved. The requirement in As-
sumption A3 that K (·) is compactly supported is imposed to ensure the brevity
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of proofs and can be removed at the cost of lengthier arguments. In particular,
the Gaussian kernel is allowed. Assumption A4 is a standard condition for non-
parametric kernel smoothing. Finally, we note that Assumption A5 is not restric-
tive; e.g., if we consider the optimal bandwidth such that hopt = O(T −1/(L+4))
(see Remark 4), then Assumption A5 is satisfied when δ > L/2 − 1. Therefore,
the conditions imposed here are quite mild and standard.

Before stating our main asymptotic result, we need to introduce some nota-
tion, which will be used throughout the paper. Define μ2(K ) = ∫ u u�K (u)du
and ν0(K ) = ∫ K 2(u)du. Define H = diag{1,h2 IL}, where IL is an L × L iden-
tity matrix. Finally, define S(z) = M(z)diag{1,μ2(K )} and S∗(z) = diag{ν0(k),
h2μ2(K 2)}σ 2

0 (z). The asymptotic normality of the SPGEE estimator is estab-
lished in Theorem 1 with its proof relegated to the Appendix.

THEOREM 1. Under Assumptions A1–A5, for any grid point z0, we have√
T hL

[
H

{(
m̂(z0)
m̂′(z0)

)
−
(

m(z0)
m′(z0)

)}
− B(z0)

]
→ N (0, 	m(z0)),

where the asymptotic bias term is B(z0) = h2/2

(
tr(μ2(K )m′′(z0))

0

)
and the

asymptotic variance is 	m(z) = f (z)−1S−1(z)S∗(z)S−1(z). Particularly,

√
T hL

[
m̂(z0)−m(z0)− h2

2
tr(μ2(K )m′′(z0))

]
→ N (0, σ 2

m(z0)), (10)

where σ 2
m(z0) = ν0(K )σ 2

0 (z0) f −1(z0)M−2(z0).

Remark 3 (Consistent estimate of asymptotic variance). The first consequence
of Theorem 1 is to provide an easy way to obtain a consistent estimate of the
asymptotic variance σ 2

m(z0). After estimating the semiparametric pricing ker-
nel, we can obtain the estimated pricing error as êt = [1 − m̂(Zt )rp,t+1]ri,t+1.
Then, any nonparametric kernel smoothing method, say the local linear tech-
nique, can be applied to obtain a consistent estimate for σ 2

0 (z0), f (z0), and M(z0).
One can apply some existing optimal bandwidth selectors, such as plugging in,
cross-validation, generalized cross-validation, the nonparametric Akaike infor-
mation criterion, etc. Therefore, a consistent estimate for σ 2

m(z0) is σ̂ 2
m(z0) =

ν0(K ) σ̂ 2
0 (z0) f̂ −1(z0)M̂−2(z0). Thus, for a given grid point z0, a 95% pointwise

confidence interval for m(z0) with bias ignored can be constructed as

m̂(z0)±1.96× σ̂m(z0)√
T hL

,

which will be used in computing the confidence interval for the empirical appli-
cation presented in Section 3.
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Remark 4 (A rule of thumb for bandwidth selection). It is well known that
bandwidth plays an essential role in the trade-off between bias and variance. Of-
tentimes, one would like to have a rough idea of how large the amount of smooth-
ing should be, so a rule of thumb is very appealing. While somewhat crude, such
a rule is simple and requires little programming effort compared to other meth-
ods. To this end, from Theorem 1, we see that the weighted integrated asymptotic
mean squared error (AMSE) is given by

AMSE =
∫ [

Var+ (Bias)2
]2

f (z)dz = C1

T hL
+ h4

4
C2,

where C1 = E
[
σ 2

m(Zt )
]

and C2 = E
[
tr(μ2(K )m′′(Zt ))

]
. By minimizing the

AMSE with respect to h, we obtain the optimal theoretical bandwidth

hopt =
(

L C1

C2

)1/(L+4)

T −1/(L+4) ≡ C3T −1/(L+4). (11)

With this choice of hopt , we see that the optimal AMSE has the order of
O(T −4/(L+4). Clearly, the formulation in (11) provides an easy way to find a
data-driven bandwidth selection method; say, a plugging in method. So, we need
to estimate C3 consistently, which can be done as follows. First, take a pilot band-
width h0 which is much smaller than T −1/(L+4), say hσ = 0.1 × T −1/(L+4) or
smaller. Using this pilot bandwidth, we can estimate σ 2

m(z0), so that we obtain Ĉ1
using the average.

We use a simple method to estimate m′′(z0) consistently and easily. We fit a
multivariate polynomial of a certain order Lm (say Lm = log(T ) or larger) glob-
ally to m(z), leading to a parametric fit. Other global parametric approaches, in-
cluding series and spline methods, can also be used. Then, the GMM of Hansen
(1982) can be used to estimate the parameters. The choice of a global fit results in
a derivative function m̂′′(z) which is a multivariate polynomial of order Lm − 2.
Thus, we obtain Ĉ2 by average and get Ĉ3 and ĥopt = Ĉ3T −1/(L+4). This rule
of thumb bandwidth selector will be used in our computation for the empirical
application discussed in Section 3.

Remark 5 (Choice of instruments). After we establish the asymptotic property
of the estimator, we now turn to the choice of Qt = Q(Zt ). For now, we assume

that Q(Zt ) =
(

Q0(Zt )
Q0(Zt )(Zt − z0)

)
, where Q0(Zt ) is an unknown scale function.

By following the same proofs used in the proof of Theorem 1, we can show that
the asymptotic normality in (10) also holds true for our choice of Qt with the
asymptotic variance

�m,0(z0) = f −1(z0)S−1
1 (z0)S∗

1 (z0)S−1
1 (z0),

where S1(z) = Q0(z)S(z) and S∗
1 (z) = Q2

0(z)S∗(z). It is clear that the asymptotic
variance �m,0(z) = �m(z), which is not related to the choice of Q0(·). Hence, we
assume that Q(·) has the form given in (9).
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2.4. Multiple Assets

In economics and finance applications, risky portfolios are usually multiple, so
it may not be appropriate to focus on only one particular portfolio. In this sec-
tion, we discuss how to extend our estimation procedure to a multiple-portfolio
scenario.

As shown earlier, the orthogonal condition is

E[{1−m(Zt )rp,t+1} ri,t+1 | It ] = 0

or

E
[
Qt {1−m(Zt )rp,t+1} ri,t+1 | It

]= 0.

Here ri,t+1 is the i-th excess return of the risky assets. If we have N excess returns,
then this orthogonal condition is valid for i = 1,2, . . . , N .

We can use the following strategy to consider these N orthogonal conditions.
First note that the linear combination of excess returns can also be regarded as an
excess return. That is to say, if

θ1 + θ2 +·· ·+ θN = 1,

then we can define r̃t+1 as

r̃t+1 = θ1r1,t+1 + θ2r2,t+1 +·· ·+ θN rN ,t+1.

It is clear that r̃t+1 is still an excess return. If we impose the orthogonal condition
on r̃t+1, then we have

E
[
Qt {1−m(Zt )rp,t+1} r̃t+1 | It

]= 0,

which is equivalent to

E
[
Qt {1−m(Zt )rp,t+1} {θ1r1,t+1 + θ2r2,t+1 +·· ·+ θN rN ,t+1} | It

]= 0,

or

θ1 E
[
Qt {1−m(Zt )rp,t+1} r1,t+1 | It

]+·· ·
+ θN E

[
Qt {1−m(Zt )rp,t+1} rN ,t+1 | It

]= 0.

This equation can be explained as the linear combination of N orthogonal condi-
tions with specific weight (θ1,θ2, . . . ,θN ).

We cannot choose θi to optimize the estimator. However, in practice, the para-
metric GMM used for estimation of the SDFs does not adopt the optimal weight-
ing matrix either. Most papers just use the identity matrix to estimate SDFs. So
we can safely set θi = 1/N for simplicity.
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3. NUMERICAL ANALYSIS

3.1. Monte Carlo Simulation

To illustrate the validity of our method, we conduct some Monte Carlo simula-
tions. For simplicity of implementation, we choose only one variable, zt , which
has the autoregressive data generating process

zt = 0.02 zt−1 +0.01εt,1,

where εt,1 has a standard normal distribution. The conditional mean of rp,t+1
takes the form rp,t+1 = 0.01g(zt )+0.05εt,2, where g(zt ) = 0.1+0.1 z2

t and εt,2
has a standard normal distribution. We choose m(zt ) as

m(zt ) = 0.01g(zt )/[(0.05)2 +0.012g(zt )
2].

Thus, ri,t+1 is determined by (1) as ri,t+1 = ei,t/[1−m(zt )rp,t+1], where

ei,t = 0.05ei,t−1 +0.01vi,t ,

where vi,t is also a standard normal variable. Random variable vi,t is i.i.d.
(independent and identically distributed) across both i and t for all 1 ≤ i ≤ N
and 1 ≤ t ≤ T . Here, N = 25 and T = 250, 500, and 1,000.

Based on the simulated data, SDFs are estimated using the proposed method.
For each setting and each sample size, we perform 1,000 iterations and collect
the MSE of the SDFs. In order to highlight the performance of point estimation,
we only report the results when zt = 0 in Table 1.

In addition, we compare our estimators with the ones provided by a nonlinear
parametric model. The nonlinear parametric model can be expressed as

mt+1 = Ft+1b,

where Ft = [1,rp,t+1, zt ,rp,t+1zt ]. We can use GMM to estimate b as

min
b

gT (b) ≡ ω′
T (b)WωT (b).

If we define DT = T −1∑T
t=1 R′

t Ft , then ωT = DT b−1N , where 1N is a N -vector
of ones. Thus, b can be estimated as

b̂ = (D′
T W DT )−1 D′

T W 1N .

TABLE 1. MSEs of SDF estimation

T = 250 T = 500 T = 1,000

SPGEE 0.0226 0.0170 0.0067
GMM 0.0628 0.0540 0.0486
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Here, the weighting matrix W is chosen to be an identity matrix since, in our data,
T is small. The inverse of the sample covariance matrix may not be a good esti-
mator for the optimal weighting matrix. Altonji and Segal (1996) and Cochrane
(2001) recommend the identity matrix for this scenario. We can see from Table 1
that our SDF estimators have much smaller MSEs than the GMM estimators be-
cause GMM estimators suffer from model misspecification. Also, one can observe
clearly that the MSEs of our estimators decrease as the sample size increases,
which is consistent with our theory.

3.2. Empirical Application

Our test assets are the monthly returns of the Fama–French 25 portfolios from
July 1963 to November 2010. The return on the benchmark portfolio is the

TABLE 2. Mean square errors. We use our method, SPGEE, and the nonlinear
parametric method, GMM, to estimate SDFs of the Fama–French 25 portfolios.
This table reports the MSEs of the pricing errors. The portfolios are sorted by size
(S) and book-to-market ratio (B). S1 (and B1) denotes the lowest order while S5
(and B5) denotes the highest order

SPGEE GMM

S1/B1 0.0060 0.0162
S1/B2 0.0045 0.0135
S1/B3 0.0033 0.0085
S1/B4 0.0029 0.0073
S1/B5 0.0033 0.0074
S2/B1 0.0050 0.0135
S2/B2 0.0032 0.0074
S2/B3 0.0026 0.0063
S2/B4 0.0025 0.0059
S2/B5 0.0031 0.0070
S3/B1 0.0043 0.0114
S3/B2 0.0027 0.0062
S3/B3 0.0022 0.0050
S3/B4 0.0022 0.0049
S3/B5 0.0027 0.0062
S4/B1 0.0035 0.0092
S4/B2 0.0024 0.0052
S4/B3 0.0023 0.0051
S4/B4 0.0021 0.0051
S4/B5 0.0027 0.0060
S5/B1 0.0022 0.0056
S5/B2 0.0019 0.0043
S5/B3 0.0017 0.0042
S5/B4 0.0018 0.0046
S5/B5 0.0023 0.0054
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value-weighted return on all NYSE, AMEX, and NASDAQ stocks. The risk-free
rate is the one-month Treasury bill rate. The chosen condition variable is the de-
fault spread of the return on BAA and AAA corporate bonds. As required by the
model, this variable is lagged one period.

After obtaining the SDF estimators by two different methods, we report the
MSEs of the pricing errors delivered by the two models. The results are summa-
rized in Table 2. We can see that for each portfolio, the MSE of our method is
much smaller than that for the GMM method, which implies that although we can
use the cross-product between the information variable and the factor to capture
the conditional information, the potential for model misspecification jeopardizes
the performance of the GMM method.

Finally, we plot the estimated SDFs with the excess returns and the default
spreads. Figure 1 shows that when the excess return is large, the SDF is low. This
is reasonable since the SDF can be explained as the ratio of the marginal utility
of consumption of the next period over the marginal utility of current consump-
tion. When there is high excess return in the next period, the consumption of the
next period is going to increase accordingly. So the marginal utility of the next
period decreases and the SDF is low. We also observe that the default spread in
the current period is usually associated with a high SDF of the next period. This
is because a high SDF of the next period implies that consumers anticipate low
consumption in the next period. Low consumption usually occurs in a recession.
In a recession, consumers need higher premia to compensate for larger risk in the
markets. Therefore, to attract consumers to take risky assets in the current period,
the default spread is going to be high.

FIGURE 1. Estimated SDFs.
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4. CONCLUSION

This paper proposes a semiparametric method to estimate SDFs. When the con-
ventional SDF holds conditionally on the current information set, the coefficients
of the factors in the SDF are time-varying. We assume that the coefficients are un-
known functions of some observable variables and estimate those functions semi-
parametrically. Our estimator avoids model misspecification and the assumption
that the benchmark portfolio is mean-variance efficient. In both simulations and
our empirical application, we find that our estimator delivers smaller pricing er-
rors than alternative estimators in the literature.

NOTE

1. A detailed explanation about the form of mt+1 = 1−m(Zt )rp,t+1 can be found in Wang (2003).

REFERENCES

Akdeniz, L., A. Altay-Salih, & M. Caner (2003) Time-varying betas help in asset pricing: The thresh-
old CAPM. Studies in Nonlinear Dynamics & Econometrics 6(4), Article 1.

Altonji, J. & L. Segal (1996) Small-sample bias in GMM estimation of covariance structures. Journal
of Business & Economic Statistics 14, 353–366.

Ang, A. & J. Liu (2004) How to discount cashflows with time-varying expected return. Journal of
Finance 59, 2745–2783.

Bansal, R., D.A. Hsieh, & S. Viswanathan (1993) A new approach to international arbitrage pricing.
Journal of Finance 48, 1719–1747.

Bansal, R. & S. Viswanathan (1993) No arbitrage and arbitrage pricing: A new approach. Journal of
Finance 47, 1231–1262.

Cai, Z. (2002) Regression quantiles for time series data. Econometric Theory 18, 169–192.
Cai, Z. (2003) Nonparametric estimation equations for time series data. Statistics and Probability

Letters 62, 379–390.
Cai, Z. & Q. Li (2008) Nonparametric estimation of varying coefficient dynamic panel models. Econo-

metric Theory 24, 1321–1342.
Carrasco, M. & X. Chen (2002) Mixing and moment properties of various GARCH and stochastic

volatility models. Econometric Theory 18, 17–39.
Carrol, R., D. Ruppert, & A. Welsh (1998) Local estimating equations. Journal of the American Sta-

tistical Association 93, 214–227.
Chen, X., J. Favilukis, & S. Ludvigson (2012) An Estimation of Economic Models with Recursive

Preferences. Working paper, New York University.
Chen, X. & S. Ludvigson (2009) Land of addicts? An empirical investigation of habit-based asset

pricing models. Journal of Applied Econometrics 24, 1057–1093.
Chen, S.X. & C.Y. Tang (2005) Nonparametric inference of value at risk for dependent financial

returns. Journal of Financial Econometrics 3, 227–255.
Cho, Y.-H. & R.F. Engle (2000) Time-varying Betas and Asymmetric Effects of News: Empirical

Analysis of Blue Chip Stocks. Working paper, New York University.
Cochrane, J.H. (1996) A cross-sectional test of an investment-based asset pricing model. Journal of

Political Economy 104, 572–621.
Cochrane, J.H. (2001) Asset Pricing. Princeton University Press.
Dittmar, R. (2002) Nonlinear pricing kernels, kurtosis preference, and evidence from the cross section

of equity returns. Journal of Finance 57, 369–403.



PRICING KERNEL ESTIMATION 573

Dumas, B. & B. Solnik (1995) The world price of foreign exchange rate risk. Journal of Finance 50,
445–479.

Escanciano, J.-C. & S. Hoderlein (2010) Nonparametric Identification of Euler Equations. Working
paper, Boston College.

Fama, E. & K.R. French (1993) Common risk factors in the returns on bonds and stocks. Journal of
Financial Economics 33, 3–56.

Fan, J. & I. Gijbels (1996) Local Polynomial Modelling and Its Applications. Chapman and Hall.
Fang, Y., Y. Ren, & Y. Yuan (2011) Nonparametric estimation and testing of stochastic discount factor.

Finance Research Letters 8, 196–205.
Ferson, W.E. (1989) Changes in expected security returns, risk and the level of interest rates. Journal

of Finance 44, 1191–1214.
Ferson, W.E. & C.R. Harvey (1991) The variation of economic risk premiums. Journal of Political

Economy 99, 385–415.
Ferson, W.E. & C.R. Harvey (1993) The risk and predictability of international equity returns. Journal

of Financial Studies 6, 527–566.
Ferson, W.E. & C.R. Harvey (1998) Fundamental determinants of national equity market returns:

A perspective on conditional asset pricing. Journal of Banking and Finance 21, 1625–1665.
Ferson, W.E. & C.R. Harvey (1999) Conditional variables and the cross section of stock return. Jour-

nal of Finance 54, 1325–1360.
Ferson, W.E. & R.A. Korajczyk (1995) Do arbitrage pricing models explain the predictability of stock

returns? Journal of Business 68, 309–349.
Fraser, P., F. Hamelink, M. Hoesli, & B. MacGregor (2004) Time-varying betas and cross-sectional

return-risk relation: Evidence from the UK. European Journal of Finance 10, 255–276.
Gagliardini, P., E. Ossola, & O. Scaillet (2011) Time-varying risk premia in large cross-sectional

equity datasets. Swiss Finance Institute Research Paper No. 11–40.
Ghysels, E. (1998) On stable factor structures in the pricing of risk: Do time varying betas help or

hurt? Journal of Finance 53, 549–573.
Gourieroux, C. & A. Monfort (2007) Econometric specification of stochastic discount factor models.

Journal of Econometrics 136, 509–530.
Hall, P. & C.C. Heyde (1980) Martingale Limit Theory and Its Applications. Academic Press.
Hamilton, J.D. (1994) Time Series Analysis. Princeton University Press.
Hansen, L.P. (1982) Large sample properties of the generalized method of moments estimators.

Econometrica 50, 1029–1054.
Harvey, C.R. (1989) Time-varying conditional covariances in tests of asset pricing models. Journal of

Financial Economics 24, 289–317.
Jagannathan, R. & Z. Wang (1996) The conditional CAPM and the cross-section of expected returns.

Journal of Finance 51, 3–53.
Jagannathan, R. & Z. Wang (2002) Empirical evaluation of asset pricing models: A comparison of the

SDF and beta methods. Journal of Finance 57, 2337–2367.
Lewbel, A., O. Linton, & S. Srisuma (2011) Nonparametric Euler Equation Identification and Estima-

tion. Working paper, Boston College.
Reyes, M.G. (1999) Size, time-varying beta, and conditional heteroscedasticity in UK stock return.

Review of Financial Economics 8, 1–10.
Shao, Q. & H. Yu (1996) Weak convergence for weighted empirical processes of dependent sequences.

Annals of Probability 24, 2098–2127.
Volkonskii, V.A. & Yu.A. Rozanov (1959) Some limit theorems for random functions I. Theory of

Probability and Its Applications 4, 178–197.
Wang, K.Q. (2002) Nonparametric tests of conditional mean-variance efficiency of a benchmark port-

folio. Journal of Empirical Finance 9, 133–169.
Wang, K.Q. (2003) Asset pricing with conditioning information: A new test. Journal of Finance 58,

161–196.



574 ZONGWU CAI ET AL.

APPENDIX: Theoretical Proofs

To prove Theorem 1, we need the following four lemmas, which are stated below without
proof. For detailed proofs of these lemmas, we refer the reader to Hall and Heyde (1980)
for Lemma 1, Volkonskii and Rozanov (1959) for Lemma 2, and Shao and Yu (1996) for
Lemma 3. We use the same notation as introduced in Section 2. Throughout this Appendix,
we denote C as a generic positive constant, which may take different values at different
times.

LEMMA A.1 (Davydov’s Lemma). Suppose that two random variables X and Y are
F

t−∞ and F∞
t+τ adapted, respectively, and that ||X ||p < ∞ and ||Y ||q < ∞, where

||X ||p = {E |X |p}1/p, p,q ≥ 1, and 1/p +1/q < 1. Then,

sup
t

|Cov(X,Y )| ≤ 8α1/r (τ ){E |X |p}1/p{E |Y |q }1/q ,

where r = (1−1/p −1/q)−1 and α(·) is the mixing coefficient.

LEMMA A.2. Let V1, . . . ,VL1 be α-mixing stationary random variables that are

F
j1
i1

, . . . ,F
jL1
iL1

-measurable, respectively, with 1 ≤ i1 < j1 < · · · < jL1 , il+1 − jl ≥ τ , and

|Vl | ≤ 1 for l = 1, . . . L1. Then,∣∣∣∣∣∣E
⎛⎝ L1∏

l=1

Vl

⎞⎠−
L1∏

l=1

E(Vl )

∣∣∣∣∣∣≤ 16(L1 −1)α(τ),

where α(·) is the mixing coefficient.

LEMMA A.3. Let Vt be an α-mixing process with E(Vt ) = 0 and ‖ Vt ‖r < ∞ for
2 < p < r ≤ ∞. Define Sn =∑n

t=1 Vt and assume that α(τ) = O(τ−θ ) for some θ >
pr/(2(r − p)). Then,

E |Sn |p ≤ K n p/2 max
t≤n

‖ Vt ‖p
r ,

where K is a finite positive constant.

Convexity Lemma: Let {λn(θ : θ ∈ 
)} be a sequence of random convex functions defined
on a convex, open subset 
 of �d . Suppose λ(d) is a real-valued function on 
 for which
�n(θ) → λ(θ) in probability, for each θ in 
. Then, for each compact subset C of 
,

sup
θ∈C

|λn(θ)−λ(θ)| p−→ 0.

Moreover, function λ(·) is necessarily convex on 
.
We define some notations as follows. Let S̃T = H−1ST , where ST = Qt Q�

t Kh

(Zt − z0)ri,t+1rp,t+1. Also, set BT = 1
T
∑T

t=1
1
2 Qtri,t+1rp,t+1(Zt − z0)�m′′(z0)

(Zt − z0)Kh(Zt − z0) and Rt = m(Zt ) − m(z0) − m′(z0)�(Zt − z0) − 1
2 (Zt − z0)�

m′′(z0)(Zt − z0). Finally, set R∗
T = 1

T
∑T

t=1 Kh(Zt − z0)Qtri,t+1rp,t+1
[
m(Zt ) −

m(z0)−m′(z0)�(Zt − z0)− 1
2 (Zt − z0)�m′′(z0)(Zt − z0)

]
. Now, we have the following

asymptotic results for the above quantities.



PRICING KERNEL ESTIMATION 575

PROPOSITION A.1. Under Assumptions A1–A5, we have

(i) S̃T = f (z0)S{1+op(1)}.
(ii) BT = f (z0)M(z0)B(z0)+op(h2).

(iii) R∗
T = op(h2).

Proof. By the stationarity assumption and Assumptions A1–A5,

E(S̃T ) = E

⎛⎝ 1

T

T∑
t=1

H−1 Qt Q∗
t
�Kh(Zt − z0)ri,t+1rp,t+1

⎞⎠
= E(H−1 Qt Q∗

t
�Kh(Zt − z0)ri,t+1rp,t+1)

= E(E(H−1 Qt Q∗
t
�Kh(Zt − z0)ri,t+1rp,t+1 |Zt ))

=
∫ (

M(z0 +hu) M(z0 +hu)u�
M(z0 +hu)u M(z0 +hu)uu�

)
K (u) f (z0 +hu)du → f (z0)S(z0)

and

T hL Var

⎛⎝ 1

T

T∑
t=1

ri,t+1rp,t+1 Kh(Zt − z0)

⎞⎠
= hL Var(ri,t+1rp,t+1 Kh(Zt − z0))

+ 2hL

T

T −1∑
t=1

(T − t)Cov(ri,2rp,2 Kh(Z1 − z0),ri,t+1rp,t+1 Kh(Zt − z0))

≡ I1 + I2.

By Assumptions A1 and A2,

Var(ri,t+1rp,t+1 Kh(Zt − z0)) = O(h−L ),

which implies that

I1 = O(1).

Next we prove that I2 → 0. To this end, reformulate I2 as I2 = I3 + I4, where I3 = 2hL/

T
∑dT

t=1(· · · ) and I4 = 2hL/T
∑

t>dT
(· · · ). Let dT → ∞ be a sequence of integers such

that dT hL → 0. First, we show that I3 → 0. Conditional on Z1, Zt , and using Assump-
tion A2, we obtain

Cov(ri,2rp,2 Kh(Z1 − z0),ri,t+1rp,t+1 Kh(Zt − z0)) = O(1).

Thus, it follows that I3 ≤ dT hL → 0. We now consider the contribution of I4. For an
α-mixing process, we use Davydov’s inequality (see Lemma 1) to obtain the following:

|Cov(ri,2rp,2 Kh(Z1 − z0),ri,t+1rp,t+1 Kh(Zt − z0))|
≤ C[α(t)]

δ
2+δ ‖ ri,2rp,2 Kh(Z1 − z0) ‖2+δ‖ ri,t+1rp,t+1 Kh(Zt − z0) ‖2+δ .
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By Assumption A2,

E |ri,t+1rp,t+1 Kh(Zt − z0)|2+δ

= h−L(1+δ) f (z0)|E(ri,t+1rp,t+1|z0)2+δ |
∫

K 2+δ(u)du +o(h−L(1+δ))

= O(h−L(1+δ)).

Thus,

|Cov(ri,2rp,2 Kh(Z1 − z0),ri,t+1rp,t+1 Kh(Zt − z0))| = O(αδ/(2+δ)(t)h−2L(1+δ)/(2+δ)),

and

|I4| = C
hL

T

∑
t>dT

(T − t)αδ/(2+δ)(t)h−2L(1+δ)/(2+δ) ≤ C
∑

t>dT

αδ/2+δ(t)h−δL/2+δ.

By Assumption A1, and choosing d2+δ
T hL = O(1),

I4 = C
∑

t>dT

αδ/2+δ(t)h−Lδ/2+δ = o(h−Lδ/2+δd−δ
T ) = o(1),

where dT satisfies the requirement that dT hL → 0. Note that, in Assumption A4, we as-
sume that h → 0 and T hL → ∞ as T → ∞. Then,

Var

⎛⎝ 1

T

T∑
t=1

ri,t+1rp,t+1 Kh(Zt − z0)

⎞⎠= o(1).

Using similar arguments, we can show that

1

T

T∑
t=1

ri,t+1rp,t+1 Kh(Zt − z0)(Zt − z0)/h = op(1), (A.1)

and

1

T

T∑
t=1

ri,t+1rp,t+1 Kh(Zt − z0)(Zt − z0)(Zt − z0)�/h2 = f (z0)M(z0)μ2(K )+op(1).

(A.2)

Therefore, by (A.1) and (A.2),

S̃T = f (z0)S{1+op(1)}.

This proves (i).
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Next, we show (ii). Note that by the stationarity assumption and Assumption A2,

E(BT )

= h2

2
E

(
Qt Kh(Zt − z0)ri,t+1rp,t+1

(
Zt − z0

h

)�
m′′(z0)

(
Zt − z0

h

))

= h2

2
E

(
E[Kh(Zt − z0)ri,t+1rp,t+1 Qt

(
Zt − z0

h

)�
m′′(z0)

(
Zt − z0

h

)
|Zt ]

)

= h2

2

∫ (
M(z0 +hu)u�m′′(z0)u

h M(z0 +hu)uu�m′′(z0)u

)
K (u) f (z0 +hu)du → f (z0)M(z0) B(z0),

where
∫

u�uK (u) = tr(μ2(K )). By the same token, we can show that the variance of
h−2 BT converges to 0. This proves (ii).

Finally,

h−2 E(R∗
T ) = h−2 E

[
Kh(Zt − z0)ri,t+1rp,t+1 Rt Qt

]
= h−2 E

[
Kh(Zt − z0)M(Zt )Rt Qt

]
= h−2

∫
M(z0 +hu)K (u) f (z0 +hu)R(z0 +hu)

(
1

hu

)
du,

where, by Assumption A2,

R(z) = m(z)−m(z0)−m′(z0)hu − 1

2
(z − z0)�m′′(z0)(z − z0),

so that R(z0 +hu) = o(h2). Thus,

E[h−2 R∗
T ] = o(1).

Similarly, we can show that Var[h−2 R∗
T ] = o(1). n

PROPOSITION A.2. Under Assumptions A1–A5,

T hL Var(GT ) → f (z0)S∗,

where GT = 1
T
∑T

t=1 Qt et Kh(Zt − z).

Proof. By the orthogonal condition in (1), E(GT ) = 0 and

T hL Var(GT ) = hL

T
V ar

⎛⎝ T∑
t=1

Qt et Kh(Zt − z0)

⎞⎠
= hL Var(Qt et Kh(Zt − z0))

+ 2hL

T

T −1∑
t=1

(T − t)Cov(Q1e1 Kh(Z1 − z0), Qt et Kh(Zt − z0))

≡ I5 + I6.
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By Assumption A2, similar to the proof of Proposition 1,

I5 → f (z0)S∗.

Similar to I2, we split I6 into two parts I6 = I7 + I8, where I7 = 2hL/T
∑dT

t=1(· · · ) ≤
dT hL → 0 and I8 = 2hL/T

∑
t>dT

(· · · ). By taking v1 and v2 as 0 or 1, by Davydov’s
inequality, we obtain

|Cov(e1 Kh(Z1 − z0)(Z1 − z0)v1 ,et Kh(Zt − z0)(Zt − z0)v2)|
≤ C[α(t)]

δ
2+δ ‖ e1 Kh(Z1 − z0)(Z1 − z0)v1 ‖2+δ‖ et Kh(Zt − z0)(Zt − z0)v2 ‖2+δ

and

E |e1 Kh(Z1 − z0)(Z1 − z0)v1 |2+δ ≤ O(h−L(1+δ)).

Thus, by Assumption A1 and choosing d2+δ
T hL = O(1),

I8 = o(d−δ
T h−Lδ/2+δ) = o(1)

and

T hL Var(GT ) → f (z0)S∗.

This proves Proposition 2. n

Proof of Theorem 1. Recall that

H

{(
m̂(z0)
m̂′(z0)

)
−
(

m(z0)
m′(z0)

)}
− S̃−1

T BT − S̃−1
T R∗

T = S̃−1
T GT .

It follows from Propositions 1 and 2 that

H

{(
m̂(z0)
m̂′(z0)

)
−
(

m(z0)
m′(z0)

)}
− B(z0)+op(h2) = f −1(z0)S−1GT {1+op(1)}. (A.3)

To prove Theorem 1, it suffices to establish the asymptotic normality of
√

T hL GT , which
we do using the Wold–Craḿer device, so that we may consider a linear combination with
a unit vector d�GT . It is easy to show by simple algebra that

√
T hL d�GT = 1√

T

T∑
t=1

wt ,

where wt = √
hL d� {Qtri,t+1 Kh(Zt − z0)(1−m(Zt )rp,t+1)

}
. It is clear that the prob-

lem reduces to proving the asymptotic normality of
∑T

t=1 wt/
√

T . By Proposition 2, we
show that

Var(wt ) = f (z0)d�S∗d(1+o(1)) ≡ θ2(z0)(1+o(1)), and
T∑

t=2

|Cov(w1,wt )| = o(1).



PRICING KERNEL ESTIMATION 579

Therefore,

Var
(√

T hL d�GT

)
= θ2(z0)(1+o(1)). (A.4)

We employ the so-called small- and large-block method. For this setting, we partition the
set {1,2, . . . ,T } into 2qT +1 subsets with large-blocks of size rT and small blocks of size
sT . Let T/(rT + sT ) be the number of blocks. Let the random variables ηj and εj be the
sum over the j th large block, and over the j th small block, and let ξ be the sum over the
residual block. That is,

ηj =
( j+1)(rT +sT )+rT∑

t= j (rT +sT )+1

wt , and εj =
( j+1)(rT +sT )∑

t= j (rT +sT )+rT +1

wt .

Then,

√
T hL d�GT = 1√

T

⎧⎨⎩
qT −1∑
j=0

ηj +
qT −1∑
j=0

εj + ξ

⎫⎬⎭≡ 1√
T

{QT,1 + QT,2 + QT,3}.

We will show that as T → ∞,

1

T
E[QT,2]2 → 0,

1

T
E[QT,3]2 → 0, (A.5)∣∣∣∣∣∣E [exp(i t QT,1)

]− qT −1∏
j=0

E
[
exp(i tηj )

]∣∣∣∣∣∣ → 0, (A.6)

1

T

qT −1∑
j=0

E(η2
j ) → θ2(z0), (A.7)

and that for every ε∗ > 0,

1

T

qT −1∑
j=0

E
[
η2

j I{|ηj | ≥ ε∗ θ(z0)
√

T }
]

→ 0. (A.8)

Clearly, these four statements imply that the sums over small and residual blocks,
QT,2/

√
T and QT,3/

√
T , are asymptotically negligible in probability, and that {ηj } in

QT,1 is asymptotically independent. Also, (A.7) and (A.8) are standard Lindeberg–Fellow
conditions for the asymptotic normality of QT,1/

√
T . To show the asymptotical normality

of d�GT , it suffices to establish the four statements in (A.5)–(A.8). First, we choose the
block sizes

rT =
⌊
(T hL )1/2

⌋
, sT =

⌊
(T hL )1/2/ log T

⌋
,

where τ = (2+ δ)(1+ δ)/δ . It is easily shown that

sT /rT → 0, rT /T → 0, and qT α(sT ) → 0. (A.9)
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Now we establish (A.5) and (A.7). Clearly,

E[Q2
T,2] =

qT −1∑
j=0

Var(εj )+2
∑

0≤k< j<qT −1

Cov(εk ,εj ) ≡ J1 + J2.

By stationarity and (A.4),

J1 = qT Var(ε1) = qT Var

⎛⎝ sT∑
t=1

wt

⎞⎠= qT sT [θ2(z0)+o(1)],

and

|J2| ≤ 2
T −rT∑
j1=1

T∑
j2= j1+rT

|Cov(wj1 ,wj2)| ≤ 2T
T∑

j=rT +1

|Cov(w1,wj )| = o(T ).

Hence, by (A.9),

qT sT = o(T ), so that E(QT,2)2 = qT sT θ2(z0)+o(T ) = o(T ).

It follows from the stationarity condition, (A.9), and Proposition 2 that

Var(QT,3) = Var

⎛⎝T −qT (sT +rT )∑
t=1

wt

⎞⎠= O(T −qt (rT + sT )) = o(T ).

From Lemma 2,∣∣∣∣∣∣E
⎡⎣exp

⎛⎝i t
qT −1∑
j=0

QT,1

⎞⎠⎤⎦−
qT −1∏
j=0

E
[
exp(i tηj )

]∣∣∣∣∣∣≤ 16qT α(sT ) → 0.

This proves (A.6). It remains to show that

1

T

qT −1∑
j=0

E
[
η2

j I{|ηj | ≥ εθ(z0)
√

T }
]

→ 0.

It follows from Lemma 3 that

E
[
η2

j I
{
|ηj | ≥ εθ(z0)

√
T
}]

≤ CT −δ/2 E
(
|ηj |2+δ

)
≤ CT −δ/2r1+δ/2

T

{
E |wt |2(1+δ)

}(2+δ)/2(1+δ)
.

It can be easily shown that

E
(
|w1|2+2δ

)
≤ c h−Lδ.

By plugging this into the right-hand side of the previous equation, we obtain

1

T

qT −1∑
j=0

E
[
η2

j I{|ηj | ≥ ε∗θ(z0)
√

T }
]

= O
(

rδ/2
T T −δ/2h−L(2+δ)δ/2(1+δ)

)
= O

(
T −δ/4h−L[1+2/(1+δ)]δ/4

)
→ 0

by Assumption A5. This proves Theorem 1. n


