ELSEVIER

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

Corrigendum to "Testing predictive regression models with nonstationary regressors" [J. Econometrics 178 (2014) 4–14]

Zongwu Cai ^{a,b,*}, Yunfei Wang ^c

- ^a Department of Economics, University of Kansas, Lawrence, KS 66045, USA
- ^b Wang Yanan Institute for Studies in Economics, Xiamen University, Xiamen, Fujian 361005, China
- ^c Direct Banking Decision Sciences, Capital One 360, 1102 Greystone Ln, Newark, DE 19711, USA

ARTICLE INFO

Article history:

Available online 13 April 2014

In the proof of Theorem 1 in the paper by Cai and Wang (2014), the statement on page 12 of Cai and Wang (2014), $\hat{u}_t = u_t + O_p(n^{-1/2})$, is not enough to show the asymptotic distribution of $\hat{\beta}$. Therefore, the statement on page 12, "Hence in the following proof, we will use u_t to replace \hat{u}_t without further explanation", is inaccurate. Indeed, by using the notation in Cai and Wang (2014), $n^{-1/2}\sum_{t=1}^n \hat{u}_t \Rightarrow W_u(1) - \xi_c \int_0^1 K_c(r)dr$ by using Cai and Wang (2014, properties (a)–(d) on page 6), where $\xi = [\int_0^1 K_c(r)dW_u(r) + \Omega_1]/\int_0^1 K_c^2(r)dr$. Therefore, the term $-\xi_c \int_0^1 K_c(r)dr$ in the above equation is missing in the proof of Theorem 1 in Cai and Wang (2014). Then, Theorem 1 can be correctly restated as follows.

Theorem 1. *Under Assumptions* A1–A3, we have

$$\sqrt{n}D_n(\hat{\beta}-\beta) \stackrel{d}{\rightarrow} MN\left(0,\sum_{\beta}\right) + \eta_1,$$

where $\eta_1 = (0, 0, \beta_1 \xi)^T$.

Similarly, in the proof of Theorem 2 in the paper by Cai and Wang (2014), the statement on page 13 of Cai and Wang (2014), $\hat{u}_t = u_t + O_p(n^{-1/2})$, is not enough to show the asymptotic

distribution of $\hat{\beta}$ for $\theta \neq 0$. Therefore, Theorem 2 should be modified accordingly as below.

Theorem 2. Under Assumptions A1–A3 and model (6) with $c \le 0$, we have

$$\sqrt{n}D_n^*(\hat{\beta}-\beta) \stackrel{d}{\to} N\left(0,\sum_{\beta}^*\right),$$

where $\sum_{\beta}^{*} = S_{0}^{*-1}S_{0}^{**}S_{0}^{*-1}$, S_{0}^{*} is defined on page 13 of Cai and Wang (2014), $S_{0}^{**} = \text{Var}(\eta_{2})$ and $\eta_{2} = (W_{\varepsilon}(1), W_{uv}(1), \theta \int_{0}^{1} (\exp(rc) - 1)dW_{\varepsilon}(r)/c)^{T}$.

Finally, $\beta_1\xi_c$ should be added into the right hand side of (10) in Cai and Wang (2014). Also, σ_u^2 in the (2, 2)th element in matrices Ω , Ω^* and \sum_{β}^* on page 7 and S_n and S_n^* on page 13 in Cai and Wang (2014) should be $Var(u_t)$, σ_u^2 in (9) in Cai and Wang (2014) should be $Var(u_t)^4$ and $1/\sqrt{n}$ in (A.5) should be 1/n.

References

Cai, Z., Wang, Y., 2014. Testing predictive regression models with nonstationary regressors. J. Econometrics 178, 4–14.

DOI of original article: http://dx.doi.org/10.1016/j.jeconom.2013.08.002.

^{*} Corresponding author at: Department of Economics, University of Kansas, Lawrence, KS 66045, USA.

E-mail addresses: zongwucai@gmail.com (Z. Cai), yunfei.wang@capitalone.com (Y. Wang).