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a b s t r a c t

This paper proposes a novel approach to offer a robust inferential theory across all types
of persistent regressors in a predictive quantile regression model. We first estimate
a quantile regression with an auxiliary regressor, which is generated as a weighted
combination of an exogenous random walk process and a bounded transformation
of the original regressor. With a similar spirit of rotation in factor analysis, one can
then construct a weighted estimator using the estimated coefficients of the original
predictor and the auxiliary regressor. Under some mild conditions, it shows that the
self-normalized test statistic based on the weighted estimator converges to a standard
normal distribution. Our new approach enjoys a good property that it can reach
the local power under the optimal rate T with nonstationary predictor and

√
T for

stationary predictor, respectively. More importantly, our approach can be easily used
to characterize mixed persistency degrees in multiple regressions. Simulations and
empirical studies are provided to demonstrate the effectiveness of the newly proposed
approach. The heterogeneous predictability of US stock returns at different quantile
levels is reexamined.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A long-term issue in financial econometrics is to test whether or not an asset return process is predictable by a
et of lagged predictors (say, financial ratios or/and macroeconomic variables), but the conclusions based on predictive
ean regressions are mixed despite an enormous amount of efforts devoted to this problem in the literature, see, for
xample, the papers by Ang and Bekaert (2007) and Welch and Goyal (2008). The indefinite conclusions are partially
ue to the econometric issues caused by those highly persistent regressors where conventional test statistics are invalid
ith a serious size distortion, which is more serious if the innovations of predictors and return errors are contemporarily
orrelated, as studied by Campbell and Yogo (2006), Torous et al. (2004), Zhu et al. (2014), Choi et al. (2016), Yang et al.
2019), and among others.1 The heterogeneous predictability of asset returns could be another reason. For example, a
tronger prediction power is usually found in recession periods for stock markets; see Gonzalo and Pitarakis (2012), which
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1 In the framework of mean regressions, several solutions were proposed in literature, such as the Bonferroni’s method by Campbell and Yogo
2006), the conditional likelihood method by Jansson and Moreira (2006), the linear projection method by Cai and Wang (2014), the instrumental
ariable (IVX) approach by Magdalinos and Phillips (2009), Phillips and Magdalinos (2009), Kostakis et al. (2015), Phillips and Lee (2016), Yang et al.
2019), Hosseinkouchack and Demetrescu (2021) and Demetrescu and Rodrigues (2020), the Cauchy type instrumental variable approach by Choi
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mplies potentially greater predictability at lower quantiles. As mean regressions reflect the average predictability over all
uantiles, they may fail to find evidence for the predictability of asset returns at some quantiles, particularly in tails. That
as motivated researchers to examine the predictability of asset returns using quantile regressions, which reveal more
nformation about the predicability under the entire underlying conditional distribution; see, for example, the papers by
oenker (2005), Xiao (2009), Lee (2016) and Fan and Lee (2019) for details.
Testing the predictability in a quantile setting is of importance in economics and finance and also of practical

ttractiveness. First, from economic perspective, empirical evidences have documented that investors’ interest in asset
eturns is beyond their mean and variance. For example, Harvey and Siddique (2000) and Dittmar (2002) found that
he higher order moments are helpful to explain cross-sectional variation in US stock returns, whereas Cenesizoglu and
immermann (2008) concluded that the entire distribution of future stock returns is informative for investment decisions
f risk averse investors. Second, from the econometric point of view, quantile regressions are more suitable when the
istribution is skewed and/or heavy tailed, which is a stylized fact in financial econometrics, and the quantile regression
echnique has been applied widely in risk management operations. For example, the Value-at-Risk is defined by the
nconditional/conditional quantile and is widely used to measure the tail risk in practice. Finally, predictive quantile
egressions avoid the order-imbalance issue, a well known theoretical challenge that arises for mean regressions where
he dependent variable commonly behaves as martingale differences, while the regressors, fundamental variables, are
ighly persistent as argued in Phillips (2015).
Modeling predictive quantiles and examining their predictability with possible nonstationary regressors are not trivial.

ome challenging econometric issues in mean regressions causing the failure of traditionally econometric inferences of the
redictive regression still exist for predictive quantile regressions. To overcome these difficulties, Maynard et al. (2011)
ried to extend the Bonferroni’s method to predictive quantile regressions with highly persistent regressors. However, as
ointed out by Phillips (2015), the Bonferroni’s method is hard to be extended to multivariate cases, which are typical
n applied research. To the best of our knowledge, the papers by Lee (2016) and Fan and Lee (2019) were the first to
nvestigate the asymptotic theory for multivariate predictive quantile regressions with both various degrees of persistency
nd embedded endogeneity. Indeed, Lee (2016) extended the instrumental variable filtering methodology by Magdalinos
nd Phillips (2009), Phillips and Magdalinos (2009), and Kostakis et al. (2015) for mean regressions to quantile regressions,
ermed as IVX-QR approach. Further, Lee (2016) obtained the asymptotic distribution of test statistics that are robust to
he degree of persistency under the null hypothesis. Recently, Fan and Lee (2019) applied the IVX-QR method in Lee
2016) to the situation with conditionally heteroskedastic errors. The key idea of the IVX-QR approach is to generate a
ildly integrated process as the instrument of the persistent and possibly endogenous regressor, by which it succeeds in
orrecting the size distortion, but sacrifices some convergence rates which may lead to a loss of the power. As pointed
ut by Lee (2016), the improvement of the size control and the magnitude of the power loss are similar to the two sides
f a coin, relying on the choice of the filtering parameters in the generation of the mildly integrated process. Though Lee
2016) provided a practical rule for choosing these parameters, it is still unclear how these tuning parameters affect the
est performance exactly.

The main contribution of this paper is to propose a novel and easy-to-implement approach, termed as the double
eighted method, to develop a uniform (robust) inferential theory for predictive quantile regressions with highly
ersistent variables. The newly proposed method is based on a quantile regression with an auxiliary regressor, which
s generated as a weighted combination of an exogenous simulated nonstationary process and a bounded transformation
f the original regressor. The weight, which plays a role of filtering, is chosen by a data-driven approach, such that the
uxiliary regressor enjoys having the same persistency degree with the original predictor asymptotically. In addition, to
void efficiency loss as well as eliminate the impact of the embedded endogeneity, we construct a weighted estimator
sing the coefficients of both original regressor and auxiliary regressor, with a similar idea of rotation. Under some mild
onditions, it shows that the self-normalized test statistics based on the weighted estimator converge to a standard normal
r χ2-distribution. Comparing to the IVX-QR approach, our method possesses a good property that the weighted estimator
eaches the local power under the optimal convergence rate T with nonstationary predictors and

√
T with stationary

redictors, respectively. Meanwhile, our method can be easily generalized to multiple regressors with mixed persistency
egrees, and allows for testing of a general linear hypothesis of coefficients, which is seminal in the related econometrics
iterature. Simulations are conducted to demonstrate the effectiveness of our newly proposed approach. For most cases,
ur method has better size control and power performance in a finite sample compared with other existing methods.
Indeed, our motivation for this study is to implement the newly proposed approach for re-examining the predictability

f US stock market returns using eight popular financial ratios and macroeconomic indicators. For the convenience of
omparison, the same data set used by Lee (2016) is taken with the sample period from 1927 to 2005. To see whether
here is any change after the 2008 global crisis, the data set is updated to December of 2018. The main empirical findings
an be summarized as follows. First, the predictability for the middle quantile levels is weaker than both lower and upper
uantiles, which is consistent with the previous findings. Second, in the multivariate prediction quantile regression, many
ariables lose their prediction power after controlling other variables. Third, after the World War II, we do not find much

et al. (2016), the weighted empirical likelihood approach by Zhu et al. (2014), Liu et al. (2019), and Yang et al. (2021), and the variable addition
(VA) or augmented regression or control function approach by Elliott (2011) and Breitung and Demetrescu (2015) and Yang et al. (2021). The reader
is referred to the recent survey paper by Liao et al. (2018) for more discussions.
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vidence of the prediction power for some well-known financial ratios, such as earnings to price (d/p) ratio, dividend to
rice (d/p) ratio and book to market (b/m) ratio. However, the macroeconomic indicators, like T-bill rate (tbl), default
ield spread (dfy), term spread (tms), show some strong evidence of significant prediction power, especially at lower and
pper quantile levels. The detailed analysis of this empirical example is reported in Section 5.
In some way, our paper is tied to the regression with auxiliary variables. Indeed, Toda and Yamamoto (1995), and

olado and Lütkepohl (1996) first proposed a robust testing strategy irrespective of the persistency type of regressor
hrough a regression with additional (redundant) variables, such that the coefficients to be tested are attached to station-
ry variables, whereas Bauer and Maynard (2012) considered the VA approach in the context of vector autoregressive
rocesses with unknown persistency. In particular, Breitung and Demetrescu (2015) argued that the traditional VA
pproaches suffer from a loss of power. Different from Breitung and Demetrescu (2015), our paper particularly constructs
he additional regressor in its own way and proposes a new test statistic.

The rest of this paper is organized as follows. Section 2 introduces the model framework and provides the procedures
or estimating parameters and constructing the test statistics as well as presents the asymptotic theories for the proposed
stimators and the test statistics. An extension to the multiple regressors with mixed persistency degrees is discussed in
ection 3. Section 4 is for the Monte Carlo simulation studies and Section 5 reports the detailed results for an empirical
pplication. Finally, Section 6 concludes the paper. The detailed proofs of the main asymptotic results are given in
ppendix A.
Throughout this paper, the standard notations ⇒,

d
−→ and

p
−→ are used to represent weak convergence and convergence

in distribution as well as convergence in probability, respectively. All limits are for T → ∞ in all theories, and Op(1) is
stochastically asymptotically bounded while op(1) is asymptotically negligible.

2. Econometric modeling procedures

2.1. Model framework

Assume that yt is a dependent variable and its τ th conditional quantile is Qyt (τ | Ft−1) such that Pr
yt ≤ Qyt (τ | Ft−1) | Ft−1

)
= τ ∈ (0, 1), where Ft−1 is the information set available at time t − 1. For simplicity, a

inear2 predictive quantile regression is given by

Qyt (τ |Ft−1) = Qyt (τ |xt−1) = µτ + βτ xt−1, (1)

here xt−1 is a predictor to be the presentative (proxy) of Ft−1, such as dividend–price ratio, earnings–price ratio,
acroeconomic variable and so on, which is a time series, commonly modeled by an autoregressive (AR) model as

xt = ρxt−1 + vt , ρ = 1 + c/Tα, 1 ≤ t ≤ T , (2)

here α = 0 or 1 and x0 = op(
√
T ). Of course, a higher order AR model can be considered for xt in (2). For simplicity,

we begin with the univariate predictive quantile regression to illustrate the main idea in this paper. For xt , the following
typical types of persistency with different values of c and α are considered: (1) stationary (I0): α = 0 and |1 + c| < 1;
(2) local to unit root (NI1): α = 1 and c < 0; (3) unit root (I1): c = 0; (4) local to unity on the explosive side (LE): α = 1
and c > 0.

Of course, it is interesting to consider the other cases as 0 < α < 1, corresponding to the so-called mildly integrated
(MI) processes (c < 0) or mildly explosive (ME) processes (c > 0). The latter can be used to explore the mild economic or
financial bubbles and other applications, see Phillips et al. (2015) and the references therein. As this paper mainly focuses
on the methodology contribution, we focus on the current setting with α = 0 or 1 and leave the MI and ME processes
with α ∈ (0, 1) as topics for future studies.3

Here, following Lee (2016), a general weakly dependent innovation structure of the linear process on {vt} in (2) is
imposed and listed below.

A1. Assume that vt follows a linear process given by vt =
∑

∞

j=0 Fxjεt−j, where εt is a martingale difference sequence
(MDS) with E(εt |Ft−1) = 0 and var(εtε′

t |Ft−1) = Σε for Σε > 0 and E∥εt∥
2+ν < ∞ for some ν > 0. Here, Fx0 = IK , K is

the dimension of xt and
∑

∞

j=0 j∥Fxj∥ < ∞ and Fx(1) =
∑

∞

j=0 Fxj > 0, where Fx(z) =
∑

∞

j=0 Fxjz
j. The variance matrix of vt

an be expressed as Ωvv =
∑

∞

h=−∞
E(vtv⊤

t−h) = Fx(1)ΣεFx(1)⊤.

emark 1. Assumption A.1 allows for linear process dependence for vt and imposes a conditionally homoskedastic MDS
ondition for εt . Also, note that K = 1 for the univariate case.

2 Of course, it would be interesting to investigate a nonlinear or nonparametric predictive quantile regression and it would be a future research
topic.
3 Note that Phillips and Lee (2016) extended the IVX approach to both MI and ME processes in the framework of predictive mean regression,

and we conjecture that our method would still hold for MI and ME cases. However, the theoretical deviation to establish the limiting theory should
be very challenging.
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Define utτ ≡ yt −Qyt (τ |Ft−1), which is commonly called the quantile measurement error, similar to the measurement
rror in the predictive mean regression model, and define ψτ (utτ ) = τ − 1(utτ < 0). Under Assumption A.1, it is easy to
erify that P(utτ ≤ 0|Ft−1) = τ , E(ψτ (utτ )|Ft−1) = 0, E(ψ2

τ (utτ )|Ft−1) = τ (1 − τ ) and the fourth moment E[ψτ (utτ )4] ={
E[ψτ (utτ )4|Ft−1]

}
= −3τ 4 + 6τ 3 − 4τ 2 + τ . Further, define Σψτ v =

∑
∞

h=−∞
E[ψτ (utτ )vt+h] = Fx(1)E[ψτ (utτ )εt ]. Under

ssumption A.1, using the iterative law of expectation, one can show easily that Σψτ v < ∞. Then, similar to Lee (2016),
he functional central limit theorem (FCLT) for {ψτ (utτ ), vt} holds

1
√
T

⌊rT⌋∑
t=1

(
ψτ (utτ )
vt

)
⇒

(
Bψτ (r)
Bv(r)

)
= BM

(
τ (1 − τ ) Σψτ v
Σψτ v Ωvv

)
, (3)

where [Bψτ (r), Bv(r)]
⊤ is a vector of Brownian motions. Furthermore, the local to unity limit law implies that x⌊rT⌋/

√
T ⇒

Jcx (r) for 0 ≤ r ≤ 1, where Jcx (r) =
∫ r
0 e(r−s)cdBv(s) with NI1, I1 and LE predictor; see Phillips (1987) and Lee (2016) for

details.
Next, define λτ ,t = Corr(ψτ (utτ ), vt ) and assume that λτ ,t = λτ for simplicity. Then, similar to Campbell and Yogo

(2006) for the predictive mean regression model, Lee (2016) seminally showed that the conventional t test statistic tβ̂τ
of the predictive quantile regression with nonstationary predictor has the following asymptotic behavior

tβ̂τ ⇒

√
1 − λ2τ Z + λτ

∫
J̄cx (r)dBx(r)/

√
Ωvv

∫
J̄cx (r)2dr,

here J̄cx (r) = Jcx (r) −
∫
Jcx (r)dr is the demeaned Ornstein–Uhlenbeck process and Z represents the standard normal

istributions.4 Clearly, λτ measures the degree for the so-called embedded endogeneity as in Campbell and Yogo (2006) for
he predictive mean regression model. Therefore, the conventional test statistics in predictive quantile regression with the
I1, I1 and LE predictor xt are invalid if λτ ̸= 0. Moreover, it is almost impossible to distinguish the difference between I0
nd NI1, and/or between NI1 and I1, and so on, because it is extremely challenging to estimate consistently the nuisance
arameter c and to test if the persistency α equals one or not. Thus, it is necessary to develop a unified inference method
o avoid the mistake of making a false judgement about the persistency of predictors under a quantile framework.

Now, some regular assumptions on the conditional density of utτ are imposed, similar to those in Xiao (2009) and Lee
2016).

2. (i) The sequence of conditional stationary probability density functions {futτ ,t−1(·)} of {utτ } given Ft−1 evaluated at
ero satisfies a moment condition with a non-degenerate mean fuτ (0) = E(futτ ,t−1(0)) > 0 and E(f ϑutτ ,t−1(0)) < ∞ for some
> 1.
(ii) For each t and τ ∈ (0, 1), f ′

utτ ,t−1(x) is bounded with probability one around zero, i.e., f ′

utτ ,t−1(ϵ) < ∞ and
utτ ,t−1(ϵ) < ∞ almost surely for all |ϵ| < η for some η > 0.

emark 2. As argued in Xiao (2009), the conditions in Assumption A.2 are quite standard and not restrictive. Under
he above conditions, one can show that the Bahadur representation as in Theorem 1 (see later) holds and fuτ (0) can be
stimated using observed data.

.2. Estimation approach

Motivated by the VA approach of predictive mean regression studied by Elliott (2011) and Breitung and Demetrescu
2015), the following new approach is proposed for the predictive quantile regression. The model in (1) can be re-written
s follows:

Qyt (τ |xt−1) = µτ + βτ xt−1 = µτ + βτ x∗

t−1 + γτ zt−1, (4)

here x∗

t−1 = xt−1 − zt−1 and zt−1 is an additional (auxiliary) variable which is chosen in Section 2.3 in detail. Note that
τ = βτ in (4) is used to construct weighted combined estimator for βτ later. Clearly, µτ , βτ and γτ in (4) can be estimated
y running the following quantile regression

θ̂τ ≡

(
µ̂τ , β̂τ , γ̂τ

)⊤

= arg min
µτ ,βτ ,γτ

T∑
t=2

ρτ
(
yt − µτ − βτ x∗

t−1 − γτ zt−1
)
, (5)

here ρτ (u) = u[τ − 1(u < 0)] is the so-called check function in the literature. Note that the VA approach proposed by
reitung and Demetrescu (2015) uses only γ̂τ , the estimator of the coefficient of the auxiliary variable zt , to construct the
est statistic in the predictive mean regression, and requires zt to be an additional variable less persistent than xt , in order
o guarantee that the asymptotic distribution of the test statistic is irrelevant to the nuisance parameter c . If so, however,
he corresponding test statistic suffers from the loss of power for the case with nonstationary xt .

4 B (r) is defined by the orthogonal decomposition of Brownian motion as dB (r) = dB (r) +Σ Ω−1dB (r), see Phillips (1989) for details.
x ψτ ψτ .x ψτ v vv x
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To avoid this problem, the VA approach is improved in the following two aspects. First, a combined approach is used
o construct the appropriate additional variable zt , such that its persistency is always the same as that for the predictor xt ,
hile its key component is independent of xt for NI1, I1 and LE cases. Second, a weighted combined estimator is proposed
y using the coefficients of x∗

t−1 and the additional variable zt . With these two improvements, one can show that the test
statistic based on the weighted estimator, after a self-normalization to eliminate the nuisance parameter c , can avoid not
only the size distortion but also the loss of power with arbitrary persistency.

Next, it turns to the discussion on how to construct the weighted estimator for given zt and then, elaborating the
choice of zt , which is presented in Section 2.3. As mentioned earlier, the identity γτ = βτ implies that it should be better
to combine β̂τ and γ̂τ together to obtain a weighted estimation for βτ . Consequently, the rotation idea in the principle
component analysis is applied to constructing the estimator for βτ , which is the weighted sum of β̂τ and γ̂τ , denoted by
β̂wτ ,

β̂wτ =
W1

W1 + W2
β̂τ +

W2

W1 + W2
γ̂τ , (6)

here W1 and W2 are two weighting functions. By selecting some appropriate weights W1 and W2, one can construct a
ˆw
τ , whose asymptotic distribution follows a mixture normal distribution5 and is irrelevant to the nuisance parameter c
fter normalization. For this purpose, the weights W1 and W2 are taken to be

W1 =

T∑
t=2

x∗

t−1zt−1/T 2
−

T∑
t=2

x∗

t−1

T∑
t=2

zt−1/T 3, (7)

and

W2 =

T∑
t=2

z2t−1/T
2
−

(
T∑

t=2

zt−1

)2

/T 3. (8)

In Section 2.4, more detailed arguments will be provided to explain the reason on why the above W1 and W2 are used.

2.3. Choice of auxiliary variable

This subsection is devoted to constructing the additional regressor zt−1, such that our method is valid for both
stationary and nonstationary predictor without sacrificing any convergence rate. To achieve this target, a three-step
approach is proposed to construct zt−1. First, an exogenous unit root process ζt−1 =

∑t−1
s=1 ςs is generated, where

ςs ∼ iid(0, 1). Therefore, Wζ ,T (·) ⇒ B(·) based on the FCLT, where Wζ ,T (r) = ζ⌊rT⌋/
√
T for 0 ≤ r ≤ 1 and B(·) is

the standard Brownian motion. Second, obtain the ordinary least squared estimator π̂1 from the following regression

xt−1 = π0 + π1ζt−1 + et . (9)

Third, define zt−1 as a linear combination of ζt−1 and a bounded transformation of xt−1 as

zt−1 = π̂1ζt−1 + xt−1/

√
1 + x2t−1. (10)

ote that the second term in the above equation xt−1/

√
1 + x2t−1 is always bounded with probability 1 for any stationary

nd nonstationary xt−1.

emark 3. Indeed, the idea of using an independent random walk process as the instrumental variable is similar to that
n Breitung and Demetrescu (2015) under the framework of predictive mean regressions, by considering two types of
nstruments: Type-I and Type-II instruments. Type-I instruments are generated from the original predictor xt−1 but are
equired to be less persistent than xt−1. A special case of Type-I instruments is the mild integrated instrument variable
adopted in the IVX approach in Kostakis et al. (2015). Type-II instruments include strictly exogenous nonstationary
variables, deterministic terms and Cauchy type instrument. Therefore, in this sense, both ζt−1 and xt−1/

√
1 + x2t−1 can be

regraded as Type-II instruments, as xt−1/

√
1 + x2t−1 converges to the Cauchy instrument sign(xt−1) for nonstationary xt−1,

ee Choi et al. (2016). However, the randomwalk instrument ζt−1 does not work for stationary cases, while xt−1/

√
1 + x2t−1

annot handle the predictive regression with intercept term for nonstationary cases without some necessary adjustments.6

5 For the definition of mixture normal, the reader is referred to the paper by Phillips (1987). That is, Y ∼ MN(µ,Σ) means Y ∼ N(µ,Σ) given
µ and Σ , which might be random.
6 In predictive mean regressions with intercept term, Zhu et al. (2014) and Liu et al. (2019) applied the sample splitting approach to remove the

impact of intercept, with a loss of information. However, the sample splitting approach does not work in the quantile regression framework.
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ere, we take a weighted combination of ζt−1 and xt−1/

√
1 + x2t−1, with the weight π̂1 estimated from (9). By doing so,

our method is robust to both nonstationary and stationary cases, and can be easily extended to the multivariate case with
mixed persistency.

Remark 4. Note that the form of bounded transformation of xt−1 might not be unique. One could define zt−1 as a linear
combination of ζt−1 and a general bounded transformation g(xt−1) like zt−1 = π̂1ζt−1+g(xt−1). To guarantee the validity of
our approach, g(xt−1) just needs to satisfy two conditions. First, for nonstationary xt−1, the transformation g(xt−1) should
be bounded. Second, for stationary xt−1, Var [g(xt−1)] exists and deviates from zero, i.e., g(xt−1) is not degenerate, so the
central limit theory can be applied.7

From the regression (9), it is easy to establish the asymptotic properties of π̂1 for the cases with stationary and
onstationary xt , respectively. For nonstationary xt−1, it is easy to show that

π̂1 =

T∑
t=2

x̄t−1ζ̄t−1/

T∑
t=2

ζ̄ 2t−1 =

∫
B̄(r)J̄cx (r)dr/

∫
B̄(r)2dr + op(1) = π̃1 + op(1),

where x̄t−1 = xt−1 −
∑T

t=2 xt−1/T , ζ̄t−1 = ζt−1 −
∑T

t=2 ζt−1/T , and π̃1 is a nonzero random variable due to the spurious
correlation between xt−1 and ζt−1 similar to that in Phillips (2014). For stationary xt−1, π̂1 converges to zero with the
convergence rate T , i.e., π̂1 = Op(1/T ).

Given the above asymptotic results of π̂1, one can show that, for nonstationary cases, the second term xt−1/

√
1 + x2t−1

n Eq. (10) is dominated by the first term π̂1ζt−1, while for stationary cases, the first term is dominated by the second term

t−1/

√
1 + x2t−1. In certain sense, the coefficient π̂1 plays a role of filtering such that the auxiliary variable zt−1 has the

same persistency as xt−1 does, and that is why our method can achieve the optimal convergence rate for both stationary
and nonstationary cases.

Next, we can establish the asymptotic property of W1 + W2, which is useful to derive the main results of the paper.
For nonstationary xt−1, as zt−1 is determined by π̂1ζt−1, can show easily that

W1 + W2 = π̂1

T∑
t=2

x̄t−1ζ̄t−1/T 2
+ op(1) = π̃1

∫
B̄(r)J̄cx (r)dr + op(1). (11)

For stationary xt−1, zt−1 is determined by xt−1/

√
1 + x2t−1, and then,

T (W1 + W2) =
1
T

T∑
t=2

x̄t−1xt−1/

√
1 + x2t−1 + op(1) = E

[
x2t (1 + x2t )

−1/2]
+ op(1). (12)

2.4. Large sample theory

To obtain the asymptotic distribution of β̂wτ , first, we establish the so-called Bahadur representation for θ̂τ , which is
commonly used for stationary quantile regression to get an explicit expression of estimators; see, for example, Cai and
Xu (2008) for details. To this end, denote θτ = (µτ , βτ , γτ )⊤ as the vector of true values of coefficients in Eq. (4). Also,
define the weighting matrix DT = diag(

√
T , T , T ) for NI1, I1 and LE, and DT = diag(

√
T ,

√
T ,

√
T ) for I0. The following

heorem states the Bahadur representation for DT (θ̂τ − θτ ), and its mathematical proof is given in Appendix A. Note that
his result is new in the literature when regressors might be nonstationary and is of own interest.

heorem 1 (Bahadur Representation). Under Assumptions A.1 and A.2,

DT (θ̂τ − θτ ) = fuτ (0)
−1N−1

T D−1
T

T∑
t=2

Λt−1ψτ (utτ ) + op(1), (13)

here Λt−1 = (1, x∗

t−1, zt−1)⊤, NT = D−1
T
∑T

t=2Λt−1Λ
⊤

t−1D
−1
T , and fuτ (0) is defined in Assumption A.2.

emark 5. From Theorem 1, one can see clearly that the right-hand side of (13) still involves x∗

t−1, leading to a nonstandard
istortion in the asymptotic distribution if λτ ̸= 0, see Lee (2016). To construct a pivotal test statistic free of nuisance

7 To check whether our method is sensitive to the forms of the transformation, we conduct simulations with other bounded transformations,
and find that the performance of our test is quite similar. To save space, we skip to report the simulation results for this study in the paper, but
the codes and results are available upon request.
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arameter c , the weighted estimator β̂wτ is constructed as in (6), with a similar idea of rotation in factor analysis, to get
rid of the impact of x∗

t−1. It will then be shown by (A.8) in Appendix A that the following result holds for β̂wτ ,

(W1 + W2)T (β̂wτ − βτ ) = fuτ (0)
−1

T∑
t=2

1
√
T

(
zt−1 −

T∑
t=2

zt−1/T

)
ψτ (utτ )/

√
T + op(1). (14)

vidently, the right-hand side of (14) involves only zt−1 but not xt−1 or x∗

t−1, so that it makes the asymptotic (or mixture)
ormality of β̂wτ dependent only on zt−1.

emark 6. It is very interesting to see whether W1 and W2 could be defined under some other criteria, for instance,
aximizing the local power. As this paper focuses on the robust inference across different types of persistent predictors,
ur target is to obtain a test statistic converging to a standard limiting distribution without any nuisance parameters. We
herefore choose W1 and W2 as (7) and (8) to remove the impact of the nonstandard distortion in the limiting distribution
f the weighted estimator β̂wτ .

Next, one of the main results in this paper is stated in the following theoremwith its detailed proof given in Appendix A.

heorem 2. Under Assumptions A.1 and A.2, for I0, NI1, I1 and LE cases, the asymptotic distribution of β̂wτ is given as follows{√
T (β̂wτ − βτ )

d
−→ N

(
0, σ 2

βτ

)
, I0,

T πc (β̂wτ − βτ )
d
−→ N

(
0, σ 2

τ

)
, NI1, I1 and LE,

here σ 2
τ = τ (1 − τ )/f 2uτ (0), σ

2
βτ

= σ 2
τ

{
E
[
x2t (1 + x2t )

−1/2
]}−2 Var

[
xt (1 + x2t )

−1/2
]
and πc =

∫
B̄(r)J̄cx (r)dr

[∫
B̄2(r)dr

]−1/2
.

emark 7. Clearly, Theorem 2 shows the convergence rate of the estimator of β̂wτ with N1, I1 and LE xt is faster than
hat for the IVX-QR method proposed in Lee (2016).

By a self normalization, we can construct the following t-test statistic tw:

tw = f̂uτ (0) [W2τ (1 − τ )]−1/2 (W1 + W2)T β̂wτ ,

here f̂uτ (0) is a consistent estimator of fuτ (0) and the detailed construction of f̂uτ (0) can be found in Lee (2016). The
ollowing theorem states the asymptotic behavior of the proposed t-test statistic tw under both the null hypothesis and
he local alternative hypothesis with its detailed proof delegated to Appendix A.

heorem 3. (1) Under the null hypothesis H0 : βτ = 0, tw converges to the standard normal. (2) Under the local alternative
ypothesis Ha : βτ = bτ/T (1+α)/2 for any bτ , tw converges to the standard normal plus a constant bτ/σβτ , if xt−1 is I0, and it
onverges to the standard normal plus a random variable bτ |πc |/στ , if xt−1 is NI1, I1 or LE, where σβτ , πc and στ are defined
n Theorem 2.

emark 8. From Theorem 3, one can conclude that the test statistic tw reaches the optimal convergence rate T for
I1, I1 and LE predictor xt−1 and

√
T for I0 predictor xt−1. In particular, for nonstationary case, the quantity bτ |πc |/στ ,

he deviation from the standard normality, varies between (−∞, 0) or (0,+∞), relying on the sign of bτ only. Thus, tw
njoys an additional increase of local power compared to the t-test statistic in Breitung and Demetrescu (2015), where
ts local lower relies on a deviation varying between (−∞,+∞), see Part 1 of Corollary 3 and Remark 4 in Breitung and
emetrescu (2015).

. Multiple predictive quantile regressions

When some of regressors are nonstationary and some are stationary in a multiple regression, it is well known in the
iterature that the convergence rates for estimators of coefficients are totally different for nonstationary and stationary
egressors; see, for example, Cai and Wang (2014). When regressors are nonstationary, as pointed out by Phillips and
ee (2013), the Bonferroni’s method in Campbell and Yogo (2006) and the weighted empirical likelihood approach in Zhu
t al. (2014), Liu et al. (2019), and Yang et al. (2019) cannot be easily extended to multiple regressions. In contrast, our
ethod can be easily extended to multivariate predictive quantile regressions with mixed persistency.
Particularly, we consider the following multivariate predictive quantile regression model:

Qyt (τ |Xt−1) = µτ + β⊤

τ Xt−1, (15)

here βτ = (β1τ , β2τ , . . . , βKτ )⊤ is a K × 1 vector and Xt−1 is a K × 1 vector of predictors, which might contain
oth stationary and nonstationary predictors. To this end, Xt−1 is written as Xt−1 = (X⊤

1,t−1,X
⊤

2,t−1)
⊤ with X1,t−1 =

x1,t−1, x2,t−1 · · · , xK1,t−1)⊤ being nonstationary and X2,t−1 = (xK1+1,t−1, xK1+2,t−1, . . . , xK ,t−1)⊤ being stationary. It is
assumed there is no cointegration relationship among X . Note that 0 ≤ K ≤ K and K = 0 means all elements
1,t−1 1 1
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n Xt−1 are I0, while K1 = K means all elements in Xt−1 are NI1, I1 or LE. Now, xi,t can be modeled by an AR(1) as
i,t = ρixi,t−1 + vi,t , where ρi = 1 + ci/T for 1 ≤ i ≤ K1 and ρi = 1 + ci with |1 + ci| < 1 for K1 + 1 ≤ i ≤ K for all
≤ t ≤ T . Thus, different predictors in multivariate predictive quantile regression are allowed to have different degrees
f persistency. Similar to the univariate case, the local to unity limit law holds for all nonstationary predictors and for
= 1, . . . , K1, xi,⌊rT⌋/

√
T ⇒ Jcixi (r) and Jcixi (r) =

∫ r
0 e(r−s)cidBvi (s), where Bvi (s) is the ith element of Bv(s), which is a vector

f Brownian motions defined in (3).

emark 9. The model in (15) covers some known models in mean models in the literature. For example, if there is
onstationary part (K1 = 0), (15) reduces to the model studied by Amihud et al. (2009) for mean regression models.

To estimate µτ and βτ in (15), let X∗

t−1 = Xt−1 − Zt−1 and Zt−1 be the vector of additional variables. Then, µτ and βτ
can be estimated based on the VA as follows:(

µ̂τ , β̂τ , γ̂τ

)⊤

= arg min
µτ ,βτ ,γτ

T∑
t=2

ρτ
(
yt − µτ − β⊤

τ X
∗

t−1 − γ⊤

τ Zt−1
)
,

where Zt = (z1,t , z2,t · · · , zK ,t )⊤ is constructed by three steps similar to the univariate case as in Section 2.3; that is, first,
for each i, ζi,t−1 =

∑t−1
s=1 ςi,s, where ςi,s ∼ iid(0, 1) generated by simulation and thus, independent of yt and Xt . Therefore,

Wi,ζ ,T (·) ⇒ Bi(·) based on the FCLT, where Wi,ζ ,T (r) = ζi,rT/
√
T for 0 ≤ r ≤ 1 and Bi(·) is the standard Brownian motion.

econdly, for each 1 ≤ i ≤ K , run the regression xi,t = π0,i +π1,i ζi,t−1 +ei,t to obtain the ordinary least squared estimator
ˆ1,i. Similarly, one can show that π̂1,i

d
−→ π̃1,i =

∫
B̄i(r)J̄

ci
xi (r)dr/

∫
B̄i(r)2dr , where B̄i(r) = Bi(r)−

∫
Bi(r)dr for nonstationary

i,t while π̂1,i = Op(T−1) for stationary xi,t . Thirdly, we define zi,t−1 as a linear combination of ζi,t−1 and one bounded
ransformation of xi,t−1 as zi,t−1 = π̂1,iζi,t−1 +xi,t−1/

√
1 + x2i,t−1. Since the procedure could be implemented one predictor

by one predictor and each step does not rely on others, then our proposed method is valid in multivariate predictive
quantile regression with mixed persistency.

Similar to the univariate case, the weighted estimator β̂
w

τ in the multivariate predictive quantile regression is given as
follows:

β̂
w

τ = (W1 + W2)−1
(
W1β̂τ + W2γ̂τ

)
,

where W1 =
∑T

t=2 Zt−1(X∗

t−1)
⊤/T 2

−
∑T

t=2 Zt−1
∑T

t=2(X
∗

t−1)
⊤/T 3 and W2 =

∑T
t=2 Zt−1Z⊤

t−1/T
2
−
∑T

t=2 Zt−1
∑T

t=2 Z
⊤

t−1/T
3.

Without loss of generalization, the asymptotic property of β̂
w

τ is presented for the special case with K = 2 in the following
theorem. For different mixed persistency cases, we define the weighting matrix D̃T as follows: D̃T = diag(

√
T ,

√
T ), if

1 = 0; D̃T = diag(T ,
√
T ), if K1 = 1; D̃T = diag(T , T ), if K1 = 2.

Furthermore, to describe the asymptotic properties for β̂
w

τ , we define the following two matrices V1 and V2 for three
ases as follows:

ase 1 (K1 = 0):

V1 =

⎛⎜⎝E
(
x21,t/

√
1 + x21,t

)
E
(
x1,tx2,t/

√
1 + x21,t

)
E
(
x1,tx2,t/

√
1 + x22,t

)
E
(
x22,t/

√
1 + x22,t

)
⎞⎟⎠ , (16)

nd

V2 =

⎛⎜⎜⎝ Var
(
x1,t/

√
1 + x21,t

)
Cov

(
x1,t/

√
1 + x21,t , x2,t/

√
1 + x22t

)
Cov

(
x1,t/

√
1 + x21,t , x2,t/

√
1 + x22t

)
Var

(
x2,t/

√
1 + x22,t

)
⎞⎟⎟⎠ . (17)

Case 2 (K1 = 1):

V1 = diag
{
π̃1,1

∫
B̄1(r)Jc1x1 (r)dr, E

(
x22,t/

√
1 + x22,t

)}
, (18)

nd

V2 = diag
{
π̃2
1,1

∫
B̄1 (r)2 dr, Var

(
x2,t/

√
1 + x22,t

)}
. (19)

ase 3 (K1 = 2):

V1 =

(
π̃1,1

∫
B̄1(r)J

c1
x1 (r)dr π̃1,1

∫
B̄1(r)J

c2
x2 (r)dr∫

¯ c1
∫

¯ c2

)
, (20)
π̃1,2 B2(r)Jx1 (r)dr π̃1,2 B2(r)Jx2 (r)dr
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V2 =

(
π̃2
1,1

∫
B̄1(r)2dr π̃1,1π̃1,2

∫
B̄1(r)B̄2(r)dr

π̃1,1π̃1,2
∫
B̄2(r)B̄1(r)dr π̃2

1,2

∫
B̄2(r)2dr

)
. (21)

hen, the asymptotic distribution for β̂
w

τ is stated in the following theorem with its proof delegated to Appendix A.

heorem 4. Under Assumptions A.1 and A.2, the asymptotic distribution of β̂
w

τ is given by

D̃T (β̂
w

τ − βτ )
d
−→ fuτ (0)

−1V−1
1 MN (0, τ (1 − τ )V2) ,

here Z̄t−1 = Zt−1 −
1
T

∑T
t=2 Zt−1, V1 and V2 are defined in (16)–(21), respectively.

To test H0 : Rβτ = rτ , where R is a r×K matrix with the rank r , a Wald type test statistic Qw
m can be easily constructed

as follows:

Qw
m =

f̂uτ (0)
2

τ (1 − τ )
T 2(Rβ̂

w

τ − rτ )⊤
{
R(W1 + W2)−1W2

[
R(W1 + W2)−1]⊤}−1

(Rβ̂
w

τ − rτ ),

here f̂uτ (0) is a consistent estimator of fuτ (0). The limiting distribution of Qw
m under the null hypothesis is stated in the

ollowing theorem with its detailed proof given in Appendix A.

heorem 5. Under Assumptions A.1 and A.2 and the null hypothesis H0: Rβτ = rτ , one can show that the limiting distribution
f Qw

m is a χ2-distribution with r degrees of freedom.

emark 10. Theorem 5 implies that our method can be applied to test a general linear hypothesis of βτ , for example, to
est the predicability of one specific predicting variable or a subset of predicting variables.

. Monte Carlo simulations

To demonstrate the effectiveness of the proposed method, two Monte Carlo simulation experiments are considered.
he first experiment considers a data generating process (DGP) with a univariate predictor, while the second experiment is
evoted to a bivariate case with mixed persistences. For each experiment, we conduct a comparison between our method
nd the IVX-QR approach, except for the single test in the bivariate case.

xample 1. In this example, the following DGP is set up for the univariate quantile regression:

yt = 3(µ+ βxt−1) + (µ+ βxt−1)ut , and xt = ρxt−1 + vt ,

here µ = 1 and ρ = 1 + c/Tα . To create the embedded endogeneity among innovations, the innovation processes are

enerated as (ut , vt )⊤ ∼ iid N(02×1,Σ2×2), where Σ =

(
1 −0.95

−0.95 1

)
. By Proposition 1 of Gaglianone et al. (2011),

t is easy to see that the conditional quantile of yt given xt−1 at the quantile level τ is given by

Qyt (τ |Ft−1) = Qut (τ ) + 3 + β[Qut (τ ) + 3]xt−1 = µτ + βτ xt−1,

here µτ = Qut (τ ) + 3, βτ = β[Qut (τ ) + 3] and Qut (τ ) is the τ th quantile of ut .8

We first compare the size performance of our method and the IVX-QR approach. Similar to Lee (2016), the IVX-QR
ased on the simple QR testing procedure is implemented with the filtering parameters chosen according to the practical
ule suggested by Lee (2016). The nominal size is set at 5% and the sample size T is set at 700. We consider a large
ample size as long time series data are often available in financial applications. Note that we also conduct simulations
ith sample sizes T = 150 and 300 and conclusions are similar so that they are not presented here to save space and
vailable upon request. For nonstationary setting, the values of c are chosen from (1.5, 0,−5,−25), corresponding to the
E, I1, NI1 and NI1 (with large deviation from unit root) processes. For stationary setting, the values of c are chosen from
−0.05,−0.1,−0.15,−0.2), corresponding to the stationary AR(1) processes with ρ = (0.95, 0.9, 0.85, 0.8). For each
setting, the rejection rate is calculated based on 500 simulations, and we repeat 100 times of simulations and calculations.
The mean and the standard error in parenthesis of 100 rejection rates are then reported in Panel A and B of Table 1 for
the nonstationary case (α = 1) and the stationary case (α = 0), given different values of the persistency parameter c and
at different quantile levels τ .

The following findings can be evidently observed from Table 1. First, our method shows better size performance
compared to the IVX-QR approach for most cases. Second, for quantile level τ close to 0.5, the size of the proposed
method is very close to the nominal size at 0.05, while IVX-QR tends to over-reject for the case of LE predictors. Third,
due to less data points in tails, both methods have size distortions for the extreme quantile levels.

8 Following Maynard et al. (2011), we set the DGP process as a random coefficient model to allow the impact of xt−1 to vary across the quantiles
f ut . We also conduct simulations using the same DGP of Lee (2016), which is a location shift model with a fixed βτ , and our main conclusions
re similar.
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T
S

able 1
ize performances with the nominal size 5% and T = 700.
Panel A: α = 1

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

tw

c = 1.5 0.069 0.059 0.051 0.049 0.048 0.047 0.047 0.049 0.051 0.060 0.071
(0.012) (0.010) (0.009) (0.009) (0.010) (0.011) (0.009) (0.009) (0.011) (0.010) (0.011)

c = 0 0.069 0.061 0.054 0.050 0.050 0.051 0.051 0.052 0.054 0.061 0.070
(0.011) (0.011) (0.012) (0.010) (0.009) (0.010) (0.012) (0.009) (0.010) (0.011) (0.012)

c = −5 0.068 0.058 0.052 0.049 0.047 0.046 0.046 0.048 0.051 0.060 0.069
(0.010) (0.011) (0.010) (0.010) (0.010) (0.009) (0.009) (0.010) (0.010) (0.010) (0.012)

c = −15 0.070 0.059 0.053 0.051 0.050 0.049 0.049 0.050 0.052 0.060 0.071
(0.011) (0.009) (0.009) (0.009) (0.010) (0.009) (0.010) (0.010) (0.009) (0.010) (0.011)

IVX-QR

c = 1.5 0.147 0.142 0.117 0.146 0.104 0.103 0.104 0.143 0.115 0.140 0.146
(0.015) (0.015) (0.015) (0.015) (0.014) (0.013) (0.014) (0.014) (0.015) (0.015) (0.014)

c = 0 0.103 0.094 0.070 0.093 0.059 0.059 0.059 0.092 0.070 0.094 0.102
(0.012) (0.012) (0.011) (0.013) (0.009) (0.010) (0.011) (0.012) (0.011) (0.012) (0.013)

c = −5 0.071 0.059 0.046 0.050 0.041 0.041 0.042 0.049 0.044 0.057 0.069
(0.011) (0.009) (0.010) (0.010) (0.009) (0.009) (0.009) (0.009) (0.009) (0.010) (0.012)

c = −25 0.088 0.073 0.059 0.056 0.055 0.054 0.054 0.057 0.060 0.073 0.089
(0.012) (0.012) (0.011) (0.011) (0.011) (0.010) (0.008) (0.010) (0.011) (0.012) (0.012)

Panel B: α = 0

tw

c = −0.05 0.073 0.064 0.058 0.055 0.050 0.052 0.051 0.054 0.055 0.063 0.074
(0.013) (0.010) (0.012) (0.010) (0.010) (0.011) (0.010) (0.009) (0.010) (0.012) (0.011)

c = −0.1 0.075 0.064 0.056 0.055 0.052 0.051 0.052 0.054 0.056 0.064 0.073
(0.011) (0.011) (0.009) (0.009) (0.009) (0.010) (0.010) (0.010) (0.010) (0.010) (0.013)

c = −0.15 0.074 0.063 0.055 0.053 0.052 0.051 0.053 0.052 0.053 0.062 0.073
(0.013) (0.011) (0.010) (0.011) (0.010) (0.010) (0.010) (0.008) (0.009) (0.012) (0.011)

c = −0.2 0.075 0.063 0.055 0.053 0.051 0.052 0.052 0.051 0.054 0.060 0.074
(0.013) (0.010) (0.009) (0.010) (0.011) (0.010) (0.009) (0.009) (0.011) (0.011) (0.012)

IVX-QR

c = −0.05 0.067 0.054 0.045 0.044 0.040 0.040 0.040 0.043 0.044 0.051 0.066
(0.010) (0.010) (0.009) (0.009) (0.010) (0.010) (0.009) (0.009) (0.009) (0.009) (0.011)

c = −0.1 0.067 0.053 0.046 0.044 0.042 0.042 0.040 0.043 0.045 0.053 0.067
(0.011) (0.010) (0.010) (0.010) (0.010) (0.010) (0.008) (0.010) (0.009) (0.010) (0.010)

c = −0.15 0.069 0.055 0.047 0.045 0.042 0.042 0.042 0.043 0.045 0.054 0.068
(0.011) (0.010) (0.010) (0.010) (0.009) (0.010) (0.009) (0.009) (0.010) (0.011) (0.011)

c = −0.2 0.070 0.056 0.047 0.045 0.042 0.042 0.042 0.044 0.046 0.054 0.070
(0.013) (0.011) (0.010) (0.009) (0.009) (0.010) (0.010) (0.010) (0.008) (0.009) (0.011)

Note: The DGP is given by yt = 3(1 + βxt−1) + (1 + βxt−1)ut where β = 0 and xt = ρxt−1 + vt with ρ = 1 + c/Tα . The innovation processes are

generated as (ut , vt )⊤ ∼ iid N(02×1,Σ2×2), where Σ =

(
1 −0.95

−0.95 1

)
.

Next, we conduct a comparison of the power of the proposed method with that for the IVX-QR method. To this end,
at the nominal size 5%, Figs. 1 and 2 display the results for α = 1 and α = 0 with different c , given τ = 0.5 and the
sample size T = 700. To see the local power, we set β = b/T (1+α)/2 and thus, βτ = bτ/T (1+α)/2

= b[Qut (τ ) + 3]/T (1+α)/2.
Evidently, our method performs better than the IVX-QR method in terms of power for all cases. This finding confirms
the theory in Theorem 3, which states that the convergence rate of the newly proposed method is faster than that for
the IVX-QR method. Note that we also conduct the simulations for sample size T = 300 and τ = 0.05, 0.5 and 0.95 and
obtain similar conclusions, omitted here to save space and available upon request.

Example 2. In this example, we consider a bivariate quantile regression model with mixed persistences. The DGP is set
up as follows:

yt = 3(µ+ β1x1,t−1 + β2x2,t−1) + (µ+ β1x1,t−1 + β2x2,t−1)ut ,

where µ = 1, x1,t = (1 + c1/T )x1,t−1 + v1,t , and x2,t = (1 + c2)x2,t−1 + v2,t with

(v1,t , v2,t , ut )⊤ ∼ iid N

((0
0
0

)
,

( 1 −0.78 0.4
−0.78 1 0.21
0.4 0.21 1

))
.

For the convenience of comparison, we use the same covariance matrix of (v1,t , v2,t , ut ) as Lee (2016). The persistency
parameter c1 is selected from (0,−5,−10), while c2 is selected from (−0.1,−1.1). Obviously, x1,t is I1 or NI1 process,
and x2,t is I0 process. The conditional quantile of yt given x1,t−1 and x2,t−1 is given by

Qyt (τ |Ft−1) = µ[Qut (τ ) + 3] + β1[Qut (τ ) + 3]x1t−1 + β2[Qut (τ ) + 3]x2t−1

= µτ + β1τ x1t−1 + β2τ x2t−1,

where µ = µ[Q (τ ) + 3], β = β [Q (τ ) + 3], β = β [Q (τ ) + 3], and Q (τ ) is the τ th quantile of u .
τ ut 1τ 1 ut 2τ 2 ut ut t
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Fig. 1. Local power performances of tw and IVX-QR for α = 1, βτ = b[Qut (τ ) + 3]/T , τ = 0.5 and T = 700.

Fig. 2. Local power performances of tw and IVX-QR for α = 0, βτ = b[Qut (τ ) + 3]/
√
T , τ = 0.5 and T = 700.

First, we consider a joint hypothesis test: H0 : β1τ = β2τ = 0. The sample size is set at T = 700 and the nominal size
s defined as 5%. Similar to Example 1, the rejection rate is computed based on 500 simulations, and we repeated 100
imes of simulations and computations for each setting. The mean and the standard error in parenthesis of 100 rejection
ates are then reported given various combinations of persistency parameters (c1, c2) and at different quantile levels τ .
able 2 reports the size performance of both the IVX-QR approach and the proposed method. It can be observed that both
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able 2
ize performances of the joint test: H0 : β1τ = β2τ = 0, with a nominal size of 5%.
Qw
m

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

(c1, c2) = (0,−0.1) 0.087 0.064 0.052 0.048 0.046 0.045 0.048 0.050 0.052 0.065 0.085
(0.013) (0.010) (0.010) (0.009) (0.009) (0.009) (0.010) (0.010) (0.010) (0.010) (0.015)

(c1, c2) = (−5,−0.1) 0.086 0.065 0.051 0.049 0.046 0.046 0.047 0.047 0.053 0.067 0.085
(0.012) (0.011) (0.010) (0.010) (0.008) (0.008) (0.009) (0.010) (0.010) (0.012) (0.012)

(c1, c2) = (−10,−0.1) 0.086 0.065 0.052 0.050 0.047 0.044 0.048 0.048 0.053 0.065 0.085
(0.011) (0.011) (0.010) (0.009) (0.010) (0.010) (0.010) (0.008) (0.010) (0.010) (0.012)

(c1, c2) = (0,−1.1) 0.087 0.066 0.056 0.049 0.046 0.046 0.046 0.049 0.053 0.068 0.088
(0.012) (0.013) (0.011) (0.009) (0.010) (0.010) (0.010) (0.010) (0.011) (0.011) (0.013)

(c1, c2) = (−5,−1.1) 0.087 0.065 0.052 0.050 0.048 0.046 0.047 0.050 0.053 0.068 0.086
(0.011) (0.010) (0.010) (0.010) (0.008) (0.009) (0.011) (0.010) (0.009) (0.012) (0.012)

(c1, c2) = (−10,−1.1) 0.087 0.068 0.052 0.048 0.049 0.047 0.045 0.048 0.054 0.068 0.087
(0.013) (0.011) (0.011) (0.009) (0.011) (0.009) (0.009) (0.010) (0.010) (0.011) (0.013)

IVX-QR

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

(c1, c2) = (0,−0.1) 0.160 0.113 0.076 0.066 0.064 0.061 0.065 0.069 0.076 0.112 0.159
(0.016) (0.012) (0.012) (0.012) (0.011) (0.011) (0.011) (0.011) (0.012) (0.015) (0.016)

(c1, c2) = (−5,−0.1) 0.095 0.070 0.053 0.049 0.046 0.046 0.047 0.049 0.054 0.069 0.097
(0.013) (0.012) (0.010) (0.009) (0.009) (0.010) (0.009) (0.009) (0.010) (0.012) (0.012)

(c1, c2) = (−10,−0.1) 0.091 0.069 0.052 0.047 0.045 0.045 0.045 0.047 0.051 0.068 0.092
(0.013) (0.012) (0.010) (0.009) (0.009) (0.010) (0.010) (0.011) (0.011) (0.012) (0.013)

(c1, c2) = (0,−1.1) 0.149 0.106 0.073 0.061 0.058 0.057 0.056 0.062 0.071 0.103 0.150
(0.016) (0.014) (0.011) (0.010) (0.010) (0.011) (0.011) (0.010) (0.012) (0.013) (0.018)

(c1, c2) = (−5,−1.1) 0.095 0.069 0.052 0.048 0.044 0.046 0.045 0.048 0.052 0.070 0.096
(0.012) (0.011) (0.010) (0.011) (0.010) (0.008) (0.010) (0.010) (0.010) (0.010) (0.013)

(c1, c2) = (−10,−1.1) 0.087 0.067 0.052 0.047 0.044 0.044 0.045 0.046 0.051 0.067 0.090
(0.014) (0.012) (0.010) (0.010) (0.009) (0.008) (0.009) (0.009) (0.011) (0.012) (0.011)

Note: The DGP is a bivariate quantile regression given by yt = 3(1 + β1x1,t−1 + β2x2,t−1) + (1 + β1x1,t−1 + β2x2,t−1)ut where β1 = β2 = 0,
x1,t = (1 + c1/T )x1,t−1 + v1,t , x2,t = (1 + c2)x2,t−1 + v2,t .

approaches perform reasonably well under the joint null hypothesis. While the empirical sizes are closed to the nominal
size 5% at inner quantiles, there still exist size distortions at extreme quantile levels for both methods. However, for most
cases, the proposed method shows better size performance than the IVX-QR. Table 3 compares the power performances.
It can be observed that two methods demonstrate comparable power performances. While our method has slightly better
power performance at inner quantiles τ = 0.25, 0.5, 0.75, the IVX-QR is more powerful at extreme quantiles τ = 0.05
and 0.95.

Next, one may be interested in testing the predictability for each predictor in the multiple regression. Thus, we also
conduct simulations for the single tests: H0 : β1τ = 0 or H0 : β2τ = 0, with the same DGP. Here, we only report the results
of our method, as the IVX-QR approach based on the simple QR testing procedure is only consistent under the joint null
hypothesis9 as argued in Lee (2016). Table 4 reports the size performance of Qw

m with a nominal size of 5%. From Panel
A, which shows the results for the single test: H0 : β1τ = 0, one may find that our method performs reasonably well,
with a slight size distortions at extreme quantiles. Panel B reports the results for the single test: H0 : β2τ = 0, and similar
conclusions can be made.

Table 5 reports the power performance of Qw
m with a nominal size of 5%. Panel A shows the results of the single test:

H0 : β1τ = 0, and it can be observed that the rejection rate converges to 1 as the value of β1 increases, with a faster
rate at the inner quantiles compared to extreme quantiles. Panel B displays the results of the single test: H0 : β2τ = 0.
Similarly, as the value of β2 increases, the rejection rate converges to 1, demonstrating the effectiveness of our method.
Comparing the results of both Panels A and B, it can be observed that the single test for the nonstationary predictor shows
faster convergence rate than that for the stationary predictor, consistent with the findings by Cai and Wang (2014) on
the different convergence rates for nonstationary and stationary regressors.

In summary, our method works reasonably well in terms of size and power for both univariate and bivariate predictive
quantile models. Comparing to other existing methods in the literature, such as the VA approach and the Bonferroni Q-test,
our method is still quite competitive.10

9 Indeed, we also conduct simulations using the IVX-QR approach for the single tests, but it shows serious size distortions for most cases. The
simulation results are not presented here since Lee (2016) did not consider this test.
10 Following the suggestion from one of the referees, we extend the VA approach and the Bonferroni Q-test to predictive quantile regressions.
he simulations, omitted here to save space, show that, for most cases, our method demonstrates comparable or even slightly better performance
han these two methods. The codes and results are available upon request.
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able 3
ower performances of the joint test: H0 : β1τ = β2τ = 0 with a nominal size of 5%.

b1 0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15

b2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Qw
m

τ = 0.05 0.088 0.096 0.113 0.152 0.207 0.272 0.349 0.429 0.511 0.586 0.658
(0.012) (0.014) (0.015) (0.017) (0.018) (0.022) (0.021) (0.023) (0.023) (0.024) (0.022)

τ = 0.25 0.051 0.087 0.203 0.381 0.565 0.730 0.848 0.913 0.953 0.974 0.985
(0.009) (0.012) (0.017) (0.021) (0.023) (0.021) (0.016) (0.011) (0.009) (0.007) (0.006)

τ = 0.5 0.046 0.118 0.329 0.587 0.792 0.910 0.964 0.985 0.993 0.997 0.998
(0.009) (0.015) (0.023) (0.022) (0.016) (0.013) (0.009) (0.005) (0.004) (0.002) (0.002)

τ = 0.75 0.051 0.145 0.408 0.688 0.867 0.952 0.983 0.993 0.997 0.999 0.999
(0.010) (0.017) (0.024) (0.019) (0.015) (0.009) (0.006) (0.003) (0.002) (0.002) (0.001)

τ = 0.95 0.088 0.165 0.378 0.620 0.804 0.909 0.958 0.982 0.993 0.996 0.998
(0.012) (0.019) (0.023) (0.021) (0.020) (0.013) (0.010) (0.006) (0.004) (0.003) (0.002)

IVX-QR

τ = 0.05 0.156 0.157 0.189 0.246 0.324 0.423 0.515 0.600 0.680 0.743 0.800
(0.016) (0.019) (0.017) (0.019) (0.021) (0.023) (0.023) (0.022) (0.021) (0.020) (0.020)

τ = 0.25 0.065 0.086 0.167 0.320 0.506 0.678 0.801 0.882 0.928 0.955 0.971
(0.011) (0.014) (0.017) (0.023) (0.021) (0.022) (0.019) (0.014) (0.012) (0.010) (0.008)

τ = 0.5 0.053 0.092 0.227 0.458 0.688 0.849 0.930 0.968 0.986 0.993 0.996
(0.010) (0.012) (0.019) (0.024) (0.020) (0.014) (0.011) (0.008) (0.005) (0.004) (0.003)

τ = 0.75 0.067 0.124 0.330 0.616 0.830 0.939 0.981 0.994 0.998 0.999 0.999
(0.012) (0.014) (0.019) (0.023) (0.016) (0.012) (0.006) (0.003) (0.002) (0.001) (0.001)

τ = 0.95 0.157 0.260 0.544 0.795 0.927 0.979 0.995 0.999 1.000 1.000 1.000
(0.014) (0.022) (0.021) (0.017) (0.011) (0.006) (0.003) (0.002) (0.001) (0.001) (0.001)

Note: The DGP is given by yt = 3(1 + β1x1,t−1 + β2x2,t−1) + (1 + β1x1,t−1 + β2x2,t−1)ut where β1 = b1/T , β2 = b2/
√
T , x1,t = (1 + c1/T )x1,t−1 + v1,t ,

2,t = (1 + c2)x2,t−1 + v2,t , with c1 = −1 and c2 = −0.2.

Table 4
Size performances of the single tests for Qw

m , with a nominal size of 5% and T = 700.
Panel A: H0 : β1τ = 0

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

(c1, c2) = (0,−0.1) 0.080 0.065 0.052 0.051 0.048 0.047 0.047 0.050 0.052 0.062 0.078
(0.014) (0.011) (0.011) (0.010) (0.012) (0.010) (0.009) (0.010) (0.010) (0.011) (0.013)

(c1, c2) = (−5,−0.1) 0.080 0.062 0.054 0.049 0.048 0.047 0.047 0.047 0.053 0.063 0.079
(0.012) (0.012) (0.010) (0.011) (0.010) (0.008) (0.009) (0.009) (0.010) (0.011) (0.011)

(c1, c2) = (−10,−0.1) 0.082 0.065 0.055 0.050 0.049 0.047 0.049 0.050 0.053 0.062 0.081
(0.013) (0.011) (0.011) (0.011) (0.009) (0.010) (0.011) (0.010) (0.010) (0.011) (0.011)

(c1, c2) = (0,−1.1) 0.075 0.062 0.050 0.049 0.046 0.045 0.047 0.048 0.051 0.063 0.074
(0.011) (0.010) (0.011) (0.008) (0.010) (0.009) (0.009) (0.010) (0.010) (0.013) (0.010)

(c1, c2) = (−5,−1.1) 0.076 0.062 0.052 0.048 0.047 0.047 0.048 0.049 0.054 0.062 0.073
(0.012) (0.011) (0.011) (0.010) (0.009) (0.009) (0.010) (0.010) (0.010) (0.012) (0.012)

(c1, c2) = (−10,−1.1) 0.077 0.061 0.051 0.050 0.045 0.046 0.045 0.048 0.051 0.059 0.077
(0.013) (0.010) (0.010) (0.010) (0.009) (0.009) (0.009) (0.010) (0.009) (0.010) (0.012)

Panel B: H0 : β2τ = 0

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

(c1, c2) = (0,−0.1) 0.109 0.081 0.068 0.059 0.050 0.049 0.051 0.058 0.066 0.082 0.105
(0.014) (0.013) (0.012) (0.011) (0.009) (0.010) (0.010) (0.011) (0.012) (0.011) (0.013)

(c1, c2) = (−5,−0.1) 0.080 0.067 0.055 0.050 0.049 0.050 0.049 0.050 0.052 0.065 0.080
(0.013) (0.012) (0.009) (0.009) (0.010) (0.010) (0.009) (0.010) (0.012) (0.009) (0.013)

(c1, c2) = (−10,−0.1) 0.080 0.065 0.054 0.051 0.048 0.047 0.049 0.050 0.054 0.063 0.077
(0.013) (0.012) (0.010) (0.010) (0.009) (0.008) (0.009) (0.009) (0.011) (0.012) (0.009)

(c1, c2) = (0,−1.1) 0.088 0.065 0.052 0.047 0.045 0.042 0.044 0.048 0.050 0.065 0.088
(0.012) (0.010) (0.009) (0.009) (0.010) (0.009) (0.009) (0.010) (0.009) (0.011) (0.013)

(c1, c2) = (−5,−1.1) 0.081 0.064 0.051 0.049 0.048 0.047 0.047 0.049 0.054 0.064 0.081
(0.012) (0.011) (0.010) (0.010) (0.010) (0.010) (0.009) (0.010) (0.009) (0.011) (0.012)

(c1, c2) = (−10,−1.1) 0.082 0.063 0.052 0.050 0.048 0.047 0.048 0.048 0.052 0.064 0.081
(0.011) (0.011) (0.010) (0.010) (0.009) (0.010) (0.009) (0.010) (0.010) (0.011) (0.012)

Note: The DGP is given by yt = 3(1+ β1x1,t−1 + β2x2,t−1)+ (1+ β1x1,t−1 + β2x2,t−1)ut where x1,t = (1+ c1/T )x1,t−1 + v1,t , x2,t = (1+ c2)x2,t−1 + v2,t .
or Panel A, β1 = 0 and β2 = 2/

√
T . For Panel B, β1 = 15/T and β2 = 0.
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ower performances of the single tests for Qw

m , with a nominal size of 5% and T = 700.
Panel A: H0 : β1τ = 0

b1 0 4 8 12 16 20 24 28 32 36 40

τ = 0.05 0.076 0.119 0.245 0.401 0.551 0.666 0.753 0.816 0.855 0.881 0.904
(0.013) (0.014) (0.018) (0.021) (0.021) (0.021) (0.019) (0.018) (0.014) (0.014) (0.013)

τ = 0.25 0.051 0.270 0.605 0.807 0.899 0.942 0.964 0.973 0.979 0.982 0.985
(0.010) (0.022) (0.021) (0.019) (0.014) (0.009) (0.008) (0.006) (0.006) (0.005) (0.005)

τ = 0.5 0.045 0.405 0.765 0.907 0.957 0.976 0.983 0.987 0.990 0.991 0.993
(0.009) (0.024) (0.020) (0.011) (0.010) (0.007) (0.006) (0.005) (0.004) (0.004) (0.004)

τ = 0.75 0.050 0.474 0.825 0.935 0.970 0.982 0.988 0.990 0.993 0.994 0.994
(0.010) (0.024) (0.018) (0.011) (0.008) (0.005) (0.005) (0.004) (0.003) (0.004) (0.003)

τ = 0.95 0.075 0.435 0.777 0.910 0.958 0.976 0.982 0.987 0.988 0.990 0.989
(0.012) (0.022) (0.017) (0.013) (0.009) (0.007) (0.006) (0.005) (0.004) (0.005) (0.004)

Panel B: H0 : β2τ = 0

b2 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

τ = 0.05 0.087 0.101 0.148 0.218 0.307 0.407 0.511 0.614 0.703 0.776 0.838
(0.012) (0.014) (0.015) (0.019) (0.021) (0.023) (0.023) (0.023) (0.018) (0.018) (0.016)

τ = 0.25 0.052 0.135 0.351 0.604 0.804 0.910 0.962 0.986 0.993 0.997 0.998
(0.010) (0.017) (0.019) (0.022) (0.018) (0.014) (0.009) (0.005) (0.003) (0.003) (0.002)

τ = 0.5 0.048 0.201 0.544 0.821 0.943 0.983 0.994 0.998 0.998 0.999 0.999
(0.010) (0.018) (0.022) (0.016) (0.010) (0.006) (0.003) (0.002) (0.002) (0.001) (0.001)

τ = 0.75 0.051 0.250 0.638 0.886 0.971 0.992 0.997 0.999 0.999 0.999 0.999
(0.010) (0.019) (0.024) (0.015) (0.008) (0.004) (0.002) (0.002) (0.001) (0.001) (0.001)

τ = 0.95 0.085 0.249 0.571 0.820 0.938 0.980 0.993 0.997 0.998 0.999 0.999
(0.013) (0.020) (0.023) (0.016) (0.011) (0.006) (0.004) (0.002) (0.002) (0.001) (0.001)

Note: The DGP is given by yt = 3(1+ β1x1,t−1 + β2x2,t−1)+ (1+ β1x1,t−1 + β2x2,t−1)ut where x1,t = (1+ c1/T )x1,t−1 + v1,t , x2,t = (1+ c2)x2,t−1 + v2,t

ith c1 = −1 and c2 = −0.2. For Panel A, β1 = b1/T and β2 = 2/
√
T . For Panel B, β1 = 15/T and β2 = b2/

√
T .

able 6
5% confidence intervals for ρ in different sample periods.
Predictor 1927–2002 1927–2005 1927–2018 1952–2002 1952–2005 1952–2018

d/p [0.983, 1.000] [0.985, 1.000] [0.986, 1.000] [0.988, 1.003] [0.989, 1.002] [0.989, 1.002]

e/p [0.979, 0.999] [0.978, 0.997] [0.978, 0.996] [0.986, 1.003] [0.984, 1.001] [0.980, 0.999]

b/m [0.971, 0.994] [0.973, 0.995] [0.976, 0.995] [0.985, 1.001] [0.985, 1.001] [0.987, 1.001]

ntis [0.957, 0.987] [0.957, 0.987] [0.971, 0.993] [0.954, 0.990] [0.954, 0.989] [0.970, 0.995]

d/e [0.991, 1.001] [0.993, 1.002] [0.983, 0.998] [0.989, 1.001] [0.993, 1.003] [0.975, 0.997]

tbl [0.984, 0.999] [0.984, 0.999] [0.986, 0.999] [0.976, 1.000] [0.976, 0.999] [0.982, 0.999]

dfy [0.962, 0.989] [0.962, 0.989] [0.961, 0.987] [0.954, 0.990] [0.954, 0.989] [0.953, 0.986]

tms [0.936, 0.974] [0.938, 0.975] [0.925, 0.964] [0.921, 0.972] [0.926, 0.973] [0.914, 0.961]

5. An empirical application

5.1. Data

This section applies the newly proposed method to re-investigate whether or not stock market index returns are
redictable by a set of macroeconomic indicators and financial ratios. For a convenient comparison, our main results
re based on the same data set (monthly data) in Lee (2016), with a sample period from January 1927 to December
005. An updated data set until December 2018 is considered too to see whether there is any change after the 2008
lobal crisis.11 The dependent variable is stock market excess returns, which is computed as the difference between S&P

500 index (including dividends) monthly returns and the one-month Treasury bill rate. Following the literature, eight
popular predictors are considered, including dividend–price (d/p), earnings–price (e/p), book to market ratios (b/m),
net equity expansion (ntis), dividend–payout ratio (d/e), T-bill rate (tbl), default yield spread (dfy), term spread (tms).12
hese predictors are standard in the predictive regression literature, and could be further classified into three categories:
aluation ratios (d/p, e/p and b/m), corporate finance variables (ntis and d/e) and bond yield measures (tbl, tms and dfy),

see Cenesizoglu and Timmermann (2008) and Lee (2016).
Table 6 reports the 95% confidence interval of the first-order autocorrelation coefficient ρ for the eight predicting

ariables during different sample periods. All predictors show strong evidence of high persistency for all periods, but we

11 The updated data set can be downloaded from http://www.hec.unil.ch/agoyal, the website of Professor Amit Goyal.
12 One may refer to Welch and Goyal (2008) for details on how to construct economic foundations of all variables.
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able 7
-values (%) of quantile prediction tests using the univariate model (1927:01–2005:12).
τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

d/p 0.2 0.3 2.7 22.1 23.2 25.2 13.5 1.3 0.3 0.5 0.2
e/p 0.1 0.7 6.0 25.9 26.0 22.9 17.2 3.6 1.0 0.8 1.0
b/m 8.4 13.5 40.6 44.8 50.1 68.2 18.7 4.2 0.6 0.3 0.0
ntis 2.9 0.4 0.1 9.9 14.1 10.0 45.8 56.5 64.8 58.1 57.3
d/e 0.0 0.0 0.0 0.3 8.8 45.2 33.8 2.3 0.0 0.0 0.0
tbl 7.7 10.1 41.3 27.1 2.3 0.8 5.9 7.0 0.6 1.0 2.1
dfy 0.0 0.0 0.0 0.0 4.5 57.3 0.7 0.0 0.0 0.0 0.0
tms 36.8 42.6 33.4 61.4 35.6 49.9 79.5 66.0 54.1 15.5 13.3

Note: p-values are in bold if less than or equal to the significant level 5%.

able 8
-values (%) of quantile prediction tests using the univariate model (1952:01–2005:12).
τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

d/p 18.6 28.6 36.7 27.2 22.8 31.1 36.6 28.0 39.7 10.4 9.5
e/p 18.6 30.7 40.1 27.4 20.2 31.6 39.0 30.1 36.0 16.2 12.3
b/m 53.7 64.2 64.6 59.6 16.4 32.8 72.5 43.8 48.1 50.7 22.1
ntis 39.4 38.7 18.6 41.5 27.6 23.1 24.7 6.0 4.3 0.7 0.5
d/e 12.2 31.0 43.4 17.2 12.3 46.9 48.6 68.1 47.3 13.6 28.3
tbl 5.8 3.4 2.5 1.1 0.4 2.6 22.0 72.3 71.9 40.4 4.3
dfy 50.9 71.6 65.9 46.0 30.2 70.5 22.9 17.3 2.9 0.4 0.0
tms 8.5 1.7 6.7 26.6 17.7 36.8 77.5 44.9 76.6 52.0 48.2

Note: p-values are in bold if less than or equal to the significant level 5%.

re still unable to identify the persistency category for each variable, see Fan and Lee (2019). Given that our new method
s robust to all persistency categories, it is expected to provide more reliable conclusions than traditional approaches
eveloped under a specific type of persistency.

.2. Empirical results

First, we investigate the quantile predictability of stock returns for each individual predictor using the univariate model,
nd then analyze the predictability of individual predictor and different combinations of predictors in the framework of
ultivariate quantile regressions.
Table 7 reports the univariate regression results given the sample period from January 1927 to December 2005. The

-values (%) shown in bold imply the rejection of the null hypothesis of no predictability at the 5% level. The main
indings can be summarized as follows. For the group of valuation ratios, we find significant lower and upper quantiles
redictability for both d/p and e/p ratios, but only upper quantiles predictability for the b/m ratio. For the group of
orporate finance predictors, the d/e, which represents the corporation dividend payment policy, has strong predictability
t both lower and upper quantiles, while the ntis, measuring the corporate issuing activity, has predictive ability at lower
uantiles only. For the group of bond yield measures, the dfy shows significant predictability at most quantiles except
t median level, and the tbl is significant at upper quantiles. However, we do not find any evidence of the significant
redictability for the tms at all quantiles. Compared to Lee (2016), we obtain similar testing results for d/p, d/e, ntis, tbl
nd dfy, but different results for the other three. For the b/m ratio, Lee (2016) found significant predictability for both

lower and upper quantiles, while only upper quantiles predictability for our method. For the e/p, we find both lower
and upper quantiles predictability, but Lee (2016) only reported a significant predictability at the 80% quantile level.
Meanwhile, Lee (2016) found significant predictability at upper quantiles (0.9 and 0.95) for the tms, for which we do not
ind any significant predictive ability. The difference is reasonable as our method corrects the size distortion and enjoys
mprove the power due to a faster convergence rate of the estimator, compared to IVX-QR approach. Meanwhile, our
esting results show smoother changes across different quantiles, demonstrating a better performance on robustness and
tability.
Next, we conduct the quantile prediction tests for the post-1952 data until December 2005, and report the results in

able 8. Compared with Table 7, in general, there are fewer variables with significant predicting power, implying that
he market efficiency is improved after World War II, see Campbell and Yogo (2006). Especially, we do not find any
ignificant predictability for value ratios (d/p, e/p and b/m) and the d/e ratio. For lower quantiles, only tbl and tms still
ave significant predictive ability, while ntis and dfy are significant for upper quantiles. For middle quantiles, only tbl has
ignificant predicting power. Compared to Lee (2016), we share a similar finding that the bond yield measures, especially
he tbl and dfy, maintain the significant quantile predictability, but we find a weaker predicting power of value ratios
uring the sample period 1952:01–2005:12.
Because the stock returns might be affected by multiple variables, the univariate model may exaggerate the prediction

ower for each variable. Therefore, we re-examine the stock market predictability in the framework of multivariate
241
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-values (%) for the test using the multivariate model (1927:01–2005:12).
Ang and Bekaert (2007)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

d/p 0.9 0.8 4.2 11.9 24.0 33.6 22.7 7.3 3.2 0.6 1.0
tbl 0.1 0.1 1.3 9.0 18.9 20.8 19.6 10.9 1.9 0.1 0.4
Joint test 0.1 0.0 1.0 10.9 26.4 17.3 5.5 0.6 0.1 0.0 0.1
Ferson and Schadt (1996)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

d/p 0.1 0.2 2.7 1.1 7.9 9.0 27.0 18.9 26.1 14.5 9.2
tbl 0.3 0.4 3.0 3.7 11.4 11.4 14.5 8.7 2.3 0.7 0.3
dfy 0.0 0.0 0.3 0.4 5.7 11.2 28.0 17.1 1.6 0.1 0.0
tms 0.0 0.1 0.6 0.6 4.7 4.9 24.8 20.6 31.0 16.2 8.4
Joint test 0.0 0.0 0.0 0.6 11.7 7.2 2.1 0.0 0.0 0.0 0.0
Kothari and Shanken (1997)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

d/p 0.1 0.1 0.7 13.9 15.4 17.2 15.8 3.3 0.5 0.1 0.0
b/m 0.2 0.1 1.3 10.8 17.3 20.2 24.4 8.7 1.1 0.3 0.0
Joint test 0.0 0.0 1.0 16.9 22.5 24.6 14.2 0.7 0.1 0.1 0.0
Lamont (1998)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

d/p 5.2 3.7 8.8 18.0 17.0 25.4 28.8 12.9 9.5 2.0 1.0
d/e 0.4 0.1 0.7 9.2 18.5 22.7 25.3 10.7 1.5 0.1 0.0
Joint test 0.2 0.0 0.8 19.2 20.0 28.2 17.0 0.7 0.1 0.0 0.0
Campbell and Vuolteenaho (2004)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

e/p 0.0 0.0 0.3 10.1 15.7 19.7 13.7 1.8 0.2 0.0 0.0
b/m 0.0 0.0 0.1 7.7 13.7 19.3 15.2 2.3 0.2 0.0 0.0
tms 0.0 0.1 0.7 30.1 24.2 26.8 15.9 2.6 0.2 0.1 0.0
Joint test 0.0 0.0 0.0 6.5 14.0 36.6 13.4 0.7 0.0 0.0 0.0
Full Model

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

d/p 7.9 14.9 16.1 14.2 17.5 18.6 21.7 20.8 10.1 2.3 2.1
e/p 6.2 5.0 1.5 1.0 1.4 4.6 7.2 10.7 13.0 6.5 5.3
b/m 9.8 18.1 20.6 13.2 16.5 15.6 17.1 16.3 8.8 2.4 2.1
ntis 1.3 5.3 8.8 3.5 11.8 11.9 24.5 16.7 7.5 1.8 1.6
tbl 12.6 24.3 22.0 10.0 7.5 7.3 6.3 4.3 3.1 1.5 1.6
dfy 0.0 0.0 1.0 6.3 27.3 21.9 2.8 0.1 0.0 0.0 0.0
tms 3.0 10.6 14.8 13.7 19.4 18.4 18.9 17.5 9.3 1.9 1.1
Joint test 0.0 0.0 0.0 0.0 0.1 0.8 0.1 0.0 0.0 0.0 0.0

Note: p-values are in bold if less than or equal to the significant level 5%. For the full model, d/e is excluded due to the multiple collinearity among
d/e, d/p and e/p ratios.

predictive quantile regression. Following Kostakis et al. (2015), we consider five popular prediction models in the literature
and a full model with seven predictors (d/e is excluded due to the multiple collinearity). For each model, we report the
single test results for each individual predictor and the joint test results for the combination of all predictors.

Table 9 depicts the test results during the sample period from January 1927 to December 2005. Interestingly, both single
tests and joint tests based on the first five predictive models do not find any significant predictability at middle quantile
levels, confirming the existing findings about a weak predictability at the mean/median of stock returns. However, all
five models show evidence of significant predictability at lower and upper quantiles, suggesting a stronger predictability
in the extreme market status. For the full model, after controlling other variables, some predictors lose their prediction
power, though the joint tests suggest that the full model has prediction power at all quantiles. It worths to be mentioned
that the bond yield measures, including tbl, dfy and tms, maintain the significant predictability at either lower quantiles or
pper quantiles or both. The persistency of the predictive ability for these macroeconomic variables is further confirmed
n Table 10, where only the predictive models containing bond yield measures keep prediction power in the post-1952
ample period. Because Lee (2016) only considered a bivariate case, a comparison with the results is not provided here.
To see whether there is any change on the market predictability in the recent years, we apply our method to the most

pdated data set for two sample periods: 1927:01-2018:12 and the post-1952 sample period 1952:01-2018:12. The main
onclusions are roughly consistent with those using the sample period until December 2005.13

13 To save space, we skip to report the empirical results for the updated data set, which are available upon request.
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-values (%) for the test using the multivariate model (1952:01–2005:12).
Ang and Bekaert (2007)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

d/p 22.3 32.0 40.6 27.8 35.5 33.7 29.1 23.2 33.1 9.5 9.0
tbl 13.4 31.1 21.4 15.3 13.1 17.2 22.5 24.2 28.1 10.7 2.4
Joint test 18.0 37.5 35.1 21.0 19.9 26.8 32.0 26.8 42.7 11.2 2.1
Ferson and Schadt (1996)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

d/p 18.6 17.3 11.1 7.6 9.7 12.8 9.6 7.2 5.8 2.1 7.0
tbl 21.0 15.8 7.4 5.6 7.6 11.2 5.4 4.5 6.2 2.4 5.0
dfy 18.9 17.0 7.5 5.5 8.3 10.4 7.3 5.0 5.2 2.0 4.7
tms 23.0 16.6 8.9 7.0 7.5 12.2 6.9 5.3 6.3 2.2 6.3
Joint test 24.7 27.7 23.2 13.5 16.9 29.9 15.2 11.7 6.4 0.4 0.7
Kothari and Shanken (1997)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

d/p 13.3 18.4 26.1 17.0 14.0 20.1 21.0 23.4 25.5 10.3 5.8
b/m 12.9 20.3 23.2 16.3 12.1 18.4 20.3 23.1 24.7 8.6 5.2
Joint test 16.8 27.6 36.2 25.2 16.2 23.2 28.7 26.6 36.1 11.9 5.2

Lamont (1998)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 22.9 25.8 31.6 30.5 23.1 22.2 28.2 23.3 29.1 18.5 11.7
d/e 16.2 21.9 23.7 17.5 13.1 20.7 26.6 23.6 25.5 10.8 5.1
Joint test 20.2 28.4 41.1 27.6 20.4 33.0 38.6 29.0 39.3 9.7 6.2

Campbell and Vuolteenaho (2004)

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

e/p 14.3 15.1 17.1 12.8 10.7 14.9 18.1 16.8 23.0 11.3 11.7
b/m 10.1 22.4 14.9 9.3 11.0 14.8 17.6 16.9 24.8 14.8 15.2
tms 17.6 29.8 28.4 19.1 16.5 29.0 27.3 27.7 27.6 7.1 6.9
Joint test 18.5 37.4 35.7 18.4 13.0 29.9 37.5 27.9 30.7 5.3 1.5
Full Model

τ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
d/p 16.3 19.6 18.7 13.7 11.5 11.7 15.6 23.4 27.0 16.4 10.9
e/p 14.6 18.4 17.6 19.8 18.9 25.2 21.6 16.3 15.0 7.8 4.4
b/m 11.5 18.7 14.7 13.2 15.7 15.2 14.7 13.4 15.5 8.9 7.9
ntis 19.4 18.1 8.8 12.9 14.7 19.9 16.5 17.8 16.0 7.2 10.5
tbl 1.5 4.8 8.5 4.9 4.2 4.5 5.0 4.9 6.7 5.8 4.9
dfy 7.2 15.2 19.8 16.7 13.4 12.5 9.4 5.6 5.3 1.7 2.4
tms 17.7 16.4 16.2 21.6 19.1 23.2 22.8 22.3 21.7 11.5 8.3
Joint test 0.1 0.6 0.3 0.4 0.3 1.1 1.8 1.1 1.2 0.0 0.0

Note: p-values are in bold if less than or equal to the significant level 5%. For the full model, d/e is excluded due to the multiple collinearity among
d/e, d/p and e/p ratios.

6. Conclusion

This paper investigates the inferential theory for predictive quantile regression with highly persistent predictors,
ontaining both the stationary case and the nonstationary case. A weighted estimator based on the VA approach is
roposed to construct the pivotal test statistic. By introducing a new additional variable whose key component is
ndependent of xt in NI1, I1 and LE cases and persistency is the same as that for xt , our method is not only free of
the size distortion but it can also achieve the local power under the optimal rate T with nonstationary predictors and√
T with stationary predictors. The numerical performance of the proposed tests is checked by simulation studies which

show that the proposed method outperforms the IVX-QR approach proposed by Lee (2016) in a finite sample. In the
empirical application, we apply the new method to test the predictability of US stock returns at different quantile levels.
Interestingly, after the World War II, we do not find much evidence for the prediction power for some well-known
financial ratios, such as e/p ratio, d/p ratio and b/m ratio. However, the macroeconomic indicators, such as dfy, tms and
tbl show strong evidence of significant prediction power, especially at lower and upper quantile levels.

Finally, we note several possible extensions of the present study. For example, it may be interesting to extend the
model in (1) to a nonparametric form similar to the model in Cai and Xu (2008) for stationary case. Also, one might
extend our model to the case that 0 < α < 1, corresponding to the so-called mildly integrated MI processes (c < 0) or
ildly explosive ME processes (c > 0), as mentioned in Section 2.1. We leave such extensions as possible future research

opics.
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ppendix A. Mathematical proofs

Note that due to the limitation of space, the brief derivations of the main results are only provided and all lemmas with
he detailed proof are presented in the online appendix, which can be found at http://www.people.ku.edu/~z397c158/CCL-
upplement.pdf.

roof of Theorem 1. As the proof for I0 case is standard, we only provide the proof for NI1, I1 and LE cases. Define
he convex object function ZT (v) =

∑T
t=2

{
ρτ
[
utτ − v⊤D−1

T Λt−1
]
− ρτ (utτ )

}
. Following Xiao (2009), the minimization

roblem in (5) is equivalent to minimizing ZT (v), i.e., if v̂ is the minimizer of ZT (v), then v̂ = DT (θ̂τ − θτ ), where θ̂τ is the
olution of the minimization problem in (5).
Now, an application of the Knight identity as in Knight (1989) implies that

ZT (v) = −

T∑
t=2

v⊤D−1
T Λt−1ψτ (utτ ) +

T∑
t=2

∫ v⊤D−1
T Λt−1

0
[1(utτ ≤ l) − 1(utτ ≤ 0)] dl.

ote that ZT (v) is derivable with respect with v, and define the new objective function VT (v) = −∂ZT (v)/∂v. It is easy to
how that

VT (v) =

T∑
t=2

D−1
T Λt−1ψτ (utτ ) −

T∑
t=2

D−1
T Λt−1

[
1(utτ ≤ v⊤D−1

T Λt−1) − 1(utτ ≤ 0)
]
. (A.1)

o prove Theorem 1, it suffices to verify that VT (v) satisfies the conditions of Lemma A.1 in the online appendix. We first
heck the condition (i), i.e., −v⊤VT (λv) ≥ −v⊤VT (v) for λ ≥ 1. Note that

−v⊤VT (λv) = −v⊤

T∑
t=2

D−1
T Λt−1ψτ (utτ ) +

T∑
t=2

v⊤D−1
T Λt−1

[
1(utτ ≤ λv⊤D−1

T Λt−1) − 1(utτ ≤ 0)
]
,

o that it needs to show that −v⊤VT (λv) is a non-decreasing function of λ. Given the fact that 1(u ≤ x) − 1(u < 0) is a
on-decreasing function of x, one can show that 1(utτ ≤ λv⊤D−1

T Λt−1) − 1(utτ ≤ 0) is a non-decreasing function of λ if
⊤D−1

T Λt−1 > 0, and a decreasing function of λ if v⊤D−1
T Λt−1 < 0. Thus, −v⊤VT (λv) is always a non-decreasing function

f λ, and the condition (i) in Lemma A.1 is verified.
Next, we check the condition (ii), i.e., sup∥v∥<M∥VT (v) + fuτ (0)Nv − AT∥ = op(1) for 0 < M < ∞. Define ηt =

−1
T Λt−1

[
1(utτ ≤ v⊤D−1

T Λt−1) − 1(utτ ≤ 0)
]
and AT =

∑T
t=2 D

−1
T Λt−1ψτ (utτ ). Clearly, it follows from (A.1) that

VT (v) = AT −

T∑
t=2

Et−1(ηt ) −

T∑
t=2

[ηt − Et−1(ηt )] . (A.2)

herefore, to prove the condition (ii), it suffices to show that
∑T

t=2 Et−1(ηt ) = fuτ (0)Nv+op(1) and
∑T

t=2 [ηt − Et−1(ηt )] =

p(1). By Taylor expansion,
T∑

t=2

Et−1(ηt ) =

T∑
t=2

D−1
T Λt−1

[
Futτ ,t−1(v⊤D−1

T Λt−1) − Futτ ,t−1(0)
]

=

T∑
t=2

D−1
T Λt−1

[
futτ ,t−1(0)Λ⊤

t−1D
−1
T v +

1
2
f ′

utτ ,t−1(l
∗)v⊤D−1

T Λt−1Λ
⊤

t−1D
−1
T v

]
= B1 + B2,

where l∗ ∈ (0, v⊤D−1
T Λt−1) if v⊤D−1

T Λt−1 > 0 and l∗ ∈ (v⊤D−1
T Λt−1, 0) if v⊤D−1

T Λt−1 < 0. By Assumption A.2 and
tationarity of f (0), sup

⏐⏐⏐ 1 ∑
⌊rT⌋

[
f (0) − f (0)

]⏐⏐⏐ = o (1) for some δ > 0 (Xiao, 2009). Also, by Lemma
utτ ,t−1 0≤r≤1 T1−δ t=2 utτ ,t−1 uτ p
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.2 in the online appendix, NT = D−1
T
∑T

t=2Λt−1Λ
⊤

t−1D
−1
T = N+op(1), where N is positive definite random matrix defined

n Lemma A.2. By using the similar idea as in Xiao (2009), it is easy to show that

B1 =

T∑
t=2

[
futτ ,t−1(0) − fuτ (0)

]
D−1

T Λt−1Λ
⊤

t−1D
−1
T v +

T∑
t=2

fuτ (0)D
−1
T Λt−1Λ

⊤

t−1D
−1
T v

= fuτ (0)Nv + op(1).

To prove B2 = op(1), first,

∥B2∥ =


T∑

t=2

D−1
T Λt−1

1
2
f ′

utτ ,t−1(l
∗)v⊤D−1

T Λt−1Λ
⊤

t−1D
−1
T v


≤

1
√
T

1
2
sup
x∈R

|f ′

utτ ,t−1(x)|
T∑

t=2

√
T∥D−1

T Λt−1∥v
⊤D−1

T Λt−1Λ
⊤

t−1D
−1
T v.

y Assumption A.2, supx∈R|f ′

utτ ,t−1(x)| = Op(1), and by Lemma A.3 in the online appendix,∑T
t=2

√
T∥D−1

T Λt−1∥v
⊤D−1

T Λt−1Λ
⊤

t−1D
−1
T v = Op(1) for any ∥v∥ < M , 0 < M < ∞. Then, ∥B2∥ ≤

1
√
T
Op(1)Op(1) = op(1).

ombining the above results, we have
T∑

t=2

Et−1(ηt ) = fuτ (0)Nv + op(1). (A.3)

Furthermore, it is to verify the fact that
∑T

t=2 [ηt − Et−1(ηt )] = op(1). Note that

T∑
t=2

[ηt − Et−1(ηt )] =

⎛⎜⎝
∑T

t=2 [η1t − Et−1(η1t )]∑T
t=2 [η2t − Et−1(η2t )]∑T
t=2 [η3t − Et−1(η3t )]

⎞⎟⎠ ,
where η1t =

[
1(utτ ≤ v⊤D−1

T Λt−1) − 1(utτ ≤ 0)
]
/
√
T , η2t = x∗

t−1

[
1(utτ ≤ v⊤D−1

T Λt−1) − 1(utτ ≤ 0)
]
/T , and η3t =

1(utτ ≤ v⊤D−1
T Λt−1) − 1(utτ ≤ 0)

]
/T . To save space, we provide the detailed proof for η1t as an illustration to show

hat
∑T

t=2 [ηit − Et−1(ηit )] = op(1), i = 1, 2, and 3 and skip the rest for η2t and η3t . For some 2 ≤ t ≤ T satisfying
⊤D−1

T Λt−1 > 0, 1(utτ ≤ v⊤D−1
T Λt−1) − 1(utτ ≤ 0) = 1(0 < utτ ≤ v⊤D−1

T Λt−1) ∈ [0, 1], one can show that

T · Et−1(η21t ) ≤ Et−1
[
1(utτ ≤ v⊤D−1

T Λt−1) − 1(utτ ≤ 0)
]

= Futτ (v
⊤D−1

T Λt−1|Ft−1) − Futτ (0|Ft−1)

= futτ ,t−1(lt )
lt∈(0,v⊤D−1

T Λt−1)

v⊤D−1
T Λt−1 ≤ sup

x∈R
|futτ ,t−1(x)| · |v⊤D−1

T Λt−1|. (A.4)

he last step holds by Taylor expansion. Similarly, for any 2 ≤ t ≤ T satisfying v⊤D−1
T Λt−1 ≤ 0, 1(utτ ≤ 0) − 1(utτ ≤

⊤D−1
T Λt−1) = 1(v⊤D−1

T Λt−1 < utτ ≤ 0) ∈ [0, 1], it is easy to verify that

T · Et−1(η21t ) = Et−1
[
−1(utτ ≤ v⊤D−1

T Λt−1) + 1(utτ ≤ 0)
]2

≤ sup
x∈R

|futτ ,t−1(x)||v⊤D−1
T Λt−1|. (A.5)

hen, it follows by (A.4) and (A.5) that

Et−1(η21t ) ≤
1
T
sup
x∈R

|futτ ,t−1(x)| · |v⊤D−1
T Λt−1|.

herefore,
T∑

t=2

Et−1(η21t ) ≤
1
T

T∑
t=2

sup
x∈R

|futτ ,t−1(x)| · |v⊤D−1
T Λt−1| ≤ sup

x∈R
|futτ ,t−1(x)|

1
T

T∑
t=2

|v⊤D−1
T Λt−1|,

Note that supx∈R|f ′

utτ ,t−1(x)| = Op(1) by Assumption A.2, and 1
√
T

∑T
t=2 |v⊤D−1

T Λt−1| = Op(1), for any ∥v∥ < M ,
0 < M < ∞. Thus,

T∑
t=2

Et−1(η21t ) ≤ Op(1)Op(1/
√
T ) = op(1).

By the same token, one can obtain that
∑T

t=2 [Et−1(η1t )]2 = op(1) and the fact that [η1t − Et−1(η1t )] is MDS im-
lies that Var

(∑T [η − E (η )]
)

= o (1). Hence,
∑T [η − E (η )] = o (1). Similarly, one can show that
t=2 1t t−1 1t p t=2 1t t−1 1t p
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s

D

w

x

F

T

T
t=2 [η2t − Et−1(η2t )] = op(1) and

∑T
t=2 [η3t − Et−1(η3t )] = op(1). Therefore,

T∑
t=2

[ηt − Et−1(ηt )] = op(1). (A.6)

By (A.2), (A.3) and (A.6), for any ∥v∥ < M , 0 < M < ∞, VT (v) = AT − fuτ (0)Nv + op(1). Therefore, for 0 < M < ∞,
up∥v∥<M∥VT (v) + fuτ (0)Nv − AT∥ = op(1) holds. By Lemma A.2, it is straightforward to show that ∥AT∥ = Op(1).
Clearly, all conditions of Lemma A.1 are verified so that an application of Lemma A.1 leads to

DT (θ̂τ − θτ ) = fuτ (0)
−1N−1

T D−1
T

T∑
t=2

Λt−1ψτ (utτ ) + op(1),

which completes the proof of Theorem 1. □

Proof of Theorem 2. For simplicity, we only offer the proof for the NI1, I1 and LE cases, because the proof for the case I0
case is standard. By the Bahadur representation stated in Theorem 1, we have⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
T∑

t=2

x∗t−1
T3/2

T∑
t=2

zt−1
T3/2

T∑
t=2

x∗t−1
T3/2

T∑
t=2

(x∗t−1)
2

T2

T∑
t=2

zt−1x∗t−1
T2

T∑
t=2

zt−1
T3/2

T∑
t=2

x∗t−1zt−1

T2

T∑
t=2

z2t−1
T2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎝√
T (µ̂τ − µτ )
T (β̂τ − βτ )
T (γ̂τ − βτ )

⎞⎠ = fuτ (0)
−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T∑
t=2

ψτ (utτ )√
T

T∑
t=2

x∗t−1
√
T
ψτ (utτ )√

T

T∑
t=2

zt−1
√
T
ψτ (utτ )√

T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ op(1). (A.7)

efine S ≡

⎛⎝ 1 0 0
0 1 0

−
1

T3/2
∑T

t=2 zt−1 0 1

⎞⎠. Then, by pre-multiplying S on both sides of (A.7), one has,

⎛⎜⎜⎜⎜⎜⎜⎝
1

T∑
t=2

x∗t−1
T3/2

T∑
t=2

zt−1
T3/2

T∑
t=2

x∗t−1
T3/2

T∑
t=2

(x∗t−1)
2

T2

T∑
t=2

zt−1x∗t−1
T2

0 W1 W2

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎝√

T (µ̂τ − µτ )
T (β̂τ − βτ )
T (γ̂τ − βτ )

⎞⎠ = fuτ (0)
−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T∑
t=2

ψτ (utτ )√
T

T∑
t=2

x∗t−1ψτ (utτ )
T

T∑
t=2

z̄t−1ψτ (utτ )
T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ op(1),

here W1 =
∑T

t=2 x
∗

t−1zt−1/T 2
−
∑T

t=2 zt−1
∑T

t=2 x
∗

t−1/T
3, W2 =

∑T
t=2 z

2
t−1/T

2
−

(∑T
t=2 zt−1

)2
/T 3, and z̄t−1 = zt−1 −∑T

t=2 zt−1/T . From the third row in the above equation, we have

(W1 + W2)T (β̂wτ − βτ ) = fuτ (0)
−1

T∑
t=2

(
zt−1
√
T

−
1

T 3/2

T∑
t=2

zt−1

)
ψτ (utτ )

√
T

+ op(1). (A.8)

Recall the definition zt−1 = π̂1ζt−1 + xt−1/

√
1 + x2t−1, and for the NI1, I1 and LE cases, ζ⌊rT⌋/

√
T ⇒ B(r), π̂1

d
−→ π̃1 and

t−1/

√
1 + x2t−1 = Op(1). Thus, z⌊rT⌋/

√
T ⇒ π̃1B(r). By the continuous mapping theorem, one obtains that

(W1 + W2)T (β̂wτ − βτ )
d
−→ fuτ (0)

−1π̃1

∫ [
B(r) −

∫
B(r)dr

]
⊥

dBψτ (r).

rom (11), W1 + W2
d
−→ π̃1

∫
B̄(r)J̄cx (r)dr . Using the independence between ζt and utτ , we have

T (β̂wτ − βτ )
d
−→ fuτ (0)

−1 MN

[
0, τ (1 − τ )

∫
B̄(r)2dr

[
∫
B̄(r)J̄cx (r)dr]2

]
.

his ends the proof of the theorem. □
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T
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t
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a

roof of Theorem 3. We only offer the proof for NI1, I1 and LE case since the proof for the I0 case is standard. For NI1,
1 and LE case, z⌊rT⌋/

√
T ⇒ π̃1B(r). It follows that

W2 =

T∑
t=2

z2t−1/T
2
−

(
T∑

t=2

zt−1

)2

/T 3
=

T∑
t=2

(
zt−1 −

1
T

T∑
t=2

zt−1

)2

/T 2 d
−→

∫
B̄(r)2dr.

y the continuous mapping theorem and Slutsky Theorem,

tw = f̂uτ (0) [W2τ (1 − τ )]−1/2 (W1 + W2)T (β̂wτ − βτ )

d
−→ fuτ (0)

[
τ (1 − τ )

∫
B̄(r)2dr

]−1/2

fuτ (0)
−1 MN

(
0, τ (1 − τ )

∫
B̄(r)2dr

)
d
= N (0, 1) .

oreover, under the local alternative hypothesis Ha : βτ =
bτ
T , it follows that

f̂uτ (0) [W2τ (1 − τ )]−1/2 (W1 + W2)Tβτ

= f̂uτ (0) [W2τ (1 − τ )]−1/2 (W1 + W2)bτ
d
−→ bτ

fuτ (0)
√
τ (1 − τ )

π̃1
∫
B̄(r)Jcx (r)dr√

π̃2
1

∫
B̄(r)2dr

= bτ
fuτ (0)

√
τ (1 − τ )

π̃1
∫
B̄(r)Jcx (r)dr

|π̃1|

√∫
B̄(r)2dr

= bτ
fuτ (0)

√
τ (1 − τ )

sign(π̃1)
∫
B̄(r)Jcx (r)dr√∫

B̄(r)2dr

= bτ
fuτ (0)

√
τ (1 − τ )

sign(π̃1) sign(π̃1)
⏐⏐∫ B̄(r)Jcx (r)dr

⏐⏐√∫
B̄(r)2dr

= bτ
fuτ (0)

√
τ (1 − τ )

sign(π̃1)2
⏐⏐∫ B̄(r)Jcx (r)dr

⏐⏐√∫
B̄(r)2dr

= bτ |πc |/στ .

herefore,

tw = f̂uτ (0) [W2τ (1 − τ )]−1/2 (W1 + W2)T β̂wτ
= f̂uτ (0) [W2τ (1 − τ )]−1/2 (W1 + W2)T (β̂wτ − βτ ) + f̂uτ (0) [W2τ (1 − τ )]−1/2 (W1 + W2)Tβτ
d
−→ bτ |πc |/στ + B(1).

his concludes the proof the theorem. □

roof of Theorem 4. Similar to the proof of the Bahadur representation theorem for the univariate case, one can establish
he Bahadur representation for multivariate quantile regressions. To save a space, the details are omitted. Now,

D̃T (β̂
w

τ − βτ ) =fuτ (0)
−1

[
(D̃T )−1

T∑
t=2

(
Zt−1 −

1
T

T∑
t=2

Zt−1

)
X⊤

t−1(D̃T )−1

]−1

· (D̃T )−1
T∑

t=2

(
Zt−1 −

1
T

T∑
t=2

Zt−1

)
ψτ (utτ ) + op(1). (A.9)

ote that for all predictors xi,t , i = 1, 2,{
zi,⌊rT⌋/

√
T = π̂1,iζ1,t−1

[
1 + op(1)

]
, if xi,t is NI1, I1 and LE;

zi,t = xi,t/
√
1 + x2i,t + op(1), if xi,t is I0.

First, we consider Case 1, K1 = 0, i.e., all predictors are stationary. Then,

zt = (z1,t , z2,t )⊤ =

(
x1,t/

√
1 + x21,t , x2,t/

√
1 + x22,t

)⊤

+ op(1),

nd the weighting matrix D̃T = diag(
√
T ,

√
T ). By the central limit theorem, it is easy to show that

(D̃T )−1
T∑(

Zt−1 −
1
T

T∑
Zt−1

)
ψτ (utτ )

d
−→ N (0, τ (1 − τ )V2) , (A.10)
t=2 t=2
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w

a

T

T

A

M

I

here

V2 = var

[
1

√
T

T∑
t=2

(
Zt−1 −

1
T

T∑
t=2

Zt−1

)]
=

⎛⎜⎜⎜⎜⎝
Var

(
x1,t√
1+x21,t

)
Cov

(
x1,t√
1+x21,t

,
x2,t√
1+x22t

)

Cov

(
x1,t√
1+x21,t

,
x2,t√
1+x22t

)
Var

(
x2,t√
1+x22,t

)
⎞⎟⎟⎟⎟⎠ .

A Combination of (A.9) and (A.10), together with the continuous mapping theorem, leads to

D̃T (β̂
w

τ − βτ )
d
−→ fuτ (0)

−1V−1
1 N (0, τ (1 − τ )V2) ,

where

V1 = plim
T→∞

(D̃T )−1
T∑

t=2

(
Zt−1 −

1
T

T∑
t=2

Zt−1

)
X⊤

t−1(D̃T )−1
=

⎛⎜⎜⎜⎜⎝
E

(
x21,t√
1+x21,t

)
E

(
x1,t x2,t√
1+x21,t

)

E

(
x1,t x2,t√
1+x22,t

)
E

(
x22,t√
1+x22,t

)
⎞⎟⎟⎟⎟⎠ .

Next, for Case 2, K1 = 1, i.e., x1t is nonstationary and x2t is stationary. Then,

√
T
(
D̃T

)−1
Zt = (z1,t/

√
T , z2,t )⊤ =

(
π̂1,1ζ1,t−1/

√
T , x2,t−1/

√
1 + x22,t−1

)⊤

+ op(1),

nd the weighting matrix D̃T = diag(T ,
√
T ). Define Ḡ = diag

(√
1
T2
∑T

t=2 ζ̄
2
1,t−1, 1

)
and

ht−1 =
(
h1,t−1, h2,t−1

)⊤
= (D̃T )−1

⎡⎣ ζ̄1,t−1√
1
T2
∑T

t=2 ζ̄
2
1,t−1

,
x2,t−1√

1 + x22,t−1

−
1
T

T∑
t=2

x2,t−1√
1 + x22,t−1

⎤⎦⊤

.

hus,

Ḡ−1(D̃T )−1
T∑

t=2

(
Zt−1 −

1
T

T∑
t=2

Zt−1

)
ψτ (utτ ) =

T∑
t=2

ht−1ψτ (utτ ) + op(1). (A.11)

hus, by Lemma A.4 in the online appendix, the Lindeberg condition for ht−1ψτ (utτ ) holds. That is, for any ε̃ > 0,

T∑
t=2

E
[
∥ht−1ψτ (utτ )∥2 1 (∥ht−1ψτ (utτ )∥ > ε̃)

⏐⏐Ft−1
] p

−→ 0. (A.12)

gain, by Lemma A.5 in the online appendix, the asymptotic variance of
∑T

t=2 ht−1ψτ (utτ ) is given by

T∑
t=2

E
[
ht−1h⊤

t−1ψτ (utτ )2|Ft−1
]

=

T∑
t=2

E
[(

h2
1,t−1 h1,t−1h2,t−1

h1,t−1h2,t−1 h2
2,t−1

)
ψτ (utτ )2|Ft−1

]
p
−→ τ (1 − τ )

(
1 0
0 Var

(
x2,t−1/

√
1 + x2,t−1

)) . (A.13)

oreover, it is straightforward that [ht−1ψτ (utτ )]Tt=2 is martingale difference sequence. Therefore, it follows by (A.12) and
(A.13) and the Corollary 3.1 in Hall and Heyde (1980) that

T∑
t=2

ht−1ψτ (utτ )
d
−→ N

[
0, τ (1 − τ )

(
1 0
0 Var

(
x2,t−1/

√
1 + x2,t−1

))] . (A.14)

t is easy to see by (A.11) and (A.14) that

(D̃T )−1
T∑(

Zt−1 −
1
T

T∑
Zt−1

)
ψτ (utτ )

d
−→ MN (0, τ (1 − τ )V2) , (A.15)
t=2 t=2
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a

w

T
b

here V2 =

(
π̃2
1,1

∫
B̄1 (r)2 dr 0

0 E
(
x22,t/

(
1 + x22,t

))
− E

(
x2,t/

√
1 + x22,t

)2). Next, an application of (A.9) and (A.15) as well

as the continuous mapping theorem implies that

D̃T (β̂
w

τ − βτ )
d
−→ fuτ (0)

−1V−1
1 MN (0, τ (1 − τ )V2) ,

where

V1 = plim
T→∞

(D̃T )−1
T∑

t=2

(
Zt−1 −

1
T

T∑
t=2

Zt−1

)
X⊤

t−1(D̃T )−1

= plim
T→∞

(D̃T )−1
T∑

t=2

Zt−1

(
Xt−1 −

1
T

T∑
t=2

Xt−1

)⊤

(D̃T )−1

= plim
T→∞

1
T

T∑
t=2

⎛⎝π̂1,1
ζ1,t−1
√
T
,

x2,t−1√
1 + x22,t−1

⎞⎠⊤ (
x1,t−1
√
T

−
1
T

T∑
t=2

x1,t−1
√
T
, x2,t−1 −

1
T

T∑
t=2

x2,t−1

)

=

(
π̃1,1

∫
B̄1 (r) J

c1
x1 (r)dr 0

0 E
(
x22,t/

√
1 + x22,t

))
.

Finally, for Case 3, K1 = 2, i.e., all predictors are nonstationary, it is clear to see that
√
T
(
D̃T

)−1
Zt = (z1,t/

√
T , z2,t/

√
T )⊤ =

(
π̂1,1ζ1,t−1/

√
T , π̂1,2ζ2,t−1/

√
T
)⊤

+ op(1),

nd the weighting matrix D̃T = diag(T , T ). Similar to the univariate model, one can show easily that

(D̃T )−1
T∑

t=2

(
Zt−1 −

1
T

T∑
t=2

Zt−1

)
ψτ (utτ )

d
−→

∫ (
π̃1,1B̄1(r), π̃1,2B̄2(r)

)⊤
⊥
dBψτ (r)

= MN (0, τ (1 − τ )V2) , (A.16)

here

V2 = plim
T→∞

(D̃T )−1
T∑

t=2

(
Zt−1 −

1
T

T∑
t=2

Zt−1

)(
Zt−1 −

1
T

T∑
t=2

Zt−1

)⊤

(D̃T )−1

=

(
π̃2
1,1

∫
B̄1(r)2dr π̃1,1π̃1,2

∫
B̄1(r)B̄2(r)dr

π̃1,1π̃1,2
∫
B̄2(r)B̄1(r)dr π̃2

1,2

∫
B̄2(r)2dr

)
.

he asymptotic mixture normality holds by the independence between (ζ1,t , ζ2,t )⊤ and ψτ (utτ ). Again, it follows by com-
ining (A.9) and (A.16) together with the continuous mapping theorem that D̃T (β̂

w

τ − βτ )
d
−→ fuτ (0)

−1V−1
1 MN (0, τ (1 − τ )

V2), where

V1 = plim
T→∞

(D̃T )−1
T∑

t=2

(
Zt−1 −

1
T

T∑
t=2

Zt−1

)
X⊤

t−1(D̃T )−1

= plim
T→∞

(D̃T )−1
T∑

t=2

Zt−1

(
Xt−1 −

1
T

T∑
t=2

Xt−1

)⊤

(D̃T )−1

= plim
T→∞

1
T

T∑
t=2

(
π̃1,1

ζ1,t−1
√
T
, π̃1,2

ζ2,t−1
√
T

)⊤
(
x1,t−1
√
T

−
1
T

T∑
t=2

x1,t−1
√
T
,
x2,t−1
√
T

−
1
T

T∑
t=2

x2,t−1
√
T

)

=

(
π̃1,1

∫
B̄1(r)J

c1
x1 (r)dr π̃1,1

∫
B̄1(r)J

c2
x2 (r)dr

π̃1,2
∫
B̄2(r)J

c1
x1 (r)dr π̃1,2

∫
B̄2(r)J

c2
x2 (r)dr

)
.

This concludes the proof the theorem. □

Proof of Theorem 5. By the results in Theorem 4, the proof of Theorem 5 is straightforward and the details are omitted
here to save space. □
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ppendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2021.10.012.
he supplementary material with some necessary lemmas and their proofs to support the main theorems in the paper
an be found online at http://www.people.ku.edu/~z397c158/CCL-Supplement.pdf.
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