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Abstract To forecast exchange rates, this paper proposes a new semiparametric
smooth transition autoregressive model by allowing state variables to enter into the
transition function in a nonparametric way. We propose a three-stage estimation pro-
cedure to estimate both the parametric and nonparametric parts in the new model, and
a simulation study is conducted to demonstrate satisfactory finite sample performance.
The empirical results, based on the proposed model applied to forecasting five major
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Asian exchange rates, show that the new model has some advantages in out-of-sample
forecasting performance.
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1 Introduction

The exchange rate, reflecting relative values between different currencies, is one of the
most important financial and macroeconomic indicators in an economy. The movement
of exchange rates produces influential impacts on international trade, capital flows
and asset portfolio management. Although forecasting exchange rates has received
much attention and extensive research recently, it is still a very challenging and active
research area due to the nonlinearity and time-varying features existing in exchange
rate data, see the papers by Hong and Lee (2003) and Cai et al. (2012) for details.

Many parametric nonlinear models have been developed to deal with the nonlinear-
ity and time-varying features in exchange rates. To name just a few, for example, Quant
(1958) proposed a linear regression system by allowing two separate regimes. Many
authors studied the variants of the regime switching models and discussed the choice
of the transition function which determines how to switch from one regime to another,
see Bacon and Watts (1971), Goldfeld and Quandt (1972), Maddala (1977), Haggan
and Ozaki (1981), Chan and Tong (1986), among others. The smooth transition autore-
gressive (STAR) model (Granger and Teräsvirta 1993; Teräsvirta 1994; Eitrheim and
Teräsvirta 1996) is most widely employed in the class of regime switching models. The
STAR model can be simply regarded as a time-varying weighted average of two linear
autoregressive models, and the smooth change between two regimes is determined by
a so-called transition function, which commonly adopts either a logistic function or an
exponential function. Dijk et al. (2002) provided a comprehensive survey about STAR
models and their applications in economics. However, empirical studies provide mixed
evidence in support of the STAR model. For example, using monthly data on real effec-
tive exchange rates of ten major industrial countries, Sarantis (1999) found that the
STAR model is not significantly better than linear models in terms of predictive abil-
ity. Stock and Watson (1996) employed the STAR model to forecast various monthly
US macroeconomic data, but in most cases, the forecasting performance of the STAR
model is inferior to linear models. Boero and Marrocu (2002) obtained similar results
using several exchange rate data. A recent study by Rapach and Wohar (2006) also
found that, in terms of short term prediction, the STAR model and the autoregressive
(AR) model were similar in stock return data. One of the possible explanations to the
aforementioned problems is that parametric STAR models may not be flexible enough
to capture the nonlinear dynamics in exchange rates.

An alternative approach to model the nonlinearity is to use nonparametric tech-
niques. For example, Diebold and Nason (1990) applied kernel estimation to ten major
dollar spot rates in the post-1973 period. Kuan and Liu (1995) modeled the exchange
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Forecasting major Asian exchange rates 409

rates using a feed-forward and recurrent network. Mizrach (1992) predicted the Euro-
pean monetary system currencies via a multivariate nearest neighbor estimation. More-
over, Hong and Lee (2003) and Cai et al. (2012) adopted the functional coefficient
model to predict exchange rates. On the other hand, some authors provided empirical
evidence that a complicated nonparametric model cannot even beat a simple random
walk model, particularly in terms of out-of-sample forecasting. For example, Diebold
and Nason (1990) and Meese and Rose (1991) found that nonparametric models pro-
vided little improvement in out-of-sample prediction for many exchange rates. Another
concern is that the nonparametric techniques usually provide very little economic
explanation, and the estimation and prediction process are criticized as a black box.

In this paper, we propose a new semiparametric STAR model to forecast the major
five Asian exchange rates. The new semiparametric model adopts the basic framework
of the STAR model but allows the state variables to enter into the transition function
in a nonparametric way. Therefore, the new semiparametric STAR model not only
inherits some merits of the STAR model, such as a two-regime structure and a clear
economic explanation,1 but also provides more flexibility to fit the data and alleviate
the risk of misspecification. We propose a three-stage estimation procedure to estimate
both the parametric and nonparametric parts in the new model. Our simulation results
show that the proposed estimation method works very well even in a finite sample
setting. Furthermore, we apply the new model to forecast five major Asian exchange
rates: the Indian rupee (INR), Japanese yen (JPY), Singapore dollar (SGD), Korean
won (KRW) and Thai baht (THB). The empirical results show that the semiparametric
model has some advantages over other alternative models in terms of out-of-sample
forecasting performance.

The rest of the paper is organized as follows. Section 2 introduces the new model and
discusses the three-stage estimation method. Monte Carlo simulations are conducted
in Sect. 3 to demonstrate the finite sample performance of the estimation method. In
Sect. 4, to forecast five major Asian exchange rates, we compare the semiparametric
STAR model with other models in terms of the out-of-sample forecasting ability.
Section 5 concludes.

2 Econometric models and their modeling procedures

2.1 Review of STAR models

For a time series {yt }, the STAR model of Teräsvirta (1994) can be expressed as
follows:

yt = φ1,0 +
p∑

j=1

φ1, j yt− j +
⎛

⎝φ2,0 +
p∑

j=1

φ2, j yt− j

⎞

⎠ G(st ; γ, c) + εt ,

1 Similar to the TAR model, both the STAR model and the semiparametric STAR model proposed in this
paper can be extended to a three-regime structure, which would be of inherent interests in some economic
and financial applications such as modeling financial returns. We thank one referee for pointing out this.
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or

yt = φ′
1xt + φ′

2xt G(st ; γ, c) + εt ,

where xt = (1, yt−1, . . . , yt−p)
′ is a vector of explanatory (lagged) variables, φi =

(φi,0, φi,1, . . . , φi,p)
′, i = 1, 2 is a vector of the corresponding coefficients of the

explanatory variables, εt is a sequence of i.i.d. random variables, the transition function
G(st ; γ, c) is a continuous function in the range of 0 and 1, st is a transition variable
which can be lagged dependent variables, that is, st = yt−d for certain integer d > 0,
c is the so-called threshold value, and γ is a smooth parameter, which determines the
speed of transition between two regimes.

The STAR model can be regarded as a time-varying weighted average of two linear
autoregressive models. When G(st ; γ, c) equals zero or one, yt obeys an AR process.
However, when 0 < G(st ; γ, c) < 1, yt switches from one regime to another smoothly.
Two types of transition functions are commonly used in the literature. One is a logistic
function given by

G(st ; γ, c) = 1

1 + exp{−γ (st − c)} , γ > 0,

and the corresponding model is called the logistic STAR (LSTAR) model. The other
is an exponential function

G(st ; γ, c) = 1 − exp{−γ (st − c)2}, γ > 0,

and the corresponding model is called an exponential STAR (ESTAR) model. If the
threshold value c is an n × 1 vector, then such a model is called an nth-order LSTAR
or ESTAR model, which allows multiple switches between two regimes. For example,
the transition function of an nth-order LSTAR model is given by

G(st ; γ, c) = 1

1 + exp
{−γ

∏n
i=1 (st − ci )

} , γ > 0;

see Dijk et al. (2002) for more discussions.

2.2 Semiparametric STAR model and its estimation procedure

The STAR model can well characterize dynamic characteristics of changes between
two regimes and possess good economic implications. The logistic and exponential
transition functions clearly define two regimes which can be used to model different
states in real economy, for example, the expansion and the recession. This paper
further improves the STAR model by adopting a semiparametric transition function by
allowing the transition variables to enter into the transition function in a nonparametric
way.
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Forecasting major Asian exchange rates 411

The semiparametric STAR model, termed as SSTAR model, is given by

yt = φ1,0 +
p∑

j=1

φ1, j yt− j +
⎛

⎝φ2,0 +
p∑

j=1

φ2, j yt− j

⎞

⎠ G∗( f (st )) + εt ,

or in a compact vector form

yt = φ′
1 xt + φ′

2 xt G∗( f (st )) + εt , (1)

where f (·) is an unknown function and for simplicity, G∗(u)2 is taken to be either
logistic

G∗(u) = 1

1 + exp{−u} ,

or exponential

G∗(u) = 1 − exp(−u2/2).

Indeed, the model given in (1) can be re-expressed as

yt = a(st , φ)′xt + εt ,

where a(st , φ) = φ1 + φ2 G∗( f (st )), which is a semiparametric form. Therefore,
the proposed model given in (1) can be regarded as a generalization of the classical
functional coefficient regression model proposed in Cai et al. (2000) and is flexible
enough to capture the nonlinear dynamics.

One of our main interests in this paper is to estimate the nonparametric functional
f (·) in (1). To this end, we propose a three-stage estimation procedure to estimate the
above semiparametric STAR model in (1), described as follows. At the first stage, the
first-order Taylor expansion is applied to the unknown function f (st ), when st is in a
neighborhood of the grid point s0 from the domain of st ,

f (st ) ≈ a + b(st − s0),

where a = f (s0) and b = f ′(s0), and then, the semiparametric STAR model in (1) is
approximated by

yt ≈ φ′
1xt + φ′

2xt
1

1 + exp{a + b(st − s0)} + εt .

2 If G∗(·) is an unknown function but not either logistic or exponential, some identification conditions are
needed. Therefore, for simplicity, we take it to be either logistic or exponential as defined above.
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The first-stage estimates are obtained by minimizing the following localized objective
function

L(φ1, φ2, a, b) =
T∑

t=1

(
yt − φ′

1xt − φ′
2xt

1

1 + exp{a + b(st − s0)}
)2

Kh1(st − s0),

where Kh(·) = K (·/h)/h, K (·) is a kernel function, and h1 is the bandwidth at
the first step. For given s0 in the domain of st , we can obtain the nonparamet-
ric estimates {φ̂1(s0), φ̂2(s0), â(s0), b̂(s0)}. Based on the nonparametric theory, one
may show easily under some regularity conditions that the nonparametric estimates
{φ̂1(s0), φ̂2(s0), â(s0), b̂(s0)} are (T h1)

1/2 consistent and the asymptotic bias is of
the order O(h2

1), see Cai et al. (2000).
Since φ1 and φ2 are constant parameters, the above nonparametric estimation for

them is inefficient due to using local information. At the second stage, we obtain
root-T consistent estimators of φ1 and φ2, denoted by φ̃1 and φ̃2, using the following
average method. That is,

φ̃1 = 1

T

T∑

t=1

φ̂1(st ), and φ̃2 = 1

T

T∑

t=1

φ̂2(st ).

As expected, both φ̃1 and φ̃2 are the root-T consistent estimators ofφ1 andφ2. However,
it is common that at the first step, the bandwidth h1 is under-smoothed to get rid of
the asymptotic bias term. In other words, h1 is taken to satisfy T h5

1 → 0, see Cai and
Xiao (2012).

It is worth to point out that the well-known Robinson (1988) type or profile least
squares type of Speckman (1988) estimation approach for classical semiparametric
regression models might not be suitable to model (1) due to its nonlinearity. For
example, for a profile least squares method, to estimate the parameters in the linear
component under the least squares framework, one usually multiplies a projection
matrix to remove the nonparametric component and then fit a linear model. But this
approach is not applicable to the current model setting due to lack of explicit normal
equations. Also, note that to gain the efficiency of φ̃1 and φ̃2, one may follow Cai and
Xiao (2012) to use the weighted average method by choosing the efficient weights,
see Cai and Xiao (2012) for more details.

Finally, at the last stage, we plug the estimates φ̃1 and φ̃2 obtained at the second
stage into the objective function and estimate the nonparametric part again,

L( f ) =
T∑

t=1

(
yt − φ̃′

1xt − φ̃′
2xt

1

1 + exp{a + b(st − s0)}
)2

Kh3(st − s0),

where h3 is the bandwidth at the third step. By moving s0 over the whole the domain
of st , we obtain the whole nonparametrically estimated curve f̃ (st ).

Note that the Epanechnikov kernel function, K (u) = 0.75(1 − u2)1(|u| ≤ 1), is
employed at the first and last stages. At the first stage, as mentioned earlier, we need
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Forecasting major Asian exchange rates 413

under-smoothing by selecting a small value of bandwidth h1 to alleviate the impact of
bias on latter stages. However, at the third stage, we can adopt some popular procedures
such as the cross validation method to choose an optimal bandwidth for h3.

3 Monte Carlo simulation

In this section, Monte Carlo experiments are conducted to evaluate the finite sample
performance of the proposed three-stage estimation method. Consider the following
data-generating process (DGP),

yt = φ1 + φ2 yt−1 + (φ3 + φ4 yt−1)G
∗( f (st )) + et , (2)

where the transition variable st is generated from a uniform distribution in the range
of (−3, 3), and et is generated from a normal N (0, 0.22). To investigate whether,
for different forms of transition functions, our method can well estimate both the
parametric coefficients and the unknown functions, given a finite sample size, we set
the parameters as the following, corresponding to ESTAR, LSTAR1 and LSTAR2,
respectively.

DGP1 [LSTAR1]:

{
φ1 = 0.3, φ2 = −0.4, φ3 = −0.7, φ4 = 0.6;
f (s) = −2s

DGP2 [LSTAR2]:

{
φ1 = 0.5, φ2 = −0.65, φ3 = −0.55, φ4 = 0.75;
f (s) = −0.5(s − 1)(s + 1)

DGP3 [ESTAR]:

{
φ1 = 0.25, φ2 = −0.45, φ3 = −0.65, φ4 = 0.55;
f (s) = −0.5s2

The sample size T is taken to be 200, 500 and 800, respectively. For each sample size,
we repeat 1,000 times in the Monte Carlo simulations.

Table 1 reports the simulation results of parametric coefficients under three DGPs,
LSTAR1, LSTAR2 and ESTAR, respectively. In Table 1, φ1, φ2, φ3 and φ4, respec-
tively, represent the parametric coefficients in model (2). We report the median of the
absolute deviations between the true values and their estimates in 1,000 replications,
and the standard deviations are reported in parentheses. For all coefficients under
various transition functions, both the medians of absolute deviation and the standard
deviations decrease as the sample size increases.

Table 2 shows the simulation results of nonparametric parts. The estimation per-
formance is measured by the mean absolute deviation error (MADE), which is the
deviation between the true values and their estimated values. The MADE is given by
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Table 1 The medians and standard deviations (in parentheses) of 1,000 absolute deviations for parametric
estimation

Model Sample size φ1 φ2 φ3 φ4

LSTAR1 200 0.0045 (0.0040) 0.0113 (0.0105) 0.0125 (0.0106) 0.0135 (0.0122)

500 0.0040 (0.0036) 0.0075 (0.0064) 0.0111 (0.0098) 0.0106 (0.0088)

800 0.0038 (0.0033) 0.0060 (0.0054) 0.0108 (0.0090) 0.0092 (0.0081)

LSTAR2 200 0.0047 (0.0043) 0.0118 (0.0112) 0.0123 (0.0106) 0.0147 (0.0132)

500 0.0042 (0.0036) 0.0076 (0.0071) 0.0113 (0.0096) 0.0108 (0.0089)

800 0.0037 (0.0036) 0.0066 (0.0057) 0.0105 (0.0092) 0.0098 (0.0081)

ESTAR 200 0.0049 (0.0043) 0.0106 (0.0101) 0.0092 (0.0081) 0.0124 (0.0113)

500 0.0045 (0.0040) 0.0077 (0.0070) 0.0085 (0.0071) 0.0091 (0.0086)

800 0.0044 (0.0036) 0.0062 (0.0055) 0.0079 (0.0069) 0.0085 (0.0078)

Table 2 The medians and
standard deviations (in
parentheses) of 1,000 MADEs
for nonparametric estimation

Model MADE

T = 200 T = 500 T = 800

LSTAR1 0.0184 (0.0051) 0.0129 (0.0031) 0.0106 (0.0025)

LSTAR2 0.0228 (0.0066) 0.0205 (0.0051) 0.0172 (0.0046)

ESTAR 0.0258 (0.0056) 0.0175 (0.0035) 0.0144 (0.0028)

MADE = m−1
m∑

j=1

∣∣∣ f̂ (z j ) − f (z j )

∣∣∣,

where {z j }m
j=1 are grid points. From Table 2, we can observe that the median and

the standard deviation of the 1,000 MADE values shrink in a reasonable speed as the
sample size is enlarged. This implies that the nonparametric estimation works very
well even in a small sample. Figure 1 compares the estimated curves of f (st ) in solid
lines to the corresponding true curves, which are given in dotted lines. All three cases
show that the nonparametric estimation fits the true curves reasonably well.

4 Empirical results

4.1 The data

We use monthly data of five Asian exchange rates, which are the Indian rupee
(INR/USD), the Japanese yen (JPY/USD), the Singapore dollar (SGD/USD), the
Korean won (KRW/USD) and the Thai baht (THB/USD), over the period 1994:
1–2013:2 (230 observations). We reserve the last 50 observations, from 2009:11 to
2013:12, for checking the out-of-sample forecasting performance. We only look at
the one-step ahead forecasting. All data for the exchange rates and the returns of the
exchange rates are plotted in Figs. 2 for JPY/USD, SGD/USD and INR/USD, and
3 for KRW/USD and THB/USD. From Figs. 2 and 3, we observe that the original
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Forecasting major Asian exchange rates 415

Fig. 1 The estimated curves of
f (st ) (bold solid lines) versus
their corresponding true curves
(dotted lines). From the top to
the bottom: ESTAR model,
LSTAR1 model and LSTAR2
model
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416 N. Cai et al.

Fig. 2 The time series plots for exchange rates on the left panel and for the returns of the exchange rates
on the right panel. From the top to the bottom: JPY/USD, SGD/USD and INR/USD

exchange rates data have an obvious time trend, but the return data are relatively sta-
ble. Table 3 reports the augmented Dickey–Fuller (ADF) unit root tests for the level
and first difference of the exchange rates, both measured in logarithms. These results
indicate that all the level time series are clearly integrated of order 1. Hence, the
variable, denoted as Zt , used in all estimations is the log return, the first logarithmic
difference of exchange rates. Next, we apply the linearity test allowing for conditional
heteroskedasticity proposed by Becker and Hurn (2009) to Zt . Table 4 shows that all
these transformed exchange rates are nonlinear.
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Forecasting major Asian exchange rates 417

Fig. 3 The time series plots for exchange rates on the left panel and for the returns of the exchange rates
on the right panel. From the top to the bottom: KRW/USD and THB/USD

Table 3 P values of ADF unit root tests for the Asian exchange rates

JPY/USD SGD/USD INR/USD KRW/USD THB/USD

Level 0.3679 0.8752 0.4321 0.1842 0.1633

First difference 0.0000 0.0000 0.0000 0.0000 0.0000

Table 4 P values of the linearity test

JPY/USD SGD/USD INR/USD KRW/USD THB/USD

P value 0.000 0.0608 0.0246 0.0774 0.0662

Next, we also do some diagnostic checks on the use of the semiparametric STAR
model. Figures 4 and 5 provide the time plots of the in-sample fitting errors and out-
of-sample forecasting errors, respectively, based on the semiparametric STAR model.
Table 5 reports the p-values of Q-tests for both the in-sample fitting errors and the out-
of-sample forecasting errors. For most cases except the KRW/USD exchange rate, we
cannot reject the null hypothesis that both the in-sample errors and the out-of-sample
errors are not serially correlated. For the KRW/USD exchange rate, the Q(10) rejects
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Table 5 P values of Q tests for
in-sample and out-of-sample
errors

SSTAR

In-sample Out-of-sample

Q(5) Q(10) Q(20) Q(5) Q(10) Q(20)

JPY/USD 0.102 0.152 0.101 0.677 0.836 0.947

SGD/USD 0.351 0.336 0.728 0.328 0.172 0.365

INR/USD 0.035 0.193 0.799 0.491 0.423 0.547

KRW/USD 0.371 0.037 0.201 0.007 0.004 0.000

THB/USD 0.593 0.944 0.766 0.183 0.258 0.113

the null hypothesis for the in-sample errors with a p value of 0.037, and all three Q
tests reject the null for the out-of-sample errors with p values 0.007, 0.004 and 0.000,
respectively.

4.2 Alternative models

To evaluate the performance of the semiparametric STAR model, we compare its in-
sample fit and out-of-sample forecasts to other popular models including the random
walk model, the autoregressive model, the threshold autoregressive model, the STAR
model and the artificial neural network model. All models are estimated by using the
first logarithmic difference of exchange rates.

The random walk model (RW), first proposed by Bachelier (1990), is given by

yt = yt−1 + et , t = 1, . . . , T,

where yt is the value in time period t , yt−1 is the value in time period t − 1, and et is
the random error term in time period t .

The autoregressive (AR) model describes a dynamic relationship between the cur-
rent value and the historical values:

yt = c +
p∑

i=1

ϕi yt−i + et ,

where {ϕi } are the autoregression coefficients, yt is the time series under investigation,
and p is the order of the filter, which is generally much less than the length of the
series, and et is assumed to be white noise. An autoregressive model can also be
viewed as the output of an all-pole infinite impulse response filter whose input is white
noise.

The threshold autoregressive (TAR) model was first proposed by Tong (1983, 1990).
A widely used TAR model, the two-regime threshold autoregressive model, is
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Table 6 Ratios of mean square
errors for in-sample forecasting

MSE

RW AR TAR STAR ANN

JPY/USD 1.7065 1.0544 1.0599 1.0568 0.5466

SGD/USD 1.6168 1.0276 0.9673 0.9713 0.5259

INR/USD 1.5230 0.9780 0.9144 0.9164 0.5199

KRW/USD 1.8607 1.2386 1.0468 1.0506 0.3801

THB/USD 1.7592 1.1838 1.1435 0.9948 0.7026

�yt =
(

μ1 +
k∑

i=1

ϕ1,i�yt−i

)
I (st−d; c)

+
(

μ2 +
k∑

i=1

ϕ2,i�yt−i

)
(1 − I (st−d; c)) + et ,

where st−d is the state determining variable, c is the threshold parameter, and d is the
delay parameter which determines how many lags the state determining variable influ-
ences the regime in time t , and I (xt ; c) is an indicator function defined by I (xt ; c) = 1
if xt < c and 0 otherwise. When st−d = �yt−d , it becomes the so-called self-exciting
TAR (SETAR) model, see Tong (1990) for more details.

Finally, the last alternative model, the ANN model, was proposed by McCullogh
and Pitts (1943). The artificial neural network (ANN) model is a data processing
system based on the topological structure of the human brain, or the mathematical
model of simulating organization and function of biological neurons. The basic unit
of the ANN model is neurons, composed of three layers: input layer, hidden layer and
output layer. To apply the model, one first needs to define an evaluation function to
measure the gap between the network output and the excepted output, and then assign
a set of random starting values of weights which describe the relationship between
input and output variables. The optimal weights can be obtained by minimizing the gap
through a process known as “training.” Some widely used training methods include
the back-propagation algorithm, collapsible neural network and genetic algorithm.
Moreover, the nonlinear adaptive information processing ability owned by the neural
network makes itself have the self-learning function, the associative memory function
and a high-speed ability to find the optimal solution.

4.3 In-sample and out-of-sample performance comparison

We first evaluate the in-sample goodness of fit by calculating in-sample mean square
errors (MSE). Table 6 reports ratios of the in-sample mean square errors with respect
to the SSTAR model. Compared to the random walk model, the semiparametric STAR
model has uniformly smaller mean square errors for all five exchange rates. The results
are mixed when we compare the semiparametric STAR model to the AR, TAR and
STAR models, but most ratios are either larger than one or very close to one. The ANN
model produces the smallest in-sample mean square errors for all five exchange rates.
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Table 7 Forecasting
performance comparison in
terms of MSFE and MAFE

RW AR TAR STAR ANN

JPY/USD

MSFE 1.5012 1.6746 1.0973 1.0782 1.3506

MAFE 1.2717 1.2521 1.0335 1.0464 1.1556

SGD/USD

MSFE 1.5359 1.0521 1.0919 1.1542 1.1287

MAFE 1.2560 1.0413 1.0259 1.0908 1.0263

INR/USD

MSFE 1.5196 0.9573 1.0255 1.1602 0.9503

MAFE 1.2209 0.9767 0.9904 1.0265 0.9395

KRW/USD

MSFE 1.4090 1.1186 0.9257 1.2599 1.2020

MAFE 1.1738 1.0670 0.9550 1.0428 1.1190

THB/USD

MSFE 1.3452 1.5361 1.1049 1.0453 1.8230

MAFE 1.1732 1.2898 1.0780 1.0304 1.3798

However, a pure nonparametric model is inclined to overfit in-sample, see Diebold
and Nason (1990) and Meese and Rose (1991). We therefore move to compare the
out-of-sample forecasting performance.

The out-of-sample forecast performance3 is evaluated by the mean squared fore-
casting error (MSFE) and the mean absolute forecasting error (MAFE), given by

MSFE = m−1
m∑

i=1

(YT +i − ŶT +i )
2

and MAFE = m−1
m∑

i=1

∣∣∣YT +i − ŶT +i

∣∣∣,

where m = 50 is the forecasting period. Table 7 presents computed ratios of out-of-
sample MSFE and MAFE values with respect to the SSTAR model. In most cases,
we can observe that the semiparametric STAR model has the small MSFE and MAFE
values relative to other models. However, for the INR/USD, both the AR and the
ANN models are better than the SSTAR model in terms of MSFE and MAFE, but
the difference is small. For KRW/USD, the TAR model is also slightly better than the
SSTAR model in both the MSFE and MAFE.

From Table 7, we can see that semiparametric STAR model has an advantage in out-
of-sample forecasting, but we need to make sure whether the advantage is significant.
We check this through the so-called superior predictive ability (SPA) tests. The null
hypothesis is that the proposed model is not inferior to all alternative models. The
SPA test was first proposed by White (2002), also called the reality check (RC) test.
Hansen (2005) proposed an improved version of the RC test and suggested a new

3 Inoue and Kilian (2004, 2006) discussed cases, especially for nested models, when predictability tests
and the selection of forecasting models based on out-of-sample error comparisons can lead misleading
results.
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Table 8 Comparison for
superior predictive ability

RC SPA

JPY/USD

SFE 0.1776 0.5124

AFE 0.2544 0.7922

SGD/USD

SFE 0.1634 0.7600

AFE 0.4524 0.7322

INR/USD

SFE 0.1166 0.2172

AFE 0.3078 0.5550

KRW/USD

SFE 0.3196 0.4828

AFE 0.2408 0.4506

THB/USD

SFE 0.3896 0.6652

AFE 0.4040 0.6206

Table 9 Comparison for
superior predictive ability II

RW STAR

RC SPA RC SPA

JPY/USD

SFE 0.0050 0.0074 0.3152 0.8938

AFE 0.0020 0.0030 0.1666 0.5538

SGD/USD

SFE 0.0000 0.0000 0.0794 0.2530

AFE 0.0004 0.0010 0.1672 0.3632

INR/USD

SFE 0.0004 0.0006 0.5020 0.933

AFE 0.0088 0.0196 0.1712 0.377

KRW/USD

SFE 0.0092 0.0174 0.0834 0.2260

AFE 0.0052 0.0178 0.0894 0.1974

THB/USD

SFE 0.0002 0.0002 0.0136 0.0176

AFE 0.0002 0.0004 0.1188 0.2258

testing procedure known as the SPA test, which is more powerful and less sensitive to
poor and irrelevant alternatives compared to the reality check test. In Table 8, we choose
the random walk model, the autoregressive model, the threshold autoregressive model,
the STAR model and the ANN model as the group of alternative models. The squared
forecasting errors (SFE) and the absolute forecasting errors (AFE) are employed as the
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Table 10 Inference results
using out-of-sample forecast
errors

RW STAR

JPY/USD

rMSE 0.7583 1.0559

Q0.50 0.0175 0.7645

[Q0.25, Q0.75] [0.0040, 0.0373] [0.7208, 0.7949]

SGD/USD

rMSE 0.6765 0.9274

Q0.50 0.0000 0.1575

[Q0.25, Q0.75] [0.0000, 0.0000] [0.1175, 0.1989]

INR/USD

rMSE 0.6544 0.9798

Q0.50 0.0000 0.4093

[Q0.25, Q0.75] [0.0000, 0.0000] [0.3763, 0.4416]

KRW/USD

rMSE 0.8287 1.1435

Q0.50 0.0000 0.8980

[Q0.25, Q0.75] [0.0000, 0.0015] [0.8759, 0.9241]

THB/USD

rMSE 0.7214 0.8539

Q0.50 0.0000 0.0678

[Q0.25, Q0.75] [0.0000, 0.0000] [0.0505, 0.0945]

loss function to evaluate model performance. The p values of all tests are presented
in Table 8. All tests fail to reject the null hypothesis that the SSTAR model is at least
as good as the alternatives, and for the SPA test, which are considered to be more
powerful than the RC test, the p values are larger than 50 % in most cases. However,
for the INR/USD exchange rates, particularly for the SFE, the p values of two tests
are just 0.11 and 0.22, which implies the SSTAR just passes the SPA tests marginally.

Since it is difficult to reach some informative conclusions for model comparison
when one fails to reject the null hypothesis in the RC and SPA tests, to obtain robust
testing results, we set the random walk model and the STAR model as the null model,
respectively, and put the semiparametric STAR model and the remaining models into
the alternative group. Table 9 shows that the null hypothesis of the random walk
model is strongly rejected for all exchange rates. However, for the STAR model,
the test results are mixed. In most cases, we cannot reject the null hypothesis that the
STAR model is not inferior to alternative models. To be concluded, in terms of the out-
of-sample forecasting performance, the semiparametric STAR model is significantly
better than the random walk model. Compared to the STAR model, the semiparametric
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STAR model has smaller out-of-sample MSFE and MAFE, but the improvement is
not significant.

All the above inference procedures are justified only for large samples. In order
to consider small sample uncertainty, as suggested by the editor, we apply the
bootstrapping-based postsample inference procedure proposed by Ashley (1998). For
two postsample forecasting errors produced from different forecasting models, we
first generate 100 starting samples based on the estimation of a VAR model with a
maximum lag order of two. Given any starting sample, say the 24th starting sample,
we then generate 2000 bootstrap samples using the same method. For each bootstrap
sample, we calculate the ratio r̂i

r24
where r̂i is the ratio of two mean square errors of the

two postsample forecasting errors in the i th bootstrap sample, and r24 is the ratio of
mean square errors from a single sample of 5000 observations generated from the 24th
starting sample. Using these 2000 bootstrap samples, we can easily compute the frac-
tion of the event of r̂i

r24
� r̂orig, where r̂orig is the ratio of mean square errors computed

from the original sample. Finally, the 100 stating sample can provide a distribution of
these fractions, and then, we can report the median and the corresponding empirical
50 % confidence interval.

Table 10 summarizes all results of the bootstrap-based postsample inference proce-
dure. We report the sample ratios of mean square errors r̂orig, the median fraction Q0.50
and the corresponding empirical confidence interval [Q0.25, Q0.75]. When comparing
SSTAR to the random walk model, we find that the mean square errors can be improved
by at least 25 % for all five exchange rates, and the improvement is significant even
considering the small sample uncertainty. However, the results for the comparison
between SSTAR and STAR are again mixed. In most cases, the mean square errors of
the SSTAR model are smaller than those of the STAR model, where the only exception
is the exchange rate of JPY/USD, but most of them are not significant which reconfirm
the results in Table 9.

5 Conclusion

This paper proposes a new semiparametric STAR model to forecast five Asian
exchange rates. Compared to the traditional STAR models, the new model can pro-
vide more flexibility to characterize the nonlinearity and time-varying features of the
exchange rate data by allowing the state variable to enter into the transition func-
tion in a nonparametric way, while at the same time, the new model can still inherit
some advantages of the classical STAR model, such as the two-regime structure and
good economic intuition. In terms of the out-of-sample forecasting performance, the
semiparametric STAR model is superior to other models including the random walk
model, the autoregressive model, the threshold autoregressive model and the ANN
model in various superior predictive ability tests. However, although the semipara-
metric STAR model has smaller out-of-sample MSFE and MAFE than the STAR
model, the improvement is not significant.
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