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This paper studies a new class of semiparametric dynamic panel data models, in which
some of coefficients are allowed to depend on other informative variables and some of the
regressors can be endogenous. To estimate both parametric and nonparametric coefficients, a
three-stage estimation method is proposed. A nonparametric generalized method of moments
(GMM) is adopted to estimate all coefficients firstly and an average method is used to obtain
the root-N consistent estimator of parametric coefficients. At the last stage, the estimator
of varying coefficients is obtained by the partial residuals. The consistency and asymptotic
normality of both estimators are derived. Monte Carlo simulations are conducted to verify
the theoretical results and to demonstrate that the proposed estimators perform well in a
finite sample.
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1. INTRODUCTION

Dynamic panel data models have received a lot of attentions among both theoretical and
empirical economists since the seminal work of Balestra and Nerlove (1966). Based on
the early work by Anderson and Hsiao (1981, 1982), there exists a rich literature on using
the generalized method of moments (GMM) to estimate the dynamic panel data model
and on discussing the efficiency of the estimation. For example, Holtz-Eakin et al. (1988)
considered the estimation of vector autoregressions with panel data, Arellano and Bond
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SEMIPARAMETRIC ESTIMATION 695

(1991), Arellano and Bover (1995), Ahn and Schmidt (1995), Hahn (1997, 1999), and
others discussed how to utilize additional instruments to improve the efficiency of GMM
estimation. Dynamic panel data models have been widely applied to various empirical
studies as well. For example, Baltagi and Levin (1986) estimated the dynamic demand for
addictive commodities, Islam (1995) used dynamic panel data approach to study growth
empirics, and Park et al. (2007) employed dynamic panel data to analyze the demand
between city pairs for some airlines. More references can be found in Arellano (2003),
Hsiao (2003), and Baltagi (2005).

It is well known, however, that the aforementioned parametric dynamic panel data
models might not be flexible enough to catch nonlinear structure so that they might
suffer from the model misspecification. To deal with this misspecification issue, various
nonparametric or semiparametric static panel data models have been proposed. For
example, Horowitz and Markatou (1996), Li et al. (2002), and Su and Ullah (2006)
studied semiparametric estimation of a partially linear panel data model without
endogenous regressors, Hoover et al. (1998) considered a smoothing spline and a local
polynomial estimation for time-varying coefficient panel data models, Lin and Ying
(2001) and Lin and Carroll (2001, 2006) examined the semiparametric estimation of a
panel data model with random effects, and Henderson et al. (2008) considered a partially
linear panel data model with fixed effects and proposed a consistent estimator based
on iterative backfitting procedures and an initial estimator. Finally, Qian and Wang
(2012) proposed a marginal integration method to estimate the nonparametric part in a
semiparametric panel data with unobserved individual effects.

In recent years, motivated by the increase in the empirical economic growth
literature, many studies have paid an attention to the dynamic panel data models.
For example, Li and Stengos (1996), Li and Ullah (1998), and Baltagi and Li (2002)
considered semiparametric estimation of partially linear dynamic panel data models
using instrumental variable methods. Park et al. (2007) focused on constructing a
semiparametric efficient estimator in a dynamic panel data model. They considered a
linear dynamic panel data model assuming that the error terms are generating from
a normal distribution but specifying other parametric distributions nonparametrically.
An efficient estimator was established based on a stochastic expansion. However, they
ignored the endogenous problem in a dynamic panel data model by assuming all the error
terms and the random effects are independent of regressors.

Recently, Cai and Li (2008) proposed a nonparametric GMM estimation of varying-
coefficient dynamic panel data models to deal with the potential endogeneity issue.
Varying-coefficient models are well known in the statistic literature and also have a lot of
applications in economics and finance (Hastie and Tibshirani, 1993; Cai et al., 2000, 2006;
Cai and Hong, 2009; Cai et al., 2009, 2012; among others); see Cai (2010) for more details
in applications in economics and finance. One of the main advantages of the varying-
coefficient models is that it allows coefficients to depend on some informative variables
and then balances the dimension reduction and model flexibility.
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696 Z. CAI ET AL.

In this article, we consider a new class of partially varying-coefficient dynamic models.
It allows for linearity in some regressors and nonlinearity in other regressors. In other
words, some coefficients are constant and others are varying over some variables. The
new class model is flexible enough to include many existing models as special cases. By
extending the model in Cai and Li (2008) to a partially varying-coefficient model, we
reduce the model dimension without influencing the degree of the model flexibility, and
furthermore, the root-N consistent estimation of parametric coefficients can be achieved.
We propose a three-stage estimation procedure to estimate both the constant and varying
coefficients. At the first stage, all coefficients are treated as varying coefficients and
then the nonparametric GMM proposed by Cai and Li (2008) is adopted. At the
second stage, the constant coefficients are estimated by the average method and the
root-N consistency and asymptotic normality of the estimators are derived. Finally, the
estimators at the second stage are plugged into the original model to obatin the partial
residuals and then the estimators of varying coefficients are obtained by employing the
nonparametric GMM again. The partially varying-coefficient panel data model can be
applied to various empirical applications. For example, Lin et al. (2006) and Zhou and
Li (2011) employed a special case of the partially varying-coefficient models to investigate
the so called Kuznet’s hypothesis which claims an inverted-U relation between inequality
and economic development.

Compared with the existing literature, our paper has the following merits. Firstly,
in the existing literature, it is common to adopt the Robinson’s (1988) framework
to estimate a semiparametric panel data model with endogeneity. When endogenous
variables appear in the model, a two-stage estimation is required, where a high
dimensional nonparametric estimation, in which the dimension depends on the number
of excluded instruments and included exogenous variables, is usually employed at the
first stage, and then an instrumental variable regression is adopted using first-stage
nonparametric estimators as generated regressors. However, the nonparametric GMM
adopted in this paper only requires an one-step relatively low dimensional estimation.
The dimension of the estimation depends on the number of smoothing variables rather
than the included and excluded exogenous variables. Since the nonparametric GMM
is adopted at the first stage, some popular semiparametric estimation methods, such
as Robinson’s (1988) method and profile least squares method, cannot be applied here
to estimate the parametric part. Instead, we propose the average method by taking
average of all local estimates to obtain the root-N consistent estimation of parametric
coefficients. Finally, varying coefficients can be estimated by applying the low dimensional
nonparametric GMM by using the partial residuals.

The rest of the paper is organized as follows. Section 2 introduces the model and
estimation procedures. We present the asymptotic results of the proposed estimators in
Section 3. Section 4 reports the Monte Carlo simulations to verify the theoretical results
and to demonstrate the finite sample performance of the proposed estimators. Finally,
Section 5 concludes. All technical proofs are relegated to the Appendices.
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SEMIPARAMETRIC ESTIMATION 697

2. THE MODEL AND ESTIMATION PROCEDURES

This paper considers a new class of partially varying-coefficient(dynamic) panel data
models as follows:

Yit = X′
it,1! + X′

it,2"(Uit) + !it, 1 ≤ i ≤ N , 1 ≤ t ≤ T , (1)

where Yit is a scalar dependent variable, Uit is a scalar smoothing variable,1 Xit,1 and Xit,2

are regressors with d1 × 1 and d2 × 1 dimensions, respectively, ! denotes d1 × 1 constant
coefficients and "(·) denotes d2 × 1 varying coefficients, and the random error !it allows
to be correlated over period t but independent over i. We consider a typical panel data
model such that N is large but T is relatively short. Moreover, let Xit = (X′

it,1, X′
it,2)

′ with
dimension d × 1 where d = d1 + d2. In particular, in model (1) Xit may contain lagged
variables of Yit and endogenous variables correlated with the error term so that the
classical dynamic panel model can be regarded as a special case. Also, the above setup is
quite flexible to capture a complex dynamic structure in real applications in economics.
For example, Li and Stengos (1996), Li and Ullah (1998), and Baltagi and Li (2002)
considered a special case by assuming that Xit,2 only contains a constant term and the
above model reduces to the model as in Das (2005) when Xit,2 is a discrete value random
variable. Cai and Li (2008) studied a varying-coefficient model without the parametric
part. The papers by Fan and Huang (2005) and Lin et al. (2006) studied model (1) without
endogeneity.

In model (1), an ordinary least squares estimation cannot be applied since the
orthogonality condition fails, i.e., E[!it | Xit, Uit] ̸= 0. Hence, we assume that there exists
Wit, a q × 1 vector of instruments,2 to satisfy E[!it | Vit] = 0, where Vit = (W′

it, Uit)′.
By choosing an appropriate vector function Q(Vit), we have the following conditional
moment conditions,

E[Q(Vit)!it | Vit] = 0" (2)

Instead of using a nonparametric projection of some endogenous components in Xit on
Q(Vit), the nonparametric GMM (Cai and Li, 2008) is applied to estimate all varying
coefficients at the first stage. At this step, all coefficients are treated to be varying so
that ! = !(Uit) and " = "(Uit) although ! is constant. By assuming that "(·) and !(·) are

1For simplicity, we only consider the univariate case for the smoothing variable. The estimation procedure
and asymptotic results still hold for the multivariate case with much complicated notation.

2Instruments should be highly correlated to the endogenous variables and uncorrelated to the structural
errors. Cai, Li, et al. (2012) and Cai, Su, et al. (2012) studied the instrumental variable estimation using weak
instruments in a panel data model. Berkowitz et al. (2008, 2012) investigated the impact on estimation and
testing when instruments are slightly correlated with random errors.
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698 Z. CAI ET AL.

continuous, we apply a local constant approximation to !(Uit) and "(Uit). Then, model
(1) is approximated by the following model in a small neighborhood of u0:

Yit ≈ X′
it# + !it, 1 ≤ i ≤ N , 1 ≤ t ≤ T , (3)

where # = #(u0) = (!′(u0), "′(u0))′ is a d × 1 vector of parameters. By following Cai
and Li (2008), the sample version of the locally weighted moment conditions becomes∑N

i=1

∑T
t=1 Q(Vit)(Yit − X′

it#)Kh1(Uit − u0) = 0,3 and the nonparametric GMM estimator
is given by

#̂ = #̂(u0) = ($ ′
N $ N )−1$ ′

N % N , (4)

where $ N = 1
NT

∑N
i=1

∑T
t=1 QitX′

itKh1(Uit − u0) and % N = 1
NT

∑N
i=1

∑T
t=1 QitKh1(Uit − u0)Yit.

We simply choose instruments Qit to be Vit by following the discussion in Cai and Li
(2008). Note that we require q ≥ d to satisfy the identification condition, and also that
Kh1(·) = h−1

1 K(·/h1), where K(·) is a kernel function with a bandwidth h1 = h1N > 0
which controls the degree of smoothing used in the nonparametric GMM estimation.

At the second stage, in order to take advantage of the full sample information to
estimate the constant parameter !, we employ the average method to achieve the root-N
consistent estimator of !:

!̂ = 1
NT

N∑

i=1

T∑

t=1

!̂(Uit)" (5)

The !̂(Uit) is the first d1 components in #̂.
The last step is to estimate the nonparametric part, the functional coefficients "(Uit),

by plugging a root-N consistent estimator !̂ into model (1). To this end, we define the
partial residual Y ∗

it = Yit − X′
it,1!̂. Hence, model (1) can be approximated by

Y ∗
it ≈ P′

it& + !it, 1 ≤ i ≤ N , 1 ≤ t ≤ T , (6)

where & = &(u0) = ("′(u0), "̇′(u0))′, "̇(·) denotes the first order derivatives of "(·) with
respect to Uit, and Pit =

(
Xit,2

Xit,2⊗(Uit−u0)

)
is a (2d2) × 1 vector. Hence, the nonparametric

GMM estimator of the varying coefficients are given by

&̂ = &̂(u0) = (S′
N SN )−1S′

N TN , (7)

3To obtain a unique # satisfying the above moment condition, we follow Cai and Li (2008) by pre-
multiplying it by $ ′

N .
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SEMIPARAMETRIC ESTIMATION 699

where SN = 1
NT

∑N
i=1

∑T
t=1 QitP′

itKh2(Uit − u0) and TN = 1
NT

∑N
i=1

∑T
t=1 QitKh2(Uit − u0)Y ∗

it

with Kh2(·) = h−1
2 K(·/h2) and the bandwidth h2 = h2N > 0. Motivated by the local linear

fitting, a simple choice of Qit suggested by Cai and Li (2008) is a (2q) × 1 vector

Qit =
(

Wit

Wit ⊗ (Uit − u0)/h2

)
,

which is used at the last stage. Note that it is assumed that "(·) is twice continuously
differentiable.

3. ASYMPTOTIC THEORIES

In this section, we derive the asymptotic results of both estimators !̂ and "̂(u0). The
detailed proofs are relegated to the Appendices. Firstly, we give some notations and
definitions which will be used in the rest of the paper. Denote #j =

∫ ∞
−∞ ujK(u)du and $j =∫ ∞

−∞ ujK2(u)du with j ≥ 0. Let %2(v) = Var(!it | Vit = v), $ = $ (u0) = E(VitX′
it | u0), $̃ =

$̃ (u0) = E(WitX′
it,2 | u0), % = % (u0) = Var(Vit!it | u0), %1t(Vi1, Vit) = E(!i1!it | Vi1, Vit),

and G1t(Ui1, Uit) = E&Vi1V′
it%1t | Ui1, Uit'. Moreover, define S = S(u0) =

(
$̃ 0
0 #2 $̃

)
. Next,

note that % N = $ N # + % ∗
N + ' N + (N , where

% ∗
N = 1

NT

N∑

i=1

T∑

t=1

Kh1(Uit − u0)Qit!it,

' N = 1
NT

N∑

i=1

T∑

t=1

Kh1(Uit − u0)Qit

d∑

j=1

(j(Uit, u0)Xitj ,

and (N = 1
NT

N∑

i=1

T∑

t=1

Kh1(Uit − u0)Qit

d∑

j=1

)j(Uit, u0)Xitj

with (j(Uit, u0) = *̇j(u0)(Uit − u0) + 1
2 *̈j(u0)(Uit − u0)2 and )j(Uit, u0) = *j(Uit) −

*j(u0) − *̇j(u0)(Uit − u0) − 1
2 *̈j(u0)(Uit − u0)2. Substituting it into (4), we have

(#̂ − #) − ($ ′
N $ N )−1$ ′

N ' N − ($ ′
N $ N )−1$ ′

N (N = ($ ′
N $ N )−1$ ′

N % ∗
N " (8)

It is showed that the second term on the left side determines the bias, the last term on
the left can be asymptotically ignored, and the term on the right follows the asymptotic
normality. To establish the asymptotic results for the proposed estimators, following
assumptions are needed although they might not be the weakest ones.
Assumptions.

A1. &(Wit, Xit, Yit, Uit, !it)' are independently and identically distributed across the
i index for each fixed t and strictly stationary over t for each fixed i, E∥WitX′

it∥2 < ∞,
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700 Z. CAI ET AL.

E∥WitW′
it∥2 < ∞, E(!it) = 0, and E|!it|4 < ∞, where ∥ · ∥2 is the standard L2-norm for a

finite-dimensional matrix.

A2. For each t ≥ 1, G1t(Ui1, Uit) is continuous at (Ui1, Uit). Also, for each
u0, $ (u0) > 0 and f(u0) > 0, which is the density function of Uit at u0. Further,
supt≥1|G1t(u0, u0)f(u0)| ≤ M(u0) < ∞ for some function M(u0). Finally, "(u0) and f(u0)

are both twice continuously differentiable.

A3. The kernel function K(·) is a symmetric and bounded density with a bounded
support.

A4. The variable Vit satisfies the instrument exogeneity condition that
E(!it | Vit) = 0.

A5. h1 → 0, h2 → 0, Nh1 → ∞ and Nh2 → ∞ as N → ∞. Furthermore,
h1 = o(h2).

To derive the asymptotic properties for #̂ and !̂, we first prove the following
preliminary results.

Proposition 1. Under Assumptions A1–A5, we have, as follows:

(i) $ N = f(u0)$ [1 + op(1)];

(ii) ' N = h2
1

2
f(u0)#2[2($̇ + $

ḟ(u0)

f(u0)
)#̇ + $ #̈] + op(h2

1);

(iii) (N = op(h2
1);

(iv) Nh1Var(% ∗
N ) → 1

T
f(u0)% "

Clearly, by Proposition 1 and (8), we can obtain

(#̂ − #) − bias# = f −1(u0)($
′$ )−1$ ′% ∗

N [1 + op(1)], (9)

where bias# = h2
1

2 f(u0)#2[2(($ ′$ )−1$ ′$̇ + ḟ(u0)
f(u0)

)#̇ + #̈] + op(h2
1). The next two theorems

demonstrate the consistency and asymptotic normality of !̂, respectively.

Theorem 1. Under Assumptions A1–A5, we have

(#̂ − #) − bias# = op(h2
1) + Op((Nh1)

−1/2), (10)

which implies the consistency of #̂.
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SEMIPARAMETRIC ESTIMATION 701

Remark 1. As defined earlier, # = #(u0) = (!′(u0), "′(u0))′ so that !̂ is the first d1

component in #̂. Thus, we have

!̂ − ! = 1
NT

N∑

i=1

T∑

t=1

e′
1[(#̂(Uit) − #(Uit)) − bias#] + Op(N −1/2)

= 1
NT

N∑

i=1

T∑

t=1

[!̂(Uit) − !(Uit) − bias!(u0)] + Op(N −1/2), (11)

where the selection matrix e′
1 = (Id1 , 0d1×d2) and bias!(u0) = e′

1bias#(u0).

Theorem 2. Under Assumptions A1–A5, we have

√
N (!̂ − ! − bias!)

D→ N
(

0,
1
T

)+

)
, (12)

where )+ = E&e′
1[D(Uit)% (Uit)D′(Uit) + 2

T

∑T
t=2(T − t + 1)D(Ui1)G1t(Ui1, Uit)D′(Uit)]e1'

with D(Uit) = ($ ′(Uit)$ (Uit))−1$ ′(Uit) and bias! = E[bias!(Uit)].

Remark 2. As Nh4
1 → 0, the bias term in the above theorem shrinks toward zero, which

implies that we need to undersmooth at the first step to reduce the influence of the bias
term that may be brought to the second step, while in the meantime, the effect of the
first-step bandwidth selection on the variance can be smoothed out by using the average
method. Note that the undersmoothing condition Nh4

1 → 0 is commonly imposed for a
semiparametric model.

Finally, we embrace on the nonparametric estimation of "(u0). Similar to the
decomposition of % N , we have TN = S̃N H& + T∗

N + BN + RN , where

T∗
N = 1

NT

N∑

i=1

T∑

t=1

Kh2(Uit − u0)Qit!it,

BN = 1
NT

N∑

i=1

T∑

t=1

Kh2(Uit − u0)Qit
1
2

d2∑

j=1

,̈j(u0)(Uit − u0)
2Xit,2j ,

and RN = 1
NT

N∑

i=1

T∑

t=1

Kh2(Uit − u0)Qit

d2∑

j=1

Rj(Uit, u0)Xit,2j

with Rj(Uit, u0) = ,j(Uit) − aj − bj(Uit − u0) − 1
2 ,̈j(u0)(Uit − u0)2. Hence,

H(&̂ − &) − [S̃′
N S̃N ]−1S̃

′
N BN − [S̃′

N S̃N ]−1S̃
′
N RN = [S̃′

N S̃N ]−1S̃
′
N T∗

N , (13)
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702 Z. CAI ET AL.

where H = (Id2 , h2Id2) and S̃N = SN H−1 = 1
NT

∑N
i=1

∑T
t=1 QitP̃

′
itKh2(Uit − u0) with P̃it =

H−1Pit. Similar to Proposition 1, we have the following preliminary results.

Proposition 2. Under Assumptions A1–A5, we have, as follows:

(i) S̃N = f(u0)S[1 + op(1)];

(ii) BN = h2
2

2
f(u0)

(
#2$̃ "̈

0

)
+ op(h2

2);

(iii) RN = op(h2
2);

(iv) Nh2Var(T∗
N ) → 1

T
f(u0)S∗,

where e′
2 = (Iq, 0q×1) is a selecting matrix and S∗ = S∗(u0) =

(
$0e′

2% e2 0
0 $2e′

2% e2

)
.

By Proposition 2 and (12), we can obtain

H(&̂ − &) − h2
2

2

(
#2"̈
0

)
+ op(h2

2) = f −1(u0)(S′S)−1S′T∗
N [1 + op(1)]" (14)

The next theorem depicts the consistency and asymptotic normality of "̂(u0),
respectively.

Theorem 3. Under Assumptions A1–A5, we have

H

(
"̂ − "
ˆ̇" − "̇

)

− h2
2

2

(
#2"̈
0

)
= op(h2

2) + Op

(
1√
Nh2

)
" (15)

Also, we have the following asymptotic normality,

√
Nh2[H

(
"̂ − "
ˆ̇" − "̇

)

− h2
2

2

(
#2"̈
0

)
+ op(h2

2)]
D→ N (0,

1
T

f −1(u0)),), (16)

where ), = (S′S)−1S′S∗S(S′S)−1.

4. A MONTE CARLO STUDY

In this section, Monte Carlo simulations are conducted to verify theoretical results in
Section 3 and to demonstrate the finite sample performance of both estimators. The
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SEMIPARAMETRIC ESTIMATION 703

mean absolute deviation errors (MADE) of the estimators are computed to measure the
estimation performance. The MADE is defined by

MADEj = 1
G

G∑

g=1

|-̂j(Ug) − -j(ug)|,

where -(·) is either +Y , +Z, or ,(·) in (17) and &ug'G
g=1 are the gird points within the domain

of Uit. Note that for both +Y and +Z, their MADE becomes the absolute deviation error
(ADE).

We consider the following data generating process:

Yit = Yit−1+Y + Zit+Z + X̃it,(Uit) + !it, X̃it = Wit + . it, (17)

where the smoothing variable Uit and the exogenous variable Zit are generated from
uniform distributions U(−3, 3) and U(−2, 2), respectively. The excluded instruments Wit

is generated independently from a uniform distribution U(−2, 2). The error terms !it and
. it are generated jointly from a standard bivariate normal distribution with the correlation
coefficient 0.3. The coefficients are set by +Y = 0"5, +Z = 3 and ,(Uit) = 1"5e−U 2

it . We fix
T = 10 and let N = 200, 500, and 1,000, respectively. When generating the series of Yit,
we set the initial value to be zero and drop the first 100 observations to reduce the
impact of initial values. For a given sample size, we repeat 500 times to calculate the
MADE. The bandwidth in the first step is undersmoothed and we find the estimation of
+ is not very sensitive to the bandwidth selection when it is chosen within a reasonable
range.

Table 1 reports the medians and the standard deviations (in parentheses) of the MADE
for different estimators under different sample sizes. When the sample size increases, the
medians of ADE values for +̂Y and +̂Z shrink from 0"004 to 0"001 and from 0"016 to 0"006,
respectively. The standard deviations also shrink quickly when the sample size is enlarged.
For +̂Y , the standard deviation shrinks from 0"003 to 0"001, and for +̂Z, it decreases from
0"012 to 0"005. The nonparametric estimator of ,(·) shows similar results. The median of

TABLE 1
Median and Standard Deviation of the MADE Values

N +Y +Z ,(·)

200 0"004144002 0"01629416 0"0768469
(0"003479078) (0"01242114) (0"01431995)

500 0"002379212 0"009720373 0"04487873
(0"002281685) (0"008604812) (0"00858833)

1000 0"001707388 0"006097411 0"03057437
(0"001506411) (0"005766932) (0"006049484)
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704 Z. CAI ET AL.

FIGURE 1 Functional Coefficient of ,(·). The solid line represents the true curve, and the dotted line denotes
the estimated one.

the MADE values decreases from 0.076 to 0.030 when the sample size increases from 200
to 1,000. At the same time, the standard deviation of the estimator also shrinks from 0.014
to 0.006. Compared with parametric estimations in Columns 2 and 3, the convergence
speed of nonparametric estimator is relatively slow. All results show that the estimators
proposed in the article are consistent estimators and all outcomes in the simulations are
consistent with the theoretical results in the previous section.

Figure 1 demonstrates the estimated curve of ,(·) with a sample size N = 500 for
a typical sample. The typical example is chosen such that its MADE, value equals to
the median of the 500 MADE, values in the repeated experiments of the case N = 500.
The solid line represents the true curve, and the dotted line denotes the estimated one.
Figure 1 shows that the nonparametric GMM estimation works very well even in a small
sample.

5. CONCLUSION

This article proposes a three-stage estimation procedure for a new class of partially
varying coefficients dynamic panel data models, which, as expected, has many
applications in applied economics particularly in empirical growth literature. The
asymptotic properties of both constant and varying coefficients are established. The
Monte Carlo simulations demonstrate that the proposed estimators work very well
even in small samples. However, the cross-sectional independence may be a restrictive
assumption for some applications in real data. Therefore, it would be an interesting future
research topic to work on a partially varying coefficients dynamic panel data model with
cross sectional dependence.
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SEMIPARAMETRIC ESTIMATION 705

APPENDIX A: PROOFS OF PROPOSITIONS

It is clear that % N = $ N # + % ∗
N + ' N + (N and TN = S̃N H& + T∗

N + BN + RN . Indeed,

$ N # + % ∗
N + ' N + (N = 1

NT

N∑

i=1

T∑

t=1

Kh1(Uit − u0)Wit[X′
it# + !it + X′

it#(Uit) − X′
it#]

= 1
NT

N∑

i=1

T∑

t=1

Kh1(Uit − u0)WitYit

= % N

and

S̃N H& + T∗
N + BN + RN = 1

NT

N∑

i=1

T∑

t=1

Kh2(Uit − u0)Qit[P′
it& + !it + X′

itg(Uit) − P′
it&]

= 1
NT

N∑

i=1

T∑

t=1

Kh2(Uit − u0)QitYit

= TN "

Proof of Propositions 1(i) and 2(i). It is clear that

E

[
1

NT

N∑

i=1

T∑

t=1

VitX′
it

(
Uit − u0

h1

)j

Kh1(Uit − u0)

]

= E[VitX′
it

(
Uit − u0

h1

)j

Kh1(Uit − u0)]

=
∫

$ (Uit)

(
Uit − u0

h1

)j

Kh1(Uit − u0)f(Uit)dUit

= [$ (u0) + O(h1)]
∫

ujK(u)du[f(u0) + O(h1)]

= $ (u0)f(u0)#j + O(h1)"

Hence, we have

E($ N ) = f(u0)$ [1 + o(1)]"

Now, we consider S̃N . Indeed,

S̃N = 1
NT

N∑

i=1

T∑

t=1

QitP̃
′
itKh2(Uit − u0)
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706 Z. CAI ET AL.

=

⎛

⎜⎜⎜⎜⎝

1
NT

N∑

i=1

T∑

t=1

WitX′
it,2Kh2(Uit −u0)

1
NT

N∑

i=1

T∑

t=1

WitX′
it,2

Uit −u0

h2
Kh2(Uit −u0)

1
NT

N∑

i=1

T∑

t=1

WitX′
it,2

Uit −u0

h2
Kh2(Uit −u0)

1
NT

N∑

i=1

T∑

t=1

WitX′
it,2

(Uit −u0)2

h2
2

Kh2(Uit −u0)

⎞

⎟⎟⎟⎟⎠
"

For any j = 0, 1, 2,

E

[
1

NT

N∑

i=1

T∑

t=1

WitX′
it,2

(
Uit − u0

h2

)j

Kh2(Uit − u0)

]

= E

[

WitX′
it,2

(
Uit − u0

h2

)j

Kh2(Uit − u0)

]

=
∫

$̃ (Uit)

(
Uit − u0

h2

)j

Kh2(Uit − u0)f(Uit)dUit

= [$̃ (u0) + O(h2)]
∫

ujK(u)du[f(u0) + O(h2)]

= $̃ (u0)f(u0)#j + O(h2)"

Hence, we have

E(S̃N ) = f(u0)S[1 + o(1)]"

And, for 1 ≤ l ≤ q and 1 ≤ m ≤ d, let

sN ,lmj = 1
NT

N∑

i=1

T∑

t=1

WitlXitm

(
Uit − u0

hN

)j

Kh(Uit − u0),

where h = hN = h1 or h = hN = h2, Witl is the lth element of Wit, and Xitm is the mth
element of Xit. Then, by the stationary assumptions, we have

Var(sN ,lmj) = Var

[
1

NT

N∑

i=1

T∑

t=1

WitlXitm

(
Uit − u0

hN

)j

Kh(Uit − u0)

]

= 1
NT 2

Var

[
T∑

t=1

WitlXitm

(
Uit − u0

hN

)j

Kh(Uit − u0)

]

= 1
NT

Var[WitlXitm

(
Uit − u0

hN

)j

Kh(Uit − u0)]

+ 2
NT 2

T∑

t=2

(T − t + 1)Cov(Wi1lXi1m

(
Ui1 − u0

hN

)j

Kh(Ui1 − u0),
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SEMIPARAMETRIC ESTIMATION 707

WitlXitm

(
Uit − u0

hN

)j

Kh(Uit − u0))

≡ Is1 + Is2"

By assumptions and Cauchy–Schwarz inequality, Is1 ≤ C
NhN

and |Is2| ≤ C
N . Thus,

Var(sN ,lmj) → 0. It follows that

1
NT

N∑

i=1

T∑

t=1

VitX′
it

(
Uit − u0

h1

)j

Kh1(Uit − u0) = $ (u0)f(u0)#j + Op(h1)

and

1
NT

N∑

i=1

T∑

t=1

WitX′
it,2

(
Uit − u0

h2

)j

Kh2(Uit − u0) = $̃ (u0)f(u0)#j + Op(h2)"

Therefore, we have

$ N = f(u0)$ [1 + op(1)] and S̃N = f(u0)S[1 + op(1)]"

The proof is complete.

Proof of Propositions 1(ii) and 2(ii).

' N = 1
NT

N∑

i=1

T∑

t=1

Kh1(Uit − u0)Vit

d∑

j=1

[
*̇j(u0)(Uit − u0) + 1

2
*̈j(u0)(Uit − u0)

2

]
Xitj

= 1
NT

N∑

i=1

T∑

t=1

Kh1(Uit − u0)VitX′
it#̇(Uit − u0)

+ 1
2NT

N∑

i=1

T∑

t=1

Kh1(Uit − u0)VitX′
it#̈(Uit − u0)

2

≡ ' 1
N + ' 2

N "

Then,

E(' 1
N ) = h1E[VitX′

it
Uit − u0

h1
Kh1(Uit − u0)]#̇

= h1

∫
$ (Uit)

Uit − u0

h1
Kh1(Uit − u0)f(Uit)dUit#̇

= h1

∫
[$ (u0) + $̇ (u0)uh1 + o(h1)]uK(u)[f(u0) + ḟ(u0)uh1 + o(h1)]du#̇

= h2
1#2[f(u0)$̇ (u0) + ḟ(u0)$ (u0)]#̇ + o(h2

1),
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708 Z. CAI ET AL.

and

E(' 2
N ) = h2

1

2
E

[

Vit(D′
i, X′

it)

(
Uit − u0

h1

)2

Kh1(Uit − u0)

]

#̈

= h2
1

2

∫
$ (Uit)

(
Uit − u0

h1

)2

Kh1(Uit − u0)f(Uit)dUit#̈

= h2
1

2
[$ (u0) + O(h1)]

∫
u2K(u)du[f(u0) + O(h1)]#̈

= h2
1

2
[$ (u0)#2f(u0) + O(h1)]#̈

= h2
1

2
f(u0)#2$ #̈ + o(h2

1)"

Hence,

h−2
1 E(' N ) = 1

2
f(u0)#2[2($̇ + $

ḟ(u0)

f(u0)
)#̇ + $ #̈] + o(1)"

Now,

BN = 1
NT

N∑

i=1

T∑

t=1

Kh2(Uit − u0)Qit
1
2

d2∑

j=1

,̈j(u0)(Uit − u0)
2Xit,2j

= h2
2

2
1

NT

N∑

i=1

T∑

t=1

QitX′
it,2"̈(u0)

(
Uit − u0

h2

)2

Kh2(Uit − u0)

= h2
2

2

⎛

⎜⎜⎜⎜⎝

1
NT

N∑

i=1

T∑

t=1

WitX′
it,2"̈(u0)

(
Uit − u0

h2

)2

Kh2(Uit − u0)

1
NT

N∑

i=1

T∑

t=1

WitX′
it,2"̈(u0)

(
Uit − u0

h2

)3

Kh2(Uit − u0)

⎞

⎟⎟⎟⎟⎠
"

For j = 2, 3,

E

[
1

NT

N∑

i=1

T∑

t=1

WitX′
it,2"̈(u0)

(
Uit − u0

h2

)j

Kh2(Uit − u0)

]

= E

[

WitX′
it,2"̈(u0)

(
Uit − u0

h2

)j

Kh2(Uit − u0)

]

=
∫

$̃ (Uit)

(
Uit − u0

h2

)j

Kh2(Uit − u0)f(Uit)dUit"̈(u0)
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SEMIPARAMETRIC ESTIMATION 709

= [$̃ (u0) + O(h2)]
∫

ujK(u)du[f(u0) + O(h2)]"̈(u0)

= f(u0)#j $̃ "̈ + O(h2)"

Hence,

h−2
2 E(BN ) = 1

2
f(u0)

(
#2$̃ "̈

0

)
+ o(1)"

Similar to (i), any component of the variance of h−2
1 ' N and h−2

2 BN converges to zero.
Therefore, we have

' N = h2
1

2
f(u0)#2

[

2($̇ + $
ḟ(u0)

f(u0)
)#̇ + $ #̈

]

+ op(h2
1) and

BN = h2
2

2
f(u0)

(
#2$̃ "̈

0

)
+ op(h2

2)"

Therefore, this proves the results.

Proof of Propositions 1(iii) and 2(iii).

E((N ) = E

[
1

NT

N∑

i=1

T∑

t=1

Kh1(Uit − u0)VitX′
it((Uit, u0)

]

= E[VitX′
it((Uit, u0)Kh1(Uit − u0)]

=
∫

$ (Uit)((Uit, u0)Kh1(Uit − u0)f(Uit)dUit

= [f(u0) + O(h1)]
∫

$ (u0)((u0 + uh1, u0)K(u)du"

And, for any 1 ≤ j ≤ d,

)j(u0 + uh1, u0) = *j(u0 + uh1) − *j(u0) − h1*̇j(u0)u − h2
1

2
*̈j(u0)u2 = O(h3

1)"

Therefore, (N = op(h2
1), and

RN = 1
NT

N∑

i=1

T∑

t=1

Kh2(Uit − u0)Qit
1
2

d2∑

j=1

Rj(Uit, u0)Xit,2j

= 1
NT

N∑

i=1

T∑

t=1

QitX′
it,2R(Uit, u0)Kh2(Uit − u0)

D
ow

nl
oa

de
d 

by
 [Y

in
g 

Fa
ng

] a
t 1

9:
28

 1
9 

D
ec

em
be

r 2
01

4 



710 Z. CAI ET AL.

=

⎛

⎜⎜⎜⎜⎝

1
NT

N∑

i=1

T∑

t=1

WitX′
it,2R(Uit, u0)Kh2(Uit − u0)

1
NT

N∑

i=1

T∑

t=1

WitX′
it,2R(Uit, u0)

Uit − u0

h2
Kh2(Uit − u0)

⎞

⎟⎟⎟⎟⎠
"

For any component in the above vector, j = 0, 1,

E

[
1

NT

N∑

i=1

T∑

t=1

WitX′
it,2R(Uit, u0)

(
Uit − u0

h2

)j

Kh2(Uit − u0)

]

= E

[

WitX′
it,2R(Uit, u0)

(
Uit − u0

h2

)j

Kh2(Uit − u0)

]

=
∫

$̃ (Uit)R(Uit, u0)

(
Uit − u0

h2

)j

Kh2(Uit − u0)f(Uit)dUit

= [f(u0) + Op(h2)]
∫

$̃ (u0)R(u0 + uh2, u0)ujK(u)du"

For any 1 ≤ j ≤ d2,

Rj(u0 + uh2, u0) = ,j(u0 + uh2) − ,j(u0) − h2,̇j(u0)u − h2
2

2
,̈j(u0)u2 = O(h3

2)"

Therefore, RN = op(h2
2). This completes the proof.

Proof of Propositions 1(iv) and 2(iv). Under the above assumptions, we have

Nh1Var(% ∗
N ) = Nh1Var[ 1

NT

N∑

i=1

T∑

t=1

Vit!itKh1(Uit − u0)]

= h1

T 2
Var[

T∑

t=1

Vit!itKh1(Uit − u0)] = h1

T
Var[Vit!itKh1(Uit − u0)]

+ 2h1

T 2

T∑

t=2

(T − t + 1)Cov(Vi1!i1Kh1(Ui1 − u0), Vit!itKh1(Uit − u0))

= h1

T
E[VitV′

it!
2
itK

2
h1

(Uit − u0)]

+ 2h1

T 2

T∑

t=2

(T − t + 1)E[Vi1V′
it!i1!itKh1(Ui1 − u0)Kh1(Uit − u0)]

≡ I3 + I4, (18)
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SEMIPARAMETRIC ESTIMATION 711

and

Nh2Var(T∗
N ) = Nh2Var

{
1

NT

N∑

i=1

T∑

t=1

Qit!itKh2(Uit − u0)

}

= h2

T 2
Var

{
T∑

t=1

Qit!itKh2(Uit − u0)

}

= h2

T
Var&Qit!itKh2(Uit − u0)'

+ 2h2

T 2

T∑

t=2

(T − t + 1)Cov(Qi1!i1Kh2(Ui1 − u0), Qit!itKh2(Uit − u0))

≡ I5 + I6" (19)

For the first term in (19),

h2

T
Var[Qit!itKh2(Uit − u0)] = h2

T
E[QitQ′

it!
2
itK

2
h2

(Uit − u0)]

= h2

T
E

⎛

⎜⎜⎝

WitW′
it!

2
itK

2
h2

(Uit − u0) WitW′
it!

2
itK

2
h2

(Uit − u0)
Uit − u0

h2

WitW′
it!

2
itK

2
h2

(Uit − u0)
Uit − u0

h2
WitW′

it!
2
itK

2
h2

(Uit − u0)

(
Uit − u0

h2

)2

⎞

⎟⎟⎠ "

For any component in the above matrix, j = 0, 1, 2, h = hN = h1, or h = hN = h2,

E

[

VitV′
it!

2
itK

2
h(Uit − u0)

(
Uit − u0

hN

)j
]

=
∫

% (Uit)K2
h(Uit − u0)

(
Uit − u0

hN

)j

f(Uit)dUit

= 1
hN

[f(u0) + O(hN )][% (u0) + O(hN )]
∫

K2(u)ujdu

= 1
hN

[f(u0)% (u0)$j + O(hN )]"

Hence,

I3 → 1
T

f(u0)% and I5 → 1
T

f(u0)S∗"

For the second term in (19),

2h2

T 2

T∑

t=2

(T − t + 1)Cov(Qi1!i1Kh2(Ui1 − u0), Qit!itKh2(Uit − u0))
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712 Z. CAI ET AL.

= 2h2

T 2

T∑

t=2

(T − t + 1)E[Qi1Q′
it!i1!itKh2(Ui1 − u0)Kh2(Uit − u0)]

= 2h2

T 2

T∑

t=2

(T − t + 1)E

⎛

⎜⎝
! !

Uit − u0

h2

!
Ui1 − u0

h2
!

Ui1 − u0

h2

Uit − u0

h2

⎞

⎟⎠ ,

where ! = Wi1W′
it!i1!itKh2(Ui1 − u0)Kh2(Uit − u0). For any component in the above

matrix, j = 0, 1 and i = 0, 1, h = hN = h1, or h = hN = h2,

E

[

Vi1V′
it!i1!itKh(Ui1 − u0)Kh(Uit − u0)

(
Ui1 − u0

hN

)i (Uit − u0

hN

)j
]

= E

[

E(Vi1V′
it!i1!it|Ui1, Uit)Kh(Ui1 − u0)Kh(Uit − u0)

(
Ui1 − u0

hN

)i (Uit − u0

hN

)j
]

= E

[

G1t(Ui1, Uit)Kh(Ui1 − u0)Kh(Uit − u0)

(
Ui1 − u0

hN

)i (Uit − u0

hN

)j
]

= f(u0, u0)G1t(u0, u0)$i$j + Op(hN )"

Hence,

I4 → 2h1

T 2
f(u0)

T∑

t=2

(T − t + 1)G1t(u0, u0) and I6 → 2h2

T 2
f(u0)

T∑

t=2

(T − t + 1)G∗
1t(u0, u0),

where G∗
1t = G∗

1t(u0, u0) =
(

$2
0e′

2G1t(u0,u0)e2 0
0 0

)
. Therefore,

Nh1Var(% ∗
N ) → 1

T
f(u0)%

and

Nh2Var(T∗
N ) → 1

T
f(u0)S∗"

Then, the proof is complete.

APPENDIX B: USEFUL LEMMAS FOR THEOREM 2

By (9), we know that for any Uit,

(#̂(Uit) − #(Uit)) − bias# ≃ f −1(Uit)D(Uit)
1

NT

N∑

j=1

T∑

k=1

Kh1(Ujk − Uit)Vjk!jk,
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SEMIPARAMETRIC ESTIMATION 713

where D(Uit) = ($ ′(Uit)$ (Uit))−1$ ′(Uit). Denote / i as the information set of individual
i. Thus,

!̂ − ! = 1
NT

N∑

i=1

T∑

t=1

e′
1[(#̂(Uit) − #(Uit)) − bias#]

≃ 1
(NT)2

N∑

i=1

N∑

j=1

T∑

t=1

T∑

k=1

e′
1f −1(Uit)D(Uit)Kh1(Ujk − Uit)Vjk!jk

= 1
N 2

∑

1≤i<j≤N

1
T 2

T∑

t=1

T∑

k=1

[e′
1f −1(Uit)D(Uit)Kh1(Ujk − Uit)Vjk!jk

+ e′
1f −1(Ujk)D(Ujk)Kh1(Uit − Ujk)Vit!it]

= 1
N 2

∑

1≤i<j≤N

[
1
T

T∑

t=1

e′
1f −1(Uit)D(Uit)A(Uit, /j) + 1

T

T∑

k=1

e′
1f −1(Ujk)D(Ujk)A(Ujk, / i)

]

≡ N − 1
2N

"N ,

where e′
1 = (Id1 , 0d1×d2), which is used to extract the parametric part from the estimates

of nonparametric GMM procedure using local constant fitting scheme, A(Uit, /j) =
1
T

∑T
k=1 Kh1(Ujk − Uit)Vjk!jk, and "N = 2

N (N−1)

∑
1≤i<j≤N pN (/ i, /j) is a U-statistic with

pN (/ i, /j) = 1
T

T∑

t=1

e′
1f −1(Uit)D(Uit)A(Uit, /j) + 1

T

T∑

k=1

e′
1f −1(Ujk)D(Ujk)A(Ujk, / i)"

Following Theorem 3.1 in Powell et al. (1989), we define

rN (/ i) = E[pN (/ i, /j) | / i],

*N = E[rN (/ i)] = E[pN (/ i, /j)],

"̂N = *N + 2
N

N∑

i=1

[rN (/ i) − *N ]"

In order to establish the asymptotic normality of "̂N , the condition of Lemma
3.1 in Powell, Stock, and Stoker (1989) should be satisfied. It is easy to prove that
E[∥pN (/ i, /j)∥2] = O(h−1) = O[N (Nh1)−1]. Thus, we haveE[∥pN (/ i, /j)∥2] = o(N ) if and
only if Nh1 → ∞ as h1 → 0.
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714 Z. CAI ET AL.

Lemma 1. Under assumptions A1–A5,

rN (/ i) = e′
1

1
T

T∑

t=1

D(Uit)Vit!it[1 + o(1)]"

Lemma 2. Under assumptions A1–A5, we have as follows:

(i) E[rN (/ i)] = 0;

(ii) Var[rN (/ i)] = 1
T

0+[1 + o(1)]"

The detailed proofs of the above three lemmas are given in Appendix C.

APPENDIX C: PROOFS OF LEMMAS

Proof of Lemma 1. Firstly,

E[f −1(Ujk)D(Ujk)A(Ujk, / i) | / i]

= E[f −1(Ujk)D(Ujk)
1
T

T∑

t=1

Kh1(Uit − Ujk)Vit!it | / i]

= 1
T

T∑

t=1

E[f −1(Ujk)D(Ujk)Kh1(Uit − Ujk) | / i]Vit!it

= 1
T

T∑

t=1

∫
f −1(Ujk)D(Ujk)Kh1(Uit − Ujk)f(Ujk)dUjkVit!it

= 1
T

T∑

t=1

[D(Uit) + o(1)]Vit!it

= 1
T

T∑

t=1

D(Uit)Vit!it[1 + o(1)]

and

E[A(Uit, /j) | / i] = E

[
1
T

T∑

k=1

Kh1(Ujk − Uit)Vjk!jk | / i

]

= 1
T

T∑

k=1

E[Kh1(Ujk − Uit)E(Vjt!jt|Ujk)|/ i] = 0"
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By the definition of pN (/ i, /j),

E[pN (v, /j) | / i]

= E

[
1
T

T∑

t=1

e′
1f −1(Uit)D(Uit)A(Uit, /j) + 1

T

T∑

k=1

e′
1f −1(Ujk)D(Ujk)A(Ujk, / i) | / i

]

= 1
T

T∑

t=1

e′
1f −1(Uit)D(Uit)E[A(Uit, /j) | / i] + 1

T

T∑

k=1

e′
1E[f −1(Ujk)D(Ujk)A(Ujk, / i) | / i]

= e′
1

1
T

T∑

t=1

D(Uit)Vit!it[1 + o(1)]"

The proof of the lemma is complete.

Proof of Lemma 2. It is easy to see that

E[rN (/ i)] = E&E[pN (/ i, /j) | / i]'

= E

{

e′
1

1
T

T∑

t=1

D(Uit)Vit!it[1 + op(1)]
}

= E

{

e′
1

1
T

T∑

t=1

D(Uit)E(Vit!it | Uit)[1 + op(1)]
}

= 0,

and

Var[rN (/ i)] = E[rN (/ i)]2

= E

[

e′
1

1
T

T∑

t1=1

D(Uit1)Vit1!it1

1
T

T∑

t2=1

V′
it2

!it2 D′(Uit2)e1

]

[1 + o(1)]

= E

[

e′
1E

(
1

T 2

T∑

t1=1

T∑

t2=1

D(Uit1)Vit1!it1 Vit2!it2 D′(Uit2) | Uit1 , Uit2

)

e1

]

[1 + o(1)]

= E
{

e′
1

[
1
T

D(Uit)% (Uit)D′(Uit)

+ 2
T 2

T∑

t=2

(T − t + 1)D(Ui1)G1t(Ui1, Uit)D′(Uit)

]

e1

}

[1 + o(1)]

≡ 1
T

)+[1 + o(1)]"

This concludes the proof of the lemma.

D
ow

nl
oa

de
d 

by
 [Y

in
g 

Fa
ng

] a
t 1

9:
28

 1
9 

D
ec

em
be

r 2
01

4 



716 Z. CAI ET AL.

APPENDIX D: PROOFS OF THEOREMS

Proof of Theorem 1 and (15) in Theorem 3. By the assumptions, it is easy to see that
E(T∗

N ) = 0 and E(% ∗
N ) = 0. Hence, the proofs are straightforward from Proposition 1(iv)

and 2(iv), (9), and (14). This completes the proof of the theorems.

Proof of Theorem 2. Applying Theorem 3.1 in Powell et al. (1989), we have

√
N (!̂ − ! − bias!)

D→ N
(

0,
1
T

)+

)
"

This completes the proof of the theorem.

Proof of (16) in Theorem 3. We use the Cramer–Wold device to derive the asymptotic
normality. Denote 1it = (S′S)−1S′Qit!itKh2(Uit − u0)f −1(u0),1N ,it =

√
h2
T d′1it, and 1∗

N ,i =√
1
T

∑T
t=1 1N ,it, which only contains the information of individual i. Then,

√
Nh2d′f −1(u0)(S′S)−1S′T∗

N = 1√
NT

N∑

i=1

T∑

t=1

1N ,it = 1√
N

N∑

i=1

1∗
N ,i"

According to our model setting, the information between individuals are iid. Hence, 1∗
N ,i

series is an iid series. By Lindeberg–Lévy central limit theorem for iid case, the normality
of

√
Nh2d′T∗

N is verified. This concludes the proof of the theorem.

FUNDING

This research was supported, in part, by the National Nature Science Foundation
of China grants #71131008 (Key Project), #70971113, and #71271179, as well as the
Fundamental Research Funds for the Central Universities grant #2010221092.

REFERENCES

Ahn, S. C., Schmidt, P. (1995). Efficient estimation of models for dynamic panel data. Journal of
Econometrics 68:5–27.

Anderson, T. W., Hsiao, C. (1981). Estimation of dynamic models with error components. Journal of the
American Statistical Association 76:598–606.

Anderson, T. W., Hsiao, C. (1982). Formulation and estimation of dynamic models using panel data. Journal
of Econometrics 18:47–82.

Arellano, M. (2003). Panel Data Econometrics. Oxford: Oxford University Press.
Arellano, M., Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an

application to employment equations. Review of Economic Studies 58:277–297.
Arellano, M., Bover, O. (1995). Another look at the instrumental variable estimation of error-components

models. Journal of Econometrics 68:29–51.
Balestra, P., Nerlove, M. (1966). Pooling cross-section and time series data in the estimation of a dynamic

model: the demand for nature gas. Econometrica 34:585–612.

D
ow

nl
oa

de
d 

by
 [Y

in
g 

Fa
ng

] a
t 1

9:
28

 1
9 

D
ec

em
be

r 2
01

4 



SEMIPARAMETRIC ESTIMATION 717

Baltagi, B. H. (2005). Econometric Analysis of Panel Data. West Sussex: John Wiley & Sons Ltd.
Baltagi, B. H., Li, Q. (2002). On instrumental variable estimation of semiparametric dynamic panel data

models. Economics Letters 76:1–9.
Baltagi, B. H., Levin, D. (1986). Estimating dynamic demand for cigarettes using panel data: The effects of

bootlegging, taxation and advertising reconsidered. The Review of Economics and Statistics 68:148–155.
Berkowitz, D., Caner, M., Fang, Y. (2008). Are nearly exogenous instruments reliable? Economics Letters

101:20–28.
Berkowitz, D., Caner, M., Fang, Y. (2012). The validity of instruments revisited. Journal of Econometrics

166:255–266.
Cai, Z. (2010). Functional coefficient models for economic and financial data. In: Ferraty, F., Romain, Y.,

eds. Oxford Handbook of Functional Data Analysis. Oxford: Oxford University Press, pp. 166–186.
Cai, Z., Chen, L., Fang, Y. (2012). A new forecasting model for USA/CNY exchange rate. Studies in

Nonlinear Dynamics and Econometrics 16(3).
Cai, Z., Das, M., Xiong, H., Wu, X. (2006). Functional-coefficient instrumental variables models. Journal of

Econometrics 133:207–241.
Cai, Z., Fan, J. (2000). Average regression surface for dependent data. Journal of Multivariate Analysisi

75:112–142.
Cai, Z., Fan, J., Yao, Q. (2000). Functional-coefficient regression models for nonlinear time series. Journal

of the American Statistical Association 95:941–956.
Cai, Z., Fang, Y., Li, H. (2012). Weak instrumental variables models for longitudinal data. Econometric

Reviews 31:361–389.
Cai, Z., Fang, Y., Su, J. (2012). Reducing Asymptotic bias of weak instrumental estimation using

independently repeated cross-sectional information. Statistics and Probability Letters 82:180–185.
Cai, Z., Gu, J., Li, Q. (2009). Some recent developments on nonparametric econometrics. Advances in

Econometrics 25:495–549.
Cai, Z., Hong, Y. (2009). Some recent developments in nonparametric finance. Advances in Econometrics

25:379–432.
Cai, Z., Li, Q. (2008). Nonparametric estimation of varying coefficient dynamic panel data models.

Econometric Theory 24:1321–1342.
Das, M. (2005). Instrumental variables estimators for nonparametric models with discrete endogenous

regressors. Journal of Econometrics 124:335–361.
Fan, J., Huang, T. (2005). Profile likelihood inferences on semiparametric varying-coefficient partially linear

models. Bernoulli 11:1031–1057.
Hahn, J. (1997). Efficient estimation of panel data models with sequential moment restrictions. Journal of

Econometrics 79:1–21.
Hahn, J. (1999). How informative is the initial condition in nthe dynamic panel model with fixed effects?

Journal of Econometrics 93:309–326.
Hastie, T. J., Tibshirani, R. (1993). Varying-coefficient models. Journal of the Royal Statistical Society, Series

B 55:757–796.
Henderson, D., Carroll, R., Li, Q. (2008). Nonparametric estimation and testing of fixed effects panel data

models. Journal of Econometrics 144:257–275.
Holtz-Eakin, D., Newey, W., Rosen, H. S. (1988). Estimating vector autoregressions with panel data.

Econometrica 56:1371–1395.
Hoover, D., Rice, J., Wu, C., Yang, L. (1998). Nonparametric smoothing estimates of time-varying coefficient

models with longitudinal data. Biometrika 85:809–822.
Horowitz, J. L., Markatou, M. (1996). Semiparametric estimation of regression models for panel data. Review

of Economic Studies 63:145–168.
Hsiao, C. (2003). Analysis of Panel Data. Cambridge: Cambridge University Press.
Islam, N. (1995). Grwoth empirics: a panel data approach. Quarterly Journal of Economics 110:1127–1170.
Li, Q., Huang, D., Li, Fu, F. (2002). Semiparametric smooth coefficient model. Journal of Business and

Economic Statistics 71:389–397.
Li, Q., Stengos, T. (1996). Semiparametric estimation of partially linear panel data models. Journal of

Econometrics 71:389–397.

D
ow

nl
oa

de
d 

by
 [Y

in
g 

Fa
ng

] a
t 1

9:
28

 1
9 

D
ec

em
be

r 2
01

4 



718 Z. CAI ET AL.

Li, Q., Ullah, A. (1998). Estimating partially linear models with one-way error components. Econometric
Reviews 17:145–166.

Lin, X., Carroll, R. J. (2001). Semiparametric regression for clustered data using generalised estimation
equations. Journal of the American Statistical Association 96:1045–1056.

Lin, X., Carroll, R. J. (2006). Semiparametric estimation in general repeated measures problems. Journal of
the Royal Statistical Society, Series B 68:68–88.

Lin, S. C., Huang, H. C., Weng, H. W. (2006). A semiparametric partially linear investigation of the Kuznets’
hypothesis. Journal of Comparative Economics 34:634–647.

Lin, D., Ying, Z. (2001). Semiparametric and nonparametric regression analysis of longitudinal data (with
discussion). Journal of the American Statistical Association 96:103–126.

Park, B. U., Sickles, R., Simar, L. (2007). Semiparametric efficient estimation of dynamic panel data models.
Journal of Econometrics 136:281–301.

Powell, J. L., Stock, J. H., Stocker, T. M. (1989). Semiparametric estimation of index coefficients.
Econometrica 51:1403–1430.

Qian, J., Wang, L. (2012). Estimating semiparametric panel data models by marginal integration. Journal of
Econometrics 167:483–493.

Robinson, P. M. (1988). Root-N-consistent semiparametric regression. Econometrica 56:931–954.
Su, L., Ullah, A. (2006). Profile likelihood estimation of partially linear panel data models with fixed effects.

Economics Letters 92:75–81.
Zhou, X., Li, K. W. (2011). Inequality and development: evidence from semiparametric estimation with panel

data. Economics Letters 113:203–207.

D
ow

nl
oa

de
d 

by
 [Y

in
g 

Fa
ng

] a
t 1

9:
28

 1
9 

D
ec

em
be

r 2
01

4 


