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Selection of Mixed Copula Model via Penalized
Likelihood

Zongwu CAI and Xian WANG

A fundamental issue of applying a copula method in applications is how to choose an appropriate copula function for a given problem. In this
article we address this issue by proposing a new copula selection approach via penalized likelihood plus a shrinkage operator. The proposed
method selects an appropriate copula function and estimates the related parameters simultaneously. We establish the asymptotic properties
of the proposed penalized likelihood estimator, including the rate of convergence and asymptotic normality and abnormality. Particularly,
when the true coefficient parameters may be on the boundary of the parameter space and the dependence parameters are in an unidentified
subset of the parameter space, we show that the limiting distribution for boundary parameter estimator is half-normal and the penalized
likelihood estimator for unidentified parameter converges to an arbitrary value. Finally, Monte Carlo simulation studies are carried out to
illustrate the finite sample performance of the proposed approach and the proposed method is used to investigate the correlation structure
and comovement of financial stock markets.

KEY WORDS: Boundary and unidentified parameters; Comovement; EM algorithm; LASSO; SCAD; Shrinkage operator; Variable
selection.

1. INTRODUCTION

To capture the complex dependence structure among vari-
ables, a copula approach has been used recently in many ap-
plied fields, in particular, in finance and economics. Li (2000)
was the first to investigate the default correlations in credit risk
models; Frey and McNeil (2003), Mashal, Naldi, and Zeevi
(2003), and Hamerle and Rösch (2005) studied the impact of
copula in option pricing; Denuit and Scaillet (2004) applied cop-
ula modeling to hedge fund indices to study positive quadrant
dependence found in financial indices; Kole, Koedijk, and Ver-
beek (2007) discussed the applications of copula and addressed
the importance of selecting copulas in risk management; Bouyé
et al. (2001), Embrechts, Lindskog, and McNell (2003), and
Cherubini, Vecchiato, and Luciano (2004) used a copula func-
tion to measure the portfolio value-at-risk; Junker, Szimayer,
and Wagner (2006) used a copula approach to model the term
structure of interest rates; Jondeau and Rockinger (2006) and
Lee and Long (2009) established copula-GARCH models to
study the dependence among international stock markets and
exchange rate time series; Longin and Solnik (2001) examined
cross-national dependence structure of asset returns in interna-
tional financial markets; and Ang and Chen (2002) discovered
asymmetric dependence between two asset returns during mar-
ket downturns and market upturns.
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To describe the dependence structure more flexibly, re-
searchers have proposed using a mixed copula which is a linear
combination of several copula families. Hu (2006) discussed a
combination of Gaussian, Gumbel, and survival Gumbel copula
to measure the dependence patterns across financial markets,
whereas Chollete, Pena, and Lu (2005) used mixed copula to
analyze the comovement of international financial markets. The
biggest advantage of mixed copula model is that it can nest dif-
ferent copula shapes. For instance, Gaussian and Gumbel mixed
copula can improve a single Gaussian dependence structure by
allowing possible right tail dependence. Therefore, empirically,
a mixed copula is more flexible to model dependence structure
and can deliver better descriptions of dependence structure than
an individual copula.

A motivation of this study comes from an analysis of
real financial data, consisting of monthly measurements of
international stock market indices: S&P500 (U.S.), FTSE
100 (UK), Nikkei (Japan), and Hang Seng (Hong Kong)
(1987:01–2007:02) from the Center for Research in Security
Prices (CRSP). Of interest examining the existence of the co-
movement of returns among these four international stock mar-
kets, which is one of the popular topics in financial economet-
rics; see Hu (2006) and Chollete, Pena, and Lu (2005) for more
details. Therefore, to study the comovement with various depen-
dence structures, a copula approach is appropriate. The detailed
analysis of this dataset is reported in Section 5.2.

When applying a copula approach to solve real problems, a
natural question is how to choose an appropriate parametric cop-
ula because the distribution from which each data point is drawn
is unknown. To attenuate this problem, there have been some ef-
forts in the literature to choose an appropriate individual copula.
Chen, Fan, and Patton (2003) and Fermanian (2005) developed
goodness-of-fit tests; Kole, Koedijk, and Verbeek (2007) used
Kolmogorov-Smirnov and Anderson and Darling (1952) type
tests; Scaillet (2007) proposed a kernel-based goodness-of-fit
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test; and omnibus tests proposed by Genest, Rémillard, and
Beaudoin (2009) can be used to test the existence of copulas.
But there is no guidance as to which copula model should be
used if the null hypotheses of correct parametric specification
in those tests are rejected. Furthermore, based on the idea for
variable selection in a classical regression model, Hu (2006)
considered a mixed copula by deleting the component if the
corresponding weight is less than 0.1 or if the corresponding
dependence measure is close to independence. However, Hu
(2006) did not provide a theoretical foundation. To the best of
our knowledge, so far no work with a theoretical support has
been attempted to choose a suitable mixed copula based on a
data-driven method although there are a vast amount of papers
on variable selection in regression models; see the review paper
by Fan and Lv (2010) for details.

This article makes the following major contributions to the
literature. The first is to propose a data-driven copula selec-
tion method via penalized likelihood plus a shrinkage operator,
which is in spirit similar to the least absolute shrinkage and
selection operator (LASSO) proposed by Tibshirani (1996) and
studied by Fan and Li (2001) for variable selection in a classical
linear regression model. Ideally, a large number of candidate
copula families are of interest and their contributions to depen-
dence structure vary from one component to another. The main
goal is to select a best mixed copula among all candidate cop-
ulas to capture dependence structure of the given data and to
estimate the corresponding parameters. The best mixed copula
can be selected by choosing the one with the highest likelihood.
When a fitted mixed copula contains some component copulas
with small weights which imply small contribution to depen-
dence structure, as expected, these components should not be
included in the mixed copula. To filter out the components with
small weights, some constraints should be added on all weights,
such as penalty functions. Although this idea is in principle
similar to the approach in Fan and Li (2001) and Fan and Peng
(2004) based on a penalty function to delete the insignificant
variables and to estimate the coefficients of significant variables
in the context of regression settings, our setting has some extra
difficulties associated with the boundary and unidentified pa-
rameters. In another context, Chen and Khalili (2008) applied
a variable selection method to the order selection in finite mix-
ture models. Therefore, a likelihood function can be formulated
as a form of a mixed copula including all candidate copulas.
Furthermore, a penalized likelihood function is constructed by
adding some appropriate penalty functions and constraints for
weights. By maximizing the penalized likelihood function, cop-
ulas with small weights can be removed by a thresholding rule
(shrinkage operator) and parameters remained are estimated. In
such a way, model selection and parameter estimation can be
done simultaneously.

Another big contribution of this article is to establish the
asymptotic properties of proposed estimator under nonstandard
situations. It is interesting to note that a general mathematical
derivation of asymptotic properties for a maximum likelihood
estimator is not applicable here because some parameters may
be on a boundary of the parameter space. Andrews (1999) ad-
dressed this issue and discussed the asymptotic properties when
a parameter is on a boundary for iid sample under a regression
setting. Another challenge is that the parameters corresponding

to the removed copula components with small weights are in
an unidentified subset of the parameter space. Under these non-
standard situations, it is shown that the estimator of unidentified
dependent parameter converges to an arbitrary value and the ab-
normality of the boundary parameter estimator has been estab-
lished. Finally, to make the proposed methodology practically
useful and applicable, the EM algorithm is used to find the pe-
nalized likelihood estimator. Also, a data-driven method is used
to find the tuning and thresholding parameters in the penalty
function. Our simulation results show that our new method has
a high probability of selecting an appropriate mixed copula
model.

The rest of the article is organized as follows. Section 2 briefly
reviews some concepts and facts about mixed copula models.
Section 3 introduces the selection procedure based on the pe-
nalized likelihood plus a shrinkage operator. Section 4 lists the
regularity conditions and develops the asymptotic properties
of the proposed estimator. In Section 5, the results of Monte
Carlo studies are reported to demonstrate the finite sample per-
formance of the proposed method, together with an empirical
analysis of a real financial dataset. Some concluding remarks
are provided in Section 6. Finally,the EM algorithm for finding
the penalized likelihood estimator and the data-driven methods
for finding the threshold parameters are discussed in Appendix
A and the technical proofs are relegated to Appendix B.

2. A REVIEW OF MIXED COPULA

Let {Xt }Tt=1 be independent p-dimensional vectors of ran-
dom variables with Xt = (Xt1, . . . , Xtp)�, where A� denotes
the transpose of a matrix or vector A. Let f (x) and F (x) be
the joint density and distribution of X, respectively, and fj (xj )
and Fj (xj ), 1 ≤ j ≤ p, be the marginal density and distribution
of Xj , respectively. Next, we briefly review some basic facts
about mixed copula. For more copula concepts and the related
properties, the reader is referred to the books by Nelsen (1998)
and Joe (1997).

A mixed copula is a linear combination of several copula
families. Mathematically, a mixed copula function is formulated
as

C(u; θ ) =
s∑

k=1

λk Ck(u; θk) =
s∑

k=1

λk Ck(F1(x1; α1),

. . . , Fp(xp; αp); θk), (1)

where {C1(·), . . . , Cs(·)} is a set of basis copulas, which is a
sequence of known copulas with unknown parameters {θk},
{λk}sk=1 are the weights satisfying 0 ≤ λk ≤ 1 and

∑s
k=1 λk = 1,

and s is the number of candidate copulas. A single copula is a
special case of the mixed copula when only one component is in-
cluded in mixed copula. Generally speaking, θ = (θ1, . . . , θs)�

is the vector of associate parameters in the mixture represent-
ing the degree of dependence, λ = (λ1, . . . , λs)� is the vector
of weights or shape parameters reflecting the credence in the
corresponding copula and α = (α1, . . . , αp)� is the vector of
marginal parameters for marginal distributions. In what fol-
lows, let φ = (α�,λ�, θ�)� be a vector of all the parameters
involved.

It is easy to show that C(u) in Equation (1) is also a cop-
ula. Therefore, all the copula properties hold for a mixed
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Figure 1. Scatterplots for four different copulas with standard normal marginal distributions and Kendall’s τ = 0.5.

copula. Also, for any two random variables X and Y , copula-
dependent parameters θ can be transformed to the Kendall’s τ

proposed by Kendall (1938) and the Spearman’s ρ proposed
by Spearman (1904), where τ = 4E[C(Fx(X), Fy(Y ); θ)] − 1
and ρs = ρ(Fx(X), Fy(Y )), the correlation coefficient between
two marginal distributions Fx(X) and Fy(Y ). For details, see the
books by Cherubini, Vecchiato, and Luciano (2004) and Nelsen
(1999).

For illustration, Figure 1 gives a visual view of the tail de-
pendence of copulas by showing scatterplots of 300 iid samples
generated from four popular copula functions: Gaussian, Gum-
bel, Clayton, and Frank. Figure 2 presents the scatterplots of
300 iid samples generated from different mixed copula func-
tions with equal weights on each component. The dependence
parameters are the same for all the components with Kendall’s
τ = 0.5 and marginal distributions are generated from the stan-
dard normal distributions.

Finally, a mixture copula given in (1) can be intuitively re-
garded as a finite approximation of an unknown complex copula,
where the known copulas {Ck(·)} could serve as basis functions.
Theoretically or ideally, the basis copulas {Ck(·)} should be cho-
sen as many as possible to characterize all possible dependence
structures. But in practice, the question is how to choose them
efficiently and optimally and to be a better approximation of
a true copula. One of the main purposes of the current article
is to answer this question by proposing a penalized likelihood
method plus a shrinkage operator, described in Section 3 (see
later) in detail.

Definition 1. Two mixed copulas

C(u; θ )=
s∑

k=1

λk Ck(u; θk), and C∗(u; θ∗) =
s∗∑

k=1

λ∗
k C∗

k (u; θ∗
k ),
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Figure 2. Scatterplots for mixed copulas with standard normal marginal distributions and Kendall’s τ = 0.5 as well as λk = 0.5.

are said to be identified, C(u; θ ) ≡ C∗(u; θ∗), if and only if
s = s∗ and we can order the summations such that λk = λ∗

k

and Ck(u; θk) = C∗
k (u; θ∗

k ) for all possible values of u and k =
1, . . . , s. Without loss of generality, it is assumed throughout the
article that the mixed copula model under our study is identified,
so that the identification issue is out of our concern.

Note that if the marginal distributions are not specified as
parametric forms, model (1) becomes the following semipara-
metric copula

C(u; θ ,λ) =
s∑

k=1

λk Ck(u; θk) =
s∑

k=1

λk Ck(F1(x1),

. . . , Fp(xp); θk) (2)

with the marginal distributions {Fj (·)} in nonparametric form.
This is an interesting feature of copula modeling: see Fermanian
and Scaillet (2005) for several examples of practical relevance.
The proposed copula selection procedure described in Section 3

(see later) can be applied to selecting the model given in (2) and
this is an interesting future research topic. Indeed, it is under
investigation by Cai and Wang (2013) and, hopefully, it will be
available very soon in a separate article.

3. COPULA SELECTION VIA PENALIZED
LIKELIHOOD WITH A SHRINKAGE

In this section, we present the selection and estimation pro-
cedures for a mixed copula model.

3.1 Penalized Likelihood

In this study, marginal distributions are assumed to be known
and have a finite number of unknown parameters. Applying
Sklar’s theorem (1959) to Equation (1), the distribution function
can be written as

F (x; φ) =
s∑

k=1

λk Ck(F1(x1; α1), . . . , Fp(xp; αp); θk)
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and the joint density function is given by

f (x; φ) =
p∏

j=1

fj (xj ; αj )
s∑

k=1

λk ck(F1(x1; α1),

. . . , Fp(xp; αp); θk),

where ck(u; θk) = ∂pCk(u; θk)/∂u is the mixed partial deriva-
tive of the copula C(·) and we assume these copula densities
c1(·), . . . , cs(·) exist. When the sample is iid, the penalized log-
likelihood takes the following form with a Lagrange multiplier
term

Q(φ) =
T∑

t=1

p∑
j=1

ln fj (Xjt ; αj ) +
T∑

t=1

ln

×
[ s∑

k=1

λk ck(F1(X1t ; α1), . . . , Fp(Xpt ; αp); θk)

]

−T

s∑
k=1

pγT
(λk) + δ

(
s∑

k=1

λk − 1

)
. (3)

Clearly, the first summand is the logarithm of the likelihood
for marginal parameters and the second one is the logarithm of
the likelihood for dependence parameters. The penalty function
pγT

(·) in (3) is assumed to be nonconcave and γT is the tuning
parameter, which controls the complexity of model and can
be selected by some data-driven methods, such as the cross-
validation (CV) and the generalized cross-validation (GCV);
see Fan and Li (2001). To avoid overfitting, the penalty function
is applied only to the weight parameters {λk} because some
of them might be estimated as zero if they are insignificant in
the model. Therefore, we can delete the corresponding copula
functions with very small values of weight parameters, whereas
others are not. In such a way, the copula components are selected
and the corresponding parameters are estimated simultaneously.
It will be shown that the estimator achieves the so-called oracle
and sparsity properties; see Fan and Li (2001) for details. The
last term in Equation (3) is for the constraint on {λk}.

For simplicity of presentation, it is assumed that the penalty
function pγT

(·) is the same for all weight coefficients {λk}.
The smoothly clipped absolute deviation (SCAD) penalty pro-
posed by Fan (1997) is given by p′

γ (η) = γ I (η ≤ γ ) + (aγ −
η)+I (η > γ )/(a − 1) for some a > 2 and η > 0 with pγ (0) =
0. The SCAD penalty function is applied to our simulated and
empirical examples in Section 5 (see later) due to its good prop-
erties although other penalty functions may be applicable too in
(3); see Fan and Lv (2010) for more discussions on the choice
of various penalty functions.

3.2 Estimation Procedures

To estimate parameters, a full maximum likelihood approach
is used. That is to maximize the logarithm of penalized like-
lihood function Q(φ) with respect to φ. The full maximum
likelihood estimator is denoted by φ̂. Because the maximum
likelihood estimator does often not have a closed form, an iter-
ative algorithm is suggested to compute the numerical solution.

It is well known that an initial value is a potential key for im-
plementing an iterative algorithm. To this end, we propose using
the two-step estimation as the initial value of the full maximum
likelihood procedure. A two-step procedure is to estimate the

marginal parameters from marginal likelihood and then to opti-
mize the full likelihood with marginal parameters replaced by
their estimators from the first step. More specifically, at the first
step, the marginal parameters α is estimated by maximizing
the following likelihood corresponding to the marginal models∑T

t=1

∑p
j=1 ln fj (xjt ; αj ), which is not affected by the copula

parameters θ . Let ᾱ denote the solution of the above optimiza-
tion problem. As demonstrated in Joe (1997), ᾱ is

√
T consis-

tent. Then at the second step, α is substituted by its estimator
obtained in Equation (3). Hence, a penalized likelihood function
is given by

Q(ᾱ, θ ) = L(ᾱ, θ ) − T

s∑
k=1

pγT
(λk) + δ

(
s∑

k=1

λk − 1

)
,

where L(·) is the sum of first two terms in Equation (3). Max-
imizing Q(ᾱ, θ ) with respect to θ results in two-step penal-
ized likelihood estimator θ̄ = (θ̄

�
, λ̄

�)�. In the next section,
we demonstrate the consistency of our full maximum penalized
likelihood estimator φ̂ and derive its asymptotic distribution.
Finally, the practical implementation issues are presented in
Appendix A.

4. STATISTICAL PROPERTIES

In this section, we investigate the asymptotic behavior of the
penalized likelihood estimator. A collection of some regularity
conditions and asymptotic results are given in the following
sections. The detailed proofs of the theorems, presented in this
section, can be found in Appendix B with some lemmas and
their proofs.

4.1 Notations and Assumptions

Before proceeding to the asymptotic theories of the pro-
posed estimator, some notations are introduced and all pos-
sible assumptions are listed. The parameter space can be
written by � = �α × � × 
, where �α ⊂ Rdα , � = �1 ×
· · · × �s ⊂ Rdθ with �i ⊂ Rdi and dθ = ∑s

i=1 di , and 
 ={
(λ1, . . . , λs), λi ≥ 0,

∑s
i=1 λi = 1, i = 1, . . . , s

}
.

Obviously, � ⊂ Rdγ , where dγ = dα + s + dθ . Let α0 and
λ0 be the unknown true parameters. Furthermore, λ0 =
(λ01, . . . , λ0s)� is partitioned as λ1,0 = (λ01, . . . , λ0r )� and
λ2,0 = (λ0(r+1), . . . , λ0s)�, where r is the number of actual com-
ponents. Without loss of generality, it is assumed that λ1,0

consists of all nonzero components of λ0 and λ2,0 contains
all zero components. Obviously, λ2,0 is on the boundary of
the parameter space. Similarly, θ1,0 = (θ01, . . . , θ0r )� is a vec-
tor of true dependence parameters corresponding to λ1,0 and
θ∗

2 = (θ∗
(r+1), . . . , θ

∗
s )� is a vector of dependence parameters

corresponding to λ2,0. It is worth to mention that θ∗
2 can be ar-

bitrary (unidentified) because the corresponding weights are 0.
Thus, the true parameters can be represented as

φ0 = (α�
0 ,λ�

0 , θ�
0 )� = (α�

0 ,λ�
1,0, 0, . . . , 0, θ�

1,0, θ
∗�
2 )�.

Finally, let �0 be the collection of all the possible values
of φ0.

While deriving the asymptotic properties, it is typical to as-
sume that the true parameter is an interior point of the parameter
space. However, it is not always the case in this study. We would



Cai and Wang: Selection of Mixed Copula Model via Penalized Likelihood 793

like to discuss the parameter space before we proceed to the as-
sumptions.

Case I: Data are generated from a single copula. Obviously,
λ0 = (1, 0, . . . , 0)� which is on the boundary of the parame-
ter space 
; θ0 = (

θ01, θ
∗
2 ∈ �2, . . . , θ

∗
s ∈ �s

)�
and depen-

dence parameters associated to the zero weights belong to an
unidentified subset of the parameter space �.

Case II: True copula components are only a part of the
candidate copulas when 1 < r < s. In other words, λ0 =
(λ01, . . . , λ0r , 0, . . . , 0)� and θ0 = (θ01, . . . , θ0r , θ

∗
(r+1) ∈

�r+1, . . . , θ
∗
s ∈ �s)�. It is easy to see that a subset of λ0

is on the boundary of the parameter space and a subset of θ0

is unidentified. Therefore, to derive the asymptotic properties
under nonregular situations, we need the following assump-
tions, with φ0 an arbitrary fixed point in �0.

Assumptions:

(A1) {Xt } is independent and identically distributed with the
joint density f (x; φ) = ∏p

j=1 fj (xj ; αj ) c(x; α,λ, θ ),
where f (x; φ) has a common support and

c(x; α,λ, θ ) =
s∑

k=1

λk ck(F1(x1; α1), . . . , Fp(xp; αp); θk).

Assume that the model is identified.
(A2) There exists an open subset Qε ⊂ Rdγ containing �0

such that, for almost all x, fj (xj ; αj ), 1 ≤ j ≤ p, and
f (x; φ) admit all third derivatives with respect to φ,
respectively. Also, we suppose that there exist functions
Mjkl(x; φ) such that for all j, k, and l, and x,∣∣∣∣ ∂3

∂φj∂φk∂φk

{ln f (x; φ)}
∣∣∣∣ ≤ Mjkl(x; φ)

and there exists a constant B such that mjkl(x; φ) =
Eφ0 [M2

jkl(x; φ)] < B for any fixed φ0 ∈ �0.
(A3) For any φ0 ∈ �0, the second logarithmic derivatives of

f (x; φ) satisfy the equations

Ijk(φ0) = Eφ0

[
∂

∂φj

{ln f (x; φ)} ∂

∂φk

{ln f (x; φ)}
]

= −Eφ0

[
∂2

∂φj∂φk

{ln f (x; φ)}
]

,

and Ijk(φ0) is finite. Furthermore, the Fisher informa-
tion matrix

I(φ) = E

{[
∂

∂φ
ln f (x; φ)

] [
∂

∂φ
ln f (x; φ)

]�}
is positive definite at φ = φ0, φ0 ∈ �0.

Remark 1. Note that the independence assumption on {Xt }
given in Assumption A1 can be relaxed to a stationary time series
case; see Cai and Wang (2008) for more details. In general, Qε

can be expressed as Qε ≡ ∪φ0∈�0Bε(φ0)(φ0) for each ε(φ0) > 0
depending on φ0, and Bε(φ) is an open ball of radius ε centered
at φ.

Remark 2. It is easy to show that Eφ0

[
∂ ln f (x; φ)/∂φj

] = 0
for j = 1, . . . , dγ and all φ0 ∈ �0.

4.2 Large Sample Theory

First, we establish the convergence rate of the penal-
ized likelihood estimator. Toward this end, define bT =
max1≤k≤s{p′

γT
(λ0k), λ0k �= 0}.

Theorem 1. Under the regularity conditions A1–A3, if
max1≤k≤s{|p′′

γT
(λ0k)|, λ0k �= 0} → 0, there exists a local maxi-

mizer φ̂ of Q(φ) defined in Equation (3), which has the property
that there exists a φ0(φ̂) ∈ �0 which depends on φ̂ such that

‖φ̂ − φ0(φ̂)‖ = Op(T −1/2 + bT ),

where ‖ · ‖ represents the Euclidean norm.

Remark 3. We can partition φ as an identified subset φI

and θ as an unidentified subset θ2, where φI = (α�,λ�, θ�
1 )�.

There exists a unique φI0 such that φ̂I → φI0 with probability
1. While the unidentified dependence parameter estimate θ̂2

which corresponds to the zero weight converges to a point in an
unidentifiable subset, which is a set including all the arbitrary
fixed point θ0 ∈ �0. Also, Theorem 1 demonstrates that the
estimator can achieve the square root-T convergence rate when
γT = O(T −1/2). When γT → 0, bT = 0 for the hard and SCAD
penalty function. Therefore, φ̂ is

√
T consistent when hard and

the SCAD penalty function is used to the penalized likelihood
function. However, for the L1 penalty function, bT = γT , hence,
the square root-T consistency requires that γT = O(T −1/2).

Next, we present the oracle property of the penalized like-
lihood estimator. Before doing so, the following notations are
needed. Let φ1 = (α�,λ�

1 , θ�
1 , θ�

2 )� without zero weights. In
addition, we use φr to denote the parameters after the parameters
corresponding to the zero weights are removed and we reorder
them. That is, φr = (λ�

1 , θ�
1 ,α�)� without zero weights and

unidentified parameters. Let �r ⊂ Rq be the parameter space
of φr , where q = r + ∑r

k=1 dk + dα1 . Thus, �r ⊂ �. Further-
more, denote, �1 = diag{p′′

γT
(λ01), . . . , p′′

γT
(λ0r ), 0, . . . , 0}q × q

and b1 = (p′
γT

(λ01), . . . , p′
γT

(λ0r ), 0, . . . , 0)�q × 1. Finally, let
c = (c1, . . . , cr , 0, . . . , 0)�q × 1, where ci = limT →∞ p′

γT
(λ0i).

Definition 2. The cone C� with vertex at φ0 is a local approx-
imation of the set � at φ0 if infy∈C�

‖x − y‖ = o(‖x − φ0‖)
for all x ∈ � such that ‖x − φ0‖ → 0 and infy∈� ‖z − y‖ =
o(‖z − φ0‖) for all z ∈ C� such that ‖z − φ0‖ → 0.

Theorem 2. Under the regularity conditions A1–A3, if
bT = O(T −1/2),

√
T γT → ∞, and lim infT →∞ lim infλk→0+

p′
γT

(λk)/γT > 0, the root-T consistent estimator φ̂ = (φ̂1, λ̂2)�

in Theorem 1 must satisfy:

(a) Sparsity: λ̂2 = 0.
(b) Asymptotic distribution:

(i) When λ10 = (λ01, . . . , λ0r )�, λ0i ∈ (0, 1) for i =
1, . . . , r and r > 1,

√
T [{I1(φr0) + �1}(φ̂r − φr0) + b1]

→ N (0, I1(φr0)),

where I1(φr ) is the Fisher information when all zero
effects are removed.

(ii) When λ10 = λ01 = 1,
√

T
[
I1(φr0) + �1

]
(φ̂r − φr0) → φ̌r ,
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where the limiting random variable φ̌r has the fol-
lowing representation⎛⎜⎜⎜⎜⎝

Z11 − c1

Z12 − c2

...

Z1q − cq

⎞⎟⎟⎟⎟⎠ I {Z11 > c1}

+

⎛⎜⎜⎜⎜⎝
0

Z12 − c2 − (I21
1 /I11

1 )(Z11 − c1)
...

Z1q − cq − (Iq1
1 /I11

1 )(Z11 − c1)

⎞⎟⎟⎟⎟⎠
× I {Z11 < c1}

with Z1 = (Z11, Z12, . . . , Z1q )� being a random
variable with multivariate Gaussian distribution with
mean 0 and covariance matrix I1(φr0), φr ∈ C�r

−
φr0, and I ij

1 = I ij
1 (φr0) being elements of matrix

I−1
1 (φr0).

The part (a) of Theorem 2 shows that the penalized likelihood
estimator correctly estimates some weights 0 with positive prob-
ability. This leads to the so-called sparsity property. The oracle
property is presented in the part (b) of Theorem 2. For the SCAD
thresholding penalty function, bT = 0 if γT → 0. Thus, when√

T γT → ∞, by Theorem 2, the corresponding penalized like-
lihood estimators preserve the oracle property, introduced orig-
inally by Donoho and Johnstone (1994), and perform as well as
the maximum likelihood estimators for estimating λ1 if λ2 = 0
would be known in advance.

Now, we examine the asymptotic behavior for boundary
parameters. When r = 1, it follows from Theorem 2 that
φ̌r1 = (Z11 − c1)I {Z11 > c1}. Furthermore, if I21

1 = 0, the sec-
ond component of φ̌r is normal as well as the last two
components.

Remark 4. We comment that when {Xt } is a stationary time
series satisfying some regularity conditions, all the asymp-
totic results in Theorems 1 and 2 hold true with a change
of the asymptotic covariance, which has the form of �∗ =
var(lφ(x1; φr0, 0)) + 2

∑∞
t=2 cov(lφ(x1, φr0, 0), lφ(xt , φr0, 0)),

where l(x, φ) ≡ ln f (x, φ) and lφ(x, φ) = ∂l(x, φ)/∂φ. For the
detailed descriptions and proofs, see Cai and Wang (2008) for
a more general setting under time series context. It is noted that
a consistent estimation of the asymptotic covariance �∗, such
as heteroscedasticity and autocorrelation consistent estimator of
Newey and West (1987), is particularly important in regard of
the empirical example.

5. EMPIRICAL STUDIES

To illustrate the proposed methods, two simulated examples
and a real example are considered in this section.

5.1 Simulated Examples

The first simulated example considers some single copula
functions and mixed copulas and the second example discusses
the misspecified model which one or more actual copula com-
ponents are missing from the candidate copula families. The

first example demonstrates that indeed, the proposed estimation
procedures work reasonably well in the finite sample case. The
second example illustrates that even the working is misspec-
ified, the proposed model selection procedure can find a best
(which means as close as possible) model to approximate the
true model.

Our data-generating process (DGP) is a process that the bi-
variate joint distribution has a form of copula function and in-
dividual variables are normally distributed. The bivariate joint
distribution can be specified as (ut , vt ) ∼ iid C(u, v; θ ). Con-
sidering the popularity of the normal distribution and com-
putational convenience, the marginal distributions are nor-
mally distributed and marginal parameters (μx, σx) = (1, 0.5)
and (μy, σy) = (0, 2). Four commonly used copulas, Gaussian,
Clayton, Gumbel, and Frank, consist of our candidate copula
families. Indeed, all possible combinations of these four copulas
have an ability to capture most of the possible dependence struc-
tures. The Gaussian copula is widely used in financial fields,
while the Frank copula exhibits no tail dependence like the
Gaussian copula. However, compared to the Gaussian copula,
dependence in the Frank copula is stronger in the center of the
distribution, as evidenced from the fanning out in the tails. In
contrast to the Gaussian and Frank copulas, the Clayton and
Gumbel copulas exhibit asymmetric dependence. The Clayton
dependence is strong in the left tail, which implies that the Clay-
ton copula is best suited for applications in which two variables
are likely to decrease together. On the other hand, the Gumbel
copula exhibits strong right tail dependence. Consequently, as
is well known, the Gumbel is an appropriate modeling choice
when two variables are likely to simultaneously increase. There-
fore, the working mixed copula can be written as

C(u, v; θ ) = λ1CGa(u, v; θ1) + λ2CCl(u, v; θ2)

+ λ3CGu(u, v; θ3) + λ4CFr(u, v; θ4),

where CGa(·) denotes the Gaussian copula, CCl(·) is for the
Clayton, CGu(·) stands for the Gumbel, and CFr(·) depicts the
Frank.

Example 1. This simulated example considers three sample
sizes, T = 400, 700, and 1000. Observations are simulated from
different copula models by following the GDP described above
and the penalized maximum likelihood estimators are computed.
The simulation is repeated 1000 times.

First, data are generated from four single copulas, Gaussian,
Clayton, Gumbel, and Frank, separately. Thus, the weight corre-
sponding to the actual single copula is 1 and 0 otherwise. Due to
the limited space, we omit the results of the marginal parameters.
The simulated results for copula parameters are summarized in
Tables 1, 2, and 3. Table 1 shows biases and mean squared er-
rors (MSEs) of the penalization maximum likelihood estimators
for dependence parameters λj and θj . It is clear that the bias
becomes smaller when the sample size is getting larger. Table 2
shows the initial values and the estimated values of unidentified
parameters. One can easily see that the estimates are very close
to the arbitrarily given initial values. In other words, the penal-
ized likelihood estimator of unidentified parameter converges
to an arbitrary value. This is in line with our theory. In Table
3, the values without parentheses correspond to the percentages
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Table 1. Biases and MSEs of the single copula parameter estimates in Example 1

T Gaussian (λ1, θ1) Clayton (λ2, θ2) Gumbel (λ3, θ3) Frank (λ4, θ4)

400 Bias (−0.026, −0.004) (0.000, 0.011) (0.000, −0.518) (−0.081, −0.104)
MSE ( 0.008, 0.001) (0.001, 0.117) (0.001, 0.604) ( 0.026, 0.124)

700 Bias (−0.009, −0.002) (0.000, −0.003) (0.001, −0.358) (−0.020, −0.054)
MSE ( 0.002, 0.001) (0.001, 0.079) (0.001, 0.304) ( 0.006, 0.024)

1000 Bias (−0.010, −0.002) (0.000, −0.002) (0.000, −0.236) (−0.015, −0.038)
MSE ( 0.004, 0.000) (0.001, 0.034) (0.001, 0.147) ( 0.003, 0.014)

of correctly selected copulas and the values within parentheses
correspond to the percentages that the copulas are selected in-
correctly. One can observe from Table 3 that the performance
of the proposed method is reasonably well for choosing an ap-
propriate individual copula from a mixed model. There is 100%
of chance to choose the correct single copula functions from
which each data point is drawn. The percentage that the incor-
rect copula is selected is small. For example, when T = 1000,
only 3.2% of chance to select the Frank copula when data are
drawn from a Gaussian copula and 7.8% of chance to choose the
Gaussian copula for those data points generated from the Frank
copula. This is not surprising because the Frank and Gaussian
copulas have the almost same type of dependence structure, so
it is not easy to distinguish them. In sum, in view of the above
empirical results, the proposed method works reasonably well.

Second, we simulate three mixed copulas with only two com-
ponents. Table 4 displays the true values of parameters in the
mixed copula. The simulation results are presented in Tables
5, 6, and 7. Table 5 shows the percentages corresponding to
the correctly and incorrectly (in parentheses) selected copula,
Tables 6 displays biases and MSEs of the penalized maximum
likelihood estimates, and Table 7 gives the initial values and
the estimates of unidentified parameters. We only comment on
the results for T = 1000 from Table 5. For the mixture of the
Gaussian and Clayton copulas which describes lower tail de-
pendence, there is 100% probability of selecting the appropriate
copulas. For the mixed copula consisting of the Clayton and
Gumbel copulas, the Clayton is selected in all replications and
the Gumbel is chosen 80.4%. The results for the last one are very

Table 2. Average estimated values of the unidentified copula
parameters for single copula in Example 1 when T = 1000

Model θ10 θ20 θ30 θ40 θ̂1 θ̂2 θ̂3 θ̂4

Gaussian 5.000 6.100 6.900 4.842 6.063 6.922
4.000 5.100 5.900 3.826 5.043 5.953
6.000 7.100 7.900 5.846 7.076 7.908

Clayton 0.600 6.100 6.900 0.948 5.811 6.736
0.400 5.100 5.900 0.745 4.700 5.933
0.800 7.100 7.900 0.847 6.942 7.906

Gumbel 0.600 5.000 6.900 0.683 5.109 6.912
0.400 4.000 5.900 0.349 4.198 5.928
0.800 6.000 7.900 0.466 6.050 7.894

Frank 0.600 5.000 6.100 0.737 4.918 5.953
0.400 4.000 5.100 0.860 3.979 4.813
0.800 6.000 7.100 0.263 5.885 7.014

NOTE: θi0 is initial values and θ̂i is estimate for i = 1 to 4.

Table 3. Percentage that the corresponding copula was chosen
correctly (incorrectly) in Example 1

Model (×100) T Gaussian Clayton Gumbel Frank

Gaussian 400 1.000 (0.000) (0.000) (0.092)
700 1.000 (0.000) (0.000) (0.038)
1000 1.000 (0.000) (0.000) (0.032)

Clayton 400 (0.010) 1.000 (0.000) (0.000)
700 (0.000) 1.000 (0.000) (0.000)
1000 (0.000) 1.000 (0.000) (0.000)

Gumbel 400 (0.028) (0.000) 1.000 (0.000)
700 (0.000) (0.000) 1.000 (0.000)
1000 (0.000) (0.000) 1.000 (0.000)

Frank 400 (0.289) (0.000) (0.000) 1.000
700 (0.074) (0.000) (0.000) 1.000
1000 (0.078) (0.000) (0.000) 1.000

NOTE: Values without parentheses are the percentages that copula in the single copula was
chosen correctly. Values with parentheses are the percentages that copula not in the single
copula was chosen incorrectly.

promising because the Gaussian copula is selected with 100%
and the Frank copula is selected with 98.2%. Therefore, one can
conclude that the proposed methods for the models simulated in
this example can capture well different dependence structures.

Example 2. In this example, the purpose is to see how the
proposed selection method works if the working model is mis-
specified. To this end, we consider the following three misspec-
ified models when our candidate copulas are not included in all
the actual components.

I: Data are generated from the single Gaussian copula but work-
ing model is

C(u, v) = λ1 CCl(u, v) + λ2 CGu(u, v) + λ3 CFr(u, v).

II: Data are generated from the single Clayton copula but the
working model is

C(u, v) = λ1 CGa(u, v) + λ2 CSgC(u, v) + λ3 CGu(u, v)

+ λ4 CFr(u, v).

Table 4. Actual values of the mixed copula parameters in Example 1

Model (λ1, θ1) (λ2, θ2) (λ3, θ3) (λ4, θ4)

Gaussian + Clayton (1/2,0.6) (1/2,5)
Clayton + Gumbel (1/2,5) (1/2,2.6)
Gaussian + Frank (1/2,0.6) (1/2,4)
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Table 5. Percentage that the corresponding copula was chosen
correctly (incorrectly) in Example 1

Model (×100) T Gaussian Clayton Gumbel Frank

Gaussian + Clayton 400 0.952 1.000 (0.000) (0.141)
700 0.995 1.000 (0.000) (0.062)
1000 1.000 1.000 (0.009) (0.010)

Clayton + Gumbel 400 (0.522) 1.000 0.528 (0.000)
700 (0.378) 1.000 0.603 (0.000)
1000 (0.203) 1.000 0.804 (0.000)

Gaussian + Frank 400 0.992 (0.000) (0.011) 0.883
700 1.000 (0.000) (0.000) 0.904
1000 1.000 (0.000) (0.000) 0.982

NOTE: Values without parentheses are the percentages that copula in the mixed copula
was chosen correctly. Values with parentheses are the percentages that copula not in the
mixed copula was chosen incorrectly.

III: Data are generated from the mixed Clayton and Gumbel
copula with equal weights but the working model is

C(u, v) = λ1 CGa(u, v) + λ2 CSg(u, v) + λ3 CGu(u, v)

+ λ4 CFr(u, v),

where CSg(·) means a survival Gumbel copula function. The
Clayton copula is absent from both Models II and III, while
the survival Gumbel copula which exhibits the same left tail
dependence pattern as the Clayton copula is added to these two
models. For sample size of T = 1000, the simulation is repli-
cated 1000 times. Table 8 reports the results of the misspecified
models, including the percentage that the corresponding copula
function is selected and the estimated value of the related copula
parameter in parentheses.

From Table 8, one can observe that in Model I, the Frank
copula which is similar to the Gaussian copula is selected with
100% for the missed Gaussian copula. In Model II, the working
model includes the Gaussian, survival Gumbel, Gumbel, and
Frank copulas. But the true model includes only the Clayton
copula. The results show that the survival Gumbel copula ex-

Table 7. Average estimated values of the unidentified copula
parameters for mixed copula in Example 1

Model θ10 θ20 θ30 θ40 θ̂1 θ̂2 θ̂3 θ̂4

Gaussian + Clayton 2.600 4.000 2.010 3.938
2.000 3.000 2.705 4.009
3.200 5.000 2.910 5.049

Clayton + Gumbel 0.600 4.000 0.839 4.803
0.400 3.000 0.272 4.018
0.800 5.000 0.692 4.940

Gaussian + Frank 5.000 2.600 4.928 2.189
4.000 2.000 3.928 2.885
6.000 3.200 5.925 2.559

NOTE: θi0 is initial values and θ̂i is estimate for i = 1 to 4.

hibiting left tail dependence like the Clayton copula is chosen
for all replications. Clearly, the similar result can be observed
for Model III. The survival Gumbel is selected to replace the
Clayton copula and the Gumbel copula appears with 88.4%.
For these misspecified models, copulas exhibiting the same de-
pendence patterns are selected. In other words, the proposed
selection method can choose the best copula based on a combi-
nation of several copulas to approximate the actual dependence
structure.

5.2 A Real Example

Example 3. We consider four international stock market in-
dices, S&P500 (U.S.), FTSE100 (UK), Nikkei (JP), and Hang
Seng (HK). The dataset is a collection of the monthly re-
turns from January 1987 to February 2007 and includes total
242 observations, as mentioned in Section 1. The main pur-
pose of the empirical analysis of this dataset is to examine the
comovement of returns among these four markets. First, the
Kolmogorov–Smirnov (KS) tests are performed and the results
show that t-distribution is an appropriate fit of the marginal
distributions. So, the marginal distributions are assumed to

Table 6. Biases and MSEs of the copula parameter estimates for mixed copula in Example 1

Model T (λ1, θ1) (λ2, θ2) (λ3, θ3) (λ4, θ4)

Gaussian + Clayton 400 Bias (−0.035, 0.015) (−0.015, −0.045)
MSE (0.019, 0.006) (0.003, 0.107)

700 Bias (−0.009, 0.009) (−0.005, −0.050)
MSE (0.004, 0.002) (0.002, 0.064)

1000 Bias (−0.002, 0.000) (−0.003, 0.013)
MSE (0.002, 0.001) (0.001, 0.046)

Clayton + Gumbel 400 Bias (0.094, 0.541) (−0.387, −0.852)
MSE (0.050, 0.494) (0.171, 3.367)

700 Bias (−0.036, −0.253) (−0.294, −0.717)
MSE (0.013, 0.171) (0.133, 1.733)

1000 Bias (−0.001, −0.208) (−0.241, −0.690)
MSE (0.013, 0.144) (0.108, 1.787)

Gaussian + Frank 400 Bias (0.083, −0.286) (−0.085, 0.069)
MSE (0.054, 0.101) (0.054, 0.061)

700 Bias (0.122, −0.272) (−0.122, 0.144)
MSE (0.049, 0.076) (0.049, 0.047)

1000 Bias (0.084, −0.272) (−0.084, 0.130)
MSE (0.028, 0.076) (0.028, 0.033)
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Table 8. Percentage that the corresponding copula function is selected and the estimated value of the related copula parameter θ in parentheses
for Example 2

Model I Clayton Gumbel Frank

Percentage (Estimate of θ ) 0.000 0.000 1.000 (7.107)
Model II Gaussian SGumbel Gumbel Frank
Percentage (Estimate of θ ) 0.000 0.996 (3.411) 0.000 0.152 (4.811)
Model III Gaussian SGumbel Gumbel Frank
Percentage (Estimate of θ ) 0.000 0.994 (3.320) 0.884 (4.501) 0.000

Table 9. Linear correlation coefficient and Kendall’s τ s in
parentheses across four international markets

UK JP HK

US 0.780 (0.509) 0.423 (0.262) 0.614 (0.408)
UK 0.389 (0.235) 0.632 (0.385)
JP 0.343 (0.216)

follow the t-distribution. Second, the linear correlation coeffi-
cients and Kendall’s τ ’s (in parentheses) across the four markets
are computed and displayed in Table 9. One can see from Table
9 that the U.S. and U.K. markets have the strongest correlation
based on both linear correlation and Kendall’s τ . Finally, the
penalized likelihood estimators are computed for all six pairs of
markets. Due to space limitations, we only present the results of
the copula parameter estimator.

Table 10 reports the estimation results along with the 95%
confidence intervals for all nonzero parameters in all models.
It can be seen from Table 10 that all 95% confidence intervals
for {λk} on Gaussian and Clayton copulas as well as three 95%
confidence intervals for {λk} on Frank copula do not contain
zero. This implies that indeed, they are statistically significant
away from zero. Interestingly, the weight on Gumbel copula is
zero for all the pairs, which indicates that no right tail depen-
dence appears for all pairs. In other words, the chance that two
markets boom together is close to zero or very small. Moreover,
the weight on Frank copula is zero for three pairs (U.S.-HK,
U.S.-UK, and UK-HK) without JP. This means that the Gaus-
sian copula is enough to characterize the central dependence for
these three pairs. Furthermore, it is interesting to see that all
coefficients {λk} on Clayton copula are statistically significant
away from zero. This implies that all the pairs have the left tail

dependence, which means that any two different markets crash
together although the degrees may be different. Therefore, the
international stock markets have asymmetric dependence struc-
ture. To explain this asymmetry, one may conclude that investors
are more sensitive to bad news than good news in other mar-
kets. When a market suffers the loss from the crash, investors in
other markets may react immediately and make some moves to
avoid the possible loss on the stock. These reactions may drag
the market down. On the contrary, people may not response too
much on the boom of another market. Hu (2006) proposed to use
the Gaussian, Gumbel, and survival Gumbel mixture model to
model the correlation structure among these four markets. The
above two findings (the right tail dependence does not exist but
the left tail dependence exists) are similar to the results of Hu
(2006). But our results support the Gaussian or/and Frank type
of dependence which is in contrast to that in Hu (2006), who
generally found a weight of close to 0 on a Gaussian copula.
This suggests that our method detects both linear and nonlinear
dependence structures, while Hu (2006) detected only nonlinear
dependence.

6. CONCLUSION

In this article, we proposed a new data-driven copula selection
approach through penalized likelihood plus a shrinkage operator
to select a mixture copula with applications in risk management.
The proposed method selects an appropriate copula function and
estimates the related parameters simultaneously. We derived the
asymptotic properties of the proposed penalized likelihood es-
timator, including the rate of convergence and asymptotic nor-
mality and abnormality. Particularly, when the true coefficient
parameters may be on the boundary of the parameter space
and the dependence parameters are in an unidentified subset of

Table 10. Estimates of copula parameters with the 95% confidence interval in parentheses for international markets in the empirical example

Copulas Gaussian Clayton Gumbel Frank

λ U.S.-UK 0.418(0.311,0.525) 0.582(0.472,0.692) 0 0
U.S.-JP 0.125(0.015,0.235) 0.814(0.725,0.903) 0 0.061(0.045,0.077)
U.S.-HK 0.528(0.414,0.642) 0.472(0.358,0.586) 0 0
UK-JP 0.121(0.044,0.198) 0.771(0.677,0.865) 0 0.107(0.022,0.192)
UK-HK 0.689(0.536,0.842) 0.311(0.161,0.461) 0 0
JP-HK 0.139(0.049,0.223) 0.772(0.659,0.884) 0 0.089(0.064,0.114)

θ U.S.-UK 0.849(0.845,0.853) 1.525(1.472,1.577)
U.S.-JP 0.840(0.823,0.857) 0.491(0.457,0.525) 0.008(0.007,0.009)
U.S.-HK 0.536(0.490,0.582) 1.703(1.641,1.765)
UK-JP 0.919(0.914,0.924) 0.475(0.440,0.510) 0.500(0.224,0.776)
UK-HK 0.558(0.550,0.565) 1.320(1.270,1.370)
JP-HK 0.433(0.282,0.584) 0.428(0.394,0.462) 0.030(0.023,0.037)
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the parameter space, it shows that the limiting distribution for
boundary parameters is abnormal and the penalized likelihood
estimator for unidentified parameters converges to an arbitrary
value. We proposed an ad hoc computational algorithm (EM
algorithm) to compute the optimization of the penalized likeli-
hood function. Finally, we conducted Monte Carlo simulation
studies to illustrate the finite sample performance of the pro-
posed method and investigated a real dataset.

Some interesting future research topics related to this article
should be mentioned. First, we believe that it is not difficult to
generalize the proposed method and the related theory to the
time series data and a more general setting like finite mixture
distribution. Second, it would be very useful to investigate the
case that the number of basis copulas s is large, say s = sT

going to infinity in a certain rate, theoretically and empirically.
Third, it would be very interesting to consider the case that
the marginal distributions are purely nonparametric, so that the
model becomes a semiparametric setting. Furthermore, the com-
putational implementation should be addressed when the dimen-
sion of copula function is high. Finally, the proposed method
potentially can be applied to the analysis of multivariate finan-
cial data, such as multivariate GARCH models studied by Lee
and Long (2009) and their extensions, and predictor selection
in portfolio choice investigated by Cai, Peng, and Ren (2011).

APPENDIX A: PRACTICAL COMPUTATIONAL ISSUES

Here, we need to address some computational issues in practice to
make implementation easily.

A.1 Choice of the Tuning Parameters

To implement the approach proposed in Section 3 practically, one
needs to choose the appropriate tuning parameters γ = γT and a in the
SCAD penalty function. In practical implementation, it is suggested
using the multifold cross-validation method of estimating γ and a as
suggested by Cai, Fan, and Yao (2000) and Fan and Li (2001) for
regression settings, and it is briefly described next.

Denote D as the full dataset. Let Di, i = 1, . . . , m, be the subset of
D. We treat D − Di as the cross-validation training set and Di as test
set. That is, for each pair of (γ, a), D − Di is used to estimate φ and Di

is used for evaluation. The penalized maximum likelihood estimator φ̂i

can be used to construct the following cross-validation criterion based
on the test data Di

CV(γ, a) =
m∑

i=1

∑
(xt ,yt )∈Di

Q(̂φi).

By maximizing CV(γ, a), the data-driven choice of tuning parameters
is selected. As suggested by Cai, Fan, and Yao (2000) and Fan and Li
(2001), m can be chosen as 4 or 5 in a real implementation and m = 5
is taken in our empirical studies in Section 5.

A.2 Maximization of Penalized Likelihood Function

It is clear that there is not an explicit expression for maximum like-
lihood estimator of Equation (3) so it needs a numerical method in
practical implementation. One of the most popular algorithms for find-
ing the maximum likelihood estimation of the finite mixture model is
the expectation maximization (EM) algorithm of Dempster, Laird, and
Rubin (1977) due to its easy numerical computation. The EM algo-
rithm is described below in detail. The main idea of the EM algorithm
is to decompose the optimization step into two steps: E-step computes

and updates the conditional probability that our observations come
from each component copula, and M-step maximizes the penalized
log-likelihood to estimate the dependence parameters.

To maximize Equation (3), we take the derivative and set it equal
to zero. The only closed-form expression we can get is the weight
expression. The first-order condition of weights can be expressed as
follows:

∂Q(φ)

∂λk

=
T∑

t=1

f0(xt , α)ck(ut ; αk, θk)

f (xt ; φ)
− Tp′

γT
(λk) + δ = 0, (A.1)

where f0(x, α) = ∏p
j=1 fj (xj ; αj ). By multiplying λk on both sides of

Equation (A.1), one has

T∑
t=1

f0(xt , α)λkck(ut ; αk, θk)

f (xt ; φ)
− T λkp

′
γT

(λk) + λkδ = 0. (A.2)

Then, by summing over Equation (A.2) for all k, one obtains δ =
T
[∑s

k=1 λkp
′
γT

(λk) − 1
]
. Therefore, plugging δ back to Equation (A.2)

leads to

λk =
[
T λkp

′
γT

(λk) −
T∑

t=1

f0(xt , α)λkck(ut ; αk, θk)

f (xt ; φ)

]
δ−1.

A.3 E-step and M-step

Let φ̂
(0)

and {φ̂(m)} be the initial values and a sequence of estimates
of the parameters at each iteration. At the expectation step, we can
estimate the shape parameters by following the iterative algorithm

λ
(m)
k =

[
λkp

′
γT

(λ(m−1)
k ) − 1

T

×
T∑

t=1

f0(xt , α
(m−1))λ(m−1)

k ck(ut ; α
(m−1)
k , θ

(m−1)
k )

f (xt ; φ
(m−1))

]

×
[ s∑

k=1

λkp
′
γT

(λk) − 1

]−1

until it converges. What distinguishes the estimation of a mixed copula
from most of the other mixture models is the M-step. The marginal
parameters and dependent parameters are updated by solving the fol-
lowing equations for any given estimates {λ(m)

k }:
∂Q(α, θ , λ(m))

∂θ
= 0 and

∂Q(α, θ ,λ(m))

∂α
= 0.

The Newton–Raphson (iterative) method is used here to estimate the
marginal parameters and dependence parameters because no close-
form is available for the estimate of α and θ .

APPENDIX B: PROOFS OF THEOREMS

In this appendix, we present the brief proofs of Theorems 1 and 2.

Proof of Theorem 1. Let dT = T −1/2 + bT . As defined in Assump-
tion A2, Bε(φ0) is an open ball of radius ε centered at φ0, for any
fixed point φ0 ∈ �0. Let Qε ≡ ∪φ0∈�0Bε(φ0)(φ0). For any fixed φ on the
boundary of Qε(φ0), we define φ0(φ) such that |φ − φ0(φ)| ≤ |φ − φ0|
for all φ0 ∈ �0. That is, φ0(φ) is the point in �0 closest to φ. We want
to show that for any given ε > 0, there exists a large constant M such
that

lim
n→∞

P

{
sup

‖u‖=M

Q(φ0(φ) + dT u) < Q(φ0)

}
≥ 1 − ε. (B.1)

Thus, with large probability, there is a local maximum in the ball {φ0 +
dT u : ‖u‖ ≤ M}. This local maximizer satisfies ‖φ̂ − φ0‖ = Op(dT ).
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Using pγT
(0) = 0 and

∑s
k=1(λk − λ0k) = 0, we have

Q(φ0(φ) + dT u) − Q(φ0) ≤ [
L(φ0(φ) + dT u) − L(φ0)

]
− T

r∑
k=1

[
pγT

(λk) − pγT
(λ0k)

]
. (B.2)

Let L
′
(φ) be the gradient vector of L. Applying Taylor’s expansion to

L(φ) at point φ0, we have

L(φ0(φ) + dT u) − L(φ0) = dT L
′
(φ0(φ))�u

− 1

2
T d2

T u�I(φ0(φ))u(1 + op(1)),

and ∣∣ r∑
k=1

[
pγT

(λk) − pγT
(λ0k)

] ∣∣ ≤ T
√

rbT dT ‖u‖ + 1

2
T d2

T max
1≤k≤r

× {|p′′
γT

(λ0k|)}{1 + o(1)},
where r is the number of the components of φ10. Regularity conditions
imply that T −1/2L

′
(φ0(φ)) = Op(1) and I(φ0(φ)) is positive definite by

Assumption A3. In addition, by assumption that max{|p′′
γT

(λ0k)|} goes
to zero, the order comparison of the terms in Equation (B.2) implies
that

−1

2
T d2

T u�I(φ0(φ))u(1 + op(1))

is the sole leading term in the right side of Equation (B.2). Therefore,
for any given ε > 0, by choosing a sufficiently large M, (B.1) holds.
This completes the proof of the theorem.

Lemma B.1 Assume the conditions in Theorem 2 hold. If
lim infT →∞ lim infλk→0+ p′

γT
(λk)/γT > 0 and

√
T γT → ∞, for any

given φ such that ‖φ − φ0‖ = Op(T −1/2), then, with probability tend-
ing to 1,

Q(φ1, 0) ≥ Q(φ1, λ2).

Proof. It suffices to show that as T → ∞, for any φ2 satisfy-
ing ‖φ2 − φ20‖ = Op(T −1/2) and small εT = B2T

−1/2 with constant
B2 > 0, ∂Q(φ)/∂λj < 0 for 0 < λj < εT , j = r + 1, . . . , s. By Tay-
lor expansion, we have

∂Q(φ)

∂λj

= ∂L(φ0)

∂λj

+
dγ∑
l=1

∂2L(φ0)

∂λj ∂φl

(φl − φl0)

+
dγ∑
l=1

dγ∑
k=1

∂3L(φ∗)

∂λj ∂φl∂φk

(φl − φl0)(φk − φk0) − Tp′
γT

(λj ) − δ.

(B.3)

Note that by the standard argument,

1

T

∂L(φ0)

∂λj

= Op(T −1/2) and
1

T

∂2L(φ0)

∂λj ∂φl

= E

[
∂2L(φ0)

∂λj ∂φl

]
+ op(1).

By the assumption ‖φ − φ0‖ = Op(T −1/2), we have

∂Q(φ)

∂λj

= Op(T 1/2) − Tp′
γT

(λj ) = T γT

(
−p′

γT
(λj )

γT

+Op

(
T −1/2

γT

))
.

When lim infT →∞ lim infλk→0+ p′
γT

(λk)/γT > 0 and
√

T γT → ∞, we
can show that Op(T 1/2)λk < TpγT

(λk) in probability in a shrinking
neighborhood of 0. This completes the proof. �

In what follows, denote b = (0, . . . , 0, p′
γT

(λ01), . . . , p′
γT

(λ0s), 0,

. . . , 0)�(dα+s+∑r
i=1 di )×1 and � = diag{0, . . . , 0, p′′

γT
(λ01), . . . ,

p′′
γT

(λ0s), 0, . . . , 0}(dα+s+∑r
i=1 di )×(dα+s+∑r

i=1 di ). Let I0 = I(φ0) + �

and ZT = T −∂L(φ0)/∂φ.

Lemma B.2. Under the regularity conditions in Theorem 2, if bT =
Op(T − 1

2 ),

2

T
(Q(φ) − Q(φ0)) = gT (φ) + (ZT − b)� I−1

0 (ZT − b) + Op

× (‖φ − φ0‖3
)
, (B.4)

where gT (φ) = −[I−1
0 (ZT − b) − (φ − φ0)]� I0[I−1

0 (ZT − b) − (φ
− φ0)]. Moreover, if � is convex in a neighborhood of φ0,
‖φ̂ − φ̃‖ = op(T −1/2), where φ̃ is the maximized value of quadratic
form gT (φ) over �, that is, φ̃ = max� gT (φ − φ0).

Proof. It is easy to verify that

Q(φ) − Q(φ0)=T gT (φ) + (ZT − b)� I−1
0 (ZT − b)+Op(‖φ − φ0‖3).

To show
√

T
∥∥φ̂ − φ̃

∥∥ = op(1), it is equivalent to showing that
|gT (φ̂) − gT (φ̃)| = op(T −1) because gT (φ) is a quadratic func-
tion. Let RT (φ) denote the last term in (B.4). It is clear that
0 ≤ 1

T

(
Q(φ̂) − Q(̃φ)

) = gT (φ̂) − gT (φ̃) + RT (φ̂) − RT (φ̃). It is clear
gT (φ̂) − gT (φ̃) is negative because φ̃ is the maximum of gT (φ). Then,

|gT (φ̂) − gT (φ̃)| ≤ |RT (φ̂) − RT (φ̃)|.
We know ‖φ̂ − φ0‖ = Op(T −1/2) and it can be shown that ‖φ̃ −

φ0‖ = Op(T −1/2) by using the same arguments used in the proof

of Theorem 1. Thus, |RT (φ̂) − RT (φ̃)| = Op(T − 3
2 ). Hence, |gT (φ̂) −

gT (φ̃)| = op(T −1). This completes the proof. �
Lemma B.3. Let ˜̃φ = maxC�

gT (φ − φ0), where C� is a cone. Then,

‖φ̃ − ˜̃φ‖ = op(T −1/2) if the assumptions in Theorem 2 are satisfied.

Proof. This lemma can be justified by the square root-
T consistency of φ̃ and the definition of cone. Define
qT (WT ,φ) = [WT − (φ − φ0)]�(I(φ0) + �)[WT − (φ − φ0)], where

WT = (I(φ0) + �)−1(ZT − b). According to the definitions of ˜̃φ and
φ̃, we have˜̃φ = inf

φ ∈ C�

qT (WT , φ) and φ̃ = inf
φ ∈ �

qT (WT ,φ).

Let φ∗ ∈ �∗ be such that infφ∈ �
qT (WT , φ) =

infφ∗∈ �∗ qT (WT , φ∗) + op(T −1/2). Thus, by the triangle inequality
and the definition of cone, we have

‖˜̃φ − φ̃‖ = inf
φ∈C�

qT (WT , φ) − inf
φ∈�

qT (WT , φ)

≤ inf
φ∗∈�∗

qT (WT , φ∗) + inf
φ∈C�

qT (φ∗,φ) − inf
φ∈�

qT (WT , φ)

≤ op(‖φ∗ − φ̃‖) + op(‖φ̃ − φ0‖) + oP (T −1/2) = op(T −1/2).

Similarly, let φ∗∗ ∈ C∗
� be such that infφ∈ C�

qT (WT , φ) =
infφ∗∗∈ C∗

�
qT (WT ,φ∗∗) + oP (T −1/2). We have

‖˜̃φ − φ̃‖ = inf
φ∈C�

qT (WT , φ) − inf
φ∈�

qT (WT , φ)

≥ inf
φ∈C�

qT (WT , φ) − inf
φ∗∗∈C∗

�

qT (WT , φ∗∗) + inf
φ∈�

qT (φ∗∗, φ)

≥ op(‖φ∗∗ − ˜̃φ‖) + op(‖˜̃φ − φ0‖) + oP (T −1/2) = op(T −1/2).

This completes the proof. �
Proof of Theorem 2. In the following proof, we consider the partition

(φ�
1 , λ�

2 )�. By assuming that (φ̂
�
1 , 0�)� is the local maximizer of the

penalized log-likelihood function Q{(φ1, 0)}, it suffices to show that as
n → ∞,

P
{
Q{(φ1, λ2)} < Q{(̂φ1, 0)}} → 1.
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First, by the assumption above, we have the following expressions:

Q
{
(φ1, π2)

} − Q
{
(φ̂1, 0)

} = Q
{
(φ1, π2)

} − Q
{
(φ1, 0)

}
+ Q

{
(φ1, 0)

} − Q
{
(φ̂1, 0)

}
≤ Q

{
(φ1, π2)

} − Q
{
(φ1, 0)

}
.

Note that by Lemma 1, the last expression is negative with probability
tending to one as T increases to infinity. This completes the proof of
part (a). �

Now, we proceed to the proof of part (b). Using the similar proof
as in Theorem 1, it can be shown easily that there exists a

√
T -

consistent estimator, say φ̂r , which is the local maximizer of Q{φr}.
Let ZT 1 = 1

T

∂L(φr0)

∂φr

and I r = I1(φr0) + �1, in which I1(φr ) is the

Fisher information when all zero effects are removed. Note that

1

T

[
Q
{
(φr , 0)

} − Q
{
(φr0, 0)

} ] = gT (φr ) + RT (φr ) − (ZT 1 − b1)�

× I−1
r (ZT 1 − b1),

where gT (φr ) = −[I−1
r (ZT 1 − b1) − (φr − φr0)]� I r [I−1

r (ZT1 − b)
− (φr − φr0)]. Let φ̃r = max�r gT (φr − φr0). It follows from Lemmas
2 and 3 that∥∥φ̂r − φ̃r

∥∥ = op(T −1/2), and
∥∥∥φ̃r − ˜̃φr

∥∥∥ = op(T −1/2),

where ˜̃φr = maxC�r
gT (φr − φr0). Then, combining above two equa-

tions, we have

√
T
∥∥φ̂ − φr0

∥∥ ≤
√

T
(∥∥φ̂r − φ̃r

∥∥ +
∥∥∥φ̃r − ˜̃φr

∥∥∥ +
∥∥∥˜̃φr − φr0

∥∥∥)
=

√
T
∥∥∥˜̃φr − φr0

∥∥∥ + op(1).

To continue our proof, two different cases have to be considered.

Case I. φr0 is an interior point of the subset of �r . That

is, C�r = Rq . Based on the definition of ˜̃φr , we have ˜̃φr −
φr0 = (I1(φr0) + �1)−1(ZT 1 − b1). Therefore,

√
T [̂φr − φr0+

(I1(φr0) + �1)−1b1] = √
T (I1(φr0) + �1)−1ZT 1 + op(1). By the

central limit theorem and Slutsky’s theorem, we have

√
T
[
I1(φr0) + �1

]
(˜̃φr − φr0) → N (0, I1) .

Case II. φr0 is on the boundary of the subset of �r . In other
words, φr0 = (λ10, θ

�
10, α

�
0 )� = (1, θ�

10, α
�
0 )�. Therefore, C�r =

Rq = [0,∞) × Rd1+dα , where q = 1 + d1 + dα . Let g(φr ) =
− [

I−1
r (Z1 − b1) − (φr − φr0)

]�
I r

[
I−1

r (Z1 − b) − (φr − φr0)
]
.

Since I r is positive definite, by maximizing the quadratic form
g(φr ) over C�r , the continuous mapping theorem gives that˜̃φr → φ̌r , where the limiting random variable φ̌r is the maximizer
of g(φr ) and has the following representation⎛⎜⎜⎜⎜⎜⎝

Z11 − c1

Z12 − c2

...

Z1q − cq

⎞⎟⎟⎟⎟⎟⎠I {Z11 > c1} +

⎛⎜⎜⎜⎝
0

Z12 − c2 − (I21
1 /I11

1 )(Z11 − c1)
...

Z1q − cq − (Iq1
1 /I11

1 )(Z11 − c1)

⎞⎟⎟⎟⎠
I {Z11 < c1},

where Z1 = (Z11, Z12, . . . , Z1q )� is a random variable with mul-
tivariate Gaussian distribution with mean 0 and covariance ma-
trix I1(φr0), φr ∈ C�r − φr0, I ij

1 = I ij
1 (φr0) are elements of matrix

I−1
1 (φr0) and I1(φr ) is the Fisher information when all zero effects

are removed. Therefore, φ̃r → φ̌r . This completes the proof. �
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