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ABSTRACT
This article investigates two test statistics for testing structural changes and thresholds in predictive
regression models. The generalized likelihood ratio (GLR) test is proposed for the stationary predictor and
the generalized F test is suggested for the persistent predictor. Under the null hypothesis of no structural
change and threshold, it is shown that the GLR test statistic converges to a function of a centered Gaussian
process, and the generalized F test statistic converges to a function of Brownian motions. A Bootstrap
method is proposed to obtain the critical values of test statistics. Simulation studies and a real example
are given to assess the performances of the proposed tests.
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1. Introduction

The question of whether asset returns are predictable or not
is one of the most studied and contentious issues in finan-
cial economics. Predictors commonly considered for returns
include various lagged financial variables, such as log dividend-
price ratio, log earnings-price ratio, log book-to-market ratio,
dividend yield, term spread, term structure of interest rates,
and default premia. Predictive regression (PR) is a conven-
tional method to check whether some financial variables have
the explanatory power on the stock return predictability. It is
extensively used in studies of mutual fund performance, condi-
tional capital asset pricing and optimal asset allocation; see, for
example, the survey article by Liao, Cai, and Chen (2018). The
classical PR model takes the following simple form

yt = ψ0 + ψ1xt−1 + ut , (1)

where ut is commonly assumed to be an independent and
identically distributed (iid) innovation process with mean 0 and
variance σ 2 > 0 and the predictor xt is modeled as

xt = ρxt−1 + vt , (2)

where vt is a zero-mean innovation process. For convenience,
we set x0 = 0. Inferences in PR models are complicated due
to the joint interaction of the highly persistent nature (|ρ| in
(2) can be either one or very close to one) of the commonly
used predictors with endogeneity problems arising from the
correlation of ut and vt . There is growing literature aiming to
developing valid and reliable inferences for such settings, see
Campbell and Yogo (2006), Jansson and Moreira (2006), Cai
and Wang (2014), Zhu, Cai, and Peng (2014a), and Breitung and
Demetrescu (2015), Yang et al. (2020, 2021), among others. For
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more recent developments in this area, the reader is referred to
the survey article by Liao, Cai, and Chen (2018).

It is well documented that predictability may be time-varying
and the impact of predictors may be evolving over time. In a
comprehensive study on the predictability of the equity pre-
mium, Welch and Goyal (2008) found significant instabilities in
predictability as highlighted by others. The sensitivity analysis
conducted in Kostakis, Magdalinos, and Stamatogiannis (2015)
also highlighted significant variations in test conclusions which
depend on whether one considers pre- or post-50s data. There
are two common modeling tools to deal with parameter insta-
bility in PR models: structural change and threshold model.

Testing for structural changes has always been an impor-
tant issue in econometrics because a myriad of political and
economic factors can cause the relationships among economic
variables to change over time. The great depression, oil price
shocks, technical progress, and abrupt policy and regulations
changes all are such examples. The earliest references go back to
Chow (1960) and Quandt (1960). The Chow’s test assumes that
the time of structural change is known a priori, while Quandt’s
test takes the largest Chow test statistic over all possible times of
the structural change. This type of test statistics needs a normal-
ization and has a Darling-Erdös-type limit, see Horváth (1993)
and Ling (2007). Another method is to restrict the change-point
interval (0, 1) to a closed subinterval, see Andrews (1993) and
Bai and Perron (1998). Recently, Pitarakis (2017) studied two
cumulative squared residuals-based tests and Georgiev et al.
(2018) considered the SupF and Cramér-von-Mises type statis-
tics for a change point in PR models.

As pointed by Gonzalo and Pitarakis (2012), the predictive
impact of a variable may alternate in strength across different
episodes (e.g., periods of rapid versus slow growth, periods of
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high versus low stock market valuation, periods of high versus
low consumer confidence). Ignoring such phenomena by pro-
ceeding within a linear framework may mask the forecasting
ability of a particular variable and the presence of interesting
and economically meaningful dynamics. To this end, Gonzalo
and Pitarakis (2012) investigated the threshold PR (TPR) model
as follows:

yt = ψ0 + ψ1xt−1 + (φ0 + φ1xt−1)I(qt−1 ≤ r) + ut , (3)

where qt is a threshold (stationary) variable and r is an unknown
threshold parameter, and they found that a threshold variable
provides a trigger to predictability. Besides the previous meth-
ods, some researchers believe that parameters should smoothly
change, such as Cai, Wang, and Wang (2015) which developed
a test against smooth parameter variation in the parameters of
the PR model.

The evidence for both structural changes and threshold
effects for the predictability of stock returns has been well
documented in the literature. For example, Paye and Tim-
mermann (2006) examined evidence of instability in models
of ex post predictable components in stock returns related to
structural changes in the coefficients of state variables such as
the lagged dividend yield, short interest rate, term spread, and
default premium. Also, Rapach and Wohar (2006) investigated
the structural stability of predictive regression models of U.S.
quarterly aggregate real stock returns over the postwar era and
found strong evidence of structural changes in S&P 500 returns.
Furthermore, Pettenuzzo and Timmermann (2011) found a
strong evidence of multiple breaks in return prediction models
based on the dividend yield or a short interest rate. Currently,
Smith and Timmermann (2021) developed a new approach
to modeling and predicting stock returns in the presence of
breaks that simultaneously affect a large cross-section of stocks
and found that out-of-sample return forecasts are significantly
more accurate than those from existing approaches. Per thresh-
old effect, McMillan (2001) found threshold effects between
stock market returns and interest rates. Recently, Gonzalo and
Pitarakis (2012, 2017), applied model (3) to the prediction of
stock returns with dividend yields and found the presence of
regimes in which predictability kicks in solely during bad eco-
nomic times, as a result, their analysis illustrated the fact that the
presence of regimes may make predictability appear as nonex-
istent when assessed within a linear model. Finally, Kiliç (2018)
revealed presence of asymmetric regime-dependence (threshold
effects) and variability in the strength and size of predictability
across asset-related (e.g., dividend/price ratio) versus other (e.g.,
default yield spread) predictors.

Existing test statistics are just for the change of parameters
or the form of the model (i.e., threshold). The co-existence of
threshold effects and structural changes has been documented
in the literature. The spread between long- and short-term
interest rates is often used to predict recessions. Based on the
evidence in the literature that the spread predicts negative out-
put growth but is not useful when there is a boom jointly with
the evidence that the spread could have lost its predictive power
and the fact that the volatility of output growth has decreased,
Galvão (2006) found that the timing of the 2001 U.S. recession
can be anticipated correctly using the spread as the leading indi-
cator when dealing with nonlinearity and a structural change

simultaneously. Okun’s law1 refers to the empirical observa-
tion that there is an inverse relationship between output and
unemployment gaps, or between cyclical unemployment and
cyclical output. Based on the Hodrick-Prescott2 and band-pass
filtered data for Canada, Huang and Chang (2005) found strong
support of structural change as well as threshold nonlinearity
when reevaluating the empirical validity of Okun’s law.

In practice, the structure of a model may be changed in terms
of both time horizon and states. For example, the threshold
AR-ARCH models were used to fit 11 nonoverlapping 2-year
period Hong Kong Hang Seng index from 1970 to 1991, but
Wong and Li (1997) found that 2 out of 11 periods should follow
the AR-ARCH models. When the form of models is changed,
the conventional likelihood ratio test for the standard change-
point problem is not locally most powerful any more. Therefore,
how to efficiently detect the change of the structural forms of
the time series models is of great interest. Indeed, Berkes et al.
(2011) and Zhu and Ling (2012) considered this kind of problem
in autoregressive models and provided several supporting real
examples.

In this article, we propose two test statistics for testing struc-
tural changes and thresholds in PR models. The generalized
likelihood ratio (GLR) test is proposed for the stationary predic-
tor and the generalized F (GF) test is suggested for the persistent
predictor. Under the null hypothesis of no structural change
and threshold, it is shown that the GLR test statistic converges
to a function of a centered Gaussian process, and the GF test
statistic converges to a function of Brownian motions. Finally, to
make the proposed tests useful in practice, a Bootstrap method
is proposed to obtain the critical values of test statistics.

This article is organized as follows. Section 2 presents the test
statistics and their limiting distributions. Section 3 discusses a
Bootstrap method to obtain the critical values of test statistics.
Simulation studies and a real example are given to assess the
finite sample performances of the proposed tests in Sections 4
and 5, respectively. Section 6 concludes the article. All detailed
proofs are given in Appendix.

2. Test Statistics and Main Results

To establish our setting, let {(yt , xt , qt), t = 1, . . . , n} be a
sequence of observations from the following model

yt =
⎧⎨⎩

ψ0 + ψ1xt−1 + ut , t = 1, . . . , k,
ψ0 + ψ1xt−1 + (φ0 + φ1xt−1)

I(qt−1 ≤ r) + ut , t = k + 1, . . . , n,
(4)

where xt is defined as in (2). We consider the null and alternative
hypotheses as follows:

H0 : k = n versus H1 : k = k∗ and φ �= 0, (5)

where 0 < k∗ < n and φ = (φ0, φ1)
�. The model in (4) is a PR

model under H0 and it changes to a TPR model after the time k∗

1In economics, Okun’s law is an empirically observed relationship between
unemployment and losses in a country’s production.

2The Hodrick-Prescott filter (also known as Hodrick-Prescott decomposition)
is a mathematical tool used in macroeconomics, especially in real business
cycle theory, to remove the cyclical component of a time series from raw
data.
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under H1. Under H0, no change has occurred and no threshold
effect exists, while under H1, a change has occurred at time k∗
(if k∗ > 0) and a threshold effect exists. When r = ∞, (5) is
for testing the parameter change in the PR model, which was
studied recently by Pitarakis (2017) and Georgiev et al. (2018).
When k = 0, (5) is for testing the threshold in the TPR model
investigated by Gonzalo and Pitarakis (2012, 2017). Therefore,
under H0, both k∗ and r are absent, which is the main difficulty
in our setting.

Let Y = (y1, . . . , yn)�, Xt = (1, xt−1)�, X =
(X1, . . . , Xn)�, u = (u1, . . . , un)�, ψ = (ψ0, ψ1)

�, and θ =
(ψ�, φ�)�. Denote Xkr = diag{I(qi−1 ≤ r, i > k), i =
1, . . . , n}X and X̃kr = (X, Xkr). Here, X and X̃kr are n × 2 and
n × 4, respectively. Under H0, clearly, the model in (4) becomes
to Y = Xψ + u, while under H1, it reduces to Y = X̃krθ + u.
Therefore, the least-squares based estimates of σ 2 under H0 and
H1 are given by

σ̂ 2
n = 1

n
[Y�Y − (Y�X)(X�X)−1(X�Y)] ≡ 1

n
RSS0 (6)

and

σ̂ 2
n (k, r) = 1

n
[Y�Y − (Y�X̃kr)(X̃�

krX̃kr)
−1(X̃�

krY)] ≡ 1
n

RSS1, (7)

respectively, where RSS0 and RSS1 are the residual sum of
squares (RSS) under H0 and H1, respectively.

2.1. Stationary Predictor

This section is devoted to the case when the predictor xt is
stationary. That is, |ρ| < 1, where ρ is given in (2). Let the
filtration Ft be the σ -field generated by {(ui, vi, qi) : 1 ≤ i ≤
t} and F(·) be the distribution function of qt . We impose the
following assumptions.

Assumption 1. The process {(Xtut , qt−1)} is a stationary α-
mixing process with geometric rate, and |ρ| < 1, where Xt =
(1, xt−1)

� and ρ is given in (2).

Assumption 2. xt is stationary and ergodic, and E(ut|Ft−1) = 0
and 0 < E[‖Xtut‖2+δ] < ∞ for some δ > 0, where ‖·‖ denotes
the Euclidean norm.

Assumption 3. F(·) is continuous and strictly increasing and the
corresponding density function is bounded away from zero and
∞ over each bounded set.

Assumption 1 implies that {yt} is a stationary α-mixing pro-
cess with geometric rate and Assumption 2 allows that ut is a
martingale difference sequence (MDS), and it permits correla-
tion between innovations ut and vt . The moment restriction in
Assumption 2 is more relaxed than the usual 4 + δ moment
restriction in the literature.

For fixed k and r, the GLR-type statistic for testing (5) is
given by

GLRn(k, r) = n
(
ln σ̂ 2

n − ln σ̂ 2
n (k, r)

)
, (8)

which is the exact likelihood ratio if the distribution of ut is
N(0, σ 2); see, for example, Berkes et al. (2011) and Zhu and Ling

(2012) for details. Note that GLRn(k, r) in (8) can be expressed as

GLRn(k, r) = n ln
(

RSS0 − RSS1
RSS1

+ 1
)

≈ n
(

RSS0 − RSS1
RSS1

)
,

and by Taylor expansion, it can be approximated by the F-type
test statistic, termed as generalized F-test (GF) in Cai and Tiwari
(2000) and Cai et al. (2019); see (10). Therefore, the GLR test is
asymptotically equivalent to the GF test. Since the exact values
of k and r are unknown under H0, it is natural to construct our
test by using the maxima of GLRn(k, r) on the ranges of k and r.
That is, our test statistic is defined as

GLRn = sup
0≤k≤k1

sup
r1≤r≤r2

GLRn(k, r),

where −∞ < r1 < r2 < ∞, k1 = 
nπ1� with 0 < π1 < 1, and

nπ1� denotes the integer part of nπ1.

Let I∗
t−1 = I(qt−1 ≤ r). Then, I∗

t−1 = I(F(qt−1) ≤
F(r)) ≡ I(Ut−1 ≤ λ), where λ ≡ F(r) and Ut is the uniformly
distributed random variable on [0, 1]. Define λ1 ≡ F(r1) and
λ2 ≡ F(r2). Then, λ ∈ [λ1, λ2]. Note that the range of π is
[0, π1]. The following theorem gives the limiting distribution of
GLRn.

Theorem 1. If Assumptions 1–3 hold, then under H0, it follows
that

GLRn
d−→ sup

0≤π≤π1
sup

λ1≤λ≤λ2

ξ�
πλM−1

πλξπλ as n → ∞,

where d−→ denotes convergence in distribution, Mπλ = �πλ −
�πλ�

−1�πλ, � = E(XtX�
t ), �πλ = (1 − π)E(I∗

t−1XtX�
t ), ξπλ

is a Gaussian process with mean zero and covariance kernel
cov(ξπλ, ξπ∗λ∗) = �max(π ,π∗),min(λ,λ∗) − �πλ�

−1�π∗λ∗ .

If xt and qt are independent, then �πλ = aπλ� with aπλ =
(1 − π)λ. Thus, Mπλ = aπλ(1 − aπλ)� and the covariance
kernel of ξπλ is [amax(π ,π∗),min(λ,λ∗) − aπλaπ∗λ∗ ]�.

Corollary 1. Under the assumption of Theorem 1, if xt and qt
are independent, then

GLRn
d−→ sup

0≤π≤π1
sup

λ1≤λ≤λ2

ξ∗�
πλ ξ∗

πλ

aπλ(1 − aπλ)

as n → ∞, where ξ∗
πλ is a Gaussian process with mean zero

and covariance kernel cov(ξ∗
πλ, ξ∗

π∗λ∗) = [amax(π ,π∗),min(λ,λ∗) −
aπλaπ∗λ∗ ]I2.

Remark 1. Since λ2 < 1, aπλ is always less than 1 such that
the range of π can be [0, π1]. If we allows λ = λ2 = 1(i.e., the
pure structural change case), we need to cut the range of π as
[π0, π1] with 0 < π0 < π1. In this case, the limiting distribution
is identical to the one in Theorem 3 (c) in Andrews (1993),
that is, a quadratic form in normalized Brownian bridges:
supπ0≤π≤π1 ξ∗�

π1 ξ∗
π1/[π(1 − π)], where ξ∗

π1 is a standard bivari-
ate Brownian bridge. If π = 0 (i.e., the pure threshold case),
then the limiting distribution is supλ1≤λ≤λ2 ξ∗�

0λ ξ∗
0λ/[λ(1 − λ)],

where ξ∗
0λ is a standard bivariate Brownian bridge, and this

distribution is identical to the one in Equation (4) in Gonzalo
and Pitarakis (2012), but the difference is that they considered a
Wald type test statistic when the persistent predictor ρ = ρn =
1 − c/n for some c > 0, which will be discussed in the next
section.
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2.2. Persistent Predictor

This section considers the test statistic for (5) when xt is per-
sistent, that is, unit root (or integrated or ρ = 1) and near-
integrated (or local-to-unity or ρ = ρn = 1 − c/n for some
c > 0) predictor. Let wt = (ut , vt)� and the filtration Ft =
σ(ws, qs|s ≤ t). We impose the following maintained conditions
on the model.

Assumption 4. E(wt|Ft−1) = 0, E(wtw�
t |Ft−1) > 0, sup

t
Eu4

t <

∞ and sup
t

Ev4
t < ∞.

Assumption 5. The threshold variable qt is strictly stationary,
ergodic, and strong mixing with mixing coefficients αm satisfy-
ing

∑∞
m=1 α

1/2−1/κ
m < ∞ for κ > 2.

Again, wt in Assumption 4 is a MDS, so that it can be used to
establish the weak convergence result of the empirical process∑
ns�

t=1 I∗
t−1ut as in Caner and Hansen (2001). It can be replaced

by the following two assumptions: (i) {ut ,Ft} is a stationary
and ergodic MDS with E(u2

t |Ft−1) = σ 2, E(ut) = 0, and
E(u4

t ) < ∞. (ii)
∑
ns�

t=1 wt/
√

n �⇒ (Bu(s), Bv(s))� as n → ∞,
where (Bu(s), Bv(s)) is a vector of Brownian motions with a
positive definite long-run covariance matrix and “�⇒” repre-
sents weak convergence. Similar assumptions were imposed by
Chen (2015) by studying the robust estimation and inference
of threshold models with integrated regressors. Assumption 5
is very conventional in the literature of threshold models. As
pointed out by Gonzalo and Pitarakis (2012), Assumption 4
implies that a functional central limit theorem holds for the
joint process wt , that is,

∑
ns�
t=1 wt/

√
n �⇒ (Bu(s), Bv(s))�, with

the long-run variance of the bivariate Brownian motion being
given by

∑∞
k=−∞ E(w0w�

k ). Similar to Theorem 1 of Caner and
Hansen (2001), we can show that⎛⎝ 1√

n


ns�∑
t=1

vt ,
1√
n


ns�∑
t=1

I∗
t−1ut

⎞⎠ �⇒ [Bv(s), σW(s, λ)] in D2[0, 1],

(9)
where W(s, λ) is a two-parameter standard Brownian motion
on (s, λ) ∈ [0, 1]2 and D[0, 1] denotes the Skorohod space. The
two-parameter Brownian motion is a special tool to derive the
limiting distribution in threshold models.

We define the generalized F-type statistic as follows:

GFn = sup
0≤k≤k1

sup
r1≤r≤r2

GFn(k, r), where

GFn(k, r) = n
(

RSS0 − RSS1
RSS1

)
, (10)

from which, we can see that this statistic is equivalent to
GLRn(k, r) in (8) in Section 2.1 if xt is stationary. Assume that
xt is persistent, that is,

xt = ρnxt−1 + vt , ρn = 1 − c/n, c ≥ 0. (11)

We also make use of the diffusion process Kc(s) =∫ s
0 ec(s−u)dBv(u) with Kc(s) such that dKc(s) = cKc(s) + dBv(s)

and Kc(0) = 0. Note that we can also write

Kc(s) = Bv(s) + c
∫ s

0
ec(s−u)Bv(u)du.

It is obvious that when c = 0, Kc(s) becomes to Bv(s) given in
(9). More properties about Kc(s) can be found in Section 3 of
Phillips (1988). Under our assumptions, it follows directly from
Lemma 3.1 in Phillips (1988) that x
ns�/

√
n �⇒ Kc(s). The

following theorem establishes the asymptotic behavior of GFn
when xt is a persistent process.

Theorem 2. If Assumptions 3–5 hold and xt is given by (11),
then under H0, we have

GFn
d−→ sup

0≤π≤π1
sup

λ1≤λ≤λ2

ζ�
πλL−1

πλζπλ

as n → ∞, where Lπλ = λ�π − λ2�π�−1
0 �π , ζπλ =∫ 1

π
Kc(s)dW(s, λ) − λ�π�−1

0
∫ 1

0 Kc(s)dW(s, 1), and �π =∫ 1
π

Kc(s)K�
c (s)ds, Kc(s) = (1, Kc(s))�.

The following corollary gives a special case of Theorem 2,
that is, c = 0 and xt is a unit root process.

Corollary 2. When c = 0, that is, xt is a unit root
process, then the limiting distribution in Theorem 2
reduces to sup

0≤π≤π1
sup

λ1≤λ≤λ2

η�
πλN−1

πληπλ, where Nπλ = λ�π −
λ2�π�−1

0 �π , ηπλ = ∫ 1
π

Bv(s)dW(s, λ) − λ�π�−1
0

∫ 1
0 Bv(s)

dW(s, 1), and �π = ∫ 1
π

Bv(s)B�
v (s)ds, Bv(s) = (1, Bv(s))�.

Remark 2. When π = 0, Theorem 2 includes Proposition 1 in
Gonzalo and Pitarakis (2012) as a special case because we have
the same null hypothesis (no threshold and structural change)
although the alternative hypothesis is different. Note that the
formulation of our model (4) is different from model (1) in
Gonzalo and Pitarakis (2012). Unlike the case with stationary
predictor, E(I∗

t−1XtX�
t ) cannot be simplified to λ� when xt

and qt are independent. A similar discussion about PR model
without structural change was given by Gonzalo and Pitarakis
(2012, p. 232).

3. Bootstrapped Critical Values

We have seen in the previous section that structural change or
nonstationarity affects the asymptotic distributions of the test
statistics in complicated ways. Under the null, the test statistic
has a limiting distribution given by a functional of a zero-mean
Gaussian process whose covariance function depends on the
data generating process (DGP). The asymptotic critical values
thus depend on the DGP and cannot be tabulated. In this
section, we use a Bootstrap method to obtain the critical value
for our tests, see Hansen (1996) and Zhu, Yu, and Li (2014b) in
different settings.

We first give some notations. Let zt(k, r) = (X�
t , I(qt ≤

r, t > k)X�
t )� and ut(θ , k, r) = yt − z�

t (k, r)θ . Then,

θn(k, r) ≡ arg minθ∈�

n∑
t=1

u2
t (θ , k, r) = (X̃�

krX̃kr)
−1X̃�

krY ,

where X̃kr = (X, Xkr) = (z1(k, r), . . . , zn(k, r))� and � is a
compact parameter space of θ . Assume that {εt}n

t=1 is a sequence
of iid N(0, 1) random variables. Let û = (û1ε1, . . . , ûnεn)�,
where ût = yt − z�

t (k, r)θ(k, r). By using {ût}, we will construct
our Bootstrap statistics in this section.
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3.1. Stationary Predictor

Denote T�
kr = n−1/2[X�

kr − X�
krX(X�X)−1X�]û. For each (k, r),

we define the Bootstrap GLR test statistic as follows:

ĜLRn(k, r)

= T��
kr

{
X�

krXkr

n
− X�

krX
n

(
X�X

n

)−1 X�Xkr
n

}−1

T�
kr/σ̂

2
n .

Note that T�
kr can also be written as(

−X�
krX
n

(
X�X

n

)−1
, I2

)
Ẑn(k, r) with Ẑn(k, r)

= 1√
n

X̃�
krû = 1√

n

n∑
t=1

zt(k, r)ûtεt .

Our Bootstrap GLR test statistic is defined as follows:

ĜLRn ≡ sup
0≤π≤π1

sup
λ1≤λ≤λ2

ĜLR∗
n(π , λ) ≡ sup

0≤k≤k1

sup
r1≤r≤r2

ĜLRn(k, r).

(12)
Before stating our result, we mention the concept “weak

convergence in probability,” which generalizes convergence in
distribution to allow for conditional (i.e., random) distribu-
tion functions. The asymptotic theory of ĜLRn is stated in
the following theorem, which says that the conditional limiting
distribution is the same as the null distribution as in Theorem 1.

Theorem 3. If Assumptions 1–3 hold, then under H0, it follows
that

ĜLRn|w∗
1, . . . , w∗

n
d−→ sup

0≤π≤π1
sup

λ1≤λ≤λ2

ξ�
πλM−1

πλξπλ

in probability as n → ∞, where w∗
t = (yt , xt , qt), t = 1, . . . , n.

From Theorem 3, conditional on the data sample
{w∗

1, . . . , w∗
n}, our Bootstrap procedure to obtain the critical

value at significance level α is as follows:

i. generate iid N(0, 1) samples {εt}n
t=1 and calculate ĜLRn via

(12);
ii. repeat step (i) J times to get {ĜLR(1)

n , . . . , ĜLR(J)
n };

iii. choose cJ
n,α as the α-th upper percentile of

{ĜLR(1)

n , . . . , ĜLR(J)
n }.

The critical value for the GLR test is cJ
n,α . The following corollary

guarantees that our Bootstrapped critical value cJ
n,α is asymp-

totically valid, which is called unconditional Bootstrap validity
and its proof is similar to that for Corollary 2 in Zhu, Yu, and Li
(2014b) and hence is omitted.

Corollary 3. If Assumptions 1–3 hold, under H0, we have
lim

n→∞ lim
J→∞ P(GLRn ≥ cJ

n,α) = α.

3.2. Persistent Predictor

It is well known that standard Bootstrap techniques fail in the
context of nonstationary AR models. One has to employ the
subsample Bootstrap method which faces the difficult issue of

choosing the subsample size. When testing for structural change
in conditional models, the asymptotic distributions of some
statistics are not invariant to structural change in the regressors.
To solve the size problem, Hansen (2000) proposed the fixed
regressor Bootstrap method to achieve the first-order asymptotic
distribution and it possess reasonable size properties in small
samples. 2018; 2019 established the validity of this Bootstrap
method for test statistics for the parameter instability in predic-
tive regression models.

Using a similar idea as that in Section 3.1, we construct the
Bootstrap GF test as follows:

ĜFn = sup
0≤k≤k1

sup
r1≤r≤r2

T��
kr R−1

kr T�
kr/σ̂

2
n (k, r),

where T�
kr = DnX�

krû − DnX�
krXDn(DnX�XDn)−1DnX�û

and Rkr is given in the proof of Theorem 2, that is,
Rkr = DnX�

krXkrDn − DnX�
krXDn(DnX�XDn)−1DnX�XkrDn

and Dn =diag{1/
√

n, 1/n}. To formulate a useful asymptotic
result, a weaker convergence mode is required, that is, the
terminology of weak convergence of random measures, which is
weaker than weak convergence in probability. It reduces to the
latter when the limit distribution is nonrandom. For the defi-
nition of this terminology and its application to Bootstrap, we
refer to the article by Cavaliere and Georgiev (2020). Following
Georgiev et al. (2019), we need to strengthen Assumption 4 as
follows:

Assumption 6. Assumption 4 holds together with the following
conditions: (a) wt is drawn from a doubly infinite strictly sta-
tionary and ergodic sequence {wt}∞t=−∞ which is a MDS with
respect to its own past. (b) {ut}∞t=−∞ is a MDS also with respect
to G1

t ∨ G2
t , where G1

t and G2
t are the σ -algebras generated by

{vt}∞t=−∞ and {ut}∞t=−∞, respectively, and G1
t ∨ G2

t denotes the
smallest σ -algebra containing both G1

t and G2
t .

The asymptotic theory of our Bootstrapped statistic ĜFn is
given as follows, which is different from Theorem 3.

Theorem 4. If Assumptions 3–6 hold and xt is given by (11),
then under H0, it follows that

ĜFn|w∗
1, . . . , w∗

n −→ sup
0≤π≤π1

sup
λ1≤λ≤λ2

ζ�
πλL−1

πλζπλ

∣∣∣Bv

as n → ∞, where w∗
t = (yt , xt , qt), t = 1, . . . , n and Bv is given

in (9).

Similar to the Bootstrap procedure in Section 3.1, we first
obtain the Bootstrap sample {Ŵ(1)

n , . . . , Ŵ(J)
n } and then use its

α-th upper percentile dJ
n,α as the approximating critical value

of the GF test statistic GFn. The following corollary guarantees
that our Bootstrapped critical value dJ

n,α is asymptotically valid,
which is called conditional Bootstrap validity and its proof is
similar to that for Corollary 1 in Georgiev et al. (2019) and hence
is omitted.

Corollary 4. If Assumptions 3–6 hold, under H0, then
lim

n→∞ lim
J→∞ P(GFn ≥ dJ

n,α|w∗
1, . . . , w∗

n) = α.
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4. Simulation Studies

In this section, we report the performances of GLRn and GFn
for both stationary and unit root cases in the finite sample,
respectively.

We first study the size of two tests at the nominal α = 1%
and 5% level, respectively. The data are generated from the null
model (4) with (ψ0, ψ1) = (0.1, 0.2) and k = n, where the
predictor xt is modeled as xt = ρxt−1 + νt with ρ = 0.2, 0.9,
and 1 and νt ∼ N(0, 1), and the threshold variable qt ∼ N(0, 1).
Based on the Bootstrapped critical values, we consider rejection
frequencies from 5000 replications with the sample sizes 200,
500, and 1000. The results are presented in Table 1. We find that
the sizes of the tests are acceptable no matter in stationary or
unit root cases. Additionally, both GLRn and GFn perform better
when the sample size is not less than 500.

Next, in the stationary cases with ρ = 0.2 and 0.9, we
explore the power of the GLRn test against different alternative
models, where φ0 and φ1 take values in {−2, −1, −0.6, 0.6, 1, 2}.
In the nonstationary cases with ρ = 1, the power of GFn
test against different alternative models is considered, where φ0
and φ1 take values in {−1, −0.6, −0.2, 0.2, 0.6, 1}. At the same
time, we consider whether our tests will be affected by the time
of change k∗ and the true threshold r in the stationary and

Table 1. Sizes (in percentage) of GLRn and GFn under the null model (4).

α = 0.01 α = 0.05

n 200 500 1000 200 500 1000

Stationary case (GLRn) ρ = 0.2 1.17 0.90 1.05 5.23 5.12 5.03
ρ = 0.9 0.82 1.08 1.04 4.81 4.92 5.01

Unit root case (GFn) ρ = 1 1.22 1.07 0.99 5.20 4.96 5.01

nonstationary cases, that is, (k∗, r) = (100, 0), (150, 0), and
(150, 0.2). The results of the stationary and unit root cases are
summarized in Tables 2 and 3, respectively. The first point we
should pay attention is that the farther (φ0, φ1) away from (0,
0), the stronger the power. But the power is seriously affected by
φ1. This is reasonable since the predictor xt plays an important
in the PR model. The second is that different k∗ and r do not
cause huge differences in power, which implies that our test is
applicable and credible when the time of change and threshold
are unknown.

It is interesting to study the local power properties of the
proposed tests, for example, how is power affected if there exists
a break and no thresholds or vice-versa. We consider two case:
a structural change with no thresholds, a threshold with no
structural changes, and other settings are given in Tables 4
and 5, respectively. If the data are generated by a structural
change model, then the proposed test has some powers when
φ0 = 1 or 2; while if the data are generated by a threshold
model, then the powers of the proposed test are small, so the
proposed test can detect breaks not thresholds well. A similar
conclusion was made be Carrasco (2002), who showed that
tests designed for a threshold alternative have power against
parameter instability originating from structural change mod-
els, but tests for structural change have no power if the data are
generated by a threshold model. In other words, testing only for
a structural change might be very misleading and might result in
adopting a linear model while the data are generated by another
nonlinear model, but the stability test based on a misspecified
threshold autoregressive model can detect parameter instability
originating from structural change models, which suggest that
the structural change model is easy to distinguish from the
threshold model.

Table 2. Powers (in percentage) against model (4) with (ψ0, ψ1) = (0.1, 0.2) and xt = 0.9xt−1 + νt .

α = 0.01 α = 0.05

k∗ = 100, r = 0 k∗ = 100, r = 0

φ1

φ0 −2.0 −1.0 −0.6 0.6 1.0 2.0
φ1

φ0 −2.0 −1.0 −0.6 0.6 1.0 2.0

−2.0 57.4 56.3 54.5 54.6 56.7 56.9 −2.0 80.5 79.0 78.1 77.6 79.4 79.9
−1.0 23.9 20.4 17.8 16.9 19.7 24.0 −1.0 46.0 38.6 36.9 37.9 38.8 45.7
−0.6 8.4 5.0 4.7 4.3 4.8 8.7 −0.6 17.1 14.3 13.7 13.5 14.1 16.9
0.6 8.6 4.9 4.5 4.2 4.6 8.3 0.6 17.0 14.1 13.8 13.7 14.2 17.2
1.0 23.6 20.1 16.9 17.6 20.2 24.0 1.0 46.2 38.7 37.3 37.2 38.9 46.5
2.0 57.2 56.2 54.0 54.3 56.7 57.0 2.0 80.2 79.1 78.0 77.8 79.3 80.0

k∗ = 150, r = 0 k∗ = 150, r = 0

φ1

φ0 −2.0 −1.0 −0.6 0.6 1.0 2.0
φ1

φ0 −2.0 −1.0 −0.6 0.6 1.0 2.0

−2.0 57.2 56.2 54.1 54.5 56.8 57.3 −2.0 80.5 78.7 78.4 77.9 79.2 80.4
−1.0 24.2 19.7 17.6 17.4 20.6 24.4 −1.0 45.9 38.8 37.2 38.0 39.2 46.3
−0.6 8.5 4.8 4.7 4.4 4.7 8.5 −0.6 17.2 14.2 13.6 13.8 13.9 17.3
0.6 8.3 4.8 4.5 4.3 4.5 8.7 0.6 17.1 14.0 13.5 13.6 14.3 17.2
1.0 24.0 20.3 16.7 17.9 20.4 23.8 1.0 46.2 38.9 37.4 37.4 39.3 46.0
2.0 57.0 56.4 54.3 54.4 56.7 57.1 2.0 80.3 79.0 78.3 77.4 79.1 79.8

k∗ = 150, r = 0.2 k∗ = 150, r = 0.2

φ1

φ0 −2.0 −1.0 −0.6 0.6 1.0 2.0
φ1

φ0 −2.0 −1.0 −0.6 0.6 1.0 2.0

−2.0 56.5 56.0 53.9 53.7 55.8 56.3 −2.0 79.2 77.8 77.2 76.9 78.0 78.9
−1.0 23.2 19.0 16.7 15.7 18.6 23.5 −1.0 44.8 37.4 34.8 35.7 37.8 44.9
−0.6 7.9 4.8 4.4 4.3 4.6 7.8 −0.6 16.0 13.3 12.4 12.5 13.8 16.2
0.6 8.0 4.5 4.1 4.0 4.4 7.9 0.6 16.2 13.4 12.7 12.8 13.7 16.1
1.0 23.0 19.1 15.8 15.6 19.4 23.1 1.0 45.3 37.2 35.4 35.6 37.4 45.2
2.0 56.3 56.1 54.0 53.7 56.0 56.4 2.0 79.3 77.6 77.0 76.8 78.2 79.0
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Table 3. Powers (in percentage) against model (4) with (ψ0, ψ1) = (0.1, 0.2) and xt = xt−1 + νt .

α = 0.01 α = 0.05

k∗ = 100, r = 0 k∗ = 100, r = 0

φ1

φ0 −1.0 −0.6 −0.2 0.2 0.6 1.0
φ1

φ0 −1.0 −0.6 −0.2 0.2 0.6 1.0

−1.0 85.8 84.9 84.7 84.1 84.6 86.2 −1.0 99.1 97.8 97.3 97.2 98.0 99.4
−0.6 53.7 51.9 50.4 50.1 51.6 54.0 −0.6 73.2 72.3 72.6 71.7 72.5 73.1
−0.2 4.9 3.9 2.5 2.7 3.8 4.7 −0.2 10.4 9.6 8.5 8.9 9.5 10.7
0.2 5.0 4.4 2.4 2.8 3.6 4.9 0.2 10.8 9.7 8.4 8.7 9.6 10.5
0.6 53.8 52.6 51.4 50.6 52.8 53.4 0.6 73.6 72.4 71.9 71.6 72.4 73.0
1.0 85.6 84.2 84.4 84.6 84.2 86.8 1.0 99.3 98.5 97.2 97.4 98.9 99.6

k∗ = 150, r = 0 k∗ = 150, r = 0

φ1

φ0 −1.0 −0.6 −0.2 0.2 0.6 1.0
φ1

φ0 −1.0 −0.6 −0.2 0.2 0.6 1.0

−1.0 85.7 85.0 84.5 84.3 84.8 86.9 −1.0 99.2 98.7 97.4 97.3 98.8 99.6
−0.6 53.0 52.6 51.9 51.2 52.0 54.6 −0.6 73.4 72.5 71.8 71.4 72.6 73.0
−0.2 5.0 3.8 2.8 2.6 4.2 4.9 −0.2 10.7 9.4 8.7 8.8 9.7 10.6
0.2 5.1 4.0 2.9 2.8 3.9 4.9 0.2 10.5 9.7 8.6 8.7 9.6 10.8
0.6 53.9 52.5 50.2 50.3 52.4 54.2 0.6 73.6 72.1 72.4 71.6 72.8 73.9
1.0 85.7 85.6 84.3 84.5 84.8 86.4 1.0 99.1 98.9 97.3 97.2 98.8 99.7

k∗ = 150, r = 0.2 k∗ = 150, r = 0.2

φ1

φ0 −1.0 −0.6 −0.2 0.2 0.6 1.0
φ1

φ0 −1.0 −0.6 −0.2 0.2 0.6 1.0

−1.0 83.7 82.6 81.1 80.9 82.4 83.6 −1.0 97.1 96.7 96.4 96.0 96.5 97.1
−0.6 51.3 50.5 49.4 48.7 50.6 51.4 −0.6 72.0 70.2 69.7 69.4 69.8 72.1
−0.2 4.1 3.0 2.0 1.9 2.9 3.8 −0.2 9.3 8.7 7.4 7.8 8.5 9.2
0.2 4.1 3.5 2.1 2.2 3.0 3.8 0.2 9.5 8.6 7.2 7.4 8.8 9.3
0.6 51.8 50.3 48.2 48.4 50.2 51.6 0.6 72.0 69.8 69.8 69.6 70.2 71.9
1.0 83.9 82.6 80.9 80.8 82.3 83.8 1.0 97.1 96.5 95.6 96.2 96.4 97.0

Table 4. Powers (in percentage) against model (2.1) with (ψ0, ψ1) = (0.1, 0.2) and xt = 0.9xt−1 + νt .

α = 0.01 α = 0.05

k∗ = 150, r = ∞ k∗ = 150, r = ∞
A structural change and no thresholds

φ1

φ0 0.6 1.0 2.0
φ1

φ0 0.6 1.0 2.0

0.6 3.8 11.7 37.3 0.6 10.6 29.0 61.9
1 2.4 13.4 38.2 1 9.4 30.5 62.4

k∗ = 0, r = 0 k∗ = 0, r = 0

A threshold and no structural changes
φ1

φ0 0.6 1.0 2.0
φ1

φ0 0.6 1.0 2.0

0.6 1.2 4.6 12.9 0.6 5.6 12.8 30.1
1.0 3.2 4.7 11.6 1.0 8.0 14.0 28.1

Table 5. Powers (in percentage) against model (2.1) with (ψ0, ψ1) = (0.1, 0.2) and xt = xt−1 + νt .

α = 0.01 α = 0.05

k∗ = 150, r = ∞ k∗ = 150, r = ∞
A structural change and no thresholds

φ1

φ0 0.6 1.0 2.0
φ1

φ0 0.6 1.0 2.0

0.6 5.0 22.1 35.7 0.6 25.6 47.2 79.9
1.0 7.0 16.6 40.7 1.0 24.6 42.2 73.4

k∗ = 0, r = 0 k∗ = 0, r = 0

A threshold and no structural changes
φ1

φ0 0.6 1.0 2.0
φ1

φ0 0.6 1.0 2.0

0.6 0.0 0.5 2.0 0.6 0.5 4.0 4.1
1.0 0.0 0.6 1.5 1.0 2.5 3.5 5.0

5. A Real Example

In this section, GLRn and GFn are applied to test whether com-
monly used financial variables have threshold effects and change
points with respect to excess stock market returns. We consider
the datasets analyzed in Welch and Goyal (2008) and Kostakis,
Magdalinos, and Stamatogiannis (2015), but the period of data

is 1927–2019, which is updated by Amit Goyal’s Web. Following
the setting in Welch and Goyal (2008), S&P 500 value-weighted
log excess returns are used as excess market returns. We con-
sider the following six variables as predictors: book-to-market
value ratio (b/m), T-bill rate (tbl), net equity expansion (ntis),
inflation rate (inf), long-term return (ltr), stock variance (svar),
which are quarterly. Each dataset {xt} contains 372 observations
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Table 6. GLRn and GFn tests for six predictive regressors.

p-value for GLRn or GFn r∗ k∗ Regime

unit root test∗ α = 0.01 α = 0.05 t ≤ k∗ t > k∗

qt−1 > r∗ qt−1 ≤ r∗

b/m 0.0281 1 1 0.7934 119 119 33 220
tbl 0.5293 1 1 0.0552 43 43 78 251
ntis < 0.01 0 1 0.0283 74 74 57 241
infl < 0.01 1 1 0.0147 74 74 67 231
ltr < 0.01 0 1 0.0429 74 74 75 223
svar < 0.01 0 1 0.0084 74 74 44 254

NOTE: Alternative hypothesis: stationary. “1” means reject the null hypothesis in (5).

and the candidates for the threshold are {x(t)}335
t=38, where {x(t)}

is an ascending rearrangement of {xt}.
To determine if we should use GLRn or GFn, we first perform

unit root tests for these six predictors and the corresponding p-
values are presented in Table 6. From Table 6, one can find that
only the T-bill rate is a unit root process at the significance level
0.05. Thus, we use GFn to test the null in (5) when xt is the T-bill
rate, and use GLRn to test for the null in (5) when xt is other five
predictors. The results are reported in Table 6, from which, one
can observe the following findings:

i. GFn rejects the null in (5) at the levels 0.01 and 0.05 when xt
is T-bill rate data. When the prediction variable xt is book-
to-market value ratio or stock variance, GLRn test rejects
the null in (5) at both levels 0.01 and 0.05. When xt is
inflation rate or long-term return or net equity expansion,
GLRn rejects the null at the level 0.05 but cannot reject
the null at level 0.01. These findings illustrate that there is
indeed a new regime jointly determined by a threshold and
a change point in each dataset, and our test can be used for
testing the change-point and threshold effect in PR model
simultaneously.

ii. There exist the same change-point estimates (k∗ = 74)
when the prediction variable xt is inflation rate, long-term
return, net equity expansion or stock variance. Looking back
at history, t = 75 corresponds to the second quarter of 1945,
the end of World War II, which is indeed an important point
for financial markets.

6. Conclusion and Discussion

In this article, two tests, termed as GLR and GF, are proposed
to test structural changes and thresholds in linear predictive
regression models. The former is for the case that regressor is
stationary and the latter is for the situation that regressor is
nonstationary such as unit root process or nearly integrated pro-
cess. The limiting distribution of the proposed test statistics are
derived under the null hypotheses. It turns out that the limiting
distributions are functionals of some Gaussian processes with
complicated covariance structures and depend heavily on the
characteristics of regress, in the sense that regressor is stationary
or nonstationary. Due to the complexity of the limiting distri-
butions of the proposed test statistics, a Bootstrap approach is
suggested for computing the critical values of the proposed tests.

Finally, we note several possible extensions of the present
study. First, based on the unified tests in Chen, Deo, and Yi
(2013), Li, Li, and Peng (2017), Liu et al. (2019), and Yang

et al. (2021), it may be of interest to have some unified testing
procedures free of the characteristics of regressor (regardless of
the persistence of regressor). Second, it might allow regressor to
have structural changes or thresholds too. Last, there exists the
model imbalance or model inconsistency issue in the linear pre-
dictive regression when stock returns are predicted with a pure
unit root predictor. To this end, Cai and Gao (2017) proposed
a nonlinear predictive model to compress the strong signal of
the unit root process involved, and Ren, Tu, and Yi (2019)
proposed a balanced predictive regression by augmenting it with
an additional lag of the predictors. Therefore, the results can
be generalized to these settings. We leave such extensions as
possible future research topics.

Appendix: Mathematical Proofs

Before giving the proof of Theorem 1, we first state the following
Lemma 1, which is Theorem 8 in Li, Ling, and Zhang (2016) and is
about the weak convergence of a general marked empirical process.

Let Ft be the σ -field. Assume Zt and ξt , t = 0, ±1, . . ., are Ft-
measurable p × 1 random vectors and univariate random variables,
respectively. We consider the general marked empirical process

Wn(x, τ) = 1√
n


nτ�∑
t=1

ZtI(ξt−d ≤ x), (x, τ) ∈ [−∞, ∞] × [0, 1],

where d is a positive integer.

Lemma 1. Let Kx = E(ZtZ�
t I(ξt−d ≤ x)). Assume (i) {(Zt , ξt−d)}

is an α-mixing process with geometric rate; (ii) E(Zt|Ft−1) = 0 and
0 < E(‖Zt‖2| ln ‖Zt‖|5) < ∞; (iii) Kx and Kx − Ky are positive
definite for any x, y ∈ R with x > y. Then, Wn(x, τ) ⇒ G(x, τ)

in D([−∞, ∞] × [0, 1]), where {G(x, τ) : (x, τ) ∈ [−∞, ∞] ×
[0, 1]} is a Gaussian process with mean zero and covariance kernel
cov(G(x, τ1), G(x, τ2)) = (τ1 ∧ τ2)Kx∧y; almost all paths of G(x, τ)

are continuous in x and τ .

The following lemma gives the relation between the moments
assumptions in Assumption 2 and Lemma 1.

Lemma 2. If E‖Xtut‖2+δ < ∞ for some δ > 0, then
E[‖Xtut‖2| ln ‖Xtut‖|5] < ∞

Proof of Lemma 2: In fact, if a random variable X > 0 with EXδ < ∞
for some δ, then for any m ≥ 1, we have

E[ln(1 + X)]m

= ε−mE[ln(1 + X)ε ]m ≤ O(1)E[ln(1 + Xε)]m ≤ EXmε < ∞,
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by taking ε smaller so that εm < min{δ, 1}. Thus,

E(‖Xtut‖2(ln ‖Xtut‖)5I{‖Xtut‖ ≥ 1}) = E(‖Xtut‖2[ln(1 + bt)]5)

≤ {E‖Xtut‖2+δ} 2
2+δ {E[ln(1 + bt)]

5(2+δ)
δ } δ

2+δ < ∞, (A.1)

where bt = {‖Xtut‖5 − 1}I{‖Xtut‖ ≥ 1}. Note that, when x ∈ (0, 1),
x2| ln x|5 ≤ x2(ln x)6 → 0 as x → 0. Thus, for any constant c > 0,
there exists a constant x0 > 0 such that x2| ln x|5 ≤ c as x ∈ (0, x0).
Thus,

E(‖Xtut‖2| ln ‖Xtut‖|5I{‖Xtut‖ < 1})
= E(‖Xtut‖2| ln ‖Xtut‖|5I{‖Xtut‖ ≤ x0})

+ E(‖Xtut‖2| ln ‖Xtut‖|5I{x0 < ‖Xtut‖ < 1})
≤ c + E(| ln ‖Xtut‖|5I{x0 < ‖Xtut‖ < 1}) ≤ c + | ln x−1

0 |5 < ∞.
(A.2)

By (A.1) and (A.2), the conclusion holds.
Proof of Theorem 1: Using a two-term Taylor expansion, we have

GLRn(k, r) = Sn(k, r)
σ̂ 2

n
+ S2

n(k, r)
2nξ2

n (k, r)
, (A.3)

where Sn(k, r) = n(σ̂ 2
n − σ̂ 2

n (k, r)) and ξ2
n (k, r) is between σ̂ 2

n and
σ̂ 2

n (k, r). By (6) and (7), we can show that (see, e.g., Example 7.1 in
Schott (2017))

Sn(k, r) = T�
kr

⎧⎨⎩X�
krXkr

n
− X�

krX
n

(
X�X

n

)−1
X�Xkr

n

⎫⎬⎭
−1

Tkr ,

(A.4)
where Tkr = n−1/2[X�

kr − X�
krX(X�X)−1X�]Y . Note that Tkr =

n−1/2[X�
kr − X�

krX(X�X)−1X�]u if H0 holds. Rescale the time axis
by setting k = 
nπ� with π ∈ [0, 1], and denote X∗

πλ = X
nπ�,r and
T∗

πλ = T
nπ�,r .
Using arguments similar to (iv) of Lemma 2.1 in Chan (1990), we

show that Mπλ is invertible for every (π , λ) ∈ [0, π1] × [λ1, λ2] as
follows. It is easy to know that �, �πλ and � − �πλ are positive
definite, then exit orthogonal matrix Q and diagonal matrix D =
diag(d1, d2) such that Q�Q� = diag(d∗

1 , d∗
2) and Q�πλQ� = D, and

0 < di < d∗
i , i = 1, 2. Hence, Mπλ = �πλ − �πλ�−1�πλ is also

positive definite.
By the ergodic theorem, we know that

1
n

X�X → �,
1
n

X∗�
πλ X → �πλ,

1
n

X∗�
πλ X∗

πλ → �πλ a.s.

as n → ∞. Then using results in Kaczor and Nowak (2001, p.85), we
know that

sup
0≤π≤π1

sup
λ1≤λ≤λ2

∣∣∣∣∣X∗�
πλ X
n

− �πλ

∣∣∣∣∣ = op(1), and

sup
0≤π≤π1

sup
λ1≤λ≤λ2

∣∣∣∣∣X∗�
πλ X∗

πλ

n
− �πλ

∣∣∣∣∣ = op(1).

Thus, we have

sup
0≤π≤π1

sup
λ1≤λ≤λ2

∣∣∣∣∣∣∣
⎧⎨⎩X∗�

πλ X∗
πλ

n
− X∗�

πλ X
n

(
X�X

n

)−1 X�X∗
πλ

n

⎫⎬⎭
−1

− M−1
πλ

∣∣∣∣∣∣∣ = op(1), (A.5)

and

sup
0≤π≤π1

sup
λ1≤λ≤λ2

∣∣∣∣T∗
πλ − (−�πλ�−1, I2)

1√
n
(X, X∗

πλ)�u
∣∣∣∣ =

sup
0≤π≤π1

sup
λ1≤λ≤λ2

∣∣∣∣T∗
πλ + 1√

n
�πλ�−1X�u − 1√

n
X∗�

πλ u
∣∣∣∣ = op(1),

where I2 is an identity matrix with order 2.
Let Kx = E(u2

t XtX�
t I(qt−1 ≤ x)), then it is obvious that Kx and

Kx − Ky are positive definite for any x, y with x > y. Now, under H0,
based on Assumptions 1–3 and Lemma 2, applying Lemma 1 with τ =
1, Zt = Xtut , ξt−d = qt−1, we know that {T∗

πλ} converges weakly to
{σξπλ} in D([0, 1]×[−∞, ∞]), where D(A) is the space of real-valued
functions on the set A, which are right continuous and have left-hand
limits and it is equipped with the Skorohod topology.

We use the method in Zhu and Ling (2012) to finish the proof. From
the convergence of T∗

πλ, we know that sup
0≤π≤π1

sup
λ1≤λ≤λ2

T∗
πλ = Op(1).

Combing it with (A.5), it follows that

sup
0≤k≤k1

sup
r1≤r≤r2

Sn(k, r) = sup
0≤π≤π1

sup
λ1≤λ≤λ2

T∗�
πλ M−1

πλT∗
πλ + op(1).

(A.6)
Similar to Theorem 2.3 in Chan (1990), define functional L :
x(·) → sup

0≤π≤π1
sup

λ1≤λ≤λ2
x(π , λ)�M−1

πλx(π , λ). Note that Mπλ

is a continuous matrix function over [0, π1] × [λ1, λ2], and
sup

0≤π≤π1
sup

λ1≤λ≤λ2
|x(π , λ)| < ∞, thus L is a continuous functional, so

L(T∗
πλ) converge weakly to L(σξπλ). Then, by (A.6),

sup
0≤k≤k1

sup
r1≤r≤r2

Sn(k, r) d−→ σ 2 sup
0≤π≤π1

sup
λ1≤λ≤λ2

ξ�
πλM−1

πλξπλ,

(A.7)
which shows that sup

0≤k≤k1

sup
r1≤r≤r2

Sn(k, r) = Op(1). Then we have

sup
0≤k≤k1

sup
r1≤r≤r2

|σ̂ 2
n (k, r) − σ̂ 2

n | = op(1). Note that ξ2
n (k, r) is

between σ̂ 2
n and σ̂ 2

n (k, r) and σ̂ 2
n converges to σ 2 a.s., so we have

sup
0≤k≤k1

sup
r1≤r≤r2

1
ξ2

n (k, r)
= Op(1), then if follows that

1
2n

sup
0≤k≤k1

sup
r1≤r≤r2

S2
n(k, r)

ξ2
n (k, r)

= op(1). (A.8)

This theorem follows from (A.3), (A.7), and (A.8). This completes
the proof. �

The following lemma is Lemma 1 in Gonzalo and Pitarakis (2012),
which is used for proving Theorem 2 and stated here for convenience.

Lemma 3. Recall I∗t = I(qt ≤ r) = I(Ut ≤ λ). Under Assumptions 4
and 5, when xt is persistent given by (11), we have

1
n

∑
I∗
t

p−→ λ,
1

n3/2

∑
xt ⇒

∫ 1

0
Kc(s)ds,

1
n2

∑
x2

t ⇒
∫ 1

0
K2

c (s)ds,

1
n3/2

∑
xtI∗

t ⇒ λ

∫ 1

0
Kc(s)ds,

1
n2

∑
x2

t I∗
t ⇒ λ

∫ 1

0
K2

c (s)ds,

1
n

∑
xt−1ut ⇒ σ

∫ 1

0
Kc(s)dW(s, 1),

1√
n


nπ�∑
t=1

utI∗
t ⇒ σW(π , λ),

1
n

∑
xt−1utI∗

t−1 ⇒ σ

∫ 1

0
Kc(s)dW(s, λ),

where Kc(s) and W(s, λ) are defined in Section 2.2.
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Proof of Theorem 2: As shown in (A.4), we have Sn(k, r) = n(σ̂ 2
n −

σ̂ 2
n (k, r)) = T�

krR−1
kr Tkr with

Tkr = DnX�
kru − DnX�

krXDn(DnX�XDn)−1DnX�u,

Rkr = DnX�
krXkrDn − DnX�

krXDn(DnX�XDn)−1DnX�XkrDn,

where Dn =diag{1/
√

n, 1/n}. Rescale the time axis by setting k = 
nπ�
with π ∈ [0, 1], and note that λ = F(r). Using Lemma 3, we have

DnX�
krXkrDn = DnX�

krXDn �⇒ λ

(
(1 − π)

∫ 1
π Kc(s)ds∫ 1

π Kc(s)ds
∫ 1
π K2

c (s)ds

)

≡ λ

∫ 1

π
Kc(s)K�

c (s)ds ≡ λ�π ,

where Kc(s) = (1, Kc(s))�. Similarly, we have

DnX�XDn �⇒
∫ 1

0
Kc(s)K�

c (s)ds = �0.

It now follows from the continuous mapping theorem that Rkr �⇒
Lπλ. Using Lemma 3, we have

DnX�
kru �⇒ σ

(
W(1 − π , λ)∫ 1

π Kc(s)dW(s, λ)

)
= σ

∫ 1

π
Kc(s)dW(s, λ),

and

DnX�u �⇒ σ

(
W(1, 1)∫ 1

0 Kc(s)dW(s, 1)

)
= σ

∫ 1

0
Kc(s)dW(s, 1).

Thus, we have Tkr �⇒ σζπλ. This establishes that Sn(k, r) �⇒
σ 2ζ�

πλL−1
πλζπλ. It follows from that

σ̂ 2
n = 1

n
u�u − 1

n
u�X(X�X)−1X�u

= 1
n

u�u − 1
n
{u�XDn(DnX�XDn)−1DnX�u}. (A.9)

Using a similar argument as for the weak convergence of Tkr , we know
that the second term in (A.9) converges to 0. Furthermore, since u�u/n
converges to σ 2 a.s., we know that σ̂ 2

n converges to σ 2 a.s. Note that
σ̂ 2

n (k, r) = σ̂ 2
n − Sn(k, r)/n and Sn(k, r) weakly converges to a limit.

We know that σ̂ 2
n (k, r) converges to σ 2 a.s. The theorem follows by

standard manipulations. �

Although the proof for Corollary 2 can be derived from Theorem 2,
here we give a detailed one for completeness.
Proof of Corollary 2: First, we focus on Sn(k, r) = n(σ̂ 2

n − σ̂ 2
n (k, r)). As

shown in (A.4), we have Sn(k, r) = T�
krR−1

kr Tkr with

Tkr = DnX�
krY − DnX�

krXDn(DnX�XDn)−1DnX�Y ,

Rkr = DnX�
krXkrDn − DnX�

krXDn(DnX�XDn)−1DnX�XkrDn,

where Dn =diag{1/
√

n, 1/n}. If H0 holds, we have

Tkr = DnX�
kru − DnX�

krXDn(DnX�XDn)−1DnX�u.

Rescale the time axis by setting k = 
nπ� with π ∈ [0, 1], and note
that λ = F(r). Following Assumption 4 and Theorem 3 in Caner and

Hansen (2001), we have

DnX�
krXkrDn = DnX�

krXDn

=

⎛⎜⎜⎜⎜⎝
1
n

n∑
t=k+1

I∗t−1
1

n3/2

n∑
t=k+1

I∗t−1xt−1

1
n3/2

n∑
t=k+1

I∗t−1xt−1
1

n2

n∑
t=k+1

I∗t−1x2
t−1

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
1
n

n∑
t=1

I∗t−1
1

n3/2

n∑
t=1

I∗t−1xt−1

1
n3/2

n∑
t=1

I∗t−1xt−1
1

n2

n∑
t=1

I∗t−1x2
t−1

⎞⎟⎟⎟⎟⎠

−

⎛⎜⎜⎜⎜⎜⎝
1
n

k∑
t=1

I∗t−1
1

n3/2

k∑
t=1

I∗t−1xt−1

1
n3/2

k∑
t=1

I∗t−1xt−1
1

n2

k∑
t=1

I∗t−1x2
t−1

⎞⎟⎟⎟⎟⎟⎠
�⇒ λ

(
1

∫ 1
0 Bv(s)ds∫ 1

0 Bv(s)ds
∫ 1

0 B2
v(s)ds

)

− λ

(
π

∫ π
0 Bv(s)ds∫ π

0 Bv(s)ds
∫ π

0 B2
v(s)ds

)
= λ

(
(1 − π)

∫ 1
π Bv(s)ds∫ 1

π Bv(s)ds
∫ 1
π B2

v(s)ds

)
≡ λ

∫ 1

π
Bv(s)B�

v (s)ds ≡ λ�π ,

where Bv(s) = (1, Bv(s))�. Theorem 3 in Caner and Hansen (2001)
directly implies that

DnX�XDn =

⎛⎜⎜⎜⎜⎝
1

1
n3/2

n∑
t=1

xt−1

1
n3/2

n∑
t=1

xt−1
1

n2

n∑
t=1

x2
t−1

⎞⎟⎟⎟⎟⎠
�⇒

(
1

∫ 1
0 Bv(s)ds∫ 1

0 Bv(s)ds
∫ 1

0 B2
v(s)ds

)

=
∫ 1

0
Bv(s)B�

v (s)ds = �0.

It now follows from the continuous mapping theorem that Rkr �⇒
Nπλ. Using Theorems 1 and 2 in Caner and Hansen (2001), we have

DnX�
kru =

⎛⎜⎜⎜⎜⎝
1√
n

n∑
t=k+1

I∗t−1ut

1
n

n∑
t=k+1

I∗t−1xt−1ut

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1√
n

n∑
t=1

I∗t−1ut

1
n

n∑
t=1

I∗t−1xt−1ut

⎞⎟⎟⎟⎟⎠

−

⎛⎜⎜⎜⎜⎜⎝
1√
n

k∑
t=1

I∗t−1ut

1
n

k∑
t=1

I∗t−1xt−1ut

⎞⎟⎟⎟⎟⎟⎠
�⇒ σ

(
W(1, λ)∫ 1

0 Bv(s)dW(s, λ)

)
0 − σ

(
W(π , λ)∫ π

0 Bv(s)dW(s, λ)

)
= σ

(
W(1 − π , λ)∫ 1

π Bv(s)dW(s, λ)

)
= σ

∫ 1

π
Bv(s)dW(s, λ),
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DnX�u =

⎛⎜⎜⎜⎜⎝
1√
n

n∑
t=1

ut

1
n

n∑
t=1

xt−1ut

⎞⎟⎟⎟⎟⎠ �⇒ σ

(
W(1, 1)∫ 1

0 Bv(s)dW(s, 1)

)

= σ

∫ 1

0
Bv(s)dW(s, 1).

Thus, we have Tkr �⇒ σηπλ. This establishes that Sn(k, r) �⇒
σ 2η�

πλN−1
πληπλ. It follows from that

σ̂ 2
n = 1

n
u�u − 1

n
u�X(X�X)−1X�u

= 1
n

u�u − 1
n
{u�XDn(DnX�XDn)−1DnX�u}. (A.10)

Using a similar argument as for the weak convergence of Tkr , we know
that the second term in (A.10) converges to 0. Furthermore, since
u�u/n to σ 2 a.s., we know that σ̂ 2

n converges to σ 2 a.s. Note that
σ̂ 2

n (k, r) = σ̂ 2
n − Sn(k, r)/n and Sn(k, r) weakly converges to a limit.

We know that σ̂ 2
n (k, r) converges to σ 2 a.s. The theorem follows by

standard manipulations. �

Proof of Theorem 3: We use the method as the proof of Theorem 2 in
Hansen (1996), also see Theorem 3 in Zhu, Yu, and Li (2014b). Rescale
the time axis and denote z∗

t (π , λ) = zt(k, r), θ∗
n (π , λ) = θn(k, r) and

Ẑ∗
n(π , λ) = 1√

n

n∑
t=1

z∗
t (π , λ)ûtεt . First, let W denote the set of samples

ω for which

lim
n→∞

1
n

n∑
t=1

sup
π ,λ

‖z∗
t (π , λ)‖u2

t < ∞ (A.11)

and

lim
n→∞ sup

π ,λ,π∗,λ∗

∥∥∥∥∥ 1
n

n∑
t=1

z∗
t (π , λ)z∗�

t (π∗, λ∗)u2
t

− σ 2E(z∗
t (π , λ)z∗�

t (π∗, λ∗))

∥∥∥∥∥ → 0 a.s. (A.12)

Since supπ ,λ ‖z∗
t (π , λ)‖ ≤ √

2‖Xt‖ and E(‖Xt‖u2
t ) < ∞ due to

Assumption 2, by the ergodic theorem we have

lim
n→∞

1
n

n∑
t=1

sup
π ,λ

‖z∗
t (π , λ)‖u2

t ≤ lim
n→∞

√
2

n

n∑
t=1

‖Xt‖u2
t < ∞ a.s,

that is, (A.11) holds. By Assumptions 1–3 and similar arguments for
Theorem 1, it is not hard to see that (A.12) holds. Thus, P(W) = 1.
Take any ω ∈ W. For the remainder of the proof, all operations are
conditionally on ω, and hence all of the randomness appears in the iid
N(0, 1) variables {εt}.

Second, define

Z∗
n(π , λ) = 1√

n

n∑
t=1

z∗
t (π , λ)utεt .

Then, using the same argument for Lemma 1, we have Z∗
n(π , λ) �⇒

σGπλ a.s. as n → ∞, where Gπλ is a Gaussian process with zero-mean
function and covariance kernel E(z∗

t (π , λ)z∗�
t (π∗, λ∗)). Note that

sup
π ,λ

‖Ẑ∗
n(π , λ) − Z∗

n(π , λ)‖

≤ sup
π ,λ

∥∥∥∥∥ 1
n

n∑
t=1

z∗
t (π , λ)z∗�

t (π , λ)εt

∥∥∥∥∥ sup
π ,λ

‖√n(θ∗
n (π , λ) − θ0)‖,

where θ0 is the true value of θ . Using the same argument for Z∗
n(π , λ),

we have
1
n

n∑
t=1

z∗
t (π , λ)z∗�

t (π , λ)εt �⇒ 0 a.s. as n → ∞.

Next, we show that sup
π ,λ

‖√n(θ∗
n (π , λ)−θ0)‖ = Op(1) using arguments

similar to Lemma A.6 in Zhu, Yu, and Li (2014b). Rescale the time
axis and denote u∗

t (θ , π , λ) = ut(θ , k, r), then u∗
t (θ , π , λ) = yt −

z∗�
t (π , λ)θ . For any (π , λ), by Taylor’s expansion we have

n∑
t=1

[u∗2
t (θ∗

n (π , λ), π , λ) − u∗2
t (θ0, π , λ)]

= −(θ∗
n (π , λ) − θ0)�

( n∑
t=1

2u∗
t (θ0, π , λ)z∗

t (π , λ)

)

+ (θ∗
n (π , λ) − θ0)�

( n∑
t=1

z∗
t (π , λ)z∗�

t (π , λ)

)
(θ∗

n (π , λ) − θ0)

+ op(|θ∗
n (π , λ) − θ0|2).

Define G∗
n(π , λ) = 1√

n

n∑
t=1

u∗
t (θ0, π , λ)z∗

t (π , λ). Similar to Z∗
n(π , λ),

we have that G∗
n(π , λ) = Op(1). Let λmin > 0 be the minimum

eigenvalue of E(z∗
t (π , λ)z∗�

t (π , λ)). Then, for any η > 0, there exists a
M(η) > 0 such that

P

(
sup
π ,λ

√
n|θ∗

n (π , λ) − θ0| > M(η)

)

≤ P
(√

n|θ∗
n (π , λ) − θ0| > M(η),

n∑
t=1

[u∗2
t (θ∗

n (π , λ), π , λ)

− u∗2
t (θ0, π , λ)] ≤ 0 for some (π , λ)

)
≤ P(

√
n|θ∗

n (π , λ) − θ0| > M(η), −2
√

n|θ∗
n (π , λ) − θ0||G∗

n(π , λ)|
+ n|θ∗

n (π , λ) − θ0|2[λmin + op(1)] + op(|θ∗
n (π , λ) − θ0|2)

≤ 0 for some (π , λ))

≤ P(M(η) <
√

n|θ∗
n (π , λ) − θ0| ≤ [λmin + op(1)]−1[2|G∗

n(π , λ)|
+ op(|θ∗

n (π , λ) − θ0|/√n)] for some (π , λ))

≤ P(|G∗
n(π , λ)| > M(η)[λmin + op(1)]/2 + op(1) for some (π , λ))

≤ η,

so sup
π ,λ

‖√n(θ∗
n (π , λ) − θ0)‖ = Op(1) holds. Then, it follows that

Ẑ∗
n(π , λ) − Z∗

n(π , λ) �⇒ 0 in probability as n → ∞. Thus, we have
Ẑ∗

n(π , λ) �⇒ σGπλ in probability as n → ∞.
Now, we consider the functional

L : z(·, ·) ∈ D([0, π1] × [λ1, λ2])
→ 1

σ 2 sup
0≤π≤π1

sup
λ1≤λ≤λ2

z(π , λ)�Kπλz(π , λ),

where Kπλ = (−�πλ�−1, I2)�M−1
πλ(−�πλ�−1, I2). Clearly, L(·) is

a continuous functional. By the continuous mapping theory, it follows
that L(Ẑ∗

n(π , λ)) �⇒ L(σGπλ) in probability as n → ∞. Using the
facts that σ̂ 2

n converges to σ 2 a.s. and(
− X�

krX
n

(
X�X

n

)−1
, I2

)� {
X�

krXkr

n
− X�

krX
n

(
X�X

n

)−1 X�Xkr
n

}−1

(
− X�

krX
n

(
X�X

n

)−1
, I2

)
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converges to Kπλ uniformly in (π , λ), we have that

sup
0≤π≤π1

sup
λ1≤λ≤λ2

ˆGLR∗
n(π , λ) = L(Ẑ∗

n(π , λ)) + op(1).

Based on above discussions, we have

ˆGLRn|w∗
1, . . . , w∗

n
d−→ sup

0≤π≤π1
sup

λ1≤λ≤λ2
G�

πλK−1
πλGπλ

in probability as n → ∞. Note that the covariance kernel of
(−�πλ�−1, I2)Gπλ is

(−�πλ�
−1, I2)E(z∗

t (π , λ)z∗�
t (π∗, λ∗))(−�π∗λ∗�−1, I2)

�

= (−�πλ�
−1, I2)

(
� �π∗λ∗

�πλ �max(π ,π∗),min(λ,λ∗)

) (
−�−1�π∗λ∗

I2

)
= �max(π ,π∗),min(λ,λ∗) − �πλ�

−1�π∗λ∗ .

Thus, the conclusion holds. �

The following lemma is a special case of Theorem 3 in Georgiev
et al. (2019), which is used for proving Theorem 4 and stated here for
convenience.

Lemma 4. Let ẽnt(t = 1, . . . , n) be scalar measurable functions of
yi, xi, qi(i = 1, . . . , n) and such that 1

n
∑[nr]

t=1 ẽ2
nt

P−→ ∫ r
0 m2(s)ds for

r ∈ [0, 1], where m(·) is a square-integrable real function on [0, 1].
Introduce εtb = ẽntεt(t = 1, . . . , n), and B∗(r) = ∫ r

0 m(s)dB∗
1(s),

where B∗
1 is a standard Brownian motion independent of (Bu, Bv).

Under Assumption 6, the following converge jointly as⎛⎝ 1√
n

[nr]∑
t=1

ut ,
1√
n

[nr]∑
t=1

vt ,
1
n

n∑
t=1

t−1∑
s=1

vsut

⎞⎠
w−→

(
Bu(r), Bv(r),

∫ 1

0
Bu(s)dBv(s)

) ∣∣∣Bv,

r ∈ [0, 1], in the sense of weak convergence of random measures on
D2 × R, and⎛⎝ 1√

n

[nr]∑
t=1

vt ,
1√
n

[nr]∑
t=1

εtb,
1
n

n∑
t=1

t−1∑
s=1

vsεtb

⎞⎠
w−→

(
Bv(r), B∗(r),

∫ 1

0
Bv(s)dB∗(s)

) ∣∣∣Bv

for r ∈ [0, 1], in the sense of weak convergence of random measures
on D2 × R, where Dk := Dk[0, 1] is the space of right continuous
with left limit functions from [0, 1] toRk, equipped with the Skorokhod
topology, and D := D1.

Proof of Theorem 4: First we focus on Ŝn(k, r) = T��
kr R−1

kr T�
kr . Rescale

the time axis by setting k = 
nπ� with π ∈ [0, 1], and note that λ =
F(r). Since n−3/2 ∑n

t=1 xt−1 �⇒ ∫ 1
0 B�

v (s)ds by Assumption 4 and
the continuous mapping theorem, we have

DnX�
krXkrDn = DnX�

krXDn �⇒ λ

∫ 1

π
Bv(s)B�

v (s)ds ≡ λ�π ,

where Bv(s) = (1, Bv(s))�. And similarly,

DnX�XDn �⇒
∫ 1

0
Bv(s)B�

v (s)ds = �0.

It now follows from the continuous mapping theorem again that
Rkr �⇒ Nπλ.

Next, it follows from Lemma 1 with ẽnt = ût that

⎛⎝ 1√
n

[nr]∑
t=1

vt ,
1√
n

[nr]∑
t=1

I∗t−1ût ,
1
n

n∑
t=1

t−1∑
s=1

I∗t−1xt−1ût

⎞⎠
w−→

(
Bv(r), σW(r, 1), σ

∫ 1

0
Bv(s)dW(s, 1)

) ∣∣∣Bv,

where n−1 ∑[nr]
t=1 I∗t−1û2

t �⇒ σ 2W2(r, 1) and var(σW(r, 1)) =
σ 2var(W(r, 1)) = σ 2E(W2(r, 1)) satisfying the framework of
Lemma 4. Then,

DnX�
krû =

⎛⎜⎜⎜⎜⎝
1√
n

n∑
t=k+1

I∗t−1ût

1
n

n∑
t=k+1

I∗t−1xt−1ût

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1√
n

n∑
t=1

I∗t−1ût

1
n

n∑
t=1

I∗t−1xt−1ût

⎞⎟⎟⎟⎟⎠

−

⎛⎜⎜⎜⎜⎜⎝
1√
n

k∑
t=1

I∗t−1ût

1
n

k∑
t=1

I∗t−1xt−1ût

⎞⎟⎟⎟⎟⎟⎠
�⇒ σ

(
W(1, λ)∫ 1

0 Bv(s)dW(s, λ)

) ∣∣∣∣Bv − σ

(
W(π , λ)∫ π

0 Bv(s)dW(s, λ)

) ∣∣∣∣Bv

= σ

(
W(1 − π , λ)∫ 1

π Bv(s)dW(s, λ)

) ∣∣∣∣Bv = σ

∫ 1

π
Bv(s)dW(s, λ)

∣∣∣Bv,

and

DnX�û =

⎛⎜⎜⎜⎜⎝
1√
n

n∑
t=1

ût

1
n

n∑
t=1

xt−1ût

⎞⎟⎟⎟⎟⎠
�⇒ σ

(
W(1, 1)∫ 1

0 Bv(s)dW(s, 1)

) ∣∣∣∣Bv = σ

∫ 1

0
Bv(s)dW(s, 1)

∣∣∣Bv.

Hence, T�
kr|w∗

1, . . . , w∗
n �⇒ σηπλ

∣∣Bv. Thus, Ŝn(k, r)|w∗
1, . . . , w∗

n �⇒
σ 2η�

πλN−1
πληπλ

∣∣Bv. Thus, (a) holds by standard manipulations. Finally,
using Theorem 2 and a similar argument, we can show that (b) holds.
�
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