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The local linear regression technique is applied to estimation of functional-coefficient regression models for time series data. The 
models include threshold autoregressive models and functional-coefficient autoregressive models as special cases but with the 
added advantages such as depicting finer structure of the underlying dynamics and better postsample forecasting performance. 
Also proposed are a new bootstrap test for the goodness of fit of models and a bandwidth selector based on newly defined cross- 
validatory estimation for the expected forecasting errors. The proposed methodology is data-analytic and of sufficient flexibility 
to analyze complex and multivariate nonlinear structures without suffering from the "curse of dimensionality." The asymptotic 
properties of the proposed estimators are investigated under the a-mixing condition. Both simulated and real data examples are 
used for illustration. 
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1, INTRODUCTION 

Until recently, much of time series modeling has been 
confined to linear autoregressive moving average (ARMA) 
models (Box and Jenkins 1970). Although the original 
ARMA framework has been enlarged to include long- 
range dependence with fractional ARMA (Dahlhaus 1989; 
Granger and Joyeux 1980), multivariate vector ARMA and 
vector ARMA models with exogenous variables (Hannan 
and Deistler 1988), and random walk nonstationarities via 
cointegration (Engle and Granger 1987), there still exist 
so-called "nonlinear" features beyond the capacity of lin- 
ear ARMA modeling. For example, various "nonstandard" 
phenomena such as nonnormality, asymmetric cycles, bi- 
modality, nonlinear relationship between lagged variables, 
variation of prediction performance over the state-space, 
nonreversibility, and sensitivity to initial conditions have 
been well observed in many real time series data, including 
some benchmark sets such as the sunspot, lynx, and blowfly 
data. (See Tjmstheim 1994 and Tong 1990, 1995 for further 
discussion on this aspect.) Beyond linear domain, there are 
infinitely many nonlinear forms to be explored. Early de- 
velopment of nonlinear time series analysis focused on var- 
ious nonlinear (sometimes non-Gaussian) parametric forms 
(Tj~stheim 1994; Tong 1990; references within). The suc- 
cessful examples include, among others, the autoregressive 
conditional heteroscedastic (ARCH) modeling of fluctuat- 
ing structure for financial time series (Bollerslev 1986; En- 
gel 1982), and the threshold modeling for biological and 
economic data (Tiao and Tsay 1994; Tong 1990). On the 
other hand, recent development in nonparametric regression 
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techniques provides an alternative to model nonlinear time 
series ( ~ i r d l e ,  Liitkepohl, and Chen 1997; Masry and Fan 
1997; Tjoistheim 1994; Yao and Tong 1995). The immediate 
advantage of this is that little prior information on model 
structure is assumed. Further, it may provide useful insight 
for further parametric fitting. But an entirely nonparametric 
approach is hampered by the requirement of large sample 
sizes and is often practically useful only for, for example, 
autoregressive (AR) models with order 1 or 2. 

This article adapts the functional-coefficient modeling 
technique to analyze nonlinear time series data. The ap- 
proach allows appreciable flexibility on the structure of fit- 
ted models without suffering from the "curse of dimension- 
ality." Let {U,, Xi, Y,)E-, be jointly strictly stationary 
processes with Ui taking values in R h n d  Xi taking val- 
ues in % p .  Typically, k is small. Let E(Yf) < cm.We define 
the multivariate regression function 

~ ( u , x )= E ( Y U  = u ,X  = x),  (1) 

where (U, X, Y) has the same distribution as (Ui, Xi, K) .  
In a pure time series context, both U, and Xi consist of 
some lagged values of Yi. The functional-coefficient regres- 
sion model has the form 

where the functions {a,(.)) are measurable functions from 
9'"to R1 and x = (xl,.. . ,x,)~,with T denoting the trans- 
pose of a matrix or vector. The idea to model time series in 
such a form is not new (see, e.g., Nicholls and Quinn 1982). 
In fact, many useful time series models may be viewed as 
special cases of model (2) (often with specified parametric 
forms for the functions {a,(.)); see Sec. 2). But the poten- 
tial of this modeling technique had not been fully explored 
until the seminal work of Chen and Tsay (1993), Cleve- 
land, Grosse, and Shyu (1992), and Hastie and Tibshirani 
(1993), in which nonparametric techniques were developed 
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for estimation of the functions {a, (.)). In the context of in- 
dependent samples, Fan and Zhang (1999) provided an in- 
novative two-step method and insightful asymptotic results 
for the local polynomial estimation of {a, (.)). They also 
pointed out that model (2) has strong connections with the 
functional linear models discussed by Brumback and Rice 
(1998) and Ramsay and Silverman (1997). Yet few results 
are available in the time series context. 

In this article we adapt local linear regression technique 
to estimate the coefficient functions {a,(.)). By smooth- 
ing U only, our method is particularly easy to implement. 
Within the framework of (2), the detailed form of model 
is determined by data, which will reduce the bias of fit- 
ting automatically. Because only k-dimensional functions 
are estimated, the difficulties associated with the "curse 
of dimensionality" will be substantially eased. Indeed, our 
data-analytic approach increases modeling flexibility with 
little sacrifice of estimability (see Theorem 2 in Sec. 6). 
The specified form of (2) also facilitates the interpretability 
of the fitted model when k is small. This is particularly rele- 
vant in modeling longitudinal data where it is reasonable to 
assume that the regression coefficients change over time t .  
(See Hoover, Rice, Wu, and Yang 1998 for a novel applica- 
tion of functional-coefficient models to longitudinal data.) 
Model (2) is also important for modeling the population dy- 
namics, where it is reasonable to expect that animals behave 
differently based on its population size. Thus, using model 
(2) with u denoting the population size of a previous year 
captures such a kind of feature in the population dynamics 
[see Tong 1990, p. 377, and (8) for further discussion]. 

An important statistical question in fitting model (2) 
arises if the coefficient functions are actually varying 
(namely, if a linear AR model is adequate) or more gener- 
ally if a parametric model fits the given data. This amounts 
to testing whether the coefficient functions are constant or 
in a certain parametric form. A new testing procedure, re- 
lated to the sieve likelihood ratio statistic of Fan, Zhang, 
and Zhang (1999), is proposed based on the comparison of 
the residual sum of squares under the null and alternative 
models. A bootstrap method is proposed for finding the null 
distribution of the test statistic. Our simulation shows that 
the resulting testing procedure is indeed powerful, and the 
bootstrap method does give the correct null distribution. 
This is consistent with the Wilks phenomenon observed by 
Fan et al. (1999). 

In Section 2 we mention several familiar nonlinear times 
series models that are within the framework of (2). Through 
the famous Canadian lynx data, we illustrate the advantages 
of the new approach over the existing parametric models in 
terms of both understanding the underlying dynamics and 
forecasting the postsample. In Section 3 we present local 
linear regression estimators for the functional-coefficient 
functions and offer a simple and fast algorithm for band- 
width selection. In Section 4 we propose a bootstrap method 
for testing the goodness of fit of a parametric model against 
model (2). In Section 5 we use both simulated models and 
real datasets to illustrate the proposed methodology. The 
applications with real data lend further support to use some 
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well-known parametric models. We study the asymptotic 
properties of the proposed estimators in Section 6. All tech- 
nical proofs are relegated to the Appendix. 

2. MODELS AND AN ILLUSTRATIVE EXAMPLE 

The general setting (2) includes many familiar time series 
models, a few of which we mention here. We use some of 
them for numerical illustration in Section 5. 

2.1 Functional-Coefficient Autoregressive Model 

Chen and Tsay (1993) proposed the functional-coefficient 
autoregressive (FAR) model 

where X,"-, = (xt-il ,  . . . ,xtPii,)T,{ E ~ )is a sequence of iid 
random variables and E~ is independent of {xt-i, i > 0). 
Chen and Tsay studied probabilistic properties of FAR 
models and proposed an iterative algorithm to estimate the 
coefficient functions. In fact, their algorithm is in the spirit 
of local constant fitting, although they did not apply local 
regression technique directly, but rather constructed estima- 
tors based on an iterative recursive formula. 

2.2 Threshold Autoregressive Model 

One of the simplest nonlinear time series models is the 
threshold autoregressive (TAR) model, 

where {Ri) form a (nonoverlapping) partition of the real 
line. Theoretical properties and practical implementations 
of TAR modeling have been covered by Tong (1990). 

2.3 Exponential Autoregressive Model 

The following generalized exponential a~~toregressive 
(EXPAR) model was proposed and studied by Haggan and 
Ozaki (1981) and Ozaki (1982): 

where 0, > 0 for i = 1, .. . , p .  

2.4 Regression With Random Coefficients 

Consider the model of Granger and Terasvirta (1993), 

where {ut) is a sequence of iid random variables with 
E (u t )  = 0 and var(ut) = o2 and is independent of {X,) 
and { f?(t)) .Further, E (P ( t ) )  = f? and var(f?(t)) = cD, 
cov(P(s), P( t ) )  = 0 for s # t. The foregoing random 
coefficient model has received considerable attention in 
econometrics (see Granger and Terasvirta 1993). If X t  = 
(YtPl,.. . ,&-,)T, then (6) is the random coefficient AR 
model surveyed by Nicholls and Quinn (1982). 

To our knowledge, it remains as an open question to de- 
rive the general conditions under which a FAR model is 
stationary. It is well-known that an ergodic Markov process 
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initiated from its invariant distribution is (strictly) station- 
ary. Note that any AR model can be expressed as a vector- 
valued Markov model. Thus it is common practice to prove 
ergodicity to establish the stationarity. Recent results in this 
direction include those of An and Chen (1997) and An and 
Huang (1996), which surveyed various sufficient conditions 
for the ergodicity of nonlinear AR models, including some 
special cases of FAR models. 

All of the foregoing models have proven successful for 
modeling some nonlinear features. For example, the TAR 
model has received considerable attention due to its easy 
implementation and often nice interpretation. The applica- 
tion to Canadian lynx data (i.e., the annual fur returns of 
lynx at auction in 1821-1934) is arguably a showcase of 
the TAR modeling technique (see Tong 1990). The peri- 
odic fluctuation displayed in this time series has profoundly 
influenced ecological theory. The dataset has been con-
stantly used to examine the concepts as "balance of na-
ture," predator-prey interaction, food web dynamics, and so 
on (see Stenseth et al. 1998 and references therein). Having 
incorporated biological evidence, Tong (1990) fitted the fol- 
lowing TAR model with two regimes and the delay variable 
at lag 2 to the lynx data at the logarithmic scale with the 
base 10: 

(see Tong 1990, p. 377). This simple model admits nice 
biological interpretation. Indeed, it can be viewed as de- 
rived from basic predator (lynx) and prey (hare) interac- 
tion model in ecology (see eq. 2 of Stenseth et' al. 1998). 
The lower regime corresponds roughly to the population 
increase phase, and the upper regime corresponds to the 
population decrease phase. Note that the coefficient of 
xt-1 in the model is significantly positive, but less so dur- 
ing the increase phase. The coefficient of xt-2 is signif- 
icantly negative, more so during the decline phase. The 

signs of those coefficients reflect that lynx and hare re-
late with each other in a specified prey-predator interac-
tive manner. The difference of the coefficients in the in- 
crease and decrease phases reflects the so-called "phase de- 
pendence" and "density dependence" in ecology (Stenseth 
et al. 1998). The phase dependence means that both lynx 
and hare behave differently (in hunting or escaping) when 
the lynx population increases or decreases. The density de- 
pendence implies that the reproduction rates of animals, as 
well as their behavior, depend on the abundance of the pop- 
ulation. Clearly the foregoing threshold model simplified 
the varying behavior into two states. With the new tech- 
nique proposed in this article, we fit the lynx data with the 
model 

in which the coefficients a l ( . ) and a2( . )vary with respect 
to "threshold variable" xt-2. Both a l ( , )and a 2 ( . )are esti- 
mated through a simple one-dimensional kernel regression. 
The estimators are plotted in Figures l(a) and l(b). Except 
a few points near the low end, a l ( . ) is a positive increas- 
ing function, which depicts the smootlz (rather than radi-
cal) density dependence. The function a2( . )is negative and 
largely decreasing. This pictures a gradual change in ani- 
mal behavior in corresponding to the change in population 
abundance. By allowing the coefficient to vary with respect 
to population density, the model presents the lynx-hare in- 
teraction in the manner that is one step closer to the reality 
than the TAR models. The advantages of the new technique 
on other aspects such as prediction will be reported in Sec- 
tion 5. 

In summary, the functional-coefficient model (2)provides 
a simple alternative to the existing techniques such as TAR 
and FAR for modeling nonlinear time series in a contin- 
uous manner. It allows us to make full use of available 
information to model local variation at a finer scale. How- 
ever, simple parametric models such as TAR would be more 
appealing when the sample size is small or when disconti- 
nuities exist genuinely. 

Figure 1. Canadian Lynx Data: Local Linear Estimator of (a) a1(xt-2) and (6) a2(xt-2) in (8). 
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3. ESTIMATION 

For simplicity we consider only the case k = 1 in (2). 
Extension to the case k > 1 involves no fundamentally new 
ideas. Note that models with large k are often not practically 
useful due to the "curse of dimensionality." 

3.1 Local Linear Regression Estimation 

Local linear fittings have several nice properties. They 
possess high statistical efficiency in an asymptotic mini- 
max sense and are design adaptive (Fan 1993). Further, 
they automatically correct edge effects (Fan and Gijbels 
1996; Hastie and Loader 1993; Ruppert and Wand 1994). 
We estimate the functions aj(.) 's using the local linear re- 
gression method from observations {U,, Xi,Y,)y=l ,, where 
X,  = (X i l , .. . , X,,)T. We assume throughout the article 
that a j ( . )  has a continuous second derivative. Note that we 
may approximate a, (.) locally at uo by a linear function 
aj(u)  = a j  + bj(u - uo). The local linear estimator is de- 
fined as & j  (uo)= &,, where {(Bj,  b j ) )  minimize the sum of 
weighted squares 

where Kh(.)  = h-I K( . /h ) ,  K( . )  is a kernel function on !R1 
and h > 0 is a bandwidth. It follows from the least squares 
theory that 

where 

In the foregoing expression, ej,np is the 21, x 1unit vector 
with 1 at the jth position, x denotes an n x 2p matrix with 
(XT, XT(U, - uo))  as its ith row, and W = diag{Kh(U1 -
UO),. . . ,Kh(Un -uo ) )  

3.2 Bandwidth Selection 

Various existing bandwidth selection techniques for non- 
parametric regression can be adapted for the above estima- 
tion (see, e.g., Fan, Yao, and Cai 2000). But here we pro- 
pose a simple and quick method for selecting bandwidth h. 
It can be regarded as a modified multifold cross-validation 
criterion that is attentive to the structure of stationary time 
series data. Let m and Q be two given positive integers and 
n > mQ. The basic idea is first to use Q subseries of lengths 
n - qm (q = 1 , . . . , Q) to estimate the unknown coefficient 
functions and then compute the one-step forecasting errors 
of the next section of the time series of length m based 
on the estimated models. More precisely, we choose h that 
minimizes the average mean squared (AMS) error 

where for q = 1 , .. . , Q,  

and {&,,,(.)) are computed from the sample {(U,, X,, Y,) ,  
1 < i < n - qm) with bandwidth equal h[n/(n - qm)] 'I5. 
Note that we rescale bandwidth h for different sample sizes 
according to its optimal rate, i.e. h oc n-l15. In practical 
implementations, we may use m = [O.ln] and Q = 4. The 
selected bandwidth does not depend critically on the choice 
of m and Q, as long as mQ is reasonably large so that the 
evaluation of prediction errors is stable. A weighted ver- 
sion of AMS(h) can be used, if one wishes to downweight 
the prediction errors at an earlier time. We take m = [O.ln] 
rather than m = 1 simply because of computation expedi- 
ency. 

3.3 Smoothing Variable Selection 

Of importance is to choose an appropriate smoothing 
variable U in applying functional-coefficient regression 
models. Knowledge on physical background of the data may 
be very helpful, as we have witnessed in modeling the lynx 
data in Section 2. Without any prior information, it is per- 
tinent to choose U in terms of some data-driven methods 
such as the Akaike information criterion, cross-validation, 
and other criteria. Ideally, we would choose U as a linear 
function of given explanatory variables according to some 
optimal criterion, which we fully explored in earlier work 
(Fan et al. 2000). Nevertheless, we propose here a simple 
and practical approach: let U be one of the given explana- 
tory variables such that AMS defined in (12) obtains its 
minimum value. Obviously, this idea can be also extended 
to select p as well. Example 4 in Section 5.2 presents the 
practical implementation of this approach. 

4. GOODNESS-OF-FIT TEST 

To test whether model (2) holds with a specified paramet- 
ric form such as the TAR or EXPAR model (see Sec. 2), 
we propose a goodness-of-fit test based on the comparison 
of the residual sum of squares (RSS) from both parametric 
and nonparametric fittings. This method is closely related to 
the sieve likelihood method proposed by Fan et al. (1999). 
Those authors demonstrated the optimality of this kind of 
procedures for independent samples. 

Consider the null hypothesis 

where a, (., 8) is a given family of functions indexed by 
unknown parameter vector 8 .  Let 8 be an estimator of 8. 
The RSS under the null hypothesis is 

Analogously, the RSS corresponding to model (2) is 
n 

RSSl = n-' 	 C {Y, - Bl (Ui)Xi1- . . . -&P(ui)x,P}2 
i=l 

cai
Highlight
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The test statistic is defined as 

and we reject the null hypothesis (13) for large value of T,. 
We use the following nonparametric bootstrap approach to 
evaluate the p value of the test: 

1. Generate the bootstrap residuals {E,*},"=,from the em- 
pirical distribution of the centered residuals { t i  - E^),"=,, 
where 

and define 

2. Calculate the bootstrap test statistic T ;  based on the 
sample {U,, X i ,  r } F = l .  

3. Reject the null hypothesis Ho when T ,  is greater than 
the upper-ol point of the conditional distribution of TA given 
{Ui ,xi,X}?=l. 

The p value of the test is simply the relative frequency of 
the event { T ;  2 T,}  in the replications of the bootstrap 
sampling. For the sake of simplicity, we use the same band- 
width in calculating T i  as that in T,.  Note that we boot- 
strap the centralized residuals from the nonparametric fit 
instead of the parametric fit, because the nonparametric es- 
timate of residuals is always consistent, no matter whether 
the null or the alternative hypothesis is correct. The method 
should provide a consistent estimator of the null distribution 
even when the null hypothesis does not hold. Kreiss, Neu- 
mann, and Yao (1998) considered nonparametric bootstrap 
tests in a general nonparametric regression setting. They 
proved that, asymptotically, the conditional distribution of 
the bootstrap test statistic is indeed the distribution of the 
test statistic under the null hypothesis. It may be proven 
that the similar result holds here as long as 6' converges to 
13 at the rate np1I2. 

5. NUMERICAL PROPERTIES 

We illustrate the proposed methods through two simu- 
lated and two real data examples. The estimators ( 6 , (.)) 
are assessed via the square root of average squared errors 
(RASE), 

where 

and { u k ,k = 1, . . . , ngr id}are regular grid points. We also 
compare the postsample forecasting performance of the 
new method with existing methods such as the linear AR 
model, the TAR model, and the FAR model (implemented 

by Chen and Tsay 1993). We consider three predictors 
based on functional-coefficient modeling (3): the one-step- 
ahead predictor 

the iterative two-step-ahead predictor 

and the direct two-step-ahead predictor based on the model 

Note that model (3) does not necessarily imply (16). In this 
sense the direct two-step-ahead prediction explores the pre- 
dictive power of the proposed modeling techniques when 
the model is misspecified. We always use the Epanechnikov 
kernel K ( u )  = .75(1-u2)+. For the two real data examples, 
we repeat bootstrap sampling 1,000 times in goodness-of- 
fit tests, and select the bandwidths by the method proposed 
in Section 3.2. 

5.1 Simulated Examples 

Example I .  We first consider an EXPAR model. We 
replicate simulation 400 times and each time draw a time 
series with length 400 from the model 

where a l ( u )  = a2(u).I38 + (.316 + . 9 8 2 ~ ) e - ~ . ~ ~ " ~ ,= 

-.437 - and { E ~ }(.659+ 1 . 2 6 0 u ) e - ~ , ~ ~ ~ ~ ,  are iid N(O, .22).  
We choose the optimal bandwidth h, = .41 that minimizes 
the sum of the integrated squared errors of estimators for 
a1 (.) and a2( . ) .Figures 2(a) and 2(b) present the estimated 
a l ( . )  and a 2 ( . ) from a typical sample. The typical sample 
is selected in such a way that its RASE value is equal to 
the median in the 400 replications. The boxplot for 400 
RASE values is presented in Figure 2(c). To gauge the per- 
formance of our procedure in terms of RASE, we computed 
the standard deviation of the time series { x t } , denoted by 
ox.The mean and standard deviation of the OX in the sim- 
ulation with 400 replications are .5389 and .0480. Overall, 
the proposed modeling procedure performs fairly well. 

To demonstrate the power of the proposed bootstrap test, 
we consider the null hypothesis 

namely a linear AR model, versus the alternative 

H I :  a j  ( u )  # Qj, for at least one j .  

The power function is evaluated under a sequence of the 
alternative models indexed by P, 

where {a : (u ) )  are the solid curves given in Figures 2(a) 
and 2(b) and 5: is the average height of ay(u ) .We apply the 



Journal of the American Statistical Association, September 2000 

RASE1 RASE2 RASE 

(c) 

Figure 2 Simulation Results for Example I .  (a) The local linear estimator (dotted line) of the coeff~cient function ai(xt- (solid line); (b) the 
local linear estimator (dotted line) of a2(xt- i )  (solid line); (c) the boxplots of the 400 RASE values in estimation of a,(.) and ag(.); (d) the plot of 
power curve against p for the goodness-of-fit test. 

goodness-of-fit test described in Section 4 in a simulation 
with 400 replications. For each realization, we repeat boot- 
strap sampling 500 times. Figure 2(d) plots the simulated 
power function against p. When P = 0, the specified al- 
ternative hypothesis collapses into the null hypothesis. The 
power is .047, which is close to the significance level of 
5%. This demonstrates that bootstrap estimate of the null 
distribution is approximately correct. The power function 
shows that our test is indeed powerful. To appreciate why, 
consider the specific alternative with P = .4. The func- 
tions {a, ( u ) )  under H1 are shown in Figure 3. The null 

hypothesis is essentially the constant curves in Figure 3. 
Even with such a small difference under our noise level, 
we can correctly detect the alternative over 80% among the 
400 simulations. The power increases rapidly to 1 when 
p = .8. When = 1, we test the constant functions in 
Figure 3 against the coefficient functions in Figures 2(a) 
and 2(b). 

Example 2. We now consider a TAR model, 

xt = a ~ ( x t ~ ) x t - l  + ~ t ,+ ~ z ( x ~ - z ) x ~ - z  (18) 

where a l ( u )  = .4I ( u  5 1) - .8I (u  > l ) , a 2 ( u )= -.6I 

Figure 3. The Coefficient Functions Under (a) the Null Hypothesis and (b) a Specific Alternative Hypothesis With /3 = .4. The solid curves are 
coefficient functions under H i ;  the dotted lines are the coefficient functions under Ho. 
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RASE1 RASE2 RASE 

(c) 

Figure 4. Simulation Results for Example 2. (a) The local linear estimator (dotted line) of the coefficient function ar(xt-2) (solid line); (b) the 
local linear estimator (dotted line) of a2(xt-2) (solid line); (c) the boxplot of the 400 RASE values in estimation of al( .)  and ap(.). 

(u < 1)+ .2I (u > l),and { E ~ )are iid N(0, 1).With sample 
size n = 500, we replicate simulation 400 times. As in 
Example 1, the optimal bandwidth h, = ,325 is used. The 
boxplot for 400 RASE values is presented in Figure 4(c), 
and the local linear estimators of al(.)  and a2(.) from a 
typical sample are plotted in Figures 4(a) and 4(b). The 
typical sample is selected in such a way that its RASE value 
is equal to the median in the 400 replications. 

To compare the prediction performance of the three pre- 
dictors from functional-coefficient modeling with the best- 
fitted linear AR(2) model, 

we predict 10 postsample points in each of the 400 repli- 
cated simulations. The mean and standard deviation (SD, 
in parentheses) of the average absolute predictive errors 
(AAPE) are recorded in Table 1. Note that E = .7979 
and S D ( / E ~ / )  = .6028, so that the average of 10 absolute 
deviation errors has an SD of .1897. These are indeed very 
close to one-step AAPE and its associated SD using model 
(18), and imply that the errors in estimating functions a1 (.) 
and a2(.) are negligible in the prediction. It is clear that 
the functional-coefficient AR modeling, although somewhat 
overparameterized, provides more relevant predictors for 
the given model (18). Note that the direct predictor based on 

Table 1. Mean and Standard Deviation 
of AAPE Based on 400 Replications 

One-step Iterative two-step Direct two-step 

Model (1 8) ,784 (.203) ,904 (.273) ,918 (.281) 
Linear AR(2) 1 .I 31 (.485) 1.I 17 (.496) 

functional-coefficient model (16) performs reasonably well 
due to the flexibility of the functional-coefficient models. 

5.2 Real Data Examples 

Example 3. We continue the discussion on Canadian 
lynx data in Section 2. To fit model (8), we select the band- 
width that minimizes AMS(h) defined in (12). To this end, 
we let Q = 4 and m = 11. Figure 5(b) plots the AMS values 
against h. The selected bandwidth is h, = .90. The fitted 
values from both functional-coefficient model (8) and TAR 
model (7) are very close to each other; see Figure 5(a). Our 
goodness-of-fit test lends further support to using the TAR 
model. In fact, the RSSl for model (8) is .0406, which is 
slightly smaller than RSSo = .0414 for the TAR model (7). 
The p value of the test is .714. Indeed, the TAR model (7) 
and the model (8) with the coefficient functions given in Fig- 
ure 1 are statistically indistinguishable for this dataset. The 
difference lies in the interpretation of the two models (see 
Sec. 2). On the other hand, the p value of the goodness-of-fit 
test to test for the linear AR(2) model against the functional- 
coefficient model (8) is less than .001, which reinforces the 
existence of nonlinearity in the lynx data. 

To compare the prediction performance of various mod- 
els, we estimate the functional-coefficient model (8), a TAR 
model, and a linear AR(2) model using the first 102 data 
points only. We leave out last 12 points to check the pre- 
diction performance. The fitted TAR model is 
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Figure 5. Canadian Lynx Data. (a) Time plots of the fitted values from TAR model (7) (solid line) and the fitted values of functional-coefficient 
model (8) (dotted line). The true values are indicated by ".': (b) Plot of the AMS against bandwidth. 

The fitted linear AR(2) model is Z t  = -1.048 + 1 . 3 7 6 ~ ~ - ~  
. 7 4 0 ~ ~ - ~ .Both the TAR and linear models are estimated 
using the least squares method. The threshold was searched 
among 60% inner sample points. The absolute predic- 
tion errors are reported in Table 2, which shows that the xt = 

functional-coefficient model has better performance than 
both the TAR and linear AR(2) models. For example, 
for one-step-ahead prediction, the AAPE was reduced by 
36% when the TAR model was used instead of the linear 
AR(2) model, and was further reduced by 25% when the (20)
functional-coefficient model was used instead of the TAR (see Tong 1990, p. 387). We fit the following, more-
model. complex, functional-coefficient model accordingly: 

Models (7) and (8) look different on the surface. How- 
ever, they provide more or less equally good fits to the 7 

data, as evidenced by the goodness-of-fit test conducted xt = x a, (xt-2)xt-, + ~ t .  (21) 
earlier. The improvement in prediction by model (8) was 3=1 

due to local smoothing at smaller scales, which is based The selected bandwidth is h, = 1.45; see Figure 6(c). The 
on the understanding that population dynamics varies in estimated functions a,(.)  ( 1  5 j 5 7 )  are plotted in Fig- 
a continuous manner. Although the improvement in terms ure 6(a), which shows that the dynamical change is pre- 
of relative predictive errors is evident, the difference in the dominantly dictated by a l ( . )and u p ( . ) .The fitted values of 
AAPE occurs only at the second decimal place, which is not the two models are very close to one another, as shown in 
very substantial with respect to the dynamic range of the Figure 6(b). We apply the goodness-of-fit test to test the 
data. TAR model (20) against the functional-coefficient model 

Tong (1990) also suggested a more refined model involv- (21). The p value is 383, which again supports using the 
ing seven lagged variables: TAR model for the lynx data. 

Table 2. The Postsample Predictive Errors for the Canadian Lynx Data 

Model (8) TAR model (19) Linear AR(2) 

Year Xt One-step Iterative Direct One-step Iterative One-step Iterative 

1923 3.054 . I  57 ,156 ,209 , . I  87 ,090 ,173 ,087 
1924 3.386 ,012 ,227 ,383 ,035 ,269 ,061 ,299 
1925 3.553 ,021 ,035 . I  95 ,014 ,038 ,106 ,189 
1926 3.468 ,008 ,037 ,034 ,022 ,000 ,036 .I 82 
1927 3.1 87 ,085 ,101 ,295 ,059 ,092 ,003 ,046 
1928 2.723 ,055 ,086 ,339 ,075 .O 1 5 ,143 . I  48 
1929 2.686 . I  35 ,061 ,055 ,273 . I  60 ,248 ,051 
1930 2.821 ,016 .I 50 .3 1 8 ,026 ,316 ,093 ,434 
1931 3.000 ,017 ,037 . I  11 ,030 ,062 ,058 ,185 
1932 3.201 ,007 ,014 . I  51 ,060 ,043 ,113 ,193 
1933 3.424 ,089 ,098 ,209 ,076 ,067 .I91 ,347 
1934 3.531 ,053 . I  75 ,178 ,072 . I  87 .I 40 ,403 

AAPE ,055 ,095 ,206 ,073 ,112 ,114 ,214 
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Figure 6. Canadian Lynx Data. (a) The estimated curves for functional coefficients ai(xt-2) (i = 1, . . . , 7) in model (21). -- - a- I ;  ----- a.2; 
- - - a.3; , . .  , . , . . .  a-4; - - a-5; --a-6; -- a-7. (b) The time plots of the fitted values from model (20) (solid line) and the fitted values from 
model (21) (dotted line), with the true values indicated by 'c': (c) The plot of the AMS against bandwidth. 

Example 4. In many respects, Wolf's annual sunspot 1.23 + (1.75 - .171xt-3 - 6.61)xt-1 

numbers are known to be challenging (see, e.g., Tong + (-1.28 + .271xtP3- 6 . 6 1 ) ~ ~ - ~  

1990). Following the convention in the literature, we first 
apply the transform xt = 2 ( J m  - 1)  to the 288 
annual sunspot numbers in 1700-1987 (see, e.g., Chen 
and Tsay 1993; Ghaddar and Tong 1981). We apply the 
technique proposed in Section 3.3 to select the optimum 
functional-coefficient models among the class of models 
xt = C;zl a3(xt -d)x t -3  + ct with 1 < d < p and Combining this with the aforementioned result from the 
2 5 p < 11. We let m = 28 and Q = 4 in AMS de- model selection, we fit the data with the functional-
fined as in (12). Table 3 records the best model with each coefficient model 
value of p between 2 and 11. The overall optimum model xt = al(xt-3)xt-1 + az(xt-3)xt-2 + a3(xt-3)xt-3 
should be of order p = 7 or 8; the smooth variable, at lag + a6(x t -3 )~ t -6+ a8(xt-3)xt-8 +Et. (23) 
d = 3. The estimated coefficient functions are plotted in Fig-

Note that the FAR model proposed by Chen and Tsay ures 7(a)-(e). The selected bandwidth is h, = 4.75 [see 
(1993, p. 305) is Fig. 7(f)], which minimizes the AMS defined as in (12). 

Table 3. Selected Functional-Coefficient Models for the Sunspot Data 

P 2 3 4 5 6 7 8 9 10 11 
d 1 3 3 2 2 3 3 5 3 5 

AMS 18.69 13.46 13.90 12.26 13.93 11.68 11.95 14.06 14.26 13.91 
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Figure 7. Wolf's Sunspot Numbers. (a) -(e) Estimated functional coefficients in model (23) (a) a,; (b) a2; (c) as; (d) as; (e) a8. The x-axis is 
xl-3. (f) The plot of the AMS against bandwidth for estimation of model (23). 

To compare the prediction performance, the first 280 data 
points (in 1700-1979) are used to estimate the coefficient 
functions in (23). Table 4 reports the absolute errors in pre- 
dicting the sunspot numbers in 1980-1987 from the newly 
estimated model (23) as well as those from the FAR model 
(22) and the following TAR model (Tong 1990, p. 420): 

using the first 280 sample points (Chen and Tsay 1993, 
p. 304; Tong 1990, p. 420). According to the AAPEs, the 
functional-coefficient model performs as well as both the 
TAR and FAR models in one-step-ahead prediction. Fur- 
thermore, it performs better in two-step-ahead prediction 
with both iterative and direct methods. 

Finally, we apply the goodness-of-fit technique to test the 
hypothesis of the FAR model (22) against the nonparametric 
model (23). The RSSl for model (23) is 2.932, in contrast 
to RSSo = 3.277 for the FAR model. The p value for this 
test is .454, which lends further support to using the FAR 
model in this context. We also test the hypothesis of the 
TAR model (24) against the functional-coefficient model 

Note that both models (22) and (24) also were estimated The RSSl for (25) is 2.077, which is about 43.64% smaller 
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Table 4. 

Year Xt One-step 

1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 

AAPE 

The Postsample Predictive Errors for the Sunspot Data 

Model (23) FAR model (22) TAR model (24) 

Iterative Direct Error Iterative Error Iterative 

than RSSo = 3.685 for the TAR model. The p value of the 
test is .101. 

6. ASYMPTOTIC RESULTS 

Let .Fk be the a algebra generated by {(U,, X j ,  5);a < 
j < b). Let 

The quantity a (k )  is called the mixing coefficient of the 
stationary process {Uj, X j ,  Y,),OO=-,. If a (k )  J 0 as k J 

m, then the process {Uj , X j  ,Y,),OO=-, is called a-mixing. 
Among various mixing conditions used in literature, a -  

mixing is reasonably weak and is known to be fulfilled for 
many stochastic processes, including many time series mod- 
els. Gorodetskii (1977) and Withers (1981) derived the con- 
ditions under which a linear process is a-mixing. In fact, 
under very mild assumptions, linear AR and more generally 
bilinear time series models are strongly mixing, with mixing 
coefficients decaying exponentially. Auestad and Tjeistheim 
(1990) provided illuminating discussions on the role of a -  
mixing (including geometric ergodicity) for model identi- 
fication in nonlinear time series analysis. Chen and Tsay 
(1993) showed that the FAR process defined in (3) is geo- 
metrically ergodic under certain conditions. Further, Masry 
and Tjmstheim (1995, 1997) showed that under some mild 
conditions, both ARCH processes and additive AR pro- 
cesses with exogenous variables (NAARX), which are par- 
ticularly popular in finance, are stationary and a-mixing. 

We first present a result on mean squared convergence 
that serves as a building block for our main result and is also 
of independent interest. We now introduce some notation. 
Let 

and 

and 

Then, the solution to (9) can be expressed as 

where H = diag(1,. . . ,1, h, . . . ,h) with p-diagonal ele- 
ments 1's and p diagonal elements lz's. To facilitate the 
notation, we denote 

00 00 


du,p j  = 1 -,ujK(u) du, v, = 1,u ~ K ~ ( u )  

and 

Also, let f (u, x )  denote the joint density of (U, X )  and 
fU(u)  be the marginal density of U. We use the follow- 
ing convention: if U = X,, for some 1 L: jo < p, then 
f (u, x)  becomes f (x) the joint density of X. 

Theorem I .  Let condition A.l in the Appendix hold, 
and let f (u,x) be continuous at the point uo. Let hn J 0 
and nh, im, as n im. Then it holds that 

and 

nhnvar(Sn,j(u~)l,rn) f ~ ( ~ o ) l / z j ~ l . r nJ 

for each 0 < j I 3 and 1 < I ,  m < p. 
As a consequence of Theorem 1, we have 

and 

Sn.3 3 ~ 3 f ~ ( u 0 ) 0  

in the sense that each element converges in probability, 
where 

with 

Put 
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where a t (uo)  and at'(uo) are the vectors consisting of the first and The result (c) follows in an obvious manner from (a) and (b) along 
second derivatives of the functions a, (.). Then, with 

h2 
T OT , , ,  = +op(h2) var(Qn) = -var(Z (1 - i)COV(ZI,s , ,o~(uo)  +hsn , ia l (uo)  + T S n , ~ a " ( u ~ )  n 

1 
1) + n z l + l ) .  (A.I 1) 

and 1=1 

h2 
T n . 1  -T:,I = It thus remains to prove part (b). To this end, let dn i~~,i~(uo)+h~~,z~'(~o)+?~,3~"(~o)+o~(~~). oo be a 

so that 

where 0 = a ' ( ~ 0 ) ~ ) ~ .( a ( ~ o ) ~ ,  Thus it follows from (29), (A.4), 
and Theorem 1 that 

~ ( f ?- 0 )  = f ; l ( u o ) ~ - ~ T :  

h2 -1 p z 0+ - S  ( ii30 ) a"(uo) + oP(h2),  (AS)
2 

from which the bias term of B(u0) is evident. Clearly, 

0 - I
ii(u0) - a(u0) = [PzT:,O -PIT:;,]

f u ( ~ o ) ( i i z- ii2) 

+ -h2 "- ''IL3 a'' (UO)+ ( h 2 )  (A.6) 
2 i i2 -P?  

Thus (A.6) indicates that the asymptotic bias of ii(u0) is 

Let 

where (v)
zi = xi [Co + CI ] Kh (Ui -UO)[x-m(Ui ,x i ) ]  

with co = P Z / ( ~ Z- ii?) and CI = -pl / (pz - ii?). It follows from 
(A.6) and (A.7) that 

We need the following lemma, whose proof is more involved 
than that for Theorem 1. Therefore, we prove only this lemma. 
Throughout this Appendix, we let C denote a generic constant, 
which may take different values at different places. 
Lemma A.l Under conditions A.l  and A.2 and the assumption 
that h, + 0 and nh, i oo,as n i oo,if a 2 ( u ,  x )  and f (u,  x )  
are continuous at the point uo, then we have 

(a) hn var(Z1) + f u ( u o ) o *  (uo) [civo + 2coclvl + C ? ~ Z ] ;  

(b) hn /COV(ZI,Zi+l) /  = o(1); and 
(c) nh,var(Q,) + fu(uo)O* (uo)[c;vo + 2coclvl + c?vz]. 

Proof First, by conditioning on (UI, X I )  and using theorem 1 
of Sun (1984), we have 

L i 

= -h 
1 + 2 ~ 0 ~ 1 ~ 1  + ~ ( l ) ] .  (A.10)[fU(u0)0* ( ~ o ) { c ~ v O  + C?VZ} 

sequence of positive integers such that d,h, i 0. Define 

and 

It remains to show that Jl = o ( h l )  and = o(hP1). 
We remark that because K ( . )  has a bounded support 

[-I, l ] , a j ( u )  is bounded in the neighborhood of u E [uo -
h ,uo  + h]. Let B = maxl<j<psup,-, ,<h a j ( u )  and g(x)  = 
x ; = ,  lzj1. Then supl  ,-,o < h  lm(u, x )  < Bg(x) .  By condition- 
ing on (UI ,X I )  and ( U I + ~  , XI+^), and using (A. 1) and condition 
A.lb, we have, for all I > I,  

lcov(Zl,Zl+l)l 

< C E [ X I X ~ + , { K  + BS(XI)}{IX+~I+ Bg(X1+1)} 

It follows that 
J1 5 Cd, = o(h-l)  

by the choice of d,. We next consider the upper bound of J2. TO 
this end, using Davydov's inequality (see Hall and Heyde 1980, 
cor. A.2), we obtain, for all 1< j , m 5 p and I > I ,  

By conditioning on (U, X )  and using conditions A.1b and A.2c, 
one has 

< Chl-'. (A. 14) 

A combination of (A.13) and (A.14) leads to -
5 ~ h ~ / ~ - ~[ a ( ~ ) ] ~ - ~ ~ '  

l=d,, 

by choosing d, such that h l ~ ' / ~ d ;  = C ,  SO the requirement that 
dnhn + 0 is satisfied, 
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Proof of Theorem 2 	 the standard Lindeberg-Feller conditions for asymptotic normality 

We use the small-block and large-block technique-namely, of Q,,1 for the independent setup. 

partition ( 1 , .  . . ,n )  into 2q, + 1 subsets with large block of size We first establish (A.20). For this purpose, we choose the large- 

r = rn and small block of size s = s,. Set 	 block size. Condition A.2b implies that there is a sequence of 
positive constants 7, ioo such that 

We now use the CramCr-Wold device to derive the asymptotic and 


normality of Q,. For any unit vector d E Rp, let Z,,, = i 0. (A.24)
( ~ ~ / h , ) l ' ~ a ( s ~ )  
&dTz,+1,z = 0. , . . ,n - 1. Then 	 Define the large-block size rn by r,, = l (nh,)1/2/?nj  and the 

small-block size s,. Then it can easily be shown from (A.24) that 
as n ioo, 

/ r n  i0 r n / n  i 0, r n ( n h , ) 1 ' 2  + 0, (A.25) 

and, by Lemma A. 1, 	 and 

Observe that 
4 - 1  

and 

C cov(.&,o, Zn,i)l = 4 1 ) .  (A. 18) 

It follows from stationarity and Lemma A. 1 that 
Define the random variables, for 0 < j < q - 1, 

Next consider the second term I2 in the right side of (A.27). Let 
r j  = j ( r ,  + s,), then r j  - r l  > r ,  for all j > i, we thus have 

and 

Then, 
By stationarity and Lemma A. l ,  one obtains 

1121 5 2n C
n 

cov(Zn. i ,zn.3)I = o ( n ) .  (A.29) 
3 = ~ n f1 

Hence, by (A.25)-(A.29), we have 

We show that as n ioo, 
It follows from stationarity, (A.25), and Lemma A.l that 

var[Q,,~]= var 

= O ( n- qn(r,  + s,)) = o ( n ) .  (A.31) 

Combining (A.25), (A.30), and (A.31), we establish (A.20). As for 
(A.22), by stationarity, (A.25), (A.26), and Lemma A.l,  it is easily 
seen that 

and 

To establish (A.21), we use Lemma 1.1 of Volkonskii and Rozanov 
(1959) (see also Ibragimov and Linnik 1971, p. 338) to obtain 

for every E > 0. (A.20) implies that Qn.2 and Qn.3 are asymptoti- 	 4 n - 1  

cally negligible in probability, (A.21) shows that the summands 7,  E [ e x p ( i t Q n . ~ ) ]- IT E[exp(atri,)]< 1 6 ( n / r n ) a ( ~ n )  
in Qn,l are asymptotically independent, and (A.22) and (A.23) are 	 j = O  
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tending to 0 by (A.26). 
It remains to establish (A.23). For this purpose, we use theorem 

4.1 of Shao and Yu (1996) and condition 2 to obtain 

Therefore, by (A.32) and (A.33), 

Thus, by (A. 16) and the definition of r,, and using conditions A.2c 
and A.2d, we obtain 

because y, + oo.This completes the proof of the theorem. 

[Receiveel April 1998. Revised November 1999.1 
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