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a b s t r a c t

Due to nonstationary (nearly integrated or integrated) regressors and the embedded endogeneity, a
linear predictive regression model produces biased coefficient estimates, which consequentially leads
to the conventional t-test to over-reject the misspecification test. In this paper, our aim is to find
an appropriate and easily implemented method for estimating and testing coefficients in predictive
regression models. We apply a projection method to remove the embedded endogeneity and then adopt
a two-step estimation procedure to manage both highly persistent and nonstationary predictors. The
asymptotic distributions of these estimates are established under α-mixing innovations, and different
convergence rates among the coefficients are derived for different persistent degrees. We also consider
the model with the regressor having a drift in its autoregressive model and show that the asymptotic
properties for the estimated coefficients are totally different from the case without drift. To conduct a
misspecification test, we rely on the deduced asymptotic distributions and use theMonte Carlo simulation
to find the appropriate critical values. A Monte Carlo experiment is then conducted to illustrate the
finite sample performance of our proposed estimator and test statistics. Finally, an empirical example
is examined to demonstrate the proposed estimation and testing method.

Published by Elsevier B.V.
1. Introduction

In a standard predictive regressionmodel, a dependent variable
is regressed on the lagged value of a regressor which can be
formulated by an autoregressive model with error correlated to
the disturbance from the predictive regression. The predictive
regression model has been widely used in economics and finance.
For example, during the recent years, it has been utilized to
deal with the predictability problem such as the evaluation of
the mutual fund performance, the optimization of the asset
allocations, the conditional capital asset pricing, and so on.
Thereinto, one famous application is to check the predictability of
asset returns by various lagged financial variables, such as the log
dividend–price (d–p) ratio, the log earnings–price (e–p) ratio, the
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log book-to-market ratio, the dividend yield, the term spread, the
default premium, and the interest rates as well as other financial
variables. The question always being asked is the significance
of the estimated predicting coefficients. This is equivalent to a
misspecification test to test if the slope coefficients are statistically
significant. To answer this question, there has been proposed a vast
amount of modeling and testing procedures in the literature; see,
to name just a few, Mankiw and Shapiro (1986), Stambaugh (1986,
1999), Elliott and Stock (1994), Cavanagh et al. (1995), Viceira
(1997), Amihud and Hurvich (2004), Torous et al. (2004), Lewellen
(2004), Paye and Timmermann (2006), Campbell and Yogo
(2006), Polk et al. (2006), Dangl and Halling (2012), Rossi (2007),
and the references therein.

A standard predictive regression has the following linear
structural model

yt = β0 + β2 xt−1 + εt , xt = ρxt−1 + ut , 1 ≤ t ≤ n, (1)

where yt is the dependent variable, say excess stock return at time
t , xt−1 is a financial variable such as the log dividend–price ratio at
time t − 1, which is commonly formulated by an autoregressive
model with order 1 (denoted by AR(1)) as the second equation
in (1), and innovations {(εt , ut)} in (1) are usually assumed to be
independently and identically distributed (iid) bivariate normal
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N(0, Σ) with Σ =


σ 2
ε σεu

σεu σ 2
u


. Model (1) is commonly called a

predictive regression.
The main interest of this model is to estimate the predicting

coefficient β2 and to test whether the predictability exists or not,
i.e. to check the significance of β2 or to test the null hypothesisH0 :

β2 = 0. Mankiw and Shapiro (1986) and Stambaugh (1986) were
the first to analyze the econometric and statistical difficulties in-
herent in the estimation of the above predictive regression model.
At first, note that the correlation coefficient between the two in-
novations εt and ut in (1) is δ = σεu/σεσu, which is unfortunately
non-zero for many empirical studies; see, for example, Table 4
in Campbell and Yogo (2006) and Table 1 in Torous et al. (2004)
for some real applications. This creates the so-called embedded
endogeneity (xt−1 and εt may be correlated) problem which leads
to biased estimates. Another difficulty comes from the parameter
ρ, which is the unknown degree of persistence of the variable xt .
That is, xt is stationary (|ρ| < 1); see Viceira (1997), Amihud and
Hurvich (2004), Paye and Timmermann (2006) and Amihud et al.
(2009); or it is unit root or integrated (ρ = 1), denoted by I(1);
or it is local-to-unity or nearly integrated (ρ = 1 + c/n, where
c < 0), denoted by NI(1); see, Elliott and Stock (1994), Cavanagh
et al. (1995), Torous et al. (2004), Campbell and Yogo (2006), Polk
et al. (2006), and Rossi (2007), and among others. This means if the
regressor xt is highly persistent and even nonstationary, it makes
econometric modeling and misspecification testing difficult.

As shown in Nelson and Kim (1993) and Stambaugh (1999), due
to the embedded endogeneity, the ordinary least squares (OLS) es-
timate of the slope coefficient β2 in (1) and its standard error are
substantially biased in finite samples if xt is highly persistent, not
really exogenous, and even nonstationary. Conventional misspec-
ification tests based on standard t-statistics from OLS estimates
tend to over-reject the null hypothesis inMonte Carlo simulations;
see Campbell and Yogo (2006). With regard to the estimation pro-
cedure, the researchers usually address this problem by correcting
the bias of the least squares estimators. There are three methods
established in the literature. The first one is the first order bias-
correction estimator by Stambaugh (1999), in which the relation
between the biases of the OLS estimates of β2 and ρ are developed,
and subsequently the estimate of β2 is corrected by its first order
bias. The secondmethod is the two-stage least squares (linear pro-
jectionmethod) estimator proposed inAmihud andHurvich (2004)
and Amihud et al. (2009), where the endogeneity can be removed
from the model by using a linear projection of εt onto ut . In such
a way, the OLS method can be applied and the second order biases
of the estimates are then corrected. However, one basic assump-
tion in their model is to assume that the regressor is stationary,
i.e. |ρ| < 1, which might not be true in many empirical appli-
cations. The third method is called the conservative bias-adjusted
estimator by Lewellen (2004), based on the assumption that the
true autoregressive coefficient ρ is almost 1, setting it to be, for
instance, 0.9999.

The above estimation methods improve the original OLS
estimate to some extent. However, none of them overcome the
aforementioned limitations, such as the endogeneity and the high
persistency of regressor simultaneously. On the other hand, the
misspecification (hypothesis) testing for the predictability is also
unreliable due to these difficulties. In the literature, it is common
to seek more accurate sampling distributions of test statistics. For
example, some researches apply the exact finite-sample theory
under the assumption of normality, such as Stambaugh (1999)
and Lewellen (2004), which might not be applicable in most
cases in the real world due to some unrealistic assumptions.
Some others employ NI(1) asymptotics to approximate the finite
sample distributions; see Cavanagh et al. (1995), Campbell and
Yogo (2006), among others. Even though some misspecification
test statistics proposed by these papers, say the Q -test based
on the Bonferroni confidence interval proposed by Campbell
and Yogo (2006), show good performance in finite samples, the
implementation of these tests might not be easy and they might
be conservative.

To propose an appropriate test statistics for misspecification
test on β2 in the model given in (1), one has to first address the
aforementioned estimation issue. Therefore, in this paper, we first
consider the estimation of coefficients β0 and β2 in (1) by assum-
ing that the regressor xt is nonstationary, i.e. ρ = 1 + c/n, where
c ≤ 0. Indeed, many time series in applications, in particular eco-
nomic and financial time series, exhibit this type of property. To
remove the embedded endogeneity, we apply the linear projec-
tion method as in Amihud and Hurvich (2004) and Amihud et al.
(2009) to estimate the coefficients in the model, and then estab-
lish the asymptotic properties for the estimators to show that the
limiting distribution is a mixed normal with conditional variance
being a function of integrations of an Ornstein–Uhlenbeck (mean-
reverting) process. It also demonstrates that the convergence rates
for the intercept (the regular rate at n1/2) and the slope coefficient
for xt−1 (a faster rate at n) are totally different due to the I(1) or
NI(1) property of regressor. Finally, based on the derived asymp-
totic distribution of the estimated coefficients, we use the Monte
Carlo simulation method to simulate the limiting distribution and
then conduct the misspecification test based on the constructed
confidence interval for each coefficient.

Another contribution of this paper is to discuss the predictive
regression model in (1) when the regressor has a nonzero drift in
its AR(1) model. It is common to assume in the predictive model
literature that theAR(1)model for the regressor has a zero drift. But
this assumption may not hold for all applications. Therefore, we
consider the asymptotic properties for two cases:with andwithout
drift. Indeed, in contrast to the mixed normal limiting distribution
for the former, the asymptotic distribution for the latter is normal
and the convergence rate ismuch faster at a rate n3/2. Similarly, the
statistical inferences such asmisspecification tests for this case are
considered sequentially.

The rest of this paper is organized as follows. Section 2 intro-
duces the predictive regression model and its two-step estimation
procedure. In Section 3, we list the regularity conditions and de-
velop the asymptotic properties of the proposed estimators. Also
the extended model with a nonzero drift for the AR(1) model of
regressor is discussed in the same section. More importantly, the
misspecification test is elaborated in this section too. AMonte Carlo
study is conducted in Section 4 to evaluate the finite sample per-
formance of the proposed estimation and testing methods. An ap-
plication of predictive regression with nonstationary regressors to
real examples is reported in Section 5 to highlight the practical use-
fulness of the proposed methods. Section 6 concludes the paper.
Proof of the main results is relegated to the Appendix.

2. Estimation procedure

For the predictive regression model in (1), many empirical
studies show that the correlation between the two innovations
is non-zero, which implies that the ‘‘embedded endogeneity’’ is
involved in the regression model. To deal with this problem,
by assuming, commonly done in the literature (see Amihud and
Hurvich (2004) andAmihud et al. (2009)) that the joint distribution
of εt and ut in model (1) is normal, the linear projection of εt onto
ut is given as follows:

εt = β1 ut + vt 1 ≤ t ≤ n.

Plugging this into the regression model (1), one obtains the
following model:

yt = β0 + β1 ut + β2 xt−1 + vt ,
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where vt is uncorrelated with ut and xt−1 so that the endogeneity
disappears. Different from the stationary assumption on the
regressor xt−1 in Amihud and Hurvich (2004) and Amihud et al.
(2009), in this paper we consider the case that the regressor xt is
nonstationary. That is, xt satisfies an AR(1) model as xt = ρ xt−1 +

ut with ρ = 1 + c/n with c ≤ 0. Indeed, this assumption is
used in various real applications; see Campbell and Yogo (2006).
When c < 0, the regressor is a nearly integrated process, while
when c = 0, it is an I(1) process. Finally, note that {(ut , vt)} is
commonly assumed to be iid in the literature. In this paper, the
iid assumption is relaxed to a stationary process, particularly a
stationary α-mixing process, which coversmany known linear and
nonlinear time series models in economics and finance as special
cases; see Cai (2002) andCai et al. (2000) for details. Then the above
model can be rewritten as follows:
yt = β0 + β1 ut + β2 xt−1 + vt ≡ βTXt + vt ,

xt = ρ xt−1 + ut , ρ = 1 +
c
n
, c ≤ 0, 1 ≤ t ≤ n, (2)

where Xt = (1, ut , xt−1)
T , β = (β0, β1, β2)

T , and {(ut , vt)} is a
stationary α-mixing process. The error term vt in expression (2) is
uncorrelatedwith either the regressor xt−1 or the innovationut and
xt−1 is an I(1) or NI(1) process. Without loss of generality, we just
consider the univariate regressor for simplicity, though the model
could be easily extended to multiple regressors as in Amihud et al.
(2009).

Our main interest is testing the predictability of the coefficient
β in (2). To this end, the first step is to find an appropriate estimate
for β . An intuitive way of doing so is to apply the ordinary least
squares (OLS) method to obtain the OLSE of β given by

β̂ = (XTX)−1XTy =


n

t=1

XtXT
t

−1 n
t=1

Xtyt , (3)

where X = (X1, X2, . . . , Xn)
T and y = (y1, y2, . . . , yn)T . In (3), the

matrix X contains the unknown vector u = (u1, u2, . . . , un)
T . To

deal with this, one can replace ut with its estimated value. Hence, a
two step procedure becomes necessary and is described as follows:
Step 1: Run the first order autoregression of xt to find the estimate
of ρ and the estimated residual ût .
Step 2: Regress yt on ût and xt−1 with intercept and adopt OLS
method again to find the estimate β̂ .

As mentioned before, the linear projection between two inno-
vations can remove the correlation between two innovations from
the model so that it can reduce the estimation bias of β . But the
distribution of β̂ might not be normal any more due to the nonsta-
tionarity of the regressor xt−1. In the next section, the asymptotic
distribution of the two-step estimator β̂ is developed and thenmis-
specification test is considered.

3. Statistical inferences

3.1. Asymptotic theory

Before we derive the asymptotic distribution of the estimate
given in (3), we list some notations and assumptions needed for
the theoretical proof. By ignoring the higher order terms, ρ =

1 + c/n = exp(c/n) + o(1/n) and in what follows, it is assumed
without loss of generality that ρ = exp(c/n) with c ≤ 0. Then, the
NI(1) process xt can be expressed as

xt =

t
j=1

exp((t − j)c/n) uj + exp(tc/n) x0,

where x0 = u0 and {uj} is a strictly stationary α-mixing process
defined in (2) with its mixing coefficients satisfying the condition
listed below (see (4)). Here, it is assumedwithout loss of generality
that E(x0) = 0 or x0 = 0. It follows by Lemma 3.1 in Phillips (1988)
that under some regularity conditions such as
(i) E(u0) = 0,

(ii) E|uj|
k1+k2 < ∞ for some k1 > 2 and k2 > 0, (4)

(iii) {uj}
∞

0 is α-mixing with mixing coefficients α(m) satisfying
∞

m=1

α1−2/k1(m) < ∞,

xt has the following properties:

(a) n−1/2x[nr] ⇒ Kc(r), (b) n−3/2
n

t=1

xt
d

→

 1

0
Kc(r)dr,

(c) n−2
n

t=1

x2t
d

→

 1

0
K 2
c (r)dr,

and (d) n−1
n

t=1

xt−1ut
d

→

 1

0
Kc(r)dWu(r) + Ω1, (5)

where Kc(r) =
 r
0 e(r−s)cdWu(s) is a diffusion process, Wu(s) is a

one-dimensional Brownian motion with variance σ 2
u = Var(ut) +

2Ω1, and Ω1 =


∞

k=2 E(u1uk). Here and in what it follows, ‘‘⇒’’

represents weak convergence, and ‘‘
d

→’’ denotes convergence
in distribution. Note that Kc(·) is a special case of the Orn-
stein–Uhlenbeck process and satisfies the stochastic differential
equation system (Black–Scholes model) as dKc(r) = c Kc(r)dr +

dW (r). Then, it can be shown easily that Kc(r) ∼ N(0, σ 2
c (r)),

where σ 2
c (r) = σ 2

u [exp(2cr) − 1] /2c and
 1
0 Kc(r)dr ∼ N(0,

ς(c)2) with ς(c)2 = σ 2
u /c2 + σ 2

u (e2c − 4ec + 3)/2c3. Clearly, it
is easy to obtain that limc→0 ς(c)2 = σ 2

u /3. Also, when c = 0,
Kc(r) becomesW (r). We make the following assumptions.
Assumptions:
A1. X has full column rank. {ut} is a mean zero and strictly station-

ary strongα-mixing sequence satisfying the regular conditions
in (4). Also assume that x0 = 0.

A2. The error term vt has a finite fourthmoment and E(vt |Xt) = 0.
A3. The error term {(ut , vt)} in (2) is a strictly stationary α-mixing

process with δ1-th moment for some δ1 > 2, where {ut} and
{vt} are uncorrelated. Further, E(|utvt |

δ2) ≤ C < ∞ for
δ2 > δ1 and there exists some j∗ < ∞ such that for all
j > j∗, E|u0ujv0vj| < ∞. α(t) = O(t−δ0) for some δ0 >
min{δ2δ1/(δ2 − δ1), 2δ3/(2− δ3), 2δ4/(2− δ4)}. Also, ∥ut∥q =

(E|ut |
q)1/q < ∞ with q = δ4δ3/(δ4 − δ3) for some 1 < δ3 <

δ4 < 2. Finally, supk E(u2
1v

2
t+k) ≤ C < ∞.

Among the above conditions, A1 is a basic assumption to guar-
antee the existence of the asymptotic distribution of the nearly in-
tegrated process. AssumptionA1 implies that unlikemodel (1), two
innovations {(εt , ut)} are not necessary to be iid or normally dis-
tributed. Assumption A2 ensures that regressors ut and xt−1 are
exogenous variable. Finally, the α-mixing assumption in A3 is one
of the weakest mixing conditions for weakly dependent stochastic
processes.

To establish the asymptotic results, defineDn = diag{1, 1,
√
n},

E(u2
t v

2
t |Xt) = σ 2

uv , and (see Box I)
Then, we have the following theorem with its proof presented

in the Appendix.

Theorem 1. Under Assumptions A1–A3, we have
√
nDn


β̂ − β


d

→ MN(0, Σβ),

where MN(0, Σβ) is a mixed normal with mean zero and conditional
covariance matrix Σβ = σ 2

v Ω/


K 2
c − (


Kc)

2
2 with σ 2

v = Var
(v1) + 2


∞

k=2 Cov(v1, vk).
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Ω =




K 2
c dr

2

+


K 2
c dr


Kcdr

2

0 −2


Kcdr


K 2
c dr

0 σ 2
uv


K 2
c dr −


Kcdr

2
2

/σ 4
u σ 2

v 0

−2


Kcdr


K 2
c dr 0


K 2
c dr +


Kcdr

2


Box I.
Remark 1. Based on the theorem above, the asymptotically condi-
tional covariances between β̂1 and β̂2, and between β̂1 and β̂0 are
both zero,which implies the asymptotic independence between β̂1

and β̂2, and between β̂1 and β̂0. However, ignoring the endogene-
ity could lead to the finite sample problem (higher order bias) and
consequently the traditional inferences may not be valid.

In Theorem 1, the focus is only on the case if the regressor
xt is univariate for simplicity, and the multivariate case can be
easily extended by the samemanner. From Theorem 1, one can see
clearly that the convergence rate for the intercept β0 and slop β1
is O(n−1/2), totally different from that for β2, which is O(n) and is
faster by a factorn1/2. Thismakes sense due to thenearly integrated
property of the regressor (

n
t=1 x

2
t = Op(n2)) rather than Op(n).

3.2. Models with drift in the regressor

In the previous section, we develop the asymptotic distribution
of the estimate given in (3) when there is no drift in the AR(1) for
xt . This result could be easily extended to the case if the AR model
for regressor xt has a nonzero drift. That is,

yt = β0 + β1 ut + β2 xt−1 + vt , xt = θ + ρ xt−1 + ut ,

ρ = 1 +
c
n
, c ≤ 0, 1 ≤ t ≤ n, (6)

where θ ≠ 0. To estimate β in (6), one can still adopt the two-step
procedure proposed in Section 2. The formula for β̂ should have
the same form as in (3), but with different OLS estimates for ρ and
ut . Even though the estimation procedure is the same as if there
would be no drift term in the AR(1) model of xt , the asymptotic
distribution of the estimate could be totally different from the pre-
vious case. In the following, we examine the asymptotic behavior
of xt and the estimate β̂ in model (6).

When the persistent parameter c is nonzero, the regressor xt
could be expressed as

xt = θ

t−1
s=0

ρs
+

t−1
r=0

ρrut−r = θ
1 − ρt

1 − ρ
+ op(t).

Applying the expression ρ = 1+ c/n = exp(n−1c)+o(n−1) to the
above equation, it is easy to obtain n−1x[nr] = θ [exp(cr) − 1]/c +

op(1), for any 0 < r ≤ 1. Therefore, the convergence rate for xt−1

is Op(n) and is faster by a factor n1/2 than the case without drift
(see (5)). Similarly, the asymptotic properties of xt given in (5) are
revised as follows.

Proposition 1. A variable xt , which satisfiesmodel (6)with a nonzero
drift, has the following asymptotic properties:

(a) n−1x[nr]
p

→ θ(ecr − 1)/c,

(b) n−2
n

t=1

xt−1
p

→ θ(ec − 1 − c)/c2,

(c) n−3
n

t=1

x2t−1
p

→ θ2
[(ec − 2)2 + 2c − 1]/2c3, and
(d) n−3/2
n

t=1

xt−1vt → N(0, σ 2
v θ2

[(ec − 2)2 + 2c − 1]/2c3), (7)

where σ 2
v is given in Theorem 1.

The brief proof of this proposition is given in the Appendix.
Note that the asymptotic properties given here are different from
those listed in Section 6 of Phillips (1988) for the case that ρ =

exp(n−3/2c). When c = 0, the limiting processes in above propo-
sition could be replaced by their corresponding limits.

Next, we discuss the asymptotic property of OLS estimate β̂ in
(3)when the drift in the AR(1)model for xt is non-zero. By recalling
that the convergence rate of x[nr] is faster by a factor n−1/2, it is
necessary to adjust theDn byD∗

n = diag{1, 1, n}. In addition, define

Ω∗
=


Ω∗

11 0 Ω∗

13
0 Ω∗

22 0
Ω∗

13 0 Ω∗

33



with Ω∗

11 =
θ2

2c3
[(ec − 2)2 + 2c − 1]{ 1

2 [(e
c
− 2)2 + 2c − 1] +

1
c

(ec − c − 1)2}, Ω∗

13 = −
θ

c2
(ec − c − 1)[(ec − 2)2 + 2c − 1],

Ω∗

22 =
θ2

4c5
[(c − 2)e2c + 4ec − c − 2]2σ 2

uv/σ
4
u σ 2

v , and Ω∗

33 =

1
2 [(e

c
−2)2 +2c−1]+ 1

c (e
c
− c−1)2. Then, we have the following

theorem and its proof is relegated to the Appendix.

Theorem 2. Under Assumptions A1–A3 and model (6) with c < 0,
we have
√
nD∗

n


β̂ − β


d

→ N(0, Σ∗

β),

where N(0, Σ∗

β) is a normal distribution with mean zero and
covariance matrix

Σ∗

β = 4c5σ 2
v Ω∗/θ2

[(c − 2)e2c + 4ec − c − 2]2.

In particular, when c = 0, Σ∗

β becomes

Σ∗

β = σ 2
v

 28 0 −48/θ
0 σ 2

uv/σ
4
u σ 2

v 0
−48/θ 0 84/θ2

 ,

where σ 2
v is given in Theorem 1.

An immediate consequence of Theorem 2 is that adding an
intercept into the AR(1) model for the regressor does not affect the
rate of convergence for β̂0 or β̂1, while the rate for β̂2 is faster by
a factor

√
n. In addition, the asymptotic variances of β̂0 and β̂2 do

not depend on the diffusion process Kc(r). Instead, they depend
only on the drift θ . Finally, the asymptotic distribution is normal
with a deterministic asymptotic covariance matrix.

3.3. Misspecification tests

In real applications, it is important and of interest to do
the misspecification tests about the coefficients in model (2).
Especially, one may want to construct the confidence interval for
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coefficients, or to test whether a regressor has predicting ability
or not. For example, to check if the regressor is significant or not,
it is of interest to consider the hypothesis H0 : β2 = 0 versus
Ha : β2 ≠ 0.

From Theorem 1, it is easy to see that the alternative expression
for the limiting distribution of β̂ is given by

√
n(β̂0 − β0)

d
→

Wv(1)

K 2
c dr −


Kcdr

 
KcdWv(r)


K 2
c dr −


Kcdr

2 (8)

√
n(β̂1 − β1)

d
→ N(0, σ 2

uv/σ
2
u ) (9)

and n(β̂2 − β2)
d

→


KcdWv(r) − Wv(1)


Kcdr

K 2
c dr −


Kcdr

2 . (10)

From (9), the asymptotic variance of β̂1 can be estimated by its
corresponding sample variance, say, σ̂ 2

β1
=


û2
t v̂

2
t /


û2
t , which

can be easily shown to be a consistent estimate of σ 2
β1
. As for β̂0 and

β̂2, their limiting distributions can be estimated by using a Monte
Carlo simulation method as mentioned in Chapter 17 in Hamilton
(1994), as long as the parameters involved are known or can be
estimated. Therefore, the critical values can be found by a Monte
Carlo simulationmethod respectively. In particular, the asymptotic
distribution in (10) can be used to test the predictability such as
H0 : β2 = 0.

When there is an intercept in the AR(1) for xt , our interest is
to consider a two-sided test with null hypothesis β2 = 0 against
the alternative β2 ≠ 0. Similar to the previous discussion, the test
statistics for the model with a nonzero drift could be considered
based on the asymptotic distribution in Theorem 2, say,
√
n(β̂0 − β0)

d
→ N


0, 4c5σ 2

v Ω∗

11/θ
2
[(c − 2)e2c + 4ec − c − 2]2


√
n(β̂1 − β1)

d
→ N(0, σ 2

uv/σ
2
u )

and
√

n3(β̂2 − β2)
d

→ N

0, 4c5σ 2

v Ω∗

33/θ
2
[(c − 2)e2c

+ 4ec − c − 2]2

. (11)

In practice, σ 2
u , σ

2
v and σ 2

uv could be estimated by σ̂ 2
u = n−1 û2

t ,
σ̂ 2

v = n−1 v̂2
t and σ̂ 2

uv = n−1 û2
t v̂

2
t respectively, and the values

of θ and c can be replaced by their OLS estimates.

4. Monte Carlo simulations

In this section, we conduct a Monte Carlo simulation study to
illustrate the finite sample performance of the proposed two-step
estimation procedure and the misspecification test method.

Example 1. Consider a model with the following data generating
process:

yt = β0 + β1 ût + β2 xt−1 + vt ,

where ût is the OLS estimated residual of the AR(1) model: xt =

ρxt−1 + ut . We choose β0 = 0, β1 = δ = −0.75 or −0.95 (note
thatβ1 captures the correlation between two innovations),β2 = 0,
and ρ = 1 + c/n with c = 0, c = −2 or c = −20. The selection
of β1 is based on the relevant range of the correlation between two
innovations in the real example of predicting the stock return by
the log dividend–price or the log earning–price ratio and the three
levels of persistence correspond to the cases when the regressor xt
is a unit root process, a nearly unit root process and a stationary
process, respectively. The two innovations ut and vt are generated
from the following AR(1) models:

ut = 0.3ut−1 + e1t and vt = 0.3vt−1 + e2t ,

where e1t and e2t are independently generated from normal distri-
butions with mean zero and variance σ 2

e1 = 0.91 and σ 2
e2 = 1− δ2

= 0.4375 when δ = −0.75 and σ 2
e2 = 0.0975 when δ = −0.95,
Table 1
Medians (Standard deviations) of 5000 ADE values by the two-step estimation
procedure in Example 1.

δ c n ADEβ0 ADEβ1 ADEβ2

50 0.1301 (0.1649) 0.0783 (0.0695) 0.0288 (0.0295)
0 100 0.0961 (0.0999) 0.0493 (0.0503) 0.0130 (0.0162)

250 0.0582 (0.0582) 0.0328 (0.0291) 0.0051 (0.0058)

50 0.1088 (0.1261) 0.0762 (0.0669) 0.0324 (0.0361)
−0.75 −2 100 0.0867 (0.0870) 0.0467 (0.0423) 0.0173 (0.0169)

250 0.0483 (0.0524) 0.0298 (0.0276) 0.0061 (0.0063)

50 0.0943 (0.0829) 0.0711 (0.0622) 0.0578 (0.0532)
−20 100 0.0648 (0.0585) 0.0480 (0.0438) 0.0290 (0.0275)

250 0.0390 (0.0361) 0.0310 (0.0279) 0.0119 (0.0111)

50 0.0614 (0.0778) 0.0370 (0.0328) 0.0136 (0.0139)
0 100 0.0453 (0.0472) 0.0233 (0.0237) 0.0061 (0.0077)

250 0.0275 (0.0312) 0.0155 (0.0137) 0.0024 (0.0027)

50 0.0513 (0.0595) 0.0360 (0.0316) 0.0153 (0.0170)
−0.95 −2 100 0.0409 (0.0411) 0.0220 (0.0199) 0.0082 (0.0080)

250 0.0228 (0.0247) 0.0141 (0.0130) 0.0029 (0.0030)

50 0.0445 (0.0392) 0.0336 (0.0294) 0.0273 (0.0251)
−20 100 0.0306 (0.0276) 0.0226 (0.0207) 0.0137 (0.0130)

250 0.0184 (0.0170) 0.0147 (0.0132) 0.0056 (0.0053)

respectively, to guarantee that ut and εt are standard normally dis-
tributed.

We consider different sample sizes as n = 50, 100 and 250 and
repeat the simulation 5000 times for each sample size. The sample
sizes used in the simulation are relatively small since the method
could be expected to perform well for samples with size larger
than 500, as mentioned in Campbell and Yogo (2006). We use the
two-step estimation method proposed in Section 2 to estimate the
three coefficients. The estimation procedure is evaluated by the
absolute deviation error (ADE) as ADEβi = |β̂i − βi| for 0 ≤ i ≤ 2.
The medians and standard deviations (in parentheses) of the 5000
ADE values obtained from the proposed estimation procedure are
reported in Table 1.

The results reported in Table 1 correspond to the case when
the correlation between the two innovations is relative weak
(δ = −0.75). Fixed the value of c , one can see clearly that
both median and standard deviation of 5000 ADE values for each
coefficient decline with the increase of sample size. It is also
obvious that the decreasing rate for ADEβ2 is faster than that for
ADEβ0 and ADEβ1 . This is consistent with the asymptotic theory
that the convergence rate for β̂2 is faster than that for the other
two coefficients by a factor n1/2. Furthermore, comparing the
medians and the standard deviations for ADEβ2 values at different
values of c , one can see that the bias of the estimate for β2
is smaller when the predictor is closer to a unit root process.
This observation also makes sense since the convergence rate for
β̂2 is faster when the regressor is higher persistent. The bottom
panel of Table 1 is for the case δ = −0.95. The results show a
similar pattern to the case when δ = −0.75 but with smaller
ADE medians and standard deviations. When the two innovations
are more correlated, the subtraction of more innovation to the
regressor from the innovation to the dependent variable reduces
the estimation biases of the coefficients.

Next, we use the same data generating process to examine the
finite sample performance of the misspecification test proposed in
Section 3.3. Of interest is to test the significance of each coefficient
in model (2) respectively, say, H0 : βi = 0 against Ha : βi ≠ 0 for
0 ≤ i ≤ 2. The test statistics and their asymptotic distributions are
given in (8)–(10), based on which the critical values for all tests
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Table 2
Test sizes for testing predictability in Example 1 at nominal size 5%.

δ = −0.75 δ = −0.95
β0 β1 β2 β0 β1 β2

n = 50 0.0600 0.0673 0.0633 0.0593 0.0673 0.0633
c = 0 n = 100 0.0547 0.0587 0.0563 0.0547 0.0587 0.0567

n = 250 0.0527 0.0537 0.0527 0.0520 0.0533 0.0530
n = 50 0.0587 0.0640 0.0580 0.0587 0.0640 0.0580

c = −2 n = 100 0.0547 0.0580 0.0540 0.0547 0.0580 0.0540
n = 250 0.0533 0.0533 0.0527 0.0533 0.0533 0.0527
n = 50 0.0540 0.0573 0.0367 0.0540 0.0573 0.0367

c = −20 n = 100 0.0527 0.0533 0.0440 0.0520 0.0533 0.0440
n = 250 0.0520 0.0513 0.0480 0.0520 0.0513 0.0480

Table 3
Test powers in Example 1 at nominal size 5%.

b δ = −0.75 δ = −0.95
n = 50 n = 100 n = 250 n = 50 n = 100 n = 250

0 0.0633 0.0563 0.0527 0.0633 0.0567 0.0530
1 0.0773 0.0707 0.0670 0.1367 0.1313 0.1273
2 0.1273 0.1220 0.1180 0.4607 0.4593 0.4613
3 0.2327 0.2273 0.2247 0.8353 0.8400 0.8420
4 0.4087 0.4073 0.4087 0.9600 0.9633 0.9647

c = 0 5 0.6240 0.6253 0.6280 0.9900 0.9920 0.9927
6 0.7933 0.7973 0.7993 0.9973 0.9980 0.9987
7 0.8920 0.8973 0.8993 0.9993 1.0000 1.0000
8 0.9447 0.9487 0.9500 1.0000 1.0000 1.0000
9 0.9720 0.9747 0.9760 1.0000 1.0000 1.0000

10 0.9853 0.9873 0.9887 1.0000 1.0000 1.0000
0 0.0580 0.0540 0.0527 0.0580 0.0540 0.0527
1 0.0700 0.0660 0.0640 0.1147 0.1107 0.1093
2 0.1087 0.1047 0.1027 0.3387 0.3353 0.3367
3 0.1827 0.1807 0.1790 0.6873 0.6880 0.6893
4 0.3040 0.3013 0.3027 0.9020 0.9047 0.9070

c = −2 5 0.4647 0.4620 0.4647 0.9740 0.9760 0.9767
6 0.6333 0.6340 0.6353 0.9933 0.9940 0.9947
7 0.7740 0.7760 0.7780 0.9980 0.9987 0.9987
8 0.8713 0.8733 0.8757 0.9993 1.0000 1.0000
9 0.9300 0.9320 0.9333 1.0000 1.0000 1.0000

10 0.9620 0.9647 0.9653 1.0000 1.0000 1.0000
0 0.0367 0.0440 0.0480 0.0367 0.0440 0.0480
1 0.0407 0.0487 0.0533 0.0567 0.0647 0.0707
2 0.0540 0.0627 0.0680 0.1240 0.1347 0.1407
3 0.0773 0.0877 0.0933 0.2520 0.2620 0.2660
4 0.1133 0.1247 0.1307 0.4347 0.4377 0.4397

c = −20 5 0.1633 0.1733 0.1797 0.6347 0.6287 0.6260
6 0.2260 0.2367 0.2420 0.8007 0.7900 0.7873
7 0.3027 0.3120 0.3153 0.9087 0.8993 0.8953
8 0.3907 0.3963 0.3993 0.9640 0.9580 0.9553
9 0.4853 0.4860 0.4863 0.9873 0.9847 0.9833

10 0.5807 0.5767 0.5767 0.9960 0.9950 0.9940

can be estimated by using a Monte Carlo simulation method at
different levels of persistence (c) and correlation coefficients (δ).
The number of replications ism = 5000, and the rejection rates are
reported at nominal significance levels 1%, 5% and 10%. The results
corresponding to nominal size 5% are summarized in Table 2, and
those with nominal sizes 1% and 10% are quite similar, and thus
omitted.

Table 2 shows that the proposed test has good finite sample
sizes at the nominal significance level 5%. The observed sizes con-
verge to the nominal size with the increase of sample size and the
rejection rates are almost equal to the nominal size when n = 250.
Compared to Table 3 in Campbell and Yogo (2006), which reports
the simulated finite-sample rejection rates by using different test
methods, it is obvious that our proposed test produces the small-
est distortions under the same setting. Furthermore, the proposed
test procedure here is much easier to implement than other suit-
able tests such as the Bonferroni Q -test or the Sup-bound Q -test
proposed in Campbell and Yogo (2006).
Table 4
Comparison of the results by the two-step estimation method with OLS estimation
in Example 1.

δ c True Two-step estimate (95% CI) OLS estimate

β0 0 0.0473 (−0.1188, 0.2143) 0.0052
0 β1 −0.75 −0.7763 (−0.6870, −0.8656) NA

β2 0 0.0093 (−0.0115, 0.0301) 0.0145

β0 0 0.0490 (−0.1171, 0.2160) 0.2322⋆
−0.75 −2 β1 −0.75 −0.7818 (−0.6925, −0.8711) NA

β2 0 −0.0036 (−0.0245, 0.0171) 0.0027

β0 0 0.0381 (−0.0788, 0.1557) 0.0454
−20 β1 −0.75 −0.7826 (−0.6933, −0.8720) NA

β2 0 0.0139 (−0.0228, 0.0507) 0.0026

β0 0 0.0268 (−0.0678, 0.1215) 0.2392⋆
0 β1 −0.95 −0.9664 (−0.9242, −1.0086) NA

β2 0 −0.0017 (−0.0067, 0.0100) 0.0158⋆

β0 0 0.0229 (−0.0555, 0.1019) 0.0482
−0.95 −2 β1 −0.95 −0.9634 (−0.9213, −1.0056) NA

β2 0 0.0038 (−0.0061, 0.0136) 0.0055

β0 0 0.0191 (−0.0361, 0.0746) −0.0150
−20 β1 −0.95 −0.9344 (−0.8923, −0.9766) NA

β2 0 0.0058 (−0.0115, 0.0231) −0.0383⋆

We also evaluate the power of the proposed misspecification
test in finite samples. A natural way of doing so is to consider
the ability of the test to reject local alternatives. We consider a
sequence of alternatives with form Ha : β2 = b/n, where b ∈

[1, 10]. The sample size is added to the alternative hypothesis
because β̂2 has a convergence rate n; thus, the effect of sample
size on the power could be canceled out by using above local
alternatives. Note that in the above alternative form, if b = 0,
the alternative collapses into the null hypothesis and the power
becomes the test size. The simulated local asymptotic powers at
the nominal significance level 5% are reported in Table 3. The
results shown in the table imply that the powers rise and approach
to one when the value of b increases, while the difference among
various sample sizes is not clear due to the elimination of the
sample size effect by the local alternatives. In addition, the power
goes to one much quicker when δ = −0.95 and the test is more
powerful when the regressor is more persistent. These results
are consistent with both the above analysis and the asymptotic
theorem in Section 3.

Now we choose a typical sample to show the estimate β̂ when
the sample size n = 250 with different values of c and δ. This typi-
cal sample is selected in such a way that its ADE values (ADEβi , 0 ≤

i ≤ 2) are equal to their corresponding medians of the 5000 repli-
cations. Then we use the proposed two-step estimation procedure
to estimate the coefficients. We also consider the 95% confidence
interval associated with each coefficient, which is useful to check
whether the estimate is different from the true value of the pa-
rameter and in some further inferences. Furthermore, we compare
the estimates β̂0 and β̂2 by using the two-step estimation method
proposed in this paper to those obtained by applying the OLS esti-
mation method directly to the regression of yt onto xt−1, say,

yt = β0 + β2 xt−1 + εt . (12)

We use β̂0,OLS and β̂2,OLS to denote the OLS estimates for (12). The
estimation results by using above twomethods are listed in Table 4.

From the table, the true value of each parameter is included
in the 95% confidence interval created by adopting the proposed
two-step estimation method. Therefore, one cannot reject the null
hypothesis that each coefficient βi, 0 ≤ i ≤ 2, is equal to the cor-
responding true value. As for the OLS estimates β̂j,OLS , where j = 0,
2, the previous discussion implies that the conventional t-test is
invalid to check the significance of the OLS estimates. While since
β̂0,OLS , is not included in the 95% confidence interval of β̂0 when
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Table 5
Medians (Standard deviations) of 5000 ADE values by the two-step estimation
procedure in Example 2.

δ c n ADEβ0 ADEβ1 ADEβ2

50 0.1496 (0.1514) 0.0745 (0.0623) 0.0188 (0.0252)
0 100 0.1185 (0.1127) 0.0487 (0.0438) 0.0061 (0.0075)

250 0.0758 (0.0720) 0.0308 (0.0268) 0.0018 (0.0020)

50 0.1439 (0.1536) 0.0737 (0.0682) 0.0262 (0.0269)
−0.75 −2 100 0.1128 (0.1251) 0.0502 (0.0448) 0.0105 (0.0125)

250 0.0779 (0.0885) 0.0339 (0.0272) 0.0036 (0.0041)

50 0.0982 (0.0906) 0.0685 (0.0632) 0.0568 (0.0529)
−20 100 0.0748 (0.0682) 0.0491 (0.0444) 0.0291 (0.0264)

250 0.0569 (0.0545) 0.0305 (0.0283) 0.0118 (0.0111)

50 0.0706 (0.0715) 0.0352 (0.0294) 0.0089 (0.0119)
0 100 0.0559 (0.0532) 0.0230 (0.0207) 0.0029 (0.0036)

250 0.0358 (0.0340) 0.0146 (0.0126) 0.0009 (0.0010)

50 0.0679 (0.0725) 0.0348 (0.0322) 0.0124 (0.0127)
−0.95 −2 100 0.0533 (0.0591) 0.0237 (0.0211) 0.0050 (0.0059)

250 0.0368 (0.0418) 0.0160 (0.0128) 0.0017 (0.0019)

50 0.0464 (0.0428) 0.0323 (0.0298) 0.0268 (0.0250)
−20 100 0.0353 (0.0322) 0.0232 (0.0210) 0.0138 (0.0125)

250 0.0269 (0.0257) 0.0144 (0.0133) 0.0056 (0.0052)

c = −2 and δ = −0.75, at least we could conclude that β̂0,OLS and
β̂0 are different in this case. This is also applicable to other OLS es-
timates with asterisk characters in Table 4. The above analysis also
verifies the previous statement that the OLS estimation method
could lead to biased estimate in the finite sample case when the
embedded endogeneity exists in the model, and the two-step esti-
mationmethod proposed in this paper overcomes the endogeneity
bias problem.

Example 2. In this example, we consider the case when the
intercept in the AR(1) model for the regressor is non-zero. We add
an intercept to the previous data generating process:

yt = β0 + β1 ût + β2 xt−1 + vt , xt = θ + ρxt−1 + ut ,

where θ = −0.3, and all other settings are exactly the same as
those in Example 1. We repeat the analysis in the above example
by computing the ADE values in 5000 simulations, and also the
empirical size and power of the proposed misspecification test
statistics are computed for each simulation.

At first, we apply the proposed two-step estimation method
to obtain the estimates of the three coefficients. The medians and
standard deviations of 5000 ADE values are reported in Table 5. In
this table, a similar conclusion to that from Table 1 can be made.
When the sample size increases, both median and the standard
deviation decrease, and the rate of convergence for ADEβ2 is faster
than that for ADEβ0 and ADEβ1 . Next, the bias of β̂2 looks smaller
when the regressor is more persistent. Finally, the biases of all
three estimates are smaller when the correlation between the two
innovations is stronger (when δ = −0.95). One can also observe
some differences between Tables 1 and 5. When there is a drift
embedded in the AR(1) model for the regressor, keeping all other
settings the same, one can see that the biases of β̂0 have larger
magnitudes than without a drift, while those for β̂2 are much
smaller. Furthermore, as the sample size increases, ADEβ2 declines
much faster than it does in Table 1. This is consistent with the
results in Theorem2,which shows that the convergence rate for β̂2
should be n3/2 with a drift, compared to a rate of nwithout a drift.

In the following we illustrate the finite sample performance of
the test statistics shown in (11). Again we would like to test the
Table 6
Test sizes for testing predictability in Example 2 at nominal size 5%.

δ = −0.75 δ = −0.95
β0 β1 β2 β0 β1 β2

n = 100 0.0540 0.0580 0.0940 0.0540 0.0580 0.0940
c = 0 n = 250 0.0530 0.0510 0.0770 0.0530 0.0510 0.0770

n = 500 0.0540 0.0520 0.0660 0.0540 0.0510 0.0660
n = 100 0.0280 0.0580 0.0280 0.0270 0.0580 0.0280

c = −2 n = 250 0.0400 0.0540 0.0520 0.0400 0.0540 0.0520
n = 500 0.0480 0.0500 0.0510 0.0480 0.0500 0.0510

Table 7
Test powers in Example 2 at nominal size 5%.

b δ = −0.75 δ = −0.95
n = 100 n = 250 n = 500 n = 100 n = 250 n = 500

0 0.0940 0.0770 0.0660 0.0940 0.0770 0.0660
10 0.1710 0.1680 0.1640 0.5240 0.5230 0.5190
20 0.4760 0.4780 0.4730 0.9590 0.9680 0.9720
30 0.8220 0.8130 0.8110 0.9960 0.9980 1.0000
40 0.9480 0.9540 0.9580 1.0000 1.0000 1.0000

c = 0 50 0.9820 0.9880 0.9940 1.0000 1.0000 1.0000
60 0.9940 0.9960 0.9980 1.0000 1.0000 1.0000
70 0.9980 0.9980 1.0000 1.0000 1.0000 1.0000
80 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
90 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0 0.0280 0.0520 0.0510 0.0280 0.0520 0.0510

10 0.0380 0.0620 0.0700 0.0790 0.1160 0.1300
20 0.0720 0.1060 0.1200 0.3480 0.3820 0.3860
30 0.1500 0.1920 0.2120 0.7900 0.7520 0.7360
40 0.3000 0.3400 0.3500 0.9600 0.9380 0.9280

c = −2 50 0.5200 0.5190 0.5160 0.9940 0.9870 0.9860
60 0.7300 0.7000 0.6850 1.0000 0.9980 0.9960
70 0.8710 0.8320 0.8170 1.0000 1.0000 1.0000
80 0.9420 0.9150 0.9010 1.0000 1.0000 1.0000
90 0.9730 0.9560 0.9500 1.0000 1.0000 1.0000

100 0.9880 0.9780 0.9760 1.0000 1.0000 1.0000

hypothesis H0 : βi = 0 versus H0 : βi ≠ 0, 0 ≤ i ≤ 2, respectively.
In order to emphasize the effect of the sample size, three sample
sizes n = 100, 250 and 500 are considered. In addition, we only
focus on the cases when c = 0 and c = −2, which means the re-
gressor is highly persistent or non-stationary. We repeat the test-
ing procedure as in Example 1with test statistics given in (11), and
the simulated sizes corresponding to nominal significance level 5%
are displayed in Table 6. From the table, one can conclude that the
simulated sizes converge to corresponding nominal size with the
increase of the sample size in most cases, which is similar to what
observed in Example 1. The distortions of the simulated sizeswhen
the sample size is small (n = 100 for example) look obvious in the
tests for β0 and β2, but these sizes converge to the corresponding
nominal sizes quickly with the rise of sample size. This observa-
tion makes sense since when there is a nonzero drift in the AR(1)
model, one expects larger domains for xt and yt , which leads to
higher type I errors in the hypothesis testing. While according to
Theorem 2, these distortions should disappear quickly when the
sample size increases.

Finally, we discuss the local asymptotic powers of the proposed
misspecification test statistics. Similar to the above size simulation,
here we also consider the sample sizes as n = 100, 250 and 500,
and again the persistence level of the regressor is chosen as c = 0
or −2. We also consider the local alternatives, but the form should
be changed to Ha : β2 = b/n3/2, since the convergence rate for
β̂2 is n3/2 in this case. Further, in order to show the effectiveness
of the test, we choose b ∈ [10, 100] with an increment by 10.
The simulated test powers are shown in Table 7. The results follow
similar patterns to what observed from Example 1.
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5. A real example

In the previous section, we conduct a Monte Carlo simulation
study to illustrate the effectiveness of the two-step estimation
method and also the validity of the proposed misspecification test
statistics. In this section, we apply these methodologies to test the
predictability of the equity return.

There are three time series, including the monthly S&P 500 ex-
cess returns, log dividend–price ratio and log earning–price ra-
tio from 1932:12 to 2011:12. The monthly S&P 500 stock price,
dividends and earnings are available on the web site.1 The divi-
dend–price ratio is calculated as the ratio of average dividends dur-
ing the last year over the current stock price, and the earning–price
ratio is computed as the average earnings over past ten years di-
vided by the current price. The one-month T-bill from CRSP is se-
lected to calculate the excess return. To check the predictability of
the monthly return, we regress the excess return on the financial
variable such as the log d–p ratio and the log e–p ratio, respectively.
In order to catch different performances of these variables during
various time periods, similar to Campbell and Yogo (2006), we in-
vestigate two timeperiods: 1932:12–1990:12 (the first period) and
1991:01–2011:12 (the second period). For the sake of simplicity,
we use the log e–p ratio as the univariate predictor during the first
period and the log d–p ratio as the predictor during the second pe-
riod.

First, we check the persistency of the predictors and whether
a non-zero drift should be included in their AR(1) models. During
the first period, applying the augmented Dickey–Fuller (ADF) test
on the log e–p ratio, the p-value is 0.0141 and the p-value to test
the zero drift in the AR(1) model is 0.0011. This means the log e–p
might not be the I(1) process during this period but the drift in its
AR(1) model might not be zero. For the second period, the ADF test
(p-value is 0.6098) fails to reject the null of unit root for the log d–p
ratio and the p-value for the zero drift test is 0.3160. Therefore, the
log d–p ratio should be the unit root process without drift during
the second study period.

Next we apply the least squares method to estimate the
coefficients in the AR(1) model: xt = θ +ρxt−1 +ut for the log e–p
ratio during the first period. The estimated values for parameters
θ and ρ are θ̂ = −0.0645 and ρ̂ = 0.9777. The 95% confidence
interval for ρ is [0.9772, 0.9781] and for c is [−10.41, −10.01].
Thus during this period, the log e–p ratio satisfies the NI(1)
assumption on the regressor in the proposedmodel, since ρ̂ is close
to one but the 95% confidence interval for c does not contain zero.
For the second period, ρ̂ = 1.0003 and the 95% confidence interval
for ρ is [0.9791, 1.0035], which implies that the log d–p ratio is a
unit root process without drift during this period.

To establish the empirical relationship between the monthly
excess return and the first lag of log e–p ratio (or log d–p ratio),
now we consider the following linear regression of the response
variable on a univariate regressor
rt = β0 + β1ût + β2xt−1 + vt ,

where ût is the OLS estimated residual of the AR(1) model: xt =

θ + ρxt−1 + ut , with θ ≠ 0 for the first period but zero for the sec-
ond period. In the above model, rt represents the monthly return
of S&P 500 in month t , and the predictor xt−1 is the log e–p ratio
(or the log d–p ratio) in month t − 1. Applying the ordinary least
squaresmethod again, one can obtain the estimates β̂i, i = 0, 1, and
2, over the two study periods, respectively. We also construct the
confidence interval for each coefficient. The critical values are sim-
ulated according to the distributions given in (8)–(10) for the pe-
riod 1932:12–1990:12 and in (11) for the period 1991:01–2011:12
respectively, with the population variances replaced by sample

1 See the home page of Professor Robert Shiller at
http://www.econ.yale.edu/shiller/data.htm.
Table 8
Two-step estimates (95% C.I.) in Section 5.

1932:12–1990:12 1991:01–2011:12

β0 0.0668 (−0.0552, 0.0785) −0.0070 (−0.0078, −0.0062)
β1 −0.9932 (−0.9936, −0.9927) −0.9825 (−0.9830, −0.9821)
β2 0.0225 (−0.0182, 0.0269) −0.0021 (−0.0037, −0.0006)

variances, and substituting c and θ by their estimates from the
empirical data. The estimated coefficients, together with their 95%
confidence intervals, are listed in Table 8. From the results in the
table, one can observe that the confidence interval for coefficient
β2 covers zero during the period 1932:12–1990:12 for the log e–p
ratio but does not do so for the second period for the log d–p ra-
tio, which implies that the log d–p ratio has the predictability for
the stock return during the second study period but the log e–p ra-
tio might not be able to forecast stock return during the first study
period. It is also interesting to notice that the stock return has a
negative relation to the log d–p ratio since 1991.

6. Conclusion

In this paper, we study a predictive regression model which
has the ability to include the regressor to be an I(1) or NI(1)
process and allows the so-called embedded endogeneity in the
model. By conducting a linear relationship between the two
innovations in the predictive regression model, we develop a two-
step estimation procedure for estimating the coefficients and study
their asymptotic distributions. Then we investigate the usefulness
of the estimation procedure using simulation examples and a real
example, in which we illustrate how to construct the confidence
interval for each coefficient based on the proposed asymptotic
distribution, and also compare our estimation results with those
obtained by directly applying the OLS method to a predictive
regression with endogeneity to show that the estimates obtained
by the proposed two-step method should be superior to the
OLS method in the finite sample cases. However, as addressed
by Viceira (1997) and Paye and Timmermann (2006), the stability
of the predictability should also be a big concern in the reality.
Thus, the predictive regression with time-varying coefficients
deserves further discussion. The statistical inference based on the
time-varying coefficient predictive regression model, such as the
hypothesis testing of the stability of predictability, also deserves
further investigation.

Appendix

In this appendix, we present briefly the derivations of the
main results given in previous sections. Before embracing on the
proofs, we define some notations and list a lemma. First, let C be
a finite positive constant, which might be different in different
appearances and ∥ · ∥ denotes the Euclidean norm. Define ξn,t =

xt/
√
n, ζt =


∞

k=1 Et(vt+k), and Wv(r) =


[nr]
t=1 vt/

√
n. Let Fs =

σ(ξn,t , vt : t ≤ s) be the smallest sigma-field containing all the
past histories of (ξn,s, vs) for all n. Et(X) = E(X |Ft). In addition,
for any 0 ≤ r ≤ 1, Λ∗

n(r) =
1
n


[nr]
t=1(xt − xt−1)ζt − x[nr]ζ[nr]+1/n.

Lemma A.1. Under Assumptions A1–A3, we have sup0≤r≤1 |Λ∗
n(r)|

= op(1).

Proof of Lemma A.1. By the definition of Λ∗
n(r) and (2), one has

sup
0≤r≤1

|Λ∗

n(r)| = sup
0≤r≤1

1n
[nr]
t=1

[(ρ − 1)xt−1 + ut ]ζt −
1
n
x[nr]ζ[nr]+1


≤

1 − ρ

n
sup

0≤r≤1

 [nr]
t=1

xt−1ζt

+ 1
n

sup
0≤r≤1

 [nr]
t=1

utζt



http://www.econ.yale.edu/shiller/data.htm
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+
1
n

sup
0≤r≤1

|x[nr]ζ[nr]+1|

≡ L1 + L2 + L3.

Wewill check L1, L2 and L3 respectively. First, based on the previous
assumption, it is easy to see that ∥vt∥p = O(1) for any p > 0.
Applying Minkowski’s inequality for α-mixing sequence (McLeish,
1975), Davydov’s inequality and Assumption A3, one obtains

∥ζt∥δ1 ≤

∞
k=1

∥Et(vt+k)∥δ1 ≤ C
∞
k=1

α1/δ1−1/δ2(k)∥vt+k∥δ2 ≤ C .

From Chebyshev’s inequality, together with Assumption A3, one
can show that for any ϵ > 0,

P

sup
t≤n

|ζt | >
√
nϵ


≤ ϵ−δ1n1−δ1/2E|ζt |
δ1 ≤ Cn1−δ1/2 → 0

since δ1 > 2. Therefore, it follows that

L3 =
1
n

sup
0≤r≤1

|x[nr]ζ[nr]+1|

≤ sup
0≤r≤1

|x[nr]|/
√
n sup

0≤r≤1
|ζ[nr]+1|/

√
n = op(1)

by sup0≤r≤1 |x[nr]| = Op(
√
n) and the continuous mapping theo-

rem (see, e.g., Theorem 2.7 in Billingsley (1999)). Similarly, since
ρ = 1 + c/n,

L1 =
1 − ρ

n
sup

0≤r≤1

 [nr]
t=1

xt−1ζt

 ≤
−c
n

sup
0≤r≤1

|x[nr]ζ[nr]+1| = op(1).

Now it turns to L2. At first, consider the term utζt −E(utζt), for any
m ≥ 1,

∥Et−m[utζt − E(utζt)]∥δ3 ≤

∞
k=1

∥Et−m[utvt+k − E(utvt+k)]∥δ3

=

∞
k=1

∥Et−m(utvt+k)∥δ3 =

m
k=1

∥Et−m(utvt+k)∥δ3

+

∞
k=m+1

∥Et−m(utvt+k)∥δ3 ≡ N1 + N2,

where E(utvt+k) = 0 and 0 < δ3 < 2 is defined in Assumption A3.
By McLeish’ inequality again and Assumption A3, it follows that

∥Et−m(utvt+k)∥δ3 ≤ C α1/δ3−1/2(m)∥utvt+k∥2 ≤ C α1/δ3−1/2(m).

Hence,

N1 =

m
k=1

∥Et−m(utvt+k)∥δ3 ≤ Cmα1/δ3−1/2(m).

As for N2, it follows by applying McLeish’ inequality again that

∥Et−m(utvt+k)∥δ3 ≤ ∥utEt−m(vt+k)∥δ3

≤ ∥ut∥δ4δ3/(δ4−δ3)∥Et−m(vt+k)∥δ4

≤ C ∥ut∥δ4δ3/(δ4−δ3)α
1/δ4−1/2(k)∥vt+k∥2

≤ C∥ut∥δ4δ3/(δ4−δ3)α
1/δ4−1/2(k)

≤ Cα1/δ4−1/2(k),

where δ3 < δ4 < 2 are also defined in Assumption A3. Then,

N2 =

∞
k=m+1

∥Et−m(utvt+k)∥δ3 ≤ C
∞

k=m+1

α1/δ4−1/2(k).
Combining the above results, one obtains

∥Et−m[utζt − E(utζt)]∥δ3 = N1 + N2

≤ C


mα1/δ3−1/2(m) +

∞
k=m+1

α1/δ4−1/2(k)


→ 0.

It is easy to showby corollary to Theorem3.3 in Hansen (1992) that

1
n

sup
0≤r≤1

 [nr]
t=1

[utζt − E(utζt)]

 p
→ 0,

which, together with the fact that |E(utζt)| = 0, implies that

L2 =
1
n

sup
0≤r≤1

 [nr]
t=1

utζt

 p
→ 0.

This, in conjunction with the universe convergence of L1 and L3,
implies that

sup
0≤r≤1

|Λ∗

n(r)| ≡ L1 + L2 + L3 = op(1).

This proves the lemma. �

Proof of Theorem 1. First, based on the fact that sup2≤t≤n xt−1/√
n = O(1), we consider the following transformation of the

term ût :

ût = xt − ρ̂ xt−1 = xt − ρ xt−1 + (ρ − ρ̂)xt−1

= ut +
√
n(ρ − ρ̂)xt−1/

√
n = ut + Op(n−1/2),

where the last equation is easy to prove. Hence in the following
proof, we will use ut to replace ût without further explanation. To
prove the theorem, recall that

β̂ =

XTX

−1
XTy =


XTX

−1
XT (Xβ + v) = β +


XTX

−1
XTv.

Therefore,

Dn(β̂ − β) =

n−1D−1

n XTXD−1
n

−1
n−1D−1

n XTv ≡ S−1
n Tn, (A.1)

where Sn = n−1D−1
n XTXD−1

n and Tn = n−1D−1
n XTv. We will check

the two terms respectively. At first,

Sn =
1
n

n
t=1

1
1

1/
√
n


 1 ut xt−1

ut u2
t utxt−1

xt−1 utxt−1 x2t−1


1

1
1/

√
n



=
1
n

n
t=1

 1 ut xt−1/
√
n

ut u2
t utxt−1/

√
n

xt−1/
√
n utxt−1/

√
n x2t−1/n

 . (A.2)

For an α-mixing process satisfying (1.3) of Rio (1995), one obtains
the limiting distribution of the partial sum of ut : 1

√
n

n
t=1 ut

d
→

N(0, σ 2
u ), where σ 2

u = Var(u1) + 2


∞

k=2 Cov(u1, uk). Thus, we
conclude

1
n

n
t=1

ut = O(n−1) = o(1).

Similarly, based on the results E

n−1n

t=1 u
2
t


= σ 2

u and

E

n−1n

t=1 u
2
t

2
= o(1), we obtain

1
n

n
t=1

u2
t = σ 2

u + o(1).
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These results, together with the asymptotic properties for NI(1)
processes in (5), imply that

Sn =


1 0

 1

0
Kc(r)dr

0 σ 2
u 0 1

0
Kc(r)dr 0

 1

0
K 2
c (r)dr

+ op(1)

≡ S0 + op(1). (A.3)

Second,

Tn = n−1D−1
n XTv =

1
n

n
t=1


1, ut , xt−1/

√
n
T

vt . (A.4)

Applying Theorem 1 in Rio (1995) again, we have

1
√
n

n
t=1

vt
d

→ N(0, σ 2
v ) = Wv(1).

Similarly, by recalling that ut and vt are independent, we have

1
√
n

n
t=1

utvt
d

→ Wuv(1),

where Wuv(s) is a one-dimensional Brownian motion with
variance σ 2

uv . Finally, applying Theorem 4.4(b) in Hansen (1992)
and combining with Lemma A.1, we obtain

1
√
n

n
t=1

xt−1vt
d

→

 1

0
Kc(r)dWv(r). (A.5)

These results, together with (A.4), imply that

√
nTn =


Wv(1),Wuv(1),

 1

0
Kc(r)dWv(r)

T

+ op(1). (A.6)

Hence,

√
nS−1

n (s)Tn(s)
d

→ S−1
0


Wv(1),Wuv(1),

 1

0
Kc(r)dWv(r)

T

.(A.7)

Since xt−1 and vt are uncorrelated, Kc(r) and Wv(r) are uncorre-
lated and

 1
0 Kc(r)dWv(r) follows amixed normal distribution. The

conditional covariance of
Wv(1),Wuv(1),

 1

0
Kc(r)dWv(r)

T

is diag

σ 2

v , σ 2
uv, σ

2
v

 1
0 K 2

c (r)dr

, whereσ 2

uv denotes the variance of
Wuv(1). By combining (A.1) and (A.7), we establish the asymptotic
distribution in Theorem 1. That is,
√
n Dn


β̂ − β


d

→ MN(0, Σβ).

This proves the theorem. �

Proof of Proposition 1. By our previous analysis, when variable
xt satisfies the autoregressive model in (6) with nonzero drift and
nonzero value of c , it follows

xt = θ

t−1
s=0

ρs
+

t−1
r=0

ρrut−r =
nθ
c

(ect/n − 1) + o(1),

where the last equation is due to ρ = 1 + c/n = exp(n−1c) +

o(n−1), which implies that

n−1x[nr]
p

→ θ(ecr − 1)/c + o(1), (t − 1)/n ≤ r < t/n
where [nr] denotes the integer part of nr . Next, we have

n−2
n

t=1

xt−1 = n−2
n

t=1

nθ
c

(ρt−1
− 1) + o(1)

=
θ

c2
(ec − 1 − c) + o(1)

p
→ θ(ec − 1 − c)/c2.

Similarly,

n−3
n

t=1

x2t−1 =
θ2

c2
n−1

n
t=1

(1 − ρt−1)2

+ o(1)
p

→ θ2
[(ec − 2)2 + 2c − 1]/2c3.

Finally, by Theorem 1 in Rio (1995), we have n−1/2n
t=1 vt →

N(0, σ 2
v ), which implies that

n−3/2
n

t=1

xt−1vt = n−1/2
n

t=1

θ

c
(1 − ρt−1)vt + o(1)

is also normally distributed with mean zero and variance
θ2σ 2

v

c2

(ec − 2)2 + 2c − 1


. Thus, part (d) is proved. �

Proof of Theorem 2. When the drift in the ARmodel of the regres-
sor is nonzero, we have the properties: x[nr]/n = Op(1) and
n1/2(θ̂ − θ)

n3/2(ρ̂ − ρ)


d

→ N(0, σ 2
u Q

−1),

where Q =


1 θ/2

θ/2 θ2/3


. Thus, the estimated residual of the AR(1)

model for xt−1 follows:

ût = xt − θ̂ − ρ̂ xt−1 = xt − θ − ρ xt−1 + (θ − θ̂ )

+ (ρ − ρ̂)xt−1 = ut + Op(n−1/2),

which has the same order as if the drift is zero. The estimated β

still follows (A.1), but with Dn replaced by D∗
n:

D∗

n(β̂ − β) =


n−1D∗

n
−1XTXD∗

n
−1
−1

n−1D∗

n
−1XTv ≡ S∗

n
−1T ∗

n ,

where the definitions of S∗
n (s) and T ∗

n (s) are very similar to Sn(s)
and Tn(s) in the proof of Theorem 1, but with D∗

n instead of Dn. To
find the asymptotic property for S∗

n , notice

S∗

n =
1
n

n
t=1

 1 ut xt−1/n
ut u2

t utxt−1/n
xt−1/n utxt−1/n x2t−1/n

2

 .

Based on the asymptotic properties given in (7), we can easily ob-
tain

S∗

n =

 1 0 θ(ec − 1 − c)/c2

0 σ 2
u 0

θ(ec − 1 − c)/c2 0 θ2
[(ec − 2)2 + 2c − 1]/2c3


+ op(1) ≡ S∗

0 + op(1).

Further,

T ∗

n = n−1D∗
−1

n XTv =
1
n

n
t=1

(1, ut , xt−1/n)T vt .

Applying the above asymptotic properties again, we can show that

√
nT ∗

n =


Wv(1),Wuv(1), |θ |Wv(1)


[(ec − 2)2 + 2c − 1]/2c3

T
+ op(1).
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Therefore,
√
n S∗

n
−1

(s)T ∗

n (s)
d

→ S∗

0
−1

Wv(1),Wuv(1), |θ |Wv(1)


[(ec − 2)2 + 2c − 1]/2c3

T
.

The covariance matrix of
Wv(1),Wuv(1), |θ |Wv(1)


[(ec − 2)2 + 2c − 1]/2c3

T
is diag


σ 2

v , σ 2
uv, θ

2σ 2
v [(ec − 2)2 + 2c − 1]/2c3


. By Slusky’s theo-

rem again, we obtain the asymptotic distribution in Theorem 2.
�
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