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Abstract
This paper investigates model specification problems for nonlinear stochastic differential
equations with delay (SDDE). Compared to themodel specification for conventional stochas-
tic diffusions without delay, the observed sequence does not admit a Markovian structure so
that the classical testing procedures may not be applicable. To overcome this difficulty, a
moment estimator is newly proposed based on the ergodicity of SDDEs and its asymptotic
properties are established. Based on the proposed moment estimator, a testing procedure is
proposed for our model specification testing problems. Particularly, the limiting distributions
of the proposed test statistic are derived under null hypotheses and the test power is examined
under some specific alternative hypotheses. Finally, a Monte Carlo simulation is conducted
to illustrate the finite sample performance of the proposed test.
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Statistical Inference for Stochastic Processes

1 Introduction

Consider a d-dimensional stochastic differential equation with delay

dX(t) = b0(Xt )dt + σ0(Xt )dW (t), (1)

where X(t) denotes the state of the system at time t and Xt = {X(t + s) : −τ ≤ s ≤ 0} is
called the segment process, which includes the all information of X(·) on [t − τ, t]. Here,
τ > 0 is a fixed constant representing the delay structure. Two coefficient functions b0(·) (drift
function) and σ0(·) (diffusion function) are appropriate mappings of the segment process and
W (t) is a r -dimensional standard Brownian motion with r ≥ 1. Our interest is in testing the
joint parametric family P = {(b(·; θ), σ (·; θ)) : θ ∈ �}, where � is a compact subset of
R
mθ with mθ ≥ 1. The parametric family P provides explanatory power for understanding

the underlying dynamics. This is to say that our aim is to test if the following null hypothesis
holds or not

H0 : b0(·) = b(·; θ), σ0(·) = σ(·; θ) for some θ ∈ �.

Throughout the paper, we always write the true parameter θ = θ∗ ∈ � if H0 is true even
though the value of θ∗ may not be given. This test is about to see if a parametric (linear)
model is appropriate for a real application.

When b0(Xt ) = b0(X(t)) and σ0(Xt ) = σ0(X(t)) for some appropriate functions b0(·)
and σ0(·) inRd , the SDDEmodel in (1) reduces to a classical stochastic differential equation
(SDE) without delay. The model specification testing problem for such special case has
been a very important topic in the literature since the pioneer work by Aït-Sahalia (1996).
For example, there are some extensions to the methods as in Aït-Sahalia (1996); Hong
and Li (2005); Chen et al. (2008); Aït-Sahalia et al. (2009), especially, see Hong and Li
(2005) for the kernel estimation for transition density, Chen et al. (2008) for transitional
density using the empirical likelihood, and (Aït-Sahalia et al. 2009) for a specification test
for the transition density of a discretely sampled continuous-time jump-diffusion process. The
similar goodness-of-fit testingproblems for continuous-time stochastic diffusions also receive
extensive attention in the literature. For example, one may refer to the papers by Dachian
and Kutoyants (2008), Negri and Nishiyama (2009), Kleptsyna and Kutoyants (2014) and
the review paper by López-Pŕez et al. (2022), and references therein.

Different from the aforementioned papers, it is assumed that the joint parametric family
P admits a delay dependence structure in our paper. The motivation of delay dependence
stems from the fact that many of the phenomena witnessed in applications do not have an
immediate effect from the moment of their occurrence. With such an important feature,
SDDEs are widely used in stochastic modeling in practice. For example, applied works
focusing on SDDEs in the literature, include, to name just a few, the works by Mao (2007),
Bratsun et al. (2005), Hobson and Rogers (1998), Steiner et al. (2017), Marschak (1971),
Lawrence (2012), Lei andMackey (2007),Rihan (2021), Stoica (2005),Karatzas (1996),Hale
and Lunel (2013), Chen and Yu (2014), Ivanov and Swishchuk (2008), Arriojas et al. (2007),
and references therein, with particular applications in the analysis of stability in automatic
control in stochastic systems, gene regulation, inertia anddelay in decision-making, stochastic
volatility, stochastic games, economics of information systems, optimal control in economics,
and a delayed Black-Schole formulation and option pricing in finance.

The parameter estimation and statistical inference for SDDEs also receive a lot of atten-
tion in the literature, see, for example, Benke and Pap (2017), Gushchin and Küchler (1999),
Küchler and Kutoyants (2000), Küchler and Sørensen (2010, 2013), Reiss (2005), and refer-
ences therein. In the literature, it is commonly assumed that the drift coefficient is linear and
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the diffusion coefficient is constant, and the observations are in real-time in the aforemen-
tioned papers. For a different small perturbation approach, the reader is referred to the paper
by Kutoyants (2021) and references therein. To the best of our knowledge, there is no work
yet concerning the model specification problem for general nonlinear SDDEs especially with
discrete-time observations. The paper aims to fill this gap by providing an efficient testing
procedure under a general setting.

More specifically, a testing procedure is constructed based on the ergodicity of non-linear
SDDEs for the model specification test. Such a generalization allows one to work on more
complex model specification problems with delay in practice. Due to the non-Markovian
structure, the classical testing methods using transition probability for Markovian observa-
tions as in Aït-Sahalia (1996), Hong and Li (2005), Chen et al. (2008), Aït-Sahalia et al.
(2009), can not be directly applicable here. To this end, we propose a new approach, which
consists of two steps. First, a moment estimator is introduced and then, its asymptotic proper-
ties are investigated. Indeed, the proposed estimator is inspired by the ergodicity of SDDEs,
similar to that in Küchler and Sørensen (2013) but different from the small perturbation
approach as in Kutoyants (2021). Then, based on the proposed moment estimator, a statis-
tic is constructed and its limiting distributions are established, which can be used in the
model specification test problem for SDDEs. It is worth mentioning that instead of the non-
parametric CramerVonMises statistics, our test statistics are constructed through introducing
a new function f0(·) satisfying some conditions, combined with the stochastic generator of
the SDDE. The key reason for this is that the invariant measure of the segment process
of the SDDE is infinite-dimensional (see Assumption 2). Moreover, because the diffusion
coefficient can be estimated non-parametrically using in-fill asymptotics, our methods are
designed particularly for testing the drift coefficient b0(·). Therefore, it is assumed that σ0(·)
is independent of θ throughout the paper.

The well-posed results (such as the existence and uniqueness) for the SDDE in (1) can
be found in Section 5.2 in Mao (2007). Define an operator on A for any twice continuously
differentiable function f (·) : Rd �→ R by

A f (η; θ) = 〈b(η; θ),∇ f (η(0))〉 + 1

2
trace

[
σ(η)σ�(η)D2 f (η(0))

]
,

where η denotes a possible path of the segment process (see (3) below), ∇ f is the gradient
of f , and D2 f is the Hessian matrix of f . We also write A0 f (η) = A f (η; θ∗) for the true
θ = θ∗. Through the well-known Itô’s formula, it follows that for a regular function f (·)
(see Section 5.6 in Mao (2007), for example), the following process

f (X(t)) − f (X(0)) −
∫ t

0
A0 f (Xs)ds

is a local martingale. Actually, A can be seen as the infinitesimal generator for the segment
process {Xt }. To work on the testing problem in our paper, it is assumed the solution process
to be exponential ergodic with a unique invariant measure μ. In such case, the observation
is asymptotically stable which coincides with the classical stable assumptions for observa-
tions in the literature. The results concerning the exponential ergodicity can be found in the
Appendix.

The rest of the paper is arranged as follows.We present the definition of moment estimator
and prove its limit theorems in Sect. 2. Then, a testing procedure for testing our model
specification problem is developed in Sect. 2 too. Some simulation results to justify our
theory are illustrated in Sect. 3. We summarize our conclusions in Sect. 4. The mathematical
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proofs of the main results are relegated to Sect. 5. Finally in Appendix, some limit theorems
for SDDEs are recalled, especially on the exponential ergodicity theory.

2 Specification test

2.1 Moment estimator

In this section, our aim is to present the definition of our estimator which is called a moment
estimator since the definition depends on H0 and takes a moment estimator form.

Suppose that the SDDE in (1) is observed with a time-window � and a sequence of
observations {Zi }ni=0 are observed, where Zi = X(i�), and that there also exists a set of
regular functions f = { fk : k = 1, · · · ,m} with m ≥ mθ . To emphasize the dependence of
θ , we write by μ(·; θ) the unique invariant measure of Xt (see Appendix). It is well-known
that for k = 1, · · · ,m,

∫

C
A fk(η; θ∗)μ(dη; θ∗) = 0.

As X is exponential ergodic, by the law of large numbers (LLN), it is easy to obtain

1

T

∫ T

τ

A fk(Xt ; θ∗)dt →
∫

C
A fk(η; θ∗)μ(dη; θ∗) = 0

almost surely as T → ∞, where C is defined in (3) later. Replacing the continuous-time
process X above by the sequence of discrete time observations {Zi }ni=0, define

Ân,�( fk; θ)

= 1

n

n∑
i=��

[
b̃�
�(Zi−��, · · ·, Zi ; θ)∇ fk(Zi )+ 1

2
trace

(
[σ̃�

� σ̃�](Zi−��,· · ·, Zi )D
2 fk(Zi )

)]
,

where �� = 
τ/��, the largest integer smaller than or equal to τ/�, and b̃�(·) and σ̃�(·) are
some appropriate approximations chosen forb(·) andσ(·) in (1).Here, note that different from
b(·) and σ(·), b̃�(·) and σ̃�(·) are finitely dimensional functions. For such case, Ân,�( fk; θ)

is essentially an approximation of

An�( fk; θ) = 1

n�

∫ n�

τ

[
b�(Xt ; θ)∇ fk(X(t)) + 1

2
trace

(
[σ�σ ](Xt )D

2 fk(X(t)
)]

dt .

A natural idea of defining the moment estimator is to solve the following equations for θ ,

Ân,�( fk; θ) = 0, k = 1, · · · ,m.

Because the solutionmay not exist, define themoment estimator θ̂n,�(f) as anm-dimensional
vector in the compact set � by

θ̂n,�(f) = argminθ∈�

m∑
k=1

∣∣ Ân,�( fk; θ)
∣∣ , (2)

if m ≥ mθ . If m = mθ (the model is just identified), since � is compact, θ̂n,�(f) is well-
defined and is the zero-point (when n is large and � is small). When m > mθ , θ̂n,�(f) is
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over-identified so that it is a minimum point only while is not the anticipated zero-point.
Therefore, it needs a different effort to consider this over-identification case, which is left as
a future research topic. In this paper, we consider the only case that m = mθ . Now, write the
error term (after an appropriate scaling) by

γn,� = √
n�

m∑
k=1

∣∣∣ Ân,�( fk; θ̂n,�(f))
∣∣∣ = √

n� inf
θ∈�

m∑
k=1

∣∣ Ân,�( fk; θ)
∣∣ ,

and then, the limit behavior of the error γn,� plays an important role in the later analytic
study.

It is assumed that � = �n → 0 and n�n → ∞ and n → ∞. The condition n�n → ∞
allows one to apply the LLN and the central limit theorem (CLT) for SDDEs and is also
sufficient for (n − ��n )/n → 1. Here, one should emphasize that the assumption �n → 0
is to guarantee our moment estimator being (asymptotically) unbiased. The unbiasedness of
the moment estimator is critical in our testing procedure. Because our final results are in a
weak-convergence manner, it only needs to show that the CLT holds for any subsequence
(n j ,�n j ) of (n,�n) with

∑∞
j=1 �n j < ∞. Therefore, it is assumed throughout the paper

that

n j → ∞, �n j → 0, n j�n j → ∞ and
∞∑
j=1

�n j < ∞.

For the sake of convenience, the subscript j is omitted in the sequel without confusion.
Until now, we have unveiled the definition of our moment estimator θ̂n,�n (f) given in (2).

Our main goal is to study the consistency and asymptotic normality so that one can construct
a test statistic for the testing problem.

2.2 Asymptotic properties

First, we establish the consistency of our moment estimator under H0 with the detailed proof,
relying on the ergodicity theory for SDDEs, given in the Appendix. To this end, define the
functional space

C =
{
η : [−τ, 0] �→ R

d |η(·) is continuous on [−τ, 0]
}
, (3)

equipped with the sup-norm metric ‖η‖C = sup−τ≤s≤0 |η(s)|. For any η(·) ∈ C , we write
the δ-increment functional by

wδ(η) = sup
−τ ≤ u ≤ v ≤ 0
|u − v| ≤ δ

|η(u) − η(v)|.

Now, the following two assumptions are needed for investigating the large sample theory.
The first assumption is from Bao et al. (2020) to guarantee the ergodicity of SDDE.

Assumption 1 (A1). σ(·) is Lipschitz continuous; b(·) : C ×� �→ R
d and σ(·) : C ×� �→

R
d×r is continuous, and bounded on bounded subsets of C .

(A2). There exist two constants λ1, λ2 > 0 such that λ1 > λ2e−λ1τ such that

2〈ξ(0) − η(0), b(ξ ; θ∗) − b(η; θ∗)〉 ≤ −λ1|ξ(0) − η(0)|2 + λ2‖ξ − η‖2C .
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(A3). σσ�(·, θ∗) is invertible with

sup
C

(
|σσ�(·, θ∗)| + |(σσ�)−1(·, θ∗)|

)
< ∞,

and |∂θb(η; θ)| ≤ L(1 + ‖η‖C ), |∂θσ (η; θ)| ≤ L , where L is a tentative constant which
may vary from place to place, in what follows.

The second assumption has two perspectives: the identifiable condition and the approxi-
mation of discrete-time observations to the true solution of SDDE.

Assumption 2 Suppose that fk(·) ∈ f is twice continuously differentiable with bounded
second order derivatives satisfying:
(i) θ∗ is the unique solution

∫

C
A fk(η; θ)μ(dη; θ∗) = 0 for all k = 1, · · · ,m,

where μ is the unique invariant measure of Xt .
(ii) The rank of the matrix R(θ∗) = (r1(θ∗), · · · , rm(θ∗)) is m, where

rk(θ) =
∫

C
∂θA fk(η; θ)μ(dη; θ). (4)

(iii) For any η ∈ C , there exist b̃� : (Rd)��+1 × � �→ R
d and σ̃� : (Rd)��+1 × � �→ R

d×r

such that

|b̃�

(
η(−�� ∗ �), · · · , η(0); θ

)| + |σ̃�

(
η(−�� ∗ �), · · · , η(0)

)| ≤ L(1 + θ)(1 + ‖η‖C ),

|∂θb(η; θ)| + |∂2θ b(η; θ)| + |∂θ b̃�(η(−�� ∗ �), · · · , η(0); θ)|
+ |∂2θ b̃�(η(−�� ∗ �), · · · , η(0); θ)| ≤ L(1 + ‖η‖C ),

|b(η; θ) − b̃�

(
η(−�� ∗ �), · · · , η(0); θ

)| + |σ(η; θ) − σ̃�

(
η(−�� ∗ �), · · · , η(0); θ

)|
≤ L(1 + |θ |)w�(η),

and

|∂θb(η; θ) − ∂θ b̃�(η(−�� ∗ �), · · · , η(0); θ)| ≤ Lw�(η).

To prove the consistency, the following proposition is needed.

Proposition 1 Suppose Assumptions 1 and 2 hold. It follows that

lim
n→∞ sup

θ∈�

∣∣∣ Ân,�n ( fk; θ) −
∫

C
A fk(η; θ)μ(dη; θ∗)

∣∣∣ = 0

almost surely.

Now, let us present the consistency of the estimator under H0 with its proof given in
Sect. 5.

Theorem 1 (Consistency) Suppose Assumptions 1 and 2 hold. Under H0, it follows that

θ̂n,�n → θ∗ (5)

almost surely as n → ∞. Consequently, the moment estimator is consistent.
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Next, we establish the asymptotic normality for the moment estimator θ̂n,�n (f) defined
in (2). To this end, we proceed with the following estimate for the error term γn,�n with its
proof given in Sect. 5.

Lemma 1 Under Assumptions 1 and 2, if � has neighborhood of θ∗, then γn,�n = 0 almost
surely as n goes to infinity.

From the estimate for γn,�n in Lemma 1, our testing problem is considered by two different
cases (I): � has a neighborhood of θ∗; (II): � = {θ∗}. It is obvious that Case II is trivial
in the estimation step so that our focus is only on Case I. The following is our result on the
asymptotic normality of θ̂n�n (f) with its proof given in Sect. 5.

Theorem 2 (Asymptotic Normality) Suppose Assumptions 1 and 2 hold and � has a neigh-
borhood of θ∗. As n → ∞ and

√
n�n → 0, then, it follows that under H0,

√
n�n

[
θ̂n,�n (f) − θ∗] → N

(
0, �(f; θ∗)

)
(6)

in distribution, where �(f; θ∗) is defined as

r�
k (θ∗)�(f; θ∗)rk(θ∗) =

∫

C
|σ�(η)∇ fk(η(0))|2μ(dη; θ∗) for all k = 1, · · · ,m (7)

with rk(θ) defined in (4).

Note that the true value of θ∗ is not obtainable, we provide the following asymptotic
normality with variance being independent of θ∗. Together with Lemma 2 in the Appendix,
we have the following proposition.

Proposition 2 Suppose assumptions in Lemma 2 in Appendix and Assumption 2 hold. As
n → ∞ and

√
n�n → 0, it follows that under H0,
√
n�n · �−1/2(f; θ̂n,�n (f))

[
θ̂n,�n (f) − θ∗] → N (0, 1)

in distribution, where �(f; θ∗) is defined in (7).

Until now, we have obtained the asymptotic normality for our moment estimator θ̂n,�(f).
While we cannot directly apply such asymptotic normality to our hypothesis testing problem
as the true θ∗ is not obtainable. Therefore, we need to construct a statistic for our model
testing problem in Sect. 2.3, described in the next section.

2.3 Test statistic

In this section, a statistic is constructed. To this end, let f0(·) : R
d �→ R and define the

statistic as follows:

Ân,�( f0; θ̂n,�(f)) =
√

�

n

n∑
i=��

[
b̃�
�(Zi−��, · · ·, Zi ; θ̂n,�(f))∇ f0(Zi )

+ 1

2
trace

(
[σ̃�

� σ̃�](Zi−��,· · ·, Zi )D
2 f0(Zi )

)]
.

Now, it is ready to present the main results of the paper. The first theorem concerns the
asymptotic normality for Case I in Theorem 3 and the second theorem is for Case II in
Theorem 4 with their detailed proofs given in Sect. 5.
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Theorem 3 Let all assumptions in Proposition 2 hold. Suppose that f0(·) is twice continu-
ously differentiable with bounded second-order derivatives. Under H0, if σ( f0, f; θ∗) �= 0,
as n → ∞ and

√
n�n → 0, one has

T̂n,�n ( f0, f; θ̂n,�n (f)) = σ−1( f0, f; θ̂n,�n (f)) · Ân,�n ( f0; θ̂n,�n (f)) → N (0, 1) (8)

in distribution, where r0(θ) = ∫
C ∂θA f0(η; θ)μ(dη; θ) and

σ 2( f0, f; θ)=
∫

C

⎡
⎢⎣
[
R−1(θ)r0(θ)

]�
⎛
⎜⎝

σ�(η)∇ f1(η(0))
...

σ�(η)∇ fm(η(0))

⎞
⎟⎠−σ�(η)∇ f0(η(0))

⎤
⎥⎦

2

μ(dη; θ).

Here, f0(·) can not be a linear combination of f because σ 2( f0, f; θ) = 0 for such a case.
This coincides with our intuition from the definition of our moment estimator as an infimum
point using f .

Theorem 4 Let H0 : θ = θ0 versus H1 : θ = θ1 with θ0 �= θ1. Under H0, as n → ∞ and√
n�n → 0 if v−1(A f0(·; θ0); θ0) �= 0, one has

v−1(A f0(·; θ0); θ0) · Ân,�n ( f0; θ0) → N (0, 1) (9)

in distribution, where v(·) is defined in (19) in Appendix.Moreover, under H1, if f0(·) satisfies∫
C A f0(η; θ0)μ(dη; θ1) �= 0, then,

v−1(A f0(·; θ0); θ0) · Ân,�n ( f0; θ0) → ∞
in probability so that the test power converges to 1 under H1 with a rate of (n�n)

−1.

Remark 1 First, from Theorems 3 and 4, one can conclude that the probabilities of falsely
rejecting H0 for bothCase I andCase II are asymptoticallyα as n → ∞,�n → 0, n�n → ∞
and

√
n�n → 0. Second, even though the closed forms of σ( f0, f; θ) and v(A f (·; θ); θ)

as functions of θ may not be obtainable, their values can be computed numerically through
an independent Monte-Carlo method without using the observations. Therefore, σ( f0, f; θ)

and v(A f (·; θ); θ) are treated as known functions in testing procedure. Finally, it seems that
selecting f0(·) is important, so that

∫
C A f0(η; θ∗)μ(dη; θ1) �= 0 is for a good test power,

which is illustrated by a concrete example in simulation study later (see the results given in
Table 4 later).

With the above limiting results, the proposed testing procedure can be summarized as
follows:
Case I (i.e.� has a neighborhood of θ∗): reject H0 if |σ−1( f0, f; θ̂n,�n (f)) · Ân,�n ( f0, θ̂n,�n

(f))| ≥ zα/2, where zα/2 is the 100(1 − α/2) percentile of a standard normal distribution.
Case II (i.e H0 : θ = θ∗): reject H0 if |v−1(A f0(·; θ∗); θ∗) · Ân,�n ( f0, θ

∗)| ≥ zα/2.

3 Monte Carlo simulation study

We consider testing a generalized Vasicek model as in Vasicek (1977) with delay,

dX(t) = [a0 − b0X(t) + θb1(X(t − τ))]dt + σdW (t)
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Table 1 The test sizes for
different significance levels α and
number of observations n with
� = 10−3 and θ∗ = 1

α 0.01 0.05 0.10

n=104 0.006 0.030 0.064

n=106 0.012 0.054 0.110

for some θ ∈ � = [−l, l]. Since our main focus is on the delay structure in our paper, set a0,
b0, and σ as given constants in our simulation example. b1(·) is a non-linear function, which
distinguishes our results from the previous result in Küchler and Sørensen (2013) and so on.

Since θ is one dimensional in our example, we pick only a function f (·) : R �→ R such
that

∫
C f ′(η(0))η(−τ)μ(dη; θ∗) �= 0. Our moment estimator is defined by

θ̂n,� = �

[∑n
i=��

[(b0Zi − a0) f ′(Zi ) − σ 2 f ′′(Zi )/2]∑n
i=��

[b1(Zi−��) f ′(Zi )]

]
,

where � is the projection from R to [−l, l]. By (20) in the Appendix, a simple calculation
yields that

r(θ) =
∫

C
f ′(η(0))b1(η(−τ))μ(dη; θ)(�= 0) and r0(θ) =

∫

C
f ′
0(η(0))b1(η(−τ))μ(dη; θ).

Also, it is not difficult to see that

σ 2( f0, f; θ) = σ 2
∫

C

[
f ′
0(η(0)) − r0(θ)

r(θ)
f ′(η(0))

]2
μ(dη; θ).

Now, let us present a concrete example to illustrate our results. Set a0 = 0, b0 = 5, σ = 1,
τ = 0.1, b1(x) = I (|x | < 1), f (x) = x , and f0(x) = x2/2. For this case the moment
estimator and testing statistics are

T̂n,�( f0, f; θ̂n,�(f))

= σ−1( f0, f; θ̂n,�(f))

√
�

n

n∑
i=��

(
Zi [a0 − b0Zi + θ̂n,�(f)b1(Zi−��)] + 1/2

)
,

where

θ̂n,�(f) = �

[∑n
i=��

[b0Zi − a0]∑n
i=��

b1(Zi−��)

]
, σ 2( f0, f; θ) = σ 2

∫

C

[
η(0) − r0(θ)

r(θ)

]2
μ(dη; θ),

and� is the projection fromR to�. Here, as mentioned earlier, σ 2( f0, f; ·) can be calculated
by an independent Monte-Carlo simulation without using the observations. When simulating
the observations, set the step size δ = �/10 and nδ = 10 ∗ n recursions to obtain {Yi }nδ

i=0
for the SDDE, where Yi = X(iδ). Then, the observations are {Zi }ni=0, where Zi = Yi∗�/δ .
The simulation is repeated 500 times.

Table 1 reports the test sizes for different values of sample size n. From Table 1, one can
see clearly that the test size converges to the nominal sizes, when the sample size n becomes
large (proportional to the observation window �).

In Table 2, the test powers are listed if the alternative hypothesis takes H1 : b(η) =
a0 − b0η(0) + θ∗b1(η(−0.1)) with a0 �= 0 (i.e. θ1 = θ∗). Such alternatives correspond to
the cases when the perturbation of H1 from H0 is a constant in the drift coefficient. When a0
departures from 0, the test power tends to one quickly. This means that indeed, the proposed
test is powerful.
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Table 2 The test powers for different values of a0 in H1 : b(η; θ) = a0 − b0η(0) + θ1b1(η(−0.1)) with
θ1 = 1, α = 0.05, n = 106 and � = 10−3

α = 0.05

a0 0.3 0.2 0.1 0 −0.1 −0.2 −0.3

Power 1.000 0.998 0.588 0.048 0.454 0.898 0.982

Table 3 The test powers for different values of θ1 under H0 : b(η; θ) = −b0η(0) + θ0b1(η(−0.1)) versus
H1 : b(η; θ) = −b0η(0) + θ1b1(η(−0.1)) with α = 0.05, n = 106 and � = 10−3

α = 0.05

θ1 0.7 0.8 0.9 1.0 1.1 1.2 1.3

Power 0.936 0.770 0.286 0.048 0.460 0.962 1.000

Table 4 The test powers for different values of θ0 and a0 under H0 : b(η; θ) = a0 −b0η(0)+ θ0b1(η(−0.1))
versus H1 : b(η; θ) = a0 − b0η(0) with α = 0.05, n = 106 and � = 10−3

a0 = 1
θ0 0 0.3 0.5 1

Power 0.056 0.9960 1.000 1.000

a0 = 0

θ0 0 0.3 0.5 1

Power 0.044 0.048 0.044 0.046

In Table 3, the hypothesis is set as H0 : b(η; θ) = a0 − b0η(0) + θ0b1(η(−0.1)) versus
H1 : b(η; θ) = a0 − b0η(0) + θ1b1(η(−0.1)), where H1 is indexed by θ1. The new feature
for such an example is that γn,� → 0 in probability fails. For this case, θ̂n,�(f) = 1 and the
testing statistic becomes

( ∫

C
[η(0)]2μ(dη; θ∗)

)−1/2
Ân,�( f0; θ∗)

=
( ∫

C
[η(0)]2μ(dη; θ∗)

)−1/2
√

�

n

n∑
i=��

(
[a0 − b0Zi + θ0b1(Zi−�� < 1)]Zi + 1/2

)
.

Note that the true value of
∫
C [η(0)]2μ(dη; θ∗) is 0.1392 by performing an independent

Monte-Carlo simulation in prior. Table 3 summarizes the test powers for this case. From
Table 3, one also can observe that when θ1 departures from 1, the test power tends to one
quickly, which implies that the proposed test works reasonably well.

Finally, Table 4 displays the test powers for different θ0 and a0 if the stochastic diffusion
admits no delay structure in H1. When a0 = 1, we can see that the power tends to 1 very
quickly when θ0 departs from the true value 0. This concludes our test is very powerful in
distinguishing the delay structure from conventional stochastic diffusions. While if a0 =
0, our tests are not becoming more powerful when θ0 departs from 0. The reason is that∫
C A f0(η; θ0)μ(dη; θ1) = 0 in such a case, which justifies our third conclusion in Remark
1. To make our tests powerful, a different f0(·) rather than f0(x) = x2/2 should be selected.
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4 Conclusion

In this paper, a model specification test for SDDEs is proposed based on its ergodicity. Com-
pared tomodel specification problems for stochastic diffusions without delay, the observation
does not admit a Markovian structure. The proposed method allows us to work with the case
that the stochastic diffusions have nonlinear coefficients and admits a delay structure under
the null hypothesis. Through Monte Carlo simulation, we observe that the proposed test has
a good test size and is indeed powerful.

Before concluding the paper, we would like to discuss how to apply our method if the
observed window � is fixed. Such a case for linear SDDEs with additive diffusions was
studied in Küchler and Sørensen (2013). Due to the special structure assumed there, it is
asserted that the conditional distribution of X(i+1)� on X�, · · · , Xi� is normal which plays
an essential role in their study. Otherwise, a biased estimator can be concluded in Küchler
and Sørensen (2011). Because the diffusions are assumed non-linear in our problem, such a
property fails and their method is not applicable here.

In our paper, the key of selecting A fk(·) as moment functions lies in the fact that
Ân,�( fk; θ∗) is asymptotic to 0 (independent of θ∗). While for fixed �, the limit of
Ân,�( fk; θ∗) depends on θ∗ and therefore, the moment functions {A fk(·)} would not be
appropriate in this case. To propose an appropriate moment estimator for such case, it
needs to find g�(η; θ) such that g�(η; θ) depends on the observable part in η only and∫
C g�(η; θ∗μ(dη; θ∗) = 0. The choice is not easy in general because the explicit form of
the invariantmeasure for the segment process is not obtainable. This problem is left as a future
study. To summarize, in this paper, we let � → 0, which leads to the closed forms of mean
and variance in the asymptotic normality. Our problem can be seen as a model specification
testing problem for non-linear SDDEs with high-frequency data. Finally, as aforementioned,
it would be very interesting to investigate the over-identified case (m > mθ ) issue and the
efficiency of the proposed moment estimator should be explored too, which are left future
research topics.

5 Mathematical proofs

Note that Op(1) stands for a term which is bounded in probability and op(1) means that it
converges to 0 in probability.

Proof of Proposition 1 Note that

E

∣∣∣ Ân,�( fk; θ)−(n�)−1
∫ n�

τ

A fk(Xt ; θ)dt
∣∣∣
2 ≤ Ln−1

E

n∑
i=1

(1+‖Xi�‖C )2 · ‖w�(Xi�)2‖

≤ Ln−1
n∑

i=1

√
E(1 + ‖Xi�‖C )4 · E‖w�(Xi�)4‖ = L�.

Since
∑∞

j=1 �n j < ∞, then,

∞∑
j=1

E

∣∣∣ Ân,�n ( fk; θ) − (n�n)
−1
∫ n�n

τ

A fk(Xt ; θ)dt
∣∣∣
2 ≤ L

∞∑
j=1

�n j < ∞.
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By Borel–Cantelli lemma, together with the LLN in (17), it follows that

Ân,�n ( fk; θ) →
∫

C
A fk(η; θ)μ(dη; θ∗)

almost surely for each θ ∈ �. To prove the uniform convergence, it suffices to show that
Ân,�( fk; θ) is equicontinuous on each sample path. To this end, note that

sup
θ∈�

|∂θ Ân,�n ( fk; θ)| ≤ n−1
n∑

i=1

sup
θ∈�

|∂θ b̃
�
�n

(Zi−��n
, · · ·, Zi ; θ)∇ fk(Zi )|

≤ Ln−1
n∑

i=1

(1 + ‖Xi�n‖2C ) → c

almost surely for some constant c, which essentially implies that Ân,�n ( fk; θ) is uniformly
Lipschitz on each sample path. The proof is complete.

Proof of Theorem 1 By Proposition 1, it follows that

m∑
k=1

∣∣∣
∫

C
A fk(η; θ̂n,�n (f))μ(dη; θ∗)

∣∣∣

≤
m∑

k=1

sup
θ∈�

∣∣∣ Ân,�n ( fk; θ) −
∫

C
A fk(η; θ)μ(dη; θ∗)

∣∣∣+
m∑

k=1

∣∣∣ Ân,�n ( fk; θ̂n,�n (f))
∣∣∣

≤
m∑

k=1

sup
θ∈�

∣∣∣ Ân,�n ( fk; θ) −
∫

C
A fk(η; θ)μ(dη; θ∗)

∣∣∣+ inf
θ∈�

m∑
k=1

∣∣∣ Ân,�n ( fk; θ)

∣∣∣

≤ 2
m∑

k=1

sup
θ∈�

∣∣∣ Ân,�n ( fk; θ) −
∫

C
A fk(η; θ)μ(dη; θ∗)

∣∣∣+ inf
θ∈�

m∑
k=1

∣∣∣
∫

C
A fk(η; θ)μ(dη; θ∗)

∣∣∣

→ 0.

Then, the uniqueness of θ∗ as the solution to
∫
C A fk(η; θ̂n,�n (f))μ(dη; θ∗) = 0 gives that

θ̂n,�n (f) → θ∗ almost surely.

Proof of Lemma 1 Without loss of generality, it is assumed that

( ∫

C
∂θA f1(η; θ∗)μ(dη; θ∗), · · · ,

∫

C
∂θA fk(η; θ∗)μ(dη; θ∗)

)
= I ,

otherwise, a local linear transformation is used. In the small neighborhood of θ∗, the following
Taylor’s expansion holds

( ∫

C
A f1(η; θ)μ(dη; θ∗), · · · ,

∫

C
A fm(η; θ)μ(dη; θ∗)

)
= θ − θ∗ + o(|θ − θ∗|).

One can steadily check that the condition for the well-known Poincaré-Miranda theorem
is satisfied. As the convergence of Ân,�( fk; ·) to

∫
C A fk(η; θ)μ(dη; θ∗) is uniform, the

Poincaré-Miranda theorem is applicable for Ân,�( fk; ·), which yields that Ân,�( fk; ·) = 0
admits a solution in �. The proof is complete.
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Proof of Theorem 2 By the definition of θ̂n,�(f) in (2), note that Ân,�( fk; θ̂n,�(f)) = γn,�.
Recall the definition (18) (with m(A fk) = 0) and

√
n�An�( fk; θ∗) = 1√

n�

∫ n�

τ

A fk(Xt ; θ∗)dt,

and note that |∂2θ A fk(η; θ)| ≤ L(‖η‖2C + 1) by Assumption 2. Using Taylor’s expansion of
θ to obtain the following

√
n�An�( fk; θ∗) = √

n�[An�( fk; θ∗) − An�( fk; θ̂n,�(f)]
+ √

n�[An�( fk; θ̂n,�(f)) − Ân,�( fk; θ̂n,�(f))] + √
n�γn,�

= −√
n�(θ̂n,�(f) − θ∗)�[ 1

n�

∫ n�

τ

∂θA fk(Xs; θ∗)ds]

+ O(1)
(√

n�|θ̂n,�(f) − θ∗|2[ 1

n�

∫ n�

τ

(1 + ‖Xs‖2C )ds
])

+ O(1)

√
�

n

n∑
i=��

[
w�n (Xi�)(1 + ‖Xi�‖C )

]
+ γn,�n . (10)

In view of (16), then,

√
�n

n

n∑
i=��n

E[w�n (Xi�)(1 + ‖Xi�n‖C )]

≤
√

�n

n

n∑
i=��n

√
Ew2

�(Xi�n )(1 + E‖Xi�n‖2C ) = O(
√
n�n).

Again, an application of (5) yields that

(n�n)
1
2 |θ̂n,�n (f) − θ∗|2 = op(1)(n�n)

1
2 (θ̂n,�n (f) − θ∗).

The LLN in (17) implies that

1

n�n

∫ n�n

τ

(1 + ‖Xs‖2C )ds → c and
1

n�n

∫ n�n

τ

∂θA fk(Xs; θ∗)ds → rk

almost surely for some constant c. By (10), the asymptotic normality for An�( fk; θ0) defined
in (18) gives that for any {αk : k = 1, · · · ,m}

√
n�n

m∑
k=1

αk〈rk(θ∗), θ̂n,�n (f) − θ∗〉 → N

(
0, v2

(
m∑

k=1

αkA0 fk

))

in distribution. Since R(θ∗) = (r1(θ∗), · · · , rm(θ∗)) has a rank of m, there exists a unique
�(f; θ∗), which is m × m-dimensional non-negative definite, symmetric matrix such that
r�
k �(f; θ∗)rk = v2(A0 fk; θ∗) for all 1 ≤ k ≤ m given in (7). Then, (6) holds for such

�(f; θ∗). The proof is established.

Proof of Proposition 2 By Lemma 2 and the consistency of θ̂n,�n (f), it follows that
�−1/2(f; θ̂n,�n (f)) → �−1/2(f; θ∗) in probability. Therefore, Proposition 2 is a direct con-
sequence of Theorem 2.
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Proof of Theorem 3 Note that

Ân,�( f0; θ̂n,�(f)) =
(
Ân,�( f0; θ̂n,�(f)) − Ân,�( f0; θ∗)

)

+
(
Ân,�( f0; θ∗) − An�( f0; θ∗)

)
+ An�( f0; θ∗). (11)

The Itô formula yields that

An�( f0; θ∗) = 1√
n�

(
f0(X(t)) − f0(X(τ )) −

∫ n�

τ

σ�(Xt )∇ f0(X(t))dWt

)
. (12)

Also, note that

E
∣∣ Ân,�( f0; θ∗) − An�( f0; θ∗)

∣∣

≤
√

�

n
E

∣∣∣
n∑

i=��

[
b̃�
�(Zi−��, · · ·, Zi ; θ̂n,�(f))∇ f0(Zi )

+ 1

2
trace

(
[σ̃�

� σ�](Zi−��,· · ·, Zi )D
2 f0(Zi )

)]

−
n∑

i=��

[
b�(Xi�; θ∗)∇ f0(X(i�)) + 1

2
trace

(
[σ�σ ]Xi�)D2 f0(X(i�))

)]∣∣∣

+ 1√
n�

E

⎛
⎝

n∑
i=��

∣∣∣
∫ (i+1)�

i�
b�(Xt ; θ∗)∇ f0(X(t)) − b�(Xi�; θ∗)∇ f0(X(i�))dt

∣∣∣
⎞
⎠

+ 1

2
√
n�

E

⎛
⎝

n∑
i=��

∣∣∣trace
( ∫ (i+1)�

i�
[σ�σ ](Xt )D

2 f0(X(t))

− [σ�σ ](Xi�)D2 f0(X(i�))
)
dt
∣∣∣
)

≤ L

√
�

n
E

⎛
⎝

n∑
i=��

w�(Xi�) · (‖Xi�‖C + 1)

⎞
⎠

≤ L

√
�

n

n∑
i=��

√
Ew2

�(Xi�) · (1 + E‖Xi�‖2C ) ≤ L
√
n�. (13)

Using Taylor’s expansion, one has

Ân,�( f0; θ̂n,�(f)) − Ân,�( f0; θ∗)

=
√

�

n

n∑
i=��

(
[b̃�(Zi−��, · · ·, Zi ; θ̂n,�(f)) − b̃�(Zi−��, · · ·, Zi ; θ∗)]�∇ f0(Zi )

)

= √
n� · M�

n,�(θ̂n,�(f) − θ∗) + O(1)
√
n�|θ̂n,�(f) − θ∗|2 ·

[
n−1

n∑
i=��

(1 + ‖Xi�‖C )
]

= M�
n,�[R−1(θ∗)]�

[√
n�R�(θ∗)(θ̂n,�(f) − θ∗)

]

+ O(1)
√
n�|θ̂n,�(f) − θ∗|2 ·

[
n−1

n∑
i=��

(1 + ‖Xi�‖C )
]
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= M�
n,�[R−1(θ∗)]�

⎡
⎢⎣ 1√

n�

∫ n�

τ

⎛
⎜⎝

σ�(Xt )∇ f1(X(t))
...

σ�(Xt )∇ fm(X(t))

⎞
⎟⎠ dWt

⎤
⎥⎦+ op(1)

+ O(1)
√
n�|θ̂n,�(f) − θ∗|2 ·

[
n−1

n∑
i=��

(1 + ‖Xi�‖C )
]
, (14)

where

Mn,� = 1

n

⎧
⎨
⎩

n∑
i=��

∂θ b̃
�
�(Zi−��, · · ·, Zi ; θ∗)∇ f0(Zi )

]
⎫
⎬
⎭ .

By the LLN, Mn,�n → ∫
C ∂θA f0(η; θ∗)μ(dη; θ∗) almost surely as n → ∞. Lemma 2

together with (11)–(14) implies that

Ân,�n ( f0; θ̂n,�n (f)) = 〈R−1(θ∗)r0(θ∗), 1√
n�n

∫ n�

τ

⎛
⎜⎝

σ�(Xt )∇ f1(X(t))
...

σ�(Xt )∇ fm(X(t))

⎞
⎟⎠ dWt 〉

− 1√
n�n

∫ n�n

τ

σ�(Xt )∇ f0(X(t))dWt + op(1).

Therefore, our central limit theorem holds.

Proof of Theorem 4 For this case θ̂n,� = θ∗ = θ0, the asymptotic normality in (9) follows
the same way as the proof of Theorem 3. Under H1, the testing statistic satisfies

1√
n�n

An,�n ( f0, θ
∗) →

∫

C
A f0(η; θ∗)μ(dη; θ1)

almost surely by the LLN. Moreover, using the exponential ergodicity of SDDE in (1) for
θ = θ1, one obtains

lim
n,�

E

[
An,�n ( f0, θ

∗) −√
n�n

∫

C
A f0(η(0), η; θ∗)μ(dη; θ1)

]2
< ∞.

Then, Chebyshev’s inequality yields that

P

(
|v−1(A f0; θ∗) · An,�n ( f0, θ

∗)| ≤ zα/2

)

≤ P

(∣∣∣v−1(A f0; θ∗) · [An,�n ( f0, θ
∗) −√

n�n

∫

C
A f0(η(0), η; θ∗)μ(dη; θ1)]

∣∣∣

≥ L
√
n�n − zα/2

)
≤ L(n�n)

−1,

which implies that the probability of Type II error converges to 0 with a rate of (n�n)
−1. In

other words, the test power converges to one. Therefore, the proof is complete.
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Appendix: General results on SDDEs

In this appendix, recall the ergodicity theory for SDDEs for our problem from Bao et al.
(2020). Note that the following theorem is from Bao et al. (2020) concerning about the
exponential ergodicity of SDDEs.

Theorem 5 Suppose Assumption 1 holds. Then, the followings are true.
(i) The Markov process {Xt } admits a unique invariant measure μ on C with for any p ≥ 1

sup
t≥0

E‖Xt‖2pC < L p, (15)

and
sup
t≥0

δ−p
Ew

2p
δ (Xt ) < L p, (16)

where L p is a constant independent of δ.
(ii) If |g(η)| ≤ L‖η‖2C for some L > 0, the following law of large numbers holds

1

T

∫ T

τ

g(Xt )dt → m(g) =
∫

C
g(η)μ(dη; θ) (17)

almost surely.
(iii) For any h : C �→ R satisfying

|h(η) − h(ξ)| ≤ L‖η − ξ‖C ,

one has

AT (h; θ∗) = 1√
T

∫ T

τ

[h(Xt ) − m(h)]dt → N
(
0, v2(h; θ)

)
(18)

in distribution, where Xη
t is the solution to (1) with initial X0 = η,

R f (η) =
∫ ∞

0
E f (Xη

t ) − m( f )dt,

and

v2(h; θ) =
∫

C
μ(dη; θ)

[
E

∣∣∣
∫ 1

0
f (Xη

t )dt + R f (X
η
1 ) − R f (η)

∣∣∣
]2

. (19)

In particular, if h(η) = A f (η(0), η; θ∗) some twice continuously differentiable f with
bounded second order derivatives, one has

v2(A0 f ; θ∗) =
∫

C
|σ�(η; θ∗)∇ f (η(0))|2μ(dη; θ∗). (20)

Remark 2 Our statements (i) and (ii) are from (1.2) and Statement (2) in Theorem 1.1 from
Bao et al. (2020), respectively. The statement (iii) is from Statement (1) in Theorem 1.2 from
Bao et al. (2020).

For our testing problem, we finish the appendix with the following lemma concerning
with the continuity of the invariant measure μ(·; θ) with respect to θ .

Lemma 2 Assume Assumption 1 holds and supθ∈� supt≥0 E‖Xt‖2C < ∞. Further, assume
that |σ(ξ, θ) − σ(η, θ)| ≤ λ3|ξ − η|C with λ1 > (λ2 + λ23)e

−λ1τ . Then, as θ → θ∗,
μ(·; θ) → μ(·; θ∗) in distribution with∫

C
‖η‖2C μ(dη; θ) →

∫

C
‖η‖2C μ(dη; θ∗). (21)
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Proof Suppose X(t) and Y (t) be the solution of SDDE (1) with same initial and θ = θ∗ and
θ1 respectively. Note that

d(X(t) − Y (t)) = [b(Xt ; θ∗) − b(Yt ; θ1)]dt + [σ(Xt ; θ∗) − σ(Yt ; θ1)]dW (t)

= [b(Xt ; θ∗) − b(Yt ; θ∗)]dt + [σ(Xt ; θ∗) − σ(Yt ; θ∗)]dW (t)

+[b(Yt ; θ∗) − b(Yt ; θ1)]dt + [σ(Yt ; θ∗) − σ(Yt ; θ1)]dW (t).

Therefore, taking δ > 0 such that λ1 > (λ2 + λ23)e
−λ1τ yields that

d|X(t) − Y (t)|2 =
[
2〈X(t) − Y (t), b(Xt ; θ∗) − b(Yt ; θ∗)〉 + |σ(Xt ; θ∗) − σ(Yt ; θ∗)|2

+
[
2〈X(t) − Y (t), b(Yt ; θ∗) − b(Yt ; θ1)〉 + |σ(Yt ; θ∗) − σ(Yt ; θ1)|2

+2(σ (Yt ; θ∗) − σ(Yt ; θ1))(σ (Xt ; θ∗) − σ(Yt ; θ∗))dt + dM

≤ −λ1|X(t) − Y (t)|2 + λ2‖Xt − Yt‖2C + λ23‖Xt − Yt‖2C
+2L‖Xt − Yt‖C |θ∗ − θ1|‖Yt‖C + L|θ∗ − θ1|2 + L|θ∗ − θ1|‖Xt − Yt‖C + dM

≤ −λ1|X(t) − Y (t)|2+(λ2 + λ23)‖Xt − Yt‖2C +L|θ∗ − θ1|(1 + ‖Xt‖2C +‖Yt‖2C )+dM,

where M is a martingale. Similar to the proof of Lemma 3.1 in Bao et al. (2020), one has

lim
t→∞E‖Xt − Yt‖2C ≤ Lδ|θ1 − θ∗|.

As (Xt , Yt ) is an asymptotic coupling of μ(·; θ∗) and μ(·; θ1), this proves that μ(·; θ1) →
μ(·; θ∗) in distribution and (21) holds. The proof is complete. ��

Finally, a remark should be mentioned here that the condition in the above lemma is
sufficient but not necessary. How to get a better condition is beyond the scope of our paper,
thus omitted here, and it deserves a further investigation.
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