
Nonparametric Quantile Estimations for Dynamic
Smooth Coefficient Models

Zongwu CAI and Xiaoping XU

We suggest quantile regression methods for a class of smooth coefficient time series models. We use both local polynomial and local
constant fitting schemes to estimate the smooth coefficients in a quantile framework. We establish the asymptotic properties of both the
local polynomial and local constant estimators for α-mixing time series. We also suggest a bandwidth selector based on the nonparametric
version of the Akaike information criterion, along with a consistent estimate of the asymptotic covariance matrix. We evaluate the asymptotic
behaviors of the estimators at boundaries and compare the local polynomial quantile estimator and the local constant estimator. A simulation
study is carried out to illustrate the performance of estimates. An empirical application of the model to real data further demonstrates the
potential of the proposed modeling procedures.
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1. INTRODUCTION

Over the last three decades, quantile regression, also called
conditional quantile or regression quantile (introduced in
Koenker and Bassett 1978), has been widely used in various
disciplines, including finance, economics, medicine, and bi-
ology. It is well known that when the distribution of data is
typically skewed or the data contain some outliers, the median
regression—a special case of quantile regression—is more ex-
plicable and robust than the mean regression. In addition, re-
gression quantiles can be used to test heteroscedasticity for-
mally or graphically (e.g., Koenker and Bassett 1982; Koenker
and Zhao 1996; Koenker and Xiao 2002). Although some indi-
vidual quantiles, such as the conditional median, are sometimes
of interest in practice, more often one wishes to obtain a col-
lection of conditional quantiles that can characterize the entire
conditional distribution. Another, more important application of
conditional quantiles is the construction of prediction intervals
for the next value given a small section of recent past values in
a stationary time series (e.g., Koenker 1994; Koenker and Zhao
1996; Zhou and Portnoy 1996).

Recently, the quantile regression technique has been success-
fully applied to various applied fields. For example, by follow-
ing the regulations of the Bank for International Settlements,
many financial institutions have begun to use a uniform mea-
sure of risk to measure market risks called value-at-risk (VaR),
which can be defined as the maximum potential loss of a spe-
cific portfolio for a given horizon in finance. In essence, the VaR
computes an estimate of the lower-tail quantile (with a small
probability) of future portfolio returns, conditional on current
information. Therefore, VaR can be considered a special appli-
cation of the quantile regression. There is a vast amount of lit-
erature on this topic (see Khindanova and Rachev 2000; Engle
and Manganelli 2004 for further discussion).

In this article we assume that {Xt , Yt }∞t=−∞ is a stationary
sequence. Let F(y|x) denote the conditional distribution of Y
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given X = x, where Xt = (Xt1, . . . ,Xtd)′, with ′ denoting the
transpose of a matrix or vector, is the associated covariate vec-
tor in �d with d ≥ 1, which may be a function of exogenous
variables (covariates) or some lagged variables or time t . A re-
gression quantile function qτ (x) is defined as

qτ (x) = arg min
a∈�

E{ρτ (Yt − a)|Xt = x}, (1)

for any 0 < τ < 1, where ρτ (y) = y(τ − I{y<0}) with y ∈ �
is called the loss (“check”) function and IA is the indicator
function of any set A. Clearly, the simplest form of (1) is
qτ (x) = β ′

τ x, which is known as the linear quantile regression
model.

In many practical applications, however, the linear quan-
tile regression model might not be “rich” enough to capture
the underlying relationship between the quantile of response
variable and its covariates. Indeed, some components may be
highly nonlinear, or some covariates may be interactive. In a
effort to make quantile regression models more flexible, there
is a swiftly growing literature on nonparametric quantile re-
gression. Various smoothing techniques (e.g., kernel methods,
splines, and their variants) have been used to estimate the non-
parametric quantile regression for both independent and time
series data. Some recent developments and detailed discussions
on theory, methodologies, and applications can be found in the
literature. In particular, for the univariate case, Honda (2000)
derived the asymptotic properties of the local linear estimator of
the quantile regression function under α-mixing conditions. For
the high-dimensional case, however, the aforementioned meth-
ods encounter some difficulties, such as the so-called “curse
of dimensionality,” and their implementation in practice is not
easy, and the visual display is not so useful for exploratory pur-
poses.

To address the foregoing problems, De Gooijer and Ze-
rom (2003), Yu and Lu (2004), and Horowitz and Lee (2005)
considered an additive quantile regression model, qτ (Xt ) =∑d

k=1 gk(Xtk). To estimate each component, for the time se-
ries case, De Gooijer and Zerom (2003) first estimated a high-
dimensional quantile function by inverting the conditional dis-
tribution function estimated by using a weighted Nadaraya–
Watson approach of Cai (2002) and then used a projection
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method to estimate each component, whereas Yu and Lu (2004)
focused on independent data and used a backfitting algorithm
method to estimate each component. In contrast, to estimate
each additive component for independent data, Horowitz and
Lee (2005) used a two-stage approach consisting of the se-
ries estimation as the first step and a local polynomial fit-
ting as the second step. For independent data, the foregoing
model was extended by He, Ng, and Portnoy (1998), He and
Ng (1999), and He and Portnoy (2000) to include interac-
tion terms by using spline methods. Finally, Xiao (2006) in-
vestigated a new, robust approach for estimating conditional
quantiles based on generalized autoregressive conditional het-
erscedasticity (GARCH)-type models. Because quantile regres-
sion estimation of GARCH models is highly nonlinear, Xiao
(2006) discussed the problem of estimating this type of model
using traditional recursive methods for nonlinear quantile re-
gression and proposed two new methods for estimating quan-
tiles of GARCH models.

In this article we adapt another dimension reduction mod-
eling method to analyze dynamic time series data, termed the
smooth (functional or varying) coefficient modeling approach.
A smooth coefficient quantile regression model for time series
data takes the form

qτ (Ut ,Xt ) =
d∑

k=0

ak,τ (Ut )Xtk = X′
taτ (Ut ), (2)

where Ut is called the smoothing variable, which might be
one part of Xt1, . . . ,Xtd or time or other exogenous variables
or lagged variables; Xt = (Xt0,Xt1, . . . ,Xtd)′ with Xt0 ≡ 1
are covariates; {ak,τ (·)} are smooth coefficient functions; and
aτ (·) = (a0,τ (·), . . . , ad,τ (·))′. Here some of the {ak,τ (·)} are al-
lowed to depend on τ . For simplicity, we drop τ from {ak,τ (·)}
in what follows. Our interest here is in estimating coefficient
functions a(·) rather than the quantile regression surface qτ (·, ·)
itself. Note that model (2) was studied by Honda (2004), Wei
and He (2006), and Kim (2007) for an independent sample, but
our focus here is on a dynamic model for nonlinear time series,
which has more capacity for applications.

The general setting in (2) covers many familiar quantile re-
gression models, including the quantile autoregressive model
(QAR) proposed by Koenker and Xiao (2004), who applied
it for unit root inference. In particular, it includes a specific
class of autoregressive conditional heteroscedasticity (ARCH)
models, such as heteroscedastic linear models, considered by
Koenker and Zhao (1996) and nonlinear models, studied by
Xiao (2006). In addition, if there is no Xt in the model (d = 0),
then qτ (Ut ,Xt ) becomes qτ (Ut ), so that model (2) reduces to
the ordinary nonparametric quantile regression model, which
has been studied extensively (e.g., Chaudhuri, Doksum, and
Samarov 1997; Yu and Jones 1998; Honda 2000; Cai 2002).
If Ut is just time, then the model is called a time-varying co-
efficient quantile regression model, which is potentially useful
for checking whether the quantile regression changes over time.
A case of practical interest is the analysis of reference growth
data by Cole (1994), Wei, Pere, Koenker, and He (2006), and
Wei and He (2006).

The motivation of this study comes from analyzing the well-
known Boston housing price data. The main interest lies in
identifying factors affecting housing prices in the Boston area.

As argued by Şentürk and Müller (2005), the correlation be-
tween housing prices and the crime rate can be adjusted by the
confounding variable, the proportion of the population of lower
educational status, through a varying-coefficient model, and the
expected effect of increasing crime rate on declining housing
prices seems to be observed only for lower educational status
neighborhoods in Boston. The interesting features of this data
set are that the response variable is the median price of a home
in a given area, and the distributions of the price and the major
covariates (including the confounding variable) are left-skewed.
Therefore, quantile methods are suitable for analyzing this data
set. This problem can be tackled using model (2). In another ex-
ample, we are interested in exploring the possible nonlinearity,
heteroscedasticity, and predictability of exchange rates, such as
the Japanese Yen against the U.S. dollar. A detailed analysis of
these data sets is reported in Section 3.

The rest of the article is organized as follows. In Section 2
we present both the local polynomial and local constant quan-
tile estimations of coefficient functions. We also suggest an ad
hoc data-driven fashioned bandwidth selector based on the non-
parametric version of the Akaike information criterion (AIC)
and provide a consistent estimator of the asymptotic covariance
matrix. In Section 3 we illustrate the finite-sample performance
of the proposed estimators with a Monte Carlo experiment and
give an application to the exchange rate series and the Boston
housing price data. We study the asymptotic properties of the
proposed estimators in Section 4. We provide some concluding
remarks in Section 5. Finally, in the Appendix we give brief
derivations of the theorems with some lemmas.

2. MODELING PROCEDURES

2.1 Local Polynomial Quantile Estimate

Without loss of generality, we consider only the case in
which Ut in (2) is one-dimensional, denoted by Ut in what
follows. For multivariate Ut , the modeling procedure and the
related theory for the univariate case continue to hold, but fur-
ther, more complicated notations are involved. To estimate the
coefficient functions {ak(·)}, we use a local polynomial fitting
because of its nice properties, such as high statistical efficiency
in an asymptotic minimax sense, design adaptation, and auto-
matic edge correction (see Fan and Gijbels 1996).

Now we estimate {ak(·)} using the local polynomial method
based on observations {(Ut ,Xt , Yt )}nt=1. We assume throughout
that the coefficient functions {a(·)} have the (q +1)th derivative
(q ≥ 1), so that for any given grid point u0 ∈ �, ak(·) can be
approximated by a polynomial function in a neighborhood of
the given grid point u0 as a(Ut ) ≈ ∑q

j=0 βj (Ut − u0)
j , where

βj = a(j)(u0)/j ! and a(j)(u0) is the j th derivative of a(u0),
so that qτ (Ut ,Xt ) ≈ ∑q

j=0 X′
tβj (Ut − u0)

j . Then the locally
weighted loss function is

n∑

t=1

ρτ

(

Yt −
q∑

j=0

X′
tβj (Ut − u0)

j

)

Kh(Ut − u0), (3)

where K(·) is a kernel function, Kh(x) = K(x/h)/h, and
h = hn is a sequence of positive numbers tending to 0, which
controls the amount of smoothing used in estimation. Solving
the minimization problem in (3) gives â(u0) = β̂0, the local
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polynomial estimate of a(u0), and â(j)(u0) = j !̂βj (j ≥ 1), the
local polynomial estimate of the j th derivative, a(j)(u0). By
moving u0 along with the real line, the estimate of the entire
curve â(u0) is obtained.

Note that the local constant (Nadaraya–Watson type) quan-
tile estimation of a(u0), denoted by ã(u0), is β̃ minimizing the
subjective function

n∑

t=1

ρτ (Yt − X′
tβ)Kh(Ut − u0), (4)

which is a special case of (3) with q = 0. We compare â(u0)

and ã(u0) theoretically at the end of Section 4 and empirically
in Section 3.1. The comparisons lead us to suggest that the local
polynomial approach should be used in practice.

Remark 1. Note that many other nonparametric methods can
be used here, including spline approaches (e.g., He et al. 1998;
He and Ng 1999; He and Portnoy 2000). As pointed out by
the editor, local polynomial estimates of nonparametric quan-
tile regressions might tend to be rough, particularly for small or
large values of τ , because only a small number of data points
are available in the regions. It this regard, a spline approach
might be better, because it can be considered a global paramet-
ric method. But a spline method might not be rich enough to
characterize the local properties of nonparametric functions.

Bandwidth Selection

It is well known that the bandwidth plays an essential role in
the trade-off between reducing bias and variance. To the best
of our knowledge, almost nothing has been done about select-
ing the bandwidth in the context of estimating the coefficient
functions in the quantile regression, even though there is a rich
literature on this issue in the mean regression setting (see, e.g.,
Cai, Fan, and Yao 2000). Yu and Jones (1998) and Yu and Lu
(2004) proposed a simple, convenient method for nonparamet-
ric quantile estimation. Their approach assumes that the second
derivatives of the quantile function are parallel; however, this
assumption might not be valid for many applications, because
of (nonlinear) heteroscedasticity. Furthermore, the mean regres-
sion approach cannot directly estimate the variance function.
To address these problems, we propose a method of selecting
the bandwidth for the foregoing estimation procedure, based on
the nonparametric version of the AIC, which can address the
structure of time series data and the overfitting or underfitting
tendency. The basic idea is motivated by its analog from Cai
and Tiwari (2000) for nonlinear mean regression for time series
models, as we describe briefly.

By recalling the classical AIC for linear models under the
likelihood setting (i.e., the negative of twice of the maximized
log-likelihood plus twice of the number of estimated parame-
ters), we propose the following nonparametric version of the
bias-corrected AIC, due to Hurvich, Simonoff, and Tsai (1998)
and Cai and Tiwari (2000) for nonparametric regression mod-
els, to select h by minimizing

AIC(h) = log{̂σ 2
τ } + 2(ph + 1)/[n − (ph + 2)], (5)

where σ̂ 2
τ and ph are as defined later. This criterion may be

interpreted as the AIC for the local quantile smoothing prob-
lem, and it seems to perform well in some limited applica-
tions. Note that, similar to (5), Koenker, Ng, and Portnoy (1994)

considered the Schwarz information criterion (SIC) (Schwarz
1978) with the second term on the right side of (5) replayed
by 2n−1ph logn, where ph is the number of “active knots” for
the smoothing spline quantile setting. Machado (1993) studied
similar criteria for parametric quantile regression models and
more general M-estimators of regression.

We now turn to defining σ̂ 2
τ and ph in this setting. In the

mean regression setting, σ̂ 2
τ is just the mean squared error.

In the quantile regression, we define σ̂ 2
τ as n−1 ∑t

t=1 ρτ (Yt −
X′

t â(Ut )), which may be interpreted as the mean squared er-
ror in the least squares setting and also was used by Koenker
et al. (1994). In nonparametric models, ph is the nonparamet-
ric version of degrees of freedom, called the effective number of
parameters, which usually is based on the trace of various quasi-
projection (hat) matrixes in the least squares theory (linear es-
timators). (See, e.g., Cai and Tiwari 2000 for a cogent discus-
sion for nonparametric regression models for time series.) For
the quantile smoothing setting, the explicit expression for the
quasi-projection matrix does not exist, because of to its nonlin-
earity; however, we can use the first-order approximation (the
local Bahadur representation) to derive an explicit expression,
which may be interpreted as the quasi-projection matrix in this
setting. Toward this end, set

Uth = (Ut − u0)/h, X∗
t =

(
Xt

UthXt

)

,

Y ∗
t = Yt − X′

t

[
a(u0) + a(1)(u0)(Ut − u0)

]
,

H = diag{Id , hId},
Id as the d × d identity matrix, and

θ = √
nhH

(
β0 − a(u0)

β1 − a(1)(u0)

)

.

Define Sn = Sn(u0) = an

∑n
t=1 ξtX∗

t X∗
t
′K(Uth), where an =

(nh)−1/2 and ξt = I (Yt ≤ X′
ta(u0) + an) − I (Yt ≤ X′

ta(u0)).
In the Appendix we shown that

Sn(u0) = fu(u0)�
∗
1(u0) + op(1), (6)

where fu(u) represents the marginal density of U , �∗
1(u0) =

diag{1,μ2}⊗�∗(u0), μ2 = ∫
u2K(u)du, �∗(u0) ≡ E[XtX′

t ×
fy|u,x(qτ (u0,Xt ))|Ut = u0], and fy|u,x(y) is the conditional
density of Y given U and X. It is easy to see from (6) and (A.1)
in the Appendix that θ̂ = anS−1

n

∑n
t=1 ψτ (Y

∗
t )X∗

t K(Uth) +
op(1), where ψτ (x) = τ − I{x<0}. Then we have

q̂τ (Ut ,Xt ) − qτ (Ut ,Xt )

= 1

n

n∑

s=1

ψτ (Y
∗
s (Ut ))Kh((Us − Ut)/h)X0

t

′
S−1

n (Ut )X∗
s

+ op(an),

where

X0
t =

(
Xt

0

)

.

The coefficient of ψτ (Y
∗
s (Us)) on the right side of the foregoing

expression is γs = a2
nK(0)X0

s

′
S−1

n (Us)X0
s . Now we have that

ph = ∑n
s=1 γs , which can be considered an approximation to

the trace of the quasi-projection (hat) matrix for linear estima-
tors. In a practical implementation, we need to estimate a(u0)
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first, because Sn(u0) involves a(u0). We recommend using a
pilot bandwidth, which can be that proposed by Yu and Jones
(1998). Similar to the least squares theory, as expected, the
criterion proposed in (5) counteracts the overfitting tendency
of the generalized cross-validation due to its relatively weak
penalty and the underfitting of the SIC (Schwarz 1978) studied
by Koenker et al. (1994) because of its heavy penalty.

2.2 Covariance Estimate

For the purpose of statistical inference, we next consider
estimation of the asymptotic covariance matrix to construct
the pointwise confidence intervals. The explicit expression
of the asymptotic covariance provides a direct estimator.
Therefore, we can use the so-called “sandwich” method. In
other words, we need to obtain a consistent estimate for
both �(u0) and �∗(u0). Toward this end, define �̂n,0 =
n−1 ∑n

t=1 XtX′
tKh(Ut − u0) and �̂n,1 = n−1 ∑n

t=1 wtXtX′
t ×

Kh(Ut − u0), where wt = I (X′
t â(u0) − δn < Yt ≤ X′

t â(u0) +
δn)/(2δn) for any δn → 0 as n → ∞. In the Appendix we
shown that

�̂n,0 = fu(u0)�(u0) + op(1) and
(7)

�̂n,1 = fu(u0)�
∗(u0) + op(1),

where �(u0) ≡ E[XtX′
t |Ut = u0]. Therefore, a consistent esti-

mate of �(u0) = [�∗(u0)]−1�(u0)[�∗(u0)]−1/fu(u0) can be

given by �̂(u0) = �̂
−1
n,1�̂n,0(u0)�̂

−1
n,1. Note that �̂n,1(u0) may

be close to singular for some sparse regions. To avoid this com-
putational difficulty, two alternative methods are available for
constructing a consistent estimate of fu(u0)�

∗(u0) by esti-
mating the conditional density of Y , fy|u,x(qτ (u,x)). The first
of these methods is the Nadaraya–Watson type (or local lin-
ear) double-kernel method of Fan, Yao, and Tong (1996), de-
fined as f̂y|u,x(qτ (u,x)) = ∑n

t=1 Kh2(Ut −u,Xt − x)Lh1(Yt −
qτ (u,x))/

∑n
t=1 Kh2(Ut − u,Xt − x), where L(·) is a ker-

nel function. The second is the difference quotients method
of Koenker and Xiao (2004), such that f̂y|u,x(qτ (u,x)) =
(τj − τj−1)/[qτj

(u,x) − qτj−1(u,x)] for some appropriately
chosen sequence of {τj }. Then, in view of the definition of
fu(u0)�

∗(u0), the estimator �̃n,1 can be constructed as �̃n,1 =
n−1 ∑n

t=1 f̂y|u,x (̂qτ (Ut ,Xt ))XtX′
tKh(Ut − u0). By an analog

of (7), we can show that under some regularity conditions, both
estimators are consistent.

3. EMPIRICAL APPLICATIONS

In this section we report a Monte Carlo simulation for ex-
amining the finite-sample property of the proposed estimator
that we use to further explore the possible nonlinearity, het-
eroscedasticity, and predictability of the exchange rate of the
Japanese Yen against the U.S. dollar and to identify factors af-
fecting housing prices in the Boston area. In our computation
we use the Epanechnikov kernel, K(u) = .75(1 − u2)I (|u| ≤
1), and construct the pointwise confidence intervals based on
the consistent estimate of the asymptotic covariance described
in Section 2.3 without bias correction. In the examples that
follow, we use the proposed data-driven bandwidth selection
method proposed in Section 2.2 to choose the optimal hopt . For
a predetermined sequence of h’s from a wide range (say from
ha to hb with an increment of hδ), based on the AIC bandwidth
selector described in Section 2.2, we compute the AIC(h) for
each h and choose hopt to minimize the AIC(h).

3.1 A Simulated Example

Example 1. We consider the following data-generating
process:

Yt = a1(Ut )Yt−1 + a2(Ut )Yt−2 + σ(Ut )et , t = 1, . . . , n,

where a1(Ut ) = sin(
√

2πUt), a2(Ut ) = cos(
√

2πUt), and
σ(Ut ) = 3 exp(−4(Ut − 1)2) + 2 exp(−5(Ut − 2)2). Ut is gen-
erated from uniform (0,3) independently, and et ∼ N(0,1).
The quantile regression is qτ (Ut , Yt−1, Yt−2) = a0(Ut ) +
a1(Ut )Yt−1 + a2(Ut )Yt−2, where a0(Ut ) = �−1(τ )σ (Ut ) and
�−1(τ ) is the τ th quantile of the standard normal. Therefore,
only a0(·) is a function of τ . Note that a0(·) = 0 when τ = .5.
To assess the performance of finite samples, we compute the
mean absolute deviation error (MADE) for âj (·), defined as
MADEj = n−1

0

∑n0
k=1 |̂aj (uk) − aj (uk)|, where âj (·) is either

the local linear or local constant quantile estimate of aj (·) and
{uk = .1(k − 1) + .2 : 1 ≤ k ≤ n0 = 27} are the grid points. The
Monte Carlo simulation is repeated 500 times for each sample
size n = 200, 500, and 1,000 and for each τ = .05, .50, and .95.
We compute the optimal bandwidth for each replication, sam-
ple size, and τ . We compute the median and standard deviation
(in parentheses) of 500 MADE values for each scenario and
summarize the results in Table 1.

From Table 1, we can see that the MADE values for both the
local linear and local constant quantile estimates decrease when

Table 1. Median and standard deviation of 500 MADE values

τ = .05 τ = .5 τ = .95

n MADE0 MADE1 MADE2 MADE0 MADE1 MADE2 MADE0 MADE1 MADE2

Local linear estimator
200 .911(.520) .186(.041) .177(.041) .401(.091) .092(.032) .089(.032) .920(.517) .187(.042) .175(.039)
500 .510(.414) .085(.023) .083(.02) .311(.056) .055(.019) .055(.018) .517(.390) .085(.023) .083(.023)

1,000 .419(.071) .060(.018) .059(.017) .311(.051) .050(.014) .049(.014) .416(.072) .060(.017) .059(.017)

Local constant estimator
200 3.753(2.937) .285(.050) .290(.051) .501(.115) .144(.027) .147(.028) 3.763(3.188) .287(.052) .287(.051)
500 2.201(3.025) .147(.024) .146(.025) .355(.062) .084(.016) .085(.015) 2.223(3.320) .147(.025) .147(.025)

1,000 .883(.462) .086(.015) .086(.014) .322(.054) .060(.012) .061(.011) .882(.427) .086(.015) .087(.015)
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(a) (b)

(c)

Figure 1. Simulated example. The plots of the estimated coefficient functions for three quantiles, τ = .05 ( ), τ = .50 ( ), and τ = .95 ( )
with their true functions ( ): σ(u) versus u in (a), a1(u) versus u in (b), and a2(u) versus u in (c). The 95% pointwise confidence interval ( )
with the bias ignored for the τ = .5 quantile estimate are provided in (b) and (c).

n increases for all three values of τ , and that the local linear es-
timate outperforms the local constant estimate. This is another
example that demonstrates that the local linear method is supe-
rior to the local constant even in the quantile setting. Moreover,
the performance for the median quantile estimate is slightly bet-
ter than that for two tails (τ = .05 and .95). This observation is
not surprising, because of the sparsity of data in the tailed re-
gions. Moreover, another benefit of using the quantile method
is that we can obtain the estimate of a0(·) (conditional standard
deviation) simultaneously with the estimates of a1(·) and a2(·)
(functions in the conditional mean), which, in contrast, avoids
the need for a two-stage approach for estimating the variance
function in the mean regression (see Fan and Yao 1998 for de-
tails). Nonetheless, it is interesting that because of the larger
variation, the performance for a0(·), although reasonably good,

is not as good as that of a1(·) and a2(·). Further evidence of this
is shown in Figure 1. The results of this simulated experiment
demonstrate that the proposed procedure is reliable and follows
along the lines of the asymptotic theory.

Finally, Figure 1 plots the local linear estimates for all three
coefficient functions with their true values (solid line)—σ(·) in
Figure 1(a), a1(·) in Figure 1(b), and a2(·) in Figure 1(c)—for
three quantiles τ = .05 (dashed line), .50 (dotted line), and .95
(dotted-dashed line), for n = 500 based on a typical sample
chosen based on its MADE value equal to the median of the 500
MADE values. The selected optimal bandwidths are hopt = .10
for τ = .05, .075 for τ = .50, and .10 for τ = .95. Note that
the estimate of σ(·) for τ = .50 cannot be recovered from the
estimate of a0(·) = 0, and it is not presented in Figure 1(a). The
95% pointwise confidence intervals without bias correction are
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represented in Figures 1(b) and (c) by thick lines for the τ = .50
quantile estimate. Basically, all confidence intervals cover the
true values. Similar plots were obtained for the local constant
estimates (not shown due to space limitations). Overall, the pro-
posed modeling procedure performed fairly well.

3.2 Real Examples

Example 2. We analyze a subset of the Boston housing
price data set consisting of 14 variables collected on each of
506 different houses from a variety of locations. (This data
set can be downloaded from http://lib.stat.cmu.edu/datasets/
boston.) The dependent variable is Y , the median value of
owner-occupied homes in $1,000s (housing price). Some major
factors possibly affecting the housing price used are U , the pro-
portion of the population of lower educational status; X1, the
average number of rooms per house; X2, the per capita crime
rate; X3, the full property tax rate; and X4, the pupil:teacher
ratio. (For a complete description of all 14 variables, see Har-
rison and Rubinfeld 1978.) Recently, several articles have been

devoted to the analysis of this data set; for example, Breiman
and Friedman (1985), Chaudhuri et al. (1997), and Opsomer
and Ruppert (1998) used four covariates, X1, X3, X4, and U ,
or their transformations to fit the data through a mean addi-
tive regression model, whereas Yu and Lu (2004) used the ad-
ditive quantile technique to analyze the data. Recently, Şentürk
and Müller (2005) studied the correlation between the housing
price, Y , and the crime rate, X2, adjusted by the confounding
variable U through a varying-coefficient model and concluded
that the expected effect of increasing crime rate on declining
housing prices seemed to be observed only for lower educa-
tional status neighborhoods in Boston. Some existing analyses
(e.g., Breiman and Friedman 1985; Yu and Lu 2004) with both
mean and quantile regressions concluded that most of the vari-
ation in housing prices seen in the restricted data set can be
explained by two major variables: X1 and U . Indeed, the corre-
lation coefficients between Y and U and Y and X1 are −.7377
and .6954. The scatterplots of Y versus U and versus X1 are
displayed in Figures 2(a) and (b). Interesting features of this

(a) (b)

(c) (d)

Figure 2. Boston housing price data. Scatterplots of house price versus the covariates U (a), X1 (b), X2 (c), and log(X2) (d).
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(e) (f)

(g)

Figure 2. (Continued.) Plots of the estimated coefficient functions for three quantiles, τ = .05 ( ), τ = .50 ( ), and τ = .95 ( ), and the
mean regression ( ): â0,τ (u) and â0(u) versus u in (e), â1,τ (u) and â1(u) versus u in (f), and â2,τ (u) and â2(u) versus u in (g). The thick
dashed lines indicate the 95% pointwise confidence interval for the median estimate with the bias ignored.

data set are that the response variable is the median price of a
home in a given area and that the distributions of Y and the ma-
jor covariate U are left-skewed. (The density estimates are not
presented.) Finally, it is surprising that all of the nonparamet-
ric models mentioned earlier did not include the crime rate X2,
which may be an important factor affecting housing price, and
did not consider the interaction terms, such as U and X2.

Based on the foregoing discussion, we can conclude that the
model studied in this work may be well suited to analyzing this
data set. Therefore, we analyze this data set using the following
quantile smooth coefficient model:

qτ (Ut ,Xt ) = a0,τ (Ut ) + a1,τ (Ut )Xt1 + a2,τ (Ut )X
∗
t2,

1 ≤ t ≤ n = 506, (8)

where X∗
t2 = log(Xt2). We obtain the quantile estimate of the

coefficient functions {aj (·)} using (3), denoted by {̂aj,τ (·)}.
We do not include the other variables such as X3 and X4 in
model (8), because we found that the coefficient functions for
these variables seem to be constant. Therefore, a semiparamet-
ric model would be appropriate if the model included these vari-
ables. But this is beyond the scope of this article and merits
further investigation. The reason for using the logarithm of Xt2

in (8) instead of Xt2 itself is that the correlation between Yt

and X∗
t2 (correlation coefficient, −.4543) is slightly stronger

than that between Yt and Xt2 (−.3883), which also can be
seen in Figures 2(c) and (d). In the model fitting, covariates
X1 and X2 are centralized. For comparison, we also consider
the following functional coefficient model in the mean regres-
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sion:

Yt = a0(Ut ) + a1(Ut )Xt1 + a2(Ut )X
∗
t2 + et . (9)

We use the local linear fitting technique to estimate the coeffi-
cient functions {aj (·)}, denoted by {̂aj (·)} (see Cai et al. 2000
for details).

The coefficient functions are estimated through the local lin-
ear quantile approach using the bandwidth selector described
in Section 2.2. As a result, the selected optimal bandwidths are
hopt = 2.0 for τ = .05, 1.5 for τ = .50, and 3.5 for τ = .95. Fig-
ures 2(e), (f), and (g) present the estimated coefficient functions
â0,τ (·), â1,τ (·), and â2,τ (·) for three quantiles, τ = .05 (solid
line), .50 (dashed line), and .95 (dotted line), together with
the estimates {̂aj (·)} from the mean regression model (dotted-
dashed line). In addition, the 95% pointwise confidence inter-
vals for the median estimate without bias correction are repre-
sented by thick dashed lines.

First, from these three figures, we can see that the median
estimates are quite close to the mean estimates, and that the es-
timates based on the mean regression are always within the 95%
confidence interval of the median estimates. We can conclude
that the distribution of the measurement error et in (9) may be
symmetric and that âj,.5(·) in (8) is almost same as âj (·) in (9).
Also, from Figure 2(e), we can see that three quantile curves
are parallel, implying that the intercept in â0,τ (·) depends on τ ,
and they decrease exponentially. More importantly, from Fig-
ures 2(f) and (g), we can see that heteroscedasticity might exist,
due to the intersection of three quantile estimated coefficient
curves.

From Figure 2(f), we can see that the expected effect of
increasing the number of rooms can raise the housing price
slightly in any low educational status neighborhood but much
greater in relatively high educational status neighborhoods.
Moreover, although the number of rooms has a positive effect
on the median- and higher-priced houses in relatively high and
low educational status neighborhoods, increasing the number of
rooms might not increase the housing price in very low educa-
tional status neighborhoods. In other words, it is very difficult
to sell high-priced houses with high numbers of rooms at a rea-
sonable price in very low educational status neighborhoods.

From Figure 2(g), we can conclude that the positive correla-
tion between the housing prices (τ = .50 and .95) and the crime
rate for relatively high educational status neighborhoods seems
counterintuitive. However, the reason for this positive correla-
tion is the existence of high educational status neighborhoods
close to central Boston, where high housing prices and high
crime rates occur simultaneously. Therefore, the expected effect
of increasing crime rate on declining housing prices for τ = .50
and .95 seems to occur only for lower educational status neigh-
borhoods in Boston. Finally, it can be seen that the correlation
between the housing prices for τ = .05 and the crime rate is al-
most negative, although the degree depends on the value of U .
This implies that an increasing crime rate slightly decreases the
prices of the cheap houses (τ = .05).

In summary, this example demonstrates that the factors U ,
X1, and X2 have different effects on the different quantiles of
the conditional distribution of housing prices. Overall, housing
price and the proportion of population of lower educational sta-
tus have a strong negative correlation, the number of rooms has

a mostly positive effect on housing prices, whereas the crime
rate has the most negative effect on housing prices. In particu-
lar, by using the proportion of population of lower educational
status U as the confounding variable, we demonstrate the sub-
stantial benefits obtained by characterizing the affecting factors
X1 and X2 on the housing price based on the neighborhoods.

Example 3. This example concerns the closing bid prices
of the Japanese Yen in terms of the U.S. dollar. Here we use
the proposed model and its modeling approaches to explore
the possible nonlinearity feature, heteroscedasticity, and pre-
dictability of the exchange rate series. The data set is a weekly
series from January 1, 1974 to December 31, 2003. The weekly
series is generated by selecting the Wednesdays series (if a
Wednesday is a holiday, then the following Thursday is used),
which has 1,566 observations. We model the return series
Yt = 100 log(ξt /ξt−1), plotted in Figure 3(a), using the tech-
niques developed in this article, where ξt is an exchange rate
level on the t th week. Typically, the classical financial theory
would treat {Yt } as a martingale difference process; therefore,
Yt would be unpredictable. But this assumption was strongly
rejected by Hong and Lee (2003), and Figure 3(b) shows that
there is almost no significant autocorrelation in {Yt }, which was
confirmed by Hong and Lee (2003) using several statistical test-
ing procedures.

Fan, Yao, and Cai (2003) and Hong and Lee (2003) con-
cluded that the exchange rate series is partially predictable by
using the functional coefficient autoregressive model

Yt = a0(Ut ) +
d∑

j=1

aj (Ut )Yt−j + σtet , (10)

where Ut is the smooth variable defined later and σt is a func-
tion of Ut and the lagged variables. If {Ut } is observable, then
aj (·) can be estimated by a local linear fitting denoted by âj (·)
(see Cai et al. 2000 for details). Here σt is the stochastic volatil-
ity that may depend on Ut and the lagged variables {Yt−j }. Usu-
ally, Ut can be chosen based on the knowledge of data or eco-
nomic theory, or may be chosen using data-driven methods, as
done by Fan et al. (2003), if no prior information is available.
By following the analysis of Fan et al. (2003) and Hong and Lee
(2003), the smooth variable Ut is chosen as an moving average
technical trading rule in finance, defined as Ut = ξt−1/Mt − 1,

where Mt = ∑L
j=1 ξt−j /L, the moving average and considered

a proxy for the trend at the time t − 1. Following Hong and Lee
(2003), we choose L = 26 (a half year). The time series plot of
{Ut } is given in Figure 3(c).

We analyze this exchange rate series using the smooth coeffi-
cient model under the quantile regression framework with only
two lagged variables as follows:

qτ (Ut , Yt−1, Yt−2)

= a0,τ (Ut ) + a1,τ (Ut )Yt−1 + a2,τ (Ut )Yt−2. (11)

(We also considered the models with more than two lagged
variables and found that the conclusions were similar, and thus
we do not report them here.) The first 1,540 observations of
{Yt } are used for estimation, and the last 25 observations are
left for prediction. The coefficient functions {aj,τ (·)} are esti-
mated through the local linear quantile approach, denoted by
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(a) (b)

(c)

Figure 3. Exchange rate series: (a) Japanese Yen–U.S. dollar exchange rate return series {Yt }; (b) autocorrelation function of {Yt }; and
(c) moving average trading technique rule.

{̂aj,τ (·)}. Optimal bandwidths are hopt = .03 for τ = .05, .025
for τ = .50, and .03 for τ = .95. Figures 3(d)–(g) depict the
estimated coefficient functions â0,τ (·), â1,τ (·), and â2,τ (·) for
three quantiles τ = .05 (solid line), .50 (dashed line), and .95
(dotted line), together with the estimates {̂aj (·)} (dotted-dashed
line) from the mean regression model in (10). The 95% point-
wise confidence intervals for the median estimate are repre-
sented by the thick dashed lines without bias correction.

First, from Figures 3(d), (f), and (g), we clearly see that the
median estimates âj,.50(·) in (11) are almost parallel with or
close to the mean estimates âj (·) in (10) and that the mean es-
timates are almost within the 95% confidence interval of the
median estimates. Second, â0,.50(·) in Figure 3(d) shows a non-
linear pattern, and â0,.05(·) and â0,.95(·) in Figure 3(e) exhibit
slightly U -shaped and symmetrically. More importantly, Fig-
ures 3(f) and (g) show that the lower and upper quantile esti-
mated coefficient curves intersect and behave slightly differ-
ently. Particularly, from Figure 3(g), we may conclude that

the distribution of the measurement error et in (10) might not
be symmetric about 0, and that there exists a nonlinearity in
aj,τ (·). This implies that a nonlinearity exists. We also note that
the quantile has a complex structure and that heteroscedasticity
exists. We conclude that the GARCH effects occur in the ex-
change rate time series (see Engle, Ito, and Lin 1990).

Finally, we consider the postsample forecasting for the last
25 observations based on the local linear quantile estimators
computed using the same bandwidths as those used in the
model fitting. The 95% nonparametric prediction interval is
constructed as (q̂.025(·), q̂.975(·)). The prediction results are re-
ported in Table 2, which shows that 24 of 25 predictive inter-
vals contain the corresponding true values. The average length
of the intervals is 5.77, which is about 35.5% of the range of
the data. Therefore, we can conclude that under the dynamic
smooth coefficient quantile regression model assumption, the
prediction intervals based on the proposed method work rea-
sonably well.
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(d) (e)

(f) (g)

Figure 3. (Continued.) Plots of the estimated coefficient functions for three quantiles, τ = .05 ( ), τ = .50 ( ), and τ = .95 ( ), and the
mean regression ( ): â0,.50(u) and â0(u) versus u in (d), â0,.05(u) and â0,.95(u) versus u in (e), â1,τ (u) and â1(u) versus u in (f), and â2,τ (u)

and â2(u) versus u in (g). The thick dashed lines indicate the 95% pointwise confidence interval for the median estimate with the bias ignored.

4. ASYMPTOTIC RESULTS

The asymptotic results presented here were derived under
the α-mixing assumption. (See Cai 2002 for the definition of
α-mixing.) In fact, under very mild assumptions, linear au-
toregressive and, more generally, bilinear time series models
are α-mixing, with mixing coefficients decaying exponentially.
Many nonlinear time series models, including functional coeffi-
cient autoregressive processes with or without exogenous vari-
ables, ARCH- and GARCH-type processes, stochastic volatil-
ity models, and nonlinear additive autoregressive models with
or without exogenous variables, are strong mixing under some
mild conditions (see Cai 2002 for details).

We now give some regularity conditions that are sufficient
for the consistency and asymptotic normality of the proposed

estimators, although they might not be the weakest ones possi-
ble.

Assumptions:

(C1) a(u) is (q + 1)th continuously differentiable in a
neighborhood of u0 for any u0.

(C2) fu(u) is continuous, and fu(u0) > 0.
(C3) fy|u,x(y) is bounded and satisfies the Lipschitz con-

dition.
(C4) The kernel function K(·) is symmetric and has a com-

pact support, say [−1,1].
(C5) {(Ut ,Xt , Yt )} is a strictly α-mixing stationary process

with mixing coefficient α(t) satisfying
∑∞

t≥1 t l ×
α(δ−2)/δ(t) < ∞ for some positive real number δ > 2
and l > (δ − 2)/δ.
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Table 2. The postsample predictive intervals for exchange rate data

Observation number True value Prediction interval

1,541 .392 (−2.891,2.412)

1,542 .509 (−3.099,2.405)

1,543 1.549 (−2.943,2.446)

1,544 −.121 (−2.684,2.525)

1,545 −.991 (−2.677,2.530)

1,546 −.646 (−3.110,2.401)

1,547 −.354 (−3.178,2.365)

1,548 −1.393 (−3.083,2.372)

1,549 .997 (−3.110,2.230)

1,550 −.916 (−3.033,2.431)

1,551 −3.707 (−3.021,2.286)

1,552 −.919 (−3.841,2.094)

1,553 −.901 (−3.603,2.770)

1,554 .071 (−3.583,2.821)

1,555 −.497 (−3.351,2.899)

1,556 −.648 (−3.436,2.783)

1,557 1.648 (−3.524,2.866)

1,558 −1.184 (−3.121,2.810)

1,559 .530 (−3.529,2.531)

1,560 .107 (−3.222,2.648)

1,561 −.804 (−3.294,2.651)

1,562 .274 (−3.419,2.534)

1,563 −.847 (−3.242,2.640)

1,564 −.060 (−3.426,2.532)

1,565 −.088 (−3.300,2.576)

(C6) E‖Xt‖2δ∗
< ∞ with δ∗ > δ.

(C7) �(u0) is positive definite and continuous in a neigh-
borhood of u0.

(C8) �∗(u0) is continuous and positive definite in a neigh-
borhood of u0.

(C9) The bandwidth h satisfies h → 0 and nh → ∞.
(C10) f (u, v|x0,xs; s) ≤ M < ∞ for s ≥ 1, where f (u, v|

x0,xs; s) is the conditional density of (U0,Us) given
(X0 = x0,Xs = xs).

(C11) n1/2−δ/4hδ/δ∗−1/2−δ/4 = O(1).

A similar discussion of the foregoing assumptions has been
given by Cai (2002). Assumption (C6) is commonly required to
ensure the convergence of n−1 ∑n

t=1 XtX′
t to E(XtX′

t ) when Xt

is mixing. It is clear from (2) that a(u0) is identified (uniquely
determined) if and only if �(u0) is positive definite for any u0;
therefore, Assumption (C7) is the necessary and sufficient con-
dition for the model identification. To establish the asymptotic
normality of the proposed estimator, define μj = ∫

ujK(u)du

and νj = ∫
ujK2(u) du.

Theorem 1. Under Assumptions (C1)–(C11), we have the
following asymptotic normality for q odd:

√
nh

[

â(u0) − a(u0) − hq+1

(q + 1)!a(q+1)(u0)μq+1 + op(hq+1)

]

→ N{0, τ (1 − τ)ν0�(u0)},
where �(u0) = [�∗(u0)]−1�(u0)[�∗(u0)]−1/fu(u0).

Because the case where q is even leads to a more complicated
derivation, we consider only the case where q is odd. For the
case where q is even, we can obtain a similar result (see Fan

and Gijbels 1996 for details). From Theorem 1, the asymptotic
mean squared error (AMSE) of â(u0) is

AMSE = h2q+2μ2
q+1

[(q + 1)!]2

∥
∥a(q+1)(u0)

∥
∥2 + τ(1 − τ)ν0

nhfu(u0)
tr(�(u0)),

which gives the optimal bandwidth hopt by minimizing the
AMSE,

hopt =
(

τ(1 − τ)ν0(q + 1)[q!]2 tr(�(u0))

2fu(u0)‖a(q+1)(u0)‖2μ2
q+1

)1/(2q+3)

× n−1/(2q+3),

and the optimal AMSE is AMSEopt = O(n−(2q+2)/(2q+3)). Fur-
ther, note that results similar to Theorem 1 were obtained by
Honda (2004) for independent data. Finally, it is interesting to
note that the asymptotic bias in Theorem 1 is the same as that
for the mean regression case, but the two asymptotic variances
are different (see, e.g., Cai et al. 2000). For various practical
applications, Fan and Gijbels (1996) recommended using the
local linear fit (q = 1). Therefore, for ease of notation, in what
follows we consider only the case where q = 1 (local linear fit-
ting).

If model (2) does not have X (d = 0), then it becomes the
nonparametric quantile regression model, qτ (·). Then Theo-
rem 1 covers the results of Yu and Jones (1998), Honda (2000),
and Cai (2002) for both independent and time series data.

Now we consider the comparison of the performance of
the local linear estimation â(u0) obtained in (3) with that of
the local constant estimation ã(u0) given in (4). First, we de-
rive the asymptotic results for the local constant estimator, but
omit the proof. Under some regularity conditions, it can be
shown that
√

nh[̃a(u0) − a(u0) − b̃ + op(h2)] → N(0, τ (1 − τ)ν0�(u0)),

where

b̃ = 1

2
h2μ2

[
a(2)(u0) + 2a(1)(u0)f

(1)
u (u0)/fu(u0)

+ 2{�∗(u0)}−1�∗(1)
(u0)a(1)(u0)

]
.

This implies that the asymptotic bias for ã(u0) is different than
that for â(u0), but both ã(u0) and â(u0) have the same asymp-
totic variance. Therefore, the local constant quantile estimator
does not adapt to nonuniform designs; the bias can be large
when f

(1)
u (u0)/fu(u0) or {�∗(u0)}−1�∗(1)

(u0) is large, even
when the true coefficient functions are linear. It is surprising
that, to the best of our knowledge, this finding seems to be new
for the nonparametric quantile regression setting, although it is
well documented in the literature for the ordinary regression
case (see Fan and Gijbels 1996 for details).

Finally, to examine the asymptotic behaviors of the local lin-
ear and local constant quantile estimators at the boundaries, we
offer Theorem 2, but omit its proof. Without loss of generality,
we consider only the left boundary point, u0 = ch, 0 < c < 1,
if Ut takes values only from [0,1]. A similar result in Theo-
rem 2 holds for the right boundary point, u0 = 1 − ch. Define
μj,c = ∫ 1

−c
ujK(u)du and νj,c = ∫ 1

−c
ujK2(u) du.

zongwu cai
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Theorem 2. Under the assumptions of Theorem 1, we have
the following asymptotic normality of the local linear quantile
estimator at the left boundary point:

√
nh

[

â(ch) − a(ch) − h2bc

2
a(2)(0) + op(h2)

]

→ N{0, τ (1 − τ)vc�(0)},
where bc = [μ2

2,c − μ1,cμ3,c]/[μ2,cμ0,c − μ2
1,c] and vc =

[μ2
2,cν0,c − 2μ1,cμ2,cν1,c + μ2

1,cν2,c][μ2,cμ0,c − μ2
1,c]−2. Fur-

thermore, we have the following asymptotic normality of the
local constant quantile estimator at the left boundary point,
u0 = ch, for 0 < c < 1:√

nh[̃a(ch) − a(ch) − b̃c + op(h2)]
→ N{0, τ (1 − τ)ν0,c�(0)/μ2

0,c},
where b̃c = [hμ1,ca(1)(0) + h2μ2,c/2{a(2)(0) + 2a(1)(0) ×
f

(1)
u (0)/fu(0) + 2�∗−1

(0)�∗(1)
(0)a(1)(0)}]/μ0,c . Similar re-

sults hold for the right boundary point, u0 = 1 − ch.

We note that if the point 0 were an interior point, then The-
orem 2 would hold with c = 1, which becomes Theorem 1.
Moreover, it is easy to see that as c → 1, bc → μ2 and vc → ν0,
and these limits are exactly the constant factors appearing in the
asymptotic bias and variance for an interior point. Therefore,
Theorem 2 shows that the local linear estimation has automatic
good behavior at boundaries without the need for boundary cor-
rection. Theorem 2 also shows that at the boundaries, the as-
ymptotic bias term for the local constant quantile estimate is
of order h by comparing it with order h2 for the local linear
quantile estimate. This demonstrates that the local linear quan-
tile estimate does not suffer from boundary effects, but the local
constant quantile estimate does.

5. CONCLUSION

Here we have studied a class of quantile regression models
with functional coefficients for time series data. We have sug-
gested using the local polynomial fitting scheme to estimate the
nonparametric coefficient functions and derived the asymptotic
properties of the proposed estimators. We proposed an ad hoc
method for selecting the bandwidth and estimating the asymp-
totic covariance. We conducted a Monte Carlo simulation ex-
periment to illustrate the proposed the methodology and ana-
lyzed two real data sets. We presented some new findings re-
lated to these two real examples based on the dynamic smooth
coefficient quantile regression model. Some interesting future
research topics related to this work should be mentioned. First,
it would be very useful to discuss the bandwidth theoretically
and empirically. Second, an important application of quantile
regression is to measure how much the τ th response quantile
changes as one covariate is perturbed while the other covariates
are held fixed (see Chaudhuri et al. 1997). Therefore, we can
estimate ∇qτ (U,x) using the proposed methodology. Further-
more, the foregoing models and results can be extended to the
cases where some Xt ’s might be nonstationary, such as I(1),
and some Xt ’s might be endogenous. Finally, nonparametric
quantile regression potentially can be applied to the analysis
of financial data, such as GARCH-type models studied by Xiao
(2006) and VaR and other types of risk models and their exten-
sions (see Bassett, Koenker, and Kordas 2004).

APPENDIX: PROOFS OF THEOREMS

In this section, due to space limitations, we give only brief deriva-
tions of the main results based on some lemmas. For expositional pur-
poses, we consider only the case where q = 1. First, we need the fol-
lowing two lemmas, the proofs of which were given by Koenker and
Zhao (1996) and Ruppert and Carroll (1980).

Lemma A.1. Let Vn(�) be a vector function that satisfies
(a) −�′Vn(λ�) ≥ −�′Vn(�) for λ ≥ 1 and (b) sup‖�‖≤M ‖Vn(�)+
D� − An‖ = op(1), where ‖An‖ = Op(1), 0 < M < ∞, and D
is a positive-definite matrix. Suppose that �n is a vector such that
‖Vn(�n)‖ = op(1). Then we have

‖�n‖ = Op(1)

and

�n = D−1An + op(1).

Lemma A.2. Let β̂ be the minimizer of the function
∑n

t=1 wt ×
ρτ (yt −X′

tβ), where wt > 0 and ρτ (·) is the check function defined in
Section 1. Then ‖∑n

t=1 wtXtψτ (yt −X′
t β̂)‖ ≤ dim(X)maxt≤n ‖wt ×

Xt‖, where ψτ (·) is as defined in Section 2.2.

By the definition of θ defined in Section 2.2,

β =
(

a(u0)

a(1)(u0)

)

+ anH−1θ ,

where an is as defined in Section 2.2. Thus Yt − ∑q
j=0 X′

tβj (Ut −
u0)j = Y ∗

t − anθ ′X∗
t . Therefore,

θ̂ = arg min
n∑

t=1

ρτ (Y ∗
t − anθ ′X∗

t )K(Uth) ≡ arg minG(θ).

Now define Vn(θ) = an
∑n

t=1 ψτ [Y ∗
t −anθ ′X∗

t ]X∗
t K(Uth). To estab-

lish the asymptotic properties of θ̂ , in the next two lemmas we show
that Vn(θ) satisfies Lemma A.1, so that we can derive the local Ba-
hadur representation for θ̂ . The results are stated here, and their de-
tailed proofs are omitted. For notational convenience, define Am =
{θ :‖θ‖ ≤ M} for some 0 < M < ∞ and Zt = ψτ (Y ∗

t )X∗
t K(Uth).

Lemma A.3. Under the assumptions of Theorem 1, we have

‖Vn(θ) − Vn(0) − E[Vn(θ) − Vn(0)]‖ = op(1)

and

‖E[Vn(θ) − Vn(0)] + Dθ‖ = o(1)

uniformly over θ ∈ Am, where D = fu(u0)�∗
1(u0).

Lemma A.4. Under the assumptions of Theorem 1, we have

E[Z1] = h3f (u0)

2

(
μ2�∗(u0)a(2)(u0)

0

)

+ o(h3)

and

var[Z1] = hτ(1 − τ )f (u0)�1(u0) + o(h),

where �1(u0) = diag{ν0, ν2} ⊗ �(u0). Furthermore, var[Vn(0)] =
τ (1 − τ )f (u0)�1(u0) + o(1); therefore, ‖Vn(0)‖ = Op(1).
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Proof of Theorem 1

Here we present only a sketch of the proof; details are avail-
able on request. By Lemmas A.3 and A.4, Vn(θ) satisfies condi-
tion (b) of Lemma A.1; that is, ‖An‖ = Op(1) and supθ∈Am

‖Vn(θ)+
Dθ − An‖ = op(1), where An = Vn(0). It follows from Lemma A.2
that ‖Vn(̂θ)‖ = op(1), where θ̂ is the minimizer of G(θ). Finally,
because ψτ (x) is an increasing function of x; then −θ ′Vn(λθ) =
an

∑n
t=1 ψτ [Y ∗

t + λan(−θ ′X∗
t )](−θ ′X∗

t )K(Uth) is an increasing
function of λ. Thus the condition (a) of Lemma A.1 is satisfied. There-
fore,

θ̂ = D−1An + op(1)

= (�∗
1)−1

√
nhfu(u0)

n∑

t=1

ψτ (Y ∗
t )X∗

t K(Uth) + op(1). (A.1)

Let εt = ψτ (Yt − X′
ta(Ut )). Clearly, E(εt ) = 0 and var(εt ) = τ (1 −

τ ). From (A.1),

θ̂ = (�∗
1)−1

√
nhfu(u0)

n∑

t=1

[ψτ (Y ∗
t ) − εt ]X∗

t K(Uth)

+ (�∗
1)−1

√
nhfu(u0)

n∑

t=1

εtX∗
t K(Uth) + op(1)

≡ Bn + ξn + op(1).

Similar to the proof of theorem 2 of Cai et al. (2000), using the small-
block and large-block technique and the Cramér–Wold device, we can
show (although lengthily and tediously) that

ξn → N(0, τ (1 − τ )ν0�θ (u0)), (A.2)

where �θ (u0) = diag{ν0, ν2} ⊗ �(u0). By the stationarity property
and Lemma A.4,

E[Bn] = (�∗
1)−1

√
nhfu(u0)

nE[Z1]{1 + o(1)}

= a−1
n

h2

2

(
a(2)(u0)μ2

0

)

{1 + o(1)}. (A.3)

Because ψτ (Y ∗
t ) − εt = I (Yt ≤ X′

ta(Ut )) − I (Yt ≤ X′
t (a(u0) +

a(1)(u0)(Ut − u0))), we have [ψτ (Y ∗
t ) − εt ]2 = I (d1t < Yt ≤

d2t ), where d1t = min(c1t , c2t ) and d2t = max(c1t , c2t ) with c1t =
X′

ta(Ut ) and c2t = X′
t [a(u0) + a(1)(u0)(Ut − u0)]. Furthermore,

E
[{ψτ (Y ∗

t ) − εt }2K2(Uth)X∗
t X∗

t
′]

= E
[{Fy|u,x(d2t ) − Fy|u,x(d1t )}K2(Uth)X∗

t X∗
t
′]

= O(h3).

Thus var(Bn) = o(1). This, in conjunction with (A.2) and (A.3) and
Slutsky’s theorem, proves the theorem.

Proof of (6) and (7)

By Taylor’s expansion, we have

E[ξt |Ut ,Xt ] = Fy|u,x(X′
ta(u0) + an) − Fy|u,x(X′

ta(u0))

= fy|u,x(X′
ta(u0))an + op(an).

Therefore, E[Sn] = h−1E[fy|u,x(X′
ta(u0))X∗

t X∗
t
′K(Uth)] + o(1) →

fu(u0)�∗
1(u0). Similar to the proof of var[Vn(0)] in Lemma A.4, we

can show that var(Sn) → 0. Therefore, Sn → fu(u0)�∗
1(u0) in prob-

ability. This proves (6). Clearly,

E[�̂n,0] = E[XtX′
tKh(Ut − u0)]

=
∫

�(u0 + hv)fu(u0 + hv)K(v)dv → fu(u0)�(u0).

Similarly, one can show that var(�̂n,0) → 0. This proves the first
part of (7). By the same token, we can easily show that E[�̂n,1] →
fu(u0)�∗(u0) and var(�̂n,1) → 0. Thus �̂n,1 → fu(u0)�∗(u0). We
prove (7).

[Received January 2005. Revised August 2008.]
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