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Abstract
Conditional copula models allow the dependence struc-
ture among variables to vary with covariates, and thus
can describe the evolution of the dependence structure
with those factors. This paper proposes a conditional
mixture copula which is a weighted average of sev-
eral individual conditional copulas. We allow both the
weights and copula parameters to vary with a covariate
so that the conditional mixture copula offers additional
flexibility and accuracy in describing the dependence
structure. We propose a two-step semi-parametric esti-
mation method and develop asymptotic properties of
the estimators. Moreover, we introduce model selec-
tion procedures to select the component copulas of the
conditional mixture copula model. Simulation results
suggest that the proposed procedures have a good per-
formance in estimating and selecting conditional mix-
ture copulas with different model specifications. The
proposed model is then applied to investigate how the
dependence structures among international equity mar-
kets evolve with the volatility in the exchange rate
markets.
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1 INTRODUCTION

The Sklar’s theorem by Sklar (1959) enables one to decompose a multivariate joint density into
a product of univariate marginal densities and a copula density, so that the latter contains all
information about the dependence structure. A copula model has several desirable properties
when applied to study dependence. For example, a copula model can catch various types of
dependence structures such as linear or nonlinear, symmetric, or asymmetric, tail or nontail
dependence. Moreover, unlike the conventional linear correlation, it is invariant to strictly mono-
tonic transformations. Patton (2012) and Fan and Patton (2014) provide excellent summaries of
the development in copula.

In many cases, researchers may need a conditional copula to better describe the effect of a
covariate on the degree of dependence. In a conditional copula model, the degree of dependence,
measured by the copula parameter, is no longer a constant but a function of a covariate. There-
fore, compared with copulas with constant parameters, a conditional copula provides another
channel to investigate the dependence structure among variables. In the literature, Patton (2006)
pioneers the conditional copula model by extending the Sklar’s theorem for conditional distribu-
tions and sets the copula parameter to be a parametric function of lagged terms. After that, there
is a sequence of studies concentrating on the dynamic in copula parameter (e.g., Acar et al., 2011;
Abegaz et al., 2012; Fermanian & Lopez, 2018; Giacomini et al., 2009; Garcia & Tsafack, 2011;
Hafner & Manner, 2012).

Another line of extension is to propose a mixture copula that is a linear combination of sev-
eral individual copulas. The key idea is that, by combining individual copulas with different
dependence patterns, a mixture copula can capture dependence structures which do not belong
to any individual copula, and thus exhibits greater flexibility to describe dependence structures.
Therefore, a mixture copula is more flexible than an individual copula and can be used to spec-
ify various dependence structures in data (e.g., Cai & Wang, 2014; Chollete et al., 2005; Hu, 2006;
Liu et al., 2019). However, even though a mixture copula exhibits great flexibility in describ-
ing more general dependence structures, the parameters in this model—weights and copula
parameters—are usually assumed to be constants, so researchers still face difficulty in describing
how the dependence evolves with certain covariates.

In this paper, we contribute to the literature by proposing an innovative semi-parametric
conditional mixture copula model which allows both the weights and copula parameters in the
mixture copula model to vary with a covariate in a nonparametric way. The superiority of a
conditional mixture copula is that it carries the advantages of both the conditional copula and
mixture copula discussed above, so empirical practitioners can flexibly describe the dependence
structure and effectively mitigate the potential model misspecification problem simultaneously.
For example, compared with an individual conditional copula, a conditional mixture copula
offers additional flexibility and accuracy by accommodating more copula families whose weights
and parameters are both varying with a covariate. To estimate the unknown parameters, we
maximize a local log-likelihood function by applying the local polynomial framework (Fan & Gij-
bels, 1996). We then establish the large sample properties of the nonparametric estimators under
some regularity conditions.

When investigating the choice of an appropriate conditional mixture copula model, we suggest
two copula model selection methods. The first one follows Huang et al. (2013) who propose an
information criterion approach to select the components in the nonparametric mixture of regres-
sion models. Specifically, for each candidate mixture model consisting of different combinations
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of individual copulas, we calculate its maximum log-likelihood and then construct an informa-
tion criterion such as BIC. To implement such an information criterion, we will need an extra
step to consider the model complexity, which is measured by the degree of freedom derived by
Fan et al. (2001). Then, the model with the lowest information criterion value will be selected
from the candidate models. The second model selection strategy is in spirit similar to the back-
ward elimination or forward addition procedures in the context of linear regression settings. It
involves a sequence of generalized likelihood ratio tests through which component copulas with
insignificant weights at the conventional significance levels are filtered out. Using either method,
we achieve the goal of selecting an appropriate conditional mixture copula from all candidates
to best describe the dependence structure, and then estimate the unknown parameters in the
selected model.

Our simulation results show that the proposed estimation method and model selection pro-
cedures exhibit a good performance when the true model is either an individual copula or a
mixture copula. On one hand, the estimation errors of copula parameters and weights asso-
ciated with each component copula decrease remarkably when the sample size increases. On
the other hand, the true component copulas are highly likely to be selected even when the
sample size is small, and the probability of inaccurate selection declines as the sample size
increases.

In an empirical illustration, we apply the proposed estimation and model selection procedures
to investigate the dependence structures and comovement patterns among the equity returns in
France, Germany, the United States, and the United Kingdom along the volatility in the exchange
rate markets of the four countries. The empirical results show that, of the Clayton, Gumbel
and Frank copulas, the Clayton and Frank copulas are always selected and the weight of the
Clayton copula increases when the exchange rates become extremely volatile, indicating a more
salient lower tail dependence among the equity markets in the four economies. When exam-
ining the magnitude of the dependence measured by Kendall’s 𝜏, we find that the lower tail
dependence becomes strengthened as volatility in the exchange rate markets increases. Both find-
ings are in line with Garcia and Tsafack (2011): when a sudden shock hits an economy with
an active currency market, transmission through the exchange rate market leads to a down-
side comovement of equity markets more likely than in a tranquil period of the exchange rate
market.

The rest of the paper is organized as follows. In Section 2, we propose the estimation method,
the asymptotic theory, and the model selection procedures for conditional mixture copula mod-
els. We conduct Monte Carlo simulations and discuss the results in Section 3. To highlight the
practical usefulness of the proposed methods, in Section 4 we provide an empirical illustra-
tion on how the dependence structures among international equity markets evolve with the
volatility in exchange rate markets. Section 5 draws the conclusion. In Data S1, Appendix A
provides a stationary bootstrap technique, Appendix B discusses some practical issues includ-
ing an EM algorithm, the selection of the bandwidth, and the confidence intervals, Appendix
C documents the proofs of the key results, and Appendix D presents additional simulation
results.

2 MODEL AND ESTIMATION

In this section, we present a semi-parametric conditional mixture copula model and the corre-
sponding estimation and selection procedures.
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2.1 A semi-parametric conditional mixture copula model

Let {Xt}T
t=1 be a series of p-dimensional vectors with Xt =

(
X1t, … ,Xpt

)⊺ and p being a finite pos-
itive integer, and let {Zt}T

t=1 be a 1-dimensional vector of the covariate. Denote F(xt|zt) and f (xt|zt)
as the joint distribution and the density function of Xt evaluated at xt ∈ p and conditional on
Zt = zt, Fs(xst|zt) and f s(xst|zt) as the marginal distribution and the density function of Xst evalu-
ated at xst ∈  and conditional on Zt = zt, respectively, where s= 1, … , p. Our target is to estimate
the conditional joint distribution F(xt|zt) based on a conditional mixture copula model. Theoreti-
cally, the conditional mixture copula model can be formulated as a linear combination of infinite
individual copulas:

C{u(zt);𝜔(zt), 𝜃(zt)} =
∞∑

k=1
𝜔k(zt)Ck{u(zt); 𝜃k(zt)},

where {Ck(⋅; ⋅)}∞k=1 is a set of candidate copulas with unknown parameters {𝜃k} and a
p-dimensional conditional marginal distribution u(zt)= (F1(x1t|zt), … , Fp(xpt|zt)). {Ck(⋅; ⋅)}∞k=1
can be regarded as known basis copula functions so that C{u(zt);𝜔(zt), 𝜃(zt)} can be regarded as
a series expansion based on the basis copula functions {Ck(⋅; ⋅)}∞k=1. In real applications, we use
finite number of d individual copulas to approximate the true model:

C{u(zt);𝜔(zt), 𝜃(zt)} =
d∑

k=1
𝜔k(zt)Ck{u(zt); 𝜃k(zt)}, (1)

where 𝜔(zt) = (𝜔1(zt), … , 𝜔d(zt))⊺, 𝜃(zt) = (𝜃1(zt), … , 𝜃d(zt))⊺, and {C1(⋅ ; ⋅), … , Cd(⋅ ; ⋅)} is a set
of candidate copulas. Let {𝜔k}d

k=1 denote the weight parameters satisfying 0 ≤ 𝜔k ≤ 1 and∑d
k=1 𝜔k = 1, and d is the number of candidate copulas. The copula parameters {𝜃k(zt)} and the

weight parameters {𝜔k(zt)} are set to be unknown functions of the covariate.
When using (1) to approximate the true model, we may encounter a misspecification problem

because some true individual copulas might not be included. To avoid this problem, we can first
consider a large set of candidate copulas and then employ a copula model selection procedure
discussed in Section 2.4 to filter out the “insignificant" component copulas. Furthermore, even if
some true individual copulas are excluded so that the model becomes misspecified, we can still
estimate and select the closest mixture copula model by the model selection procedure described
in Section 2.4. Therefore, the model in (1) is flexible enough to capture a true copula in real
applications.

For model identification, two conditional mixture copulas C{u(zt);𝜔(zt), 𝜃(zt)} =∑d
k=1 𝜔k(zt)Ck{u(zt); 𝜃k(zt)} and C∗{u(zt);𝜔∗(zt), 𝜃∗(zt)} =

∑d∗

k=1 𝜔
∗
k(zt)C∗

k{u(zt); 𝜃∗k (zt)} are said
to be identified, that is, C{u(zt);𝜔(zt), 𝜃(zt)} ≡ C∗{u(zt);𝜔∗(zt), 𝜃∗(zt)}, if and only if d= d* and
we can order the summations such that 𝜔(zt) = 𝜔∗(zt) and Ck{u(zt); 𝜃k(zt)} = C∗

k{u(zt); 𝜃∗k (zt)}
for all possible values of zt, u(zt) with k= 1, … , d. Without loss of generality, we follow Cai
and Wang (2014) and assume that the conditional mixture copula model under investigation is
identified.

Our model setting here has three superiorities. First, instead of imposing assumptions on
the functional forms of the unknown weights and copula parameters, we conduct a data-driven
method (which will be specified below) to estimate them. Second, compared with an individual
conditional copula, our conditional mixture copula model allows not only the copula parameters
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but also the weight parameters of the component copulas to vary with the covariate. Third, when
constructing the model in Equation (1), we impose no restrictions on the number of candidate
copulas included in the model so that a large copula candidate set can be taken to avoid the cop-
ula misspecification problem. We will filter out the “insignificant” component copulas through
the copula selection procedures discussed later in Section 2.4.

2.2 Estimation procedures

We propose to estimate model (1) in two steps. First, we estimate the unknown marginal distribu-
tions in the model by a rescaled empirical distribution function method. Second, after replacing
the unknown marginal distributions with the estimates obtained from the first step, we adopt
the local polynomial approximation (see Fan & Gijbels, 1996) in a local log-likelihood setting to
estimate the weights and copula parameters in model (1). Each step is described specifically as
follows:

Step One: We follow Chen and Fan (2006a) and use a rescaled empirical distribution function
to estimate the marginal distributions, that is,

F̂s(xst) =
1

T + 1

T∑
t=1

I{Xst ≤ xst} for s = 1, … , p.

Remark 1. Ideally, one should use conditional estimators to estimate the marginal distribu-
tions, that is, F̂s(xst|zt) ∶=

∑T
t=1 I{Xst ≤ xst}Kh(Zt − zt)∕

∑T
t=1 Kh(Zt − zt) (see Abegaz et al., 2012).

However, due to the fact that estimators for both the marginals and copula parameters
have the same convergence rate of

√
Th, this setting would make the asymptotic proper-

ties of copula parameters more complicated, especially with time series data. Because the
main focus of this paper is on the estimation of weights and copula parameters of a condi-
tional mixture copula model and selection of component copula families, we assume that the
marginal distributions do not depend on the covariate, which is similar to Acar et al. (2011).
Relaxing this assumption for marginal distributions would be an interesting topic for future
research.

Step Two: Given the estimators of the marginals ût =
(

F̂1(x1t), … , F̂p(xpt)
)⊺ =(

û1t, … ,ûpt
)⊺, we next estimate the unknown weight and copula parameters locally by a poly-

nomial. The copula parameter space is restricted for many widely used copula families. For
example, for a Gaussian copula, 𝜃 ∈ (−1, 1), and for a Gumbel Copula, 𝜃 ∈ [1,∞). Moreover,
the weight parameters are restricted to take values between 0 and 1. In contrast, the polyno-
mial framework assumes that any points belong to  can be taken. For this reason, we follow
Acar et al. (2011) and Abegaz et al. (2012) and use some known inverse transformation func-
tions to ensure that the weight and copula parameter space is correct. Specifically, we denote
g−1
𝜔,k ∶  → Ωk and g−1

𝜃,k ∶  → Θk as the inverse link functions respectively for the weight and
copula parameters of the kth component copula. Therefore, we have 𝜔k(z) = g−1

𝜔,k(wk(z)) ∈ Ωk

and 𝜃k(z) = g−1
𝜃,k(𝜗k(z)) ∈ Θk for k= 1, … , d. The choice of the link functions is not important

for theory development as long as they are monotone. For example, we can choose the inverse
link functions g−1(z) = exp(z) for the Clayton copula, g−1(z)= z for the Frank copula, and
g−1(z) = exp(z) + 1 for the Gumbel copula, so that the resulting copula parameter estimates are
guaranteed to be in the correct range.
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Then, for k= 1, … , d, assuming that wk and 𝜗k have the (q+ 1)th derivative at point z, we can
approximate wk(zt) and 𝜗k(zt) for data points zt in the neighborhood of z by the following Taylor
expansions:

wk(zt) ≈ wk(z) + w(1)
k (z)(zt − z) + … + w(q)

k (z)(zt − z)q∕q!

≡ 𝛼k0 + 𝛼k1(zt − z) + … + 𝛼kq(zt − z)q, (2)

𝜗k(zt) ≈ 𝜗k(z) + 𝜗
(1)
k (z)(zt − z) + … + 𝜗

(q)
k (z)(zt − z)q∕q!

≡ 𝛽k0 + 𝛽k1(zt − z) + … + 𝛽kq(zt − z)q, (3)

where 𝛼kr = 𝛼kr(z) = w(r)
k (z)∕r! and 𝛽kr = 𝛽kr(z) = 𝜗

(r)
k (z)∕r! for each r ∈ {0, … , q}. Then, the local

log-likelihood function can be approximated as follows:

1
T

T∑
t=1

ln

( d∑
k=1

g−1
𝜔,k

{
𝛼k0 + … + 𝛼kq(zt − z)q} ck

[
ût; g−1

𝜃,k
{
𝛽k0 + … + 𝛽kq(zt − z)q}]) × Kh(zt − z),

(4)

where ck(⋅) is the copula density function of the kth component copula in model (1), and K(⋅) is a
kernel function with Kh(⋅)=K(⋅ /h)/h and h being the bandwidth.

For the choice of q, we take q= 1 throughout this paper. That is, we apply the commonly used
local linear fitting (see Fan & Gijbels, 1996) in the paper. The local log-likelihood function then
reduces to

L(û, 𝛿) = 1
T

T∑
t=1

ln

( d∑
k=1

g−1
𝜔,k {𝛼k0 + 𝛼k1(zt − z)} ck

[
ût; g−1

𝜃,k {𝛽k0 + 𝛽k1(zt − z)}
])

× Kh(zt − z), (5)

where û =
(

û⊺
1, … ,û⊺

T
)⊺ and 𝛿 = (𝛼10, … , 𝛼d0, 𝛽10, … , 𝛽d0, 𝛼11, … , 𝛼d1, 𝛽11, … , 𝛽d1)⊺. Note that

a maximum likelihood estimator may not have a closed form, so an iterative algorithm should
be adopted to find the numerical solution (see Appendix B for details). Then we can obtain the
estimators of w(r)

k (z) and 𝜗
(r)
k (z) by defining ŵ(r)

k (z) = r!𝛼̂kr and 𝜗̂
(r)
k (z) = r!𝛽kr with r ∈ {0, 1}. Finally,

for any covariate z, the weight and copula parameters in model (1) can be respectively estimated by

𝜔̂k(z) = g−1
𝜔,k(ŵk(z)) = g−1

𝜔,k(𝛼̂k0), and

𝜃̂k(z) = g−1
𝜃,k(𝜗̂k(z)) = g−1

𝜃,k(𝛽k0),

for k= 1, … , d.

2.3 Large sample theory

To find the large sample properties of the nonparametric estimators, first, we rewrite the
kernel-based local log-likelihood function as

L(u, 𝛿) = 1
T

T∑
t=1

𝓁
(

ut, g−1(Z̃⊺
t 𝛿)

)
Kh(zt − z),
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where 𝓁(ut, g−1(Z̃⊺
t 𝛿)) = ln

(∑d
k=1 g−1

𝜔,k {𝛼k0 + 𝛼k1(zt − z)} ck[ut; g−1
𝜃,k {𝛽k0 + 𝛽k1(zt − z)}]

)
, g−1(⋅) =(

g−1
𝜔,1(⋅), … , g−1

𝜔,d(⋅), g−1
𝜃,1(⋅), … , g−1

𝜃,d(⋅)
)⊺

is a vector of link functions, and Z̃t = (I, (zt − z)I)⊺

with I being a 2d× 2d identity matrix. Next, we define a vector of coefficients 𝜉 = (𝜔⊺, 𝜃⊺)⊺ =(
g−1
𝜔,1(w1), … , g−1

𝜔,d(wd), g−1
𝜃,1(𝜗1), … , g−1

𝜃,d(𝜗d)
)⊺

and its corresponding estimator 𝜉. Similarly, we
define 𝜂 = (w⊺, 𝜗⊺)⊺ = (w1, … ,wd, 𝜗1, … , 𝜗d)⊺ and its corresponding estimator 𝜂̂. In addition, let
f (z) be the density function of z and 𝜖 be a small positive constant. Define the domain of z as
Φz = {z ∶ f (z) ≥ 𝜖; there exists a and b such that z∈ [a, b]}, that is, Φz is the set of bounded z
whose density is bounded away from 0.

Meanwhile, we introduce some regularity conditions as below:

C1. The vector of functions 𝜂 is continuous, bounded and has third order continuous derivatives
on Φz;

C2. There exists two constants a and b such that for any z∈ [a, b], the density function f (z) is
continuous and f (z) > 𝜖 for a small positive constant 𝜖 > 0;

C3. The copula log-likelihood function 𝓁(ut, 𝜉) has bounded third derivative with respect to
𝜉 and bounded second derivative with respect to ut. Further, 𝜕𝓁(ut, 𝜉)∕𝜕𝜉 and [g−1]′ are
Lipschitz continuous;

C4. 0 ≤ 𝜔k(z) ≤ 1 and
∑d

k=1 𝜔k(z) = 1 for all z ∈ Φz;
C5. The kernel function K(z) is twice continuously differentiable on the support (−1, 1), and its

second order derivative satisfies a Lipschitz condition. Let v0 = ∫ K2(z)dz, v2 = ∫ z2K2(z)dz
and 𝜇2 = ∫ z2K(z)dz;

C6. The bandwidth h satisfies that h→ 0 and Th→∞, as T →∞;
C7. Assume that {Xt,Zt}T

t=1 is a strictly stationary 𝛼-mixing sequence. Furthermore, assume
that there exists some constant c> 0 such that E||Xt||2(2+ c) <∞ where || ⋅ || represents the
Euclidean norm (L2-norm), E|Zt|2(2+ c) <∞, and the mixing coefficient 𝛼(m) satisfies 𝛼(m) =
O(m−c0) with c0 = (2+ c)(1+ c)/c.

Remark 2. Conditions in C1–C3 are for the derivation of the asymptotic properties. Conditions in
C4 are mild conditions for identification and conditions in C5 and C6 are commonly employed in
nonparametric estimation. Conditions in C7 are the common conditions with weakly dependent
data. Most financial models such as ARMA, ARCH, and GARCH models satisfy these conditions;
see Cai (2002).

Theorem 1. Let {Xt,Zt}T
t=1 be a strictly stationary and strong mixing sequence. Assume that

sup1≤t≤T|ûst − ust| = Op(1∕
√

T) for s= 1, … , p, h→ 0 and Th→∞ as T →∞. For a fixed point
z ∈ Φz, under conditions C1 - C7, we have

DT
(
𝛿 − 𝛿 − h2B(z)

) d
→ N

⎛⎜⎜⎝0,
⎛⎜⎜⎝

𝜈0
f (z)
𝜈2

𝜇2
2 f (z)

⎞⎟⎟⎠⊗ {Ψ(z) ◦ {[(g−1)′(𝜂(z))][(g−1)′(𝜂(z))]⊺}−1}
⎞⎟⎟⎠ ,

where DT = diag(
√

ThI,
√

ThhI) with I being an 2d× 2d identity matrix, B(z) =
(

1
2
𝜂′′(z)⊺𝜇2, 0⊺

)⊺
is

the bias term, ⊗ is the Kronecker product, and ◦ is the Hadamard product. Ψ(z) = Σ−1(z)Ω(z)Σ−1(z)
with Σ(z) = −E{𝓁′′(ut, g−1(𝜂(zt)))|zt = z} and Ω(z) = E{𝓁′(ut, g−1(𝜂(zt)))𝓁′(ut, g−1(𝜂(zt))

)⊺|zt = z}.

Remark 3. The condition sup1≤t≤T|ûst − ust| = Op(1∕
√

T) for s= 1, … , p can be obtained from
lemma 4.1 in Chen and Fan (2006a). From Theorem 1, as expected, the marginal estimator ût has
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little effect on 𝛿 in a large sample, due to the fact that ût is estimated at a faster convergence rate
than the nonparametric estimator 𝛿.

Corollary 1. It follows from Theorem 1 that, for a fixed point z ∈ Φz, as T →∞, we have

√
Th

(
𝜂̂(z) − 𝜂(z) − h2

2
𝜂′′(z)𝜇2

)
d
→ N

(
0, v0

f (z)
Ψ(z)◦{[(g−1)′(𝜂(z))][(g−1)′(𝜂(z))]⊺}−1

)
.

Corollary 2. By the continuity of the inverse link function g−1(⋅), for a fixed point z ∈ Φz, as T →∞,
we have √

Th
(
𝜉(z) − 𝜉(z) − h2B𝜉(z)

) d
→ N

(
0, v0

f (z)
Ψ(z)

)
,

where B𝜉(z) = 1
2
𝜇2

1
g′(𝜉(z))

◦ 𝜂′′(z).

2.4 Model selection for conditional mixture copula models

When a mixture copula model contains too many component copulas, there is a risk of overfitting
and efficiency loss. To filter out component copulas with small weights and little contribution to
the dependence structure, we consider two model selection procedures.

The first method is to apply the information criterion such as AIC or BIC. However, as argued
in Section 1, they cannot be directly used to the proposed conditional mixture copula model which
has varying coefficients. Huang et al. (2013) use the BIC-type selector to identify the number
of components in the nonparametric mixture of regression models and find it performs well in
numerical studies. This motivates us to select the components in the conditional mixture copula
model through the BIC-type selector.

Let |Φz| be the length of the support of z and K * K be the convolution of the kernel K. Define
ek = K(0) − 0.5 ∫ K2(t)dt and mk = ∫ (K(t) − 0.5K ∗ K(t))2dt. Following Huang et al. (2013), we
can calculate the value of the BIC by

−2L + log(T) × df ,

where

L = 1
T

T∑
t=1

ln

{ d∑
k=1

𝜔̂k(zt)ck
[
ût; 𝜃̂k(zt)

]}
,

and

df = (2d − 1)rkek|Φz|∕h with rk = ek∕mk.

Both ût and 𝜉 =
(
𝜔̂1, … , 𝜔̂d, 𝜃̂1, … , 𝜃̂d

)⊺ can be obtained by the estimation procedures dis-
cussed in Section 2.2. The degree of freedom, which is originally derived for the generalized
likelihood ratio test (GLRT) by Fan et al. (2001), can be understood as follows. Suppose that
we partition the range of z into |Φz|∕h intervals with equispaced length h. Hence, the effective
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number of each parameter is approximately proportional to |Φz|∕h. rkek is an adjusting factor
that accounts for overlapping intervals due to the local linear fitting. 2d− 1 is the number of
nonparametric estimators in which we minus one to account for the constraint on the weight
parameters.

An alternative method to decide which component copulas should be kept or filtered out
is to apply a sequence of hypothesis tests. In the classical linear regression models, a sequence
of F-tests with the backward elimination or forward addition procedures is used to select the
important regressors. We adopt a similar strategy and implement the following test:

H0 ∶ 𝜔i1(z) = … = 𝜔il(z) = 0 versus H1 ∶ not all 𝜔is(z) = 0,

for some {i1, … , il}⊂ {1, … , d}. The model selection is achieved by a sequence of testing proce-
dures above. To simplify the presentation, we only consider the following test:

H0 ∶ 𝜔1(z) = … = 𝜔J(z) = 0 versus H1 ∶ not all 𝜔j(z) = 0,

and other cases can be implemented in the same manner. Using the local linear fitting with a
kernel K and a bandwidth h, we can obtain 𝜉(zt) and 𝜉(zt) under the null hypothesis H0 and the
alternative hypothesis H1, respectively.

Define

L(H0) =
T∑

t=1
𝓁(ût, 𝜉(zt)) and L(H1) =

T∑
t=1

𝓁(ût, 𝜉(zt)),

where ût denotes the estimator of the marginal distribution. Fan et al. (2001) propose a GLRT
statistic that can be used in many nonparametric testing problems and present the Wilks type
of results for various models including the nonparametric regression, varying-coefficient mod-
els, generalized varying-coefficient models, varying-coefficient partially linear models, additive
models, and spectral density estimation. In the same spirit, we propose a GLRT statistic for the
conditional mixture copula models as

𝜆T = L(H1) − L(H0).

Remark 4. Acar et al. (2013) show the asymptotic property of the proposed GLRT statistic in the
i.i.d. scenario, that is,

rk𝜆T
d
→ 𝜒2

𝜇T
,

where rk = ek/mk and 𝜇T = Jrkek|Φz|∕h with J being the number of testing parameters. However,
to the best of our knowledge, the GLRT for copula models with time series data has not been
studied, and we leave it to future research.

Because the asymptotic properties of the test statistic require further research, we next propose
a bootstrap technology to obtain the p-value of the GLRT statistic as follows:

(i). Compute the estimators 𝜉(zt) and 𝜉(zt) by using the same bandwidth h under the null
hypothesis H0 and the alternative hypothesis H1, respectively. Then, we obtain the GLRT
statistic 𝜆T ;
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(ii). Generate a sample sequence {x∗
t , z∗t }

T
t=1 from the original data {Xt,Zt}T

t=1 using a stationary
bootstrap technique as described in Appendix A;

(iii). Obtain the marginal distributions estimates {û∗
t }T

t=1 by Step 1 described in Section 2.2;
(iv). Use the above bootstrap sample to construct the GLRT statistic 𝜆∗T ; and
(v). Repeat Steps (ii)–(iv) S times (say, S = 1000) and obtain S values of the statistic 𝜆∗T . The

p-value of the test is the relative frequency of the event {𝜆∗T > 𝜆T} in the S replications of
the bootstrap sampling.

3 NUMERICAL STUDIES

In this section, we investigate the finite-sample performance of our estimation and model selec-
tion procedures through a series of numerical studies. For simplicity, we assume the mixture
copula model consists of the Clayton, Gumbel, Frank, and Gaussian copulas. They are widely
used in empirical studies because they could describe different dependence structures. Specifi-
cally, the Clayton copula exhibits strong lower tail dependence, and can well capture cases such
as two markets are likely to crash simultaneously. The Gumbel copula shows strong upper tail
dependence and can be an appropriate model when two markets are likely to boom together. The
Gaussian copula and the Frank copula exhibit symmetric tail dependence.

The working mixture copula model is then formulated as

C(u1,u2;𝝎(z),𝜽(z)) = 𝜔Cl(z)CCl(u1,u2; 𝜃Cl(z)) + 𝜔Gu(z)CGu(u1,u2; 𝜃Gu(z))
+ 𝜔Fr(z)CFr(u1,u2; 𝜃Fr(z)) + 𝜔Ga(z)CGa(u1,u2; 𝜃Ga(z)),

where CCl(⋅), CGu(⋅), CFr(⋅), and CGa(⋅) denote the Clayton, Gumbel, Frank, and Gaussian copu-
las, respectively. Following Abegaz et al. (2012), we generate the covariate z from the truncated
normal distribution with mean 0 and variance 9, and then consider four different types of copula
parameter function 𝜃(z) with z∈ [−2, 2]:

• Model 1: 𝜃(z) = 10 − 1.5z2;
• Model 2: 𝜃(z) = 10 − 0.02z2 + 0.4z3;
• Model 3: 𝜃(z) = 3 + z + 2e−2z2 ;
• Model 4: 𝜃(z) = 5 + 2 sin(𝜋z) + 2e−16z2 .

For simplicity, we assume that the first marginal distribution u1 follows the normal distribu-
tion N(1, 0.5) and the second marginal distribution u2 follows the Student’s t-distribution with 4
degrees of freedom. For each sample we calculate the estimates 𝜃̂ at 101 equally spaced grid points
zi =−1.95+ 0.039i for i ∈ {0, 1, … , 100}. Similar to Acar et al. (2011) and Abegaz et al. (2012), we
use the local linear fitting with the regular normal kernel. Each simulation is repeated M = 1000
times with the sample size T ∈ {200, 500, 1000}.

For comparing purposes, besides the proposed conditional mixture copula method (CM), we
additionally consider another popular estimation method for mixture copula. Cai & Wang (2014,
CW hereafter) propose a copula selection approach via penalized likelihood plus a shrinkage
operator, and establish the asymptotic properties of the proposed penalized likelihood estima-
tor. Similar to CM, this method can also select appropriate copula function and estimate the
related parameters simultaneously. The main difference is that CW is only applicable to a mixture
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copula model with constant weights and copula parameters. In this section, we mainly com-
pare the performance of CM with CW when data are indeed generated from conditional mixture
copulas. For completeness, we will also investigate CM’s performance when the true model is a
constant mixture copula.

We begin with a simple scenario that data are generated from an individual copula. That is, the
true model is an individual copula selected from the four candidates. For each individual copula
used to generate data, we assume the function of the parameter follows one of Models 1–4 listed
above. Then, we fit the four-component mixture model to the generated data and investigate the
performance of the proposed CM method. In Table 1, we conduct both CM and CW, and report
the percentage that each copula is correctly (incorrectly) selected and the mean squared errors
(MSEs) of the copula parameter estimates over the 101 grid points, which is defined as

MSE(𝜃̂) = 1
M

1
101

M∑
j=1

101∑
i=1

(
𝜃̂j(zi) − 𝜃(zi)

)2
.

Table 1 shows that the MSEs of copula parameter estimates by both methods decrease for all
four functional forms of 𝜃(z) as the sample size T increases from 200 to 1000. Here, because
the Gaussian copula’s parameter 𝜃 is ranged between −1 and 1, for Gaussian, we recalibrate the
four models by dividing 10 for Model 1 and 15 for Models 2–4. As anticipated, MSEs by CM are
remarkably lower than those by CW, indicating larger estimation losses produced by CW when
parameters in a copula model are indeed conditioning on a covariate. Besides the estimation accu-
racy measured by MSE, considering that the parameter functions are assumed to follow Models
1–4 which exhibit different patterns, we additionally examine the quality of the CM estimators
by checking their estimated paths along the covariate z. Specifically, we plot the estimated paths
of Clayton, Gumbel, Frank, and Gaussian with the sample size T = 1000 in Figure 1. The black
solid curves in the four panels of each row denote the true copula parameter paths 𝜃(z), which,
respectively, follow Models 1–4, and the other two curves, respectively, denote the means (red
dotted) and medians (blue dashed) of the copula parameter estimates by CM at the 101 grid
points from 1000 simulations. The two black dotted-dashed curves connect the 5% and 95% per-
centiles of the copula parameter estimates at the 101 grid points. As a comparison, the mean of
the estimated copula parameters by CW from 1000 simulations is also plotted and denoted by
the brown solid line. For the four candidate copulas, Figure 1 shows that both the mean and
median curves by CM are close to the true paths in all four models. Even in Model 4 which con-
tains the complicated sinus function, the performance of the CM estimator is still quite good.
On the other hand, the copula parameter estimated by CW is a constant and therefore cannot
detect the dynamics in copula parameters conditioning on the covariate. We also examine the
results of model selection through the information criterion method and the CW method. In
Table 1, values without parentheses represent rates of correctly selected copulas (accurate rates),
while values with parentheses indicate rates that copulas are incorrectly selected (inaccurate
rates). One can easily observe that the proposed CM method performs reasonably well in selecting
the correct individual copula from the mixture model because the true copula is always chosen
with 100% chance, and the rates of incorrect selection shrink when the sample size T increases.
CW also exhibits good performance in selecting the true candidate copula. In sum, in terms of
parameter estimation accuracy exhibited by MSE and model selection accuracy documented by
accurate (inaccurate) rate, the proposed CM method displays excellent performance when the
true model is an individual copula. Although CW also exhibits high accuracy in copula selection,
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it fails to capture the dynamic copula parameters in a conditional copula setup. For completeness,
we additionally check the results by the proposed hypothesis test procedure with the 0.05 signif-
icance level and find similar results. The detailed simulation results are displayed in Table D4 of
Appendix D.

Next, we investigate the performance of CM and CW when the true model is a mixture of two
copulas. In other words, for the four-component mixture copula, we assume two candidate cop-
ulas’ weights uniformly equal to zero while the other two copulas’ weights, respectively, equal
to (1+ z)2/29+ 0.3 and 1 −

(
(1 + z)2∕29 + 0.3

)
. For the two component copulas with nonzero

weights, we further assume their parameter functions follow different patterns determined by
the four models discussed above. Tables 2 and 3 document the MSEs of copula parameter esti-
mates and the accurate and inaccurate (in parentheses) rates of copula selection by CM and
CW, respectively. For example, Panel 1 of Tables 2 and 3 concerns the case that the true mix-
ture model is constructed by Clayton and Gumbel. Comparing results in the two tables, one
can observe that the MSEs of the two copulas’ parameter estimates by CM decline substan-
tially when the sample size T increases from 200 to 1000, and the magnitudes are remarkably
lower than those by CW. In addition, Table 2 indicates that the accurate and inaccurate rates
by CM display promising improvement as the sample size increases: in Panel 1, the rates that
the Frank and Gaussian copulas are incorrectly selected decrease while the accurate rate for
Gumbel increases to about 99% when T = 1000. There is a 100% probability that the Clayton
copula is correctly selected. CW displays similar patterns in copula selection, as can been seen
in Table 3. We have similar findings from the other five combinations in both tables. As in
the prior individual copula scenario, in Figure 2 we plot the paths of copula parameter esti-
mates, and compare the estimated paths by CM and CW with the true paths. To save space,
here we only demonstrate the six combinations of parameter functions in Panel 2 of Tables 2
and 3 when T = 1000. In Figure 2, the two plots in each column represent a combination of two
copulas with different parameter functions. For example, in Figure 2(a), the upper plot demon-
strates the true path (Model 1), the mean and median of the estimated paths by CM, and the
mean of the estimated path by CW for Clayton, while the lower plot contains the corresponding
results for Frank. In general, Figure 2 shows that the copula parameters of the Clayton–Frank
mixture can be well estimated by the proposed CM method in all six combinations, while the
estimates by CW are constants and unable to detect how copula parameters varies with the
covariate.

In addition to copula parameters, it is also worth examining the performance of the proposed
CM method in estimating weights of each candidate copula. Using the same four-component
mixture model, without loss of generality, we assume the weight of the first copula in the true mix-
ture model follows (1+ z)2/29+ 0.3, and that of the second copula follows 1 −

(
(1 + z)2∕29 + 0.3

)
.

We display the MSEs of the weight estimates by both CM and CW for all six mixture mod-
els in Table 4. As can be seen therein, the MSEs of the weight estimates by both methods
decrease in all cases when sample size T increases, and CM uniformly exhibits lower MSEs
than CW. Similar to copula parameter estimates, we also draw the true paths, the mean and
median of the estimated paths by CM, and the mean of the estimated paths by CW for weight
parameters in Figure 3. It corresponds to the weights for the Clayton–Frank combination in
Panel 2 of Table 4 when T = 1000. Figure 3 shows that both the mean and median paths
of the weight estimates by CM track the true paths closely, implying a good performance
of the proposed CM method in estimating the weights of the Clayton–Frank combination.
Weight estimates by CW are constants and thus cannot detect how weights vary with the
covariate.
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F I G U R E 1 Estimated paths for copula parameters (𝜽) when the true model is an individual copula.
Notes. Panels (a)–(d) denote the estimates of the Clayton parameters which respectively follow Models 1–4.
Panels (e)–(h) denote the estimates of the Gumbel parameters which respectively follow Models 1–4. Panels
(i)–(l) denote the estimates of the Frank parameters which respectively follow Models 1–4. Panels (m)–(p) denote
the estimates of the Gaussian parameters which respectively follow Models 1-4. Model 1: 𝜃(z) = 10 − 1.5z2. Model
2: 𝜃(z) = 10 − 0.02z2 + 0.4z3. Model 3: 𝜃(z) = 3 + z + 2e−2z2 . Model 4: 𝜃(z) = 5 + 2 sin(𝜋z) + 2e−16z2 . In each panel,
the black solid line denotes the true path of 𝜃(z). The red dotted line and the blue dashed line respectively denote
the mean and median of the copula parameter function estimates at the grid points with 1000 simulations. The
brown solid line denotes the mean of the estimates with 1000 simulations by Garcia and Tsafack (2011). The
black dotted-dashed lines denote the 5% and 95% percentiles of the copula parameter estimates at the grid points.
The sample size T = 1000 in all panels



LIU et al. 303

T
A

B
L

E
2

M
ea

n
sq

ua
re

d
er

ro
rs

(M
SE

s)
of

co
pu

la
pa

ra
m

et
er

es
tim

at
es

an
d

ac
cu

ra
te

(in
ac

cu
ra

te
)r

at
es

of
se

le
ct

io
n

by
th

e
pr

op
os

ed
co

nd
iti

on
al

m
ix

tu
re

co
pu

la
(C

M
)w

he
n

th
e

tr
ue

m
od

el
is

a
co

nd
iti

on
al

m
ix

tu
re

co
pu

la

C
om

bi
na

ti
on

:C
la

yt
on

+
G

um
be

l

T
=

20
0

T
=

50
0

T
=

10
00

Pa
ne

l1
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
M

od
el

1
+

M
od

el
2

M
SE

0.
90

3
0.

85
0

–
–

0.
63

3
0.

52
1

–
–

0.
30

3
0.

28
7

–
–

Ra
te

1.
00

0
0.

85
9

(0
.1

51
)

(0
.2

34
)

1.
00

0
0.

93
6

(0
.0

64
)

(0
.1

25
)

1.
00

0
0.

98
6

(0
.0

12
)

(0
.0

53
)

M
od

el
1
+

M
od

el
3

M
SE

0.
89

3
0.

77
5

–
–

0.
47

2
0.

40
5

–
–

0.
28

8
0.

19
7

–
–

Ra
te

1.
00

0
0.

90
1

(0
.0

78
)

(0
.2

12
)

1.
00

0
0.

92
7

(0
.0

22
)

(0
.1

01
)

1.
00

0
0.

97
3

(0
.0

07
)

(0
.0

61
)

M
od

el
1
+

M
od

el
4

M
SE

0.
94

1
0.

90
1

–
–

0.
50

7
0.

47
6

–
–

0.
27

3
0.

28
6

–
–

Ra
te

1.
00

0
0.

92
5

(0
.0

39
)

(0
.2

77
)

1.
00

0
0.

94
1

(0
.0

11
)

(0
.1

21
)

1.
00

0
0.

99
1

(0
.0

03
)

(0
.0

67
)

M
od

el
2
+

M
od

el
3

M
SE

1.
03

2
0.

95
7

–
–

0.
68

8
0.

53
0

–
–

0.
30

1
0.

25
1

–
–

Ra
te

1.
00

0
0.

86
3

(0
.1

36
)

(0
.2

09
)

1.
00

0
0.

92
3

(0
.0

34
)

(0
.0

91
)

1.
00

0
0.

98
5

(0
.0

16
)

(0
.0

44
)

M
od

el
2
+

M
od

el
4

M
SE

1.
00

5
0.

83
3

–
–

0.
60

5
0.

49
7

–
–

0.
33

1
0.

24
4

–
–

Ra
te

1.
00

0
0.

87
4

(0
.1

30
)

(0
.2

91
)

1.
00

0
0.

94
5

(0
.0

31
)

(0
.1

39
)

1.
00

0
0.

98
7

(0
.0

05
)

(0
.0

78
)

M
od

el
3
+

M
od

el
4

M
SE

0.
84

3
0.

86
0

–
–

0.
51

2
0.

49
0

–
–

0.
34

6
0.

26
8

–
–

Ra
te

1.
00

0
0.

86
9

(0
.1

42
)

(0
.2

26
)

1.
00

0
0.

95
4

(0
.0

47
)

(0
.1

16
)

1.
00

0
0.

99
4

(0
.0

08
)

(0
.0

47
)

C
om

bi
na

ti
on

:C
la

yt
on

+
Fr

an
k

T
=

20
0

T
=

50
0

T
=

10
00

Pa
ne

l2
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n

M
od

el
1
+

M
od

el
2

M
SE

1.
03

6
–

0.
92

5
–

0.
63

3
–

0.
44

7
–

0.
38

0
–

0.
25

1
–

Ra
te

1.
00

0
(0

.0
15

)
0.

87
4

(0
.1

83
)

1.
00

0
(0

.0
03

)
0.

90
8

(0
.0

98
)

1.
00

0
(0

.0
00

)
0.

99
3

(0
.0

43
)

M
od

el
1
+

M
od

el
3

M
SE

1.
04

7
–

0.
85

9
–

0.
62

9
–

0.
51

7
–

0.
29

1
–

0.
26

6
–

Ra
te

1.
00

0
(0

.0
22

)
0.

89
1

(0
.1

94
)

1.
00

0
(0

.0
06

)
0.

93
9

(0
.0

90
)

1.
00

0
(0

.0
00

)
0.

99
7

(0
.0

36
)

(C
on

tin
ue

s)



304 LIU et al.

T
A

B
L

E
2

(C
on

tin
ue

d)

C
om

bi
na

ti
on

:C
la

yt
on

+
Fr

an
k

T
=

20
0

T
=

50
0

T
=

10
00

Pa
ne

l2
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
M

od
el

1
+

M
od

el
4

M
SE

0.
93

1
–

0.
90

6
–

0.
42

4
–

0.
60

1
–

0.
23

0
–

0.
32

5
–

Ra
te

1.
00

0
(0

.0
17

)
0.

92
3

(0
.2

07
)

1.
00

0
(0

.0
00

)
0.

97
1

(0
.1

07
)

1.
00

0
(0

.0
00

)
1.

00
0

(0
.0

29
)

M
od

el
2
+

M
od

el
3

M
SE

0.
93

5
–

0.
92

3
–

0.
59

1
–

0.
45

9
–

0.
37

2
–

0.
24

5
–

Ra
te

1.
00

0
(0

.0
21

)
0.

85
6

(0
.2

51
)

1.
00

0
(0

.0
00

)
0.

91
1

(0
.1

37
)

1.
00

0
(0

.0
00

)
0.

98
4

(0
.0

61
)

M
od

el
2
+

M
od

el
4

M
SE

0.
81

7
–

0.
85

2
–

0.
45

6
–

0.
42

7
–

0.
29

6
–

0.
28

9
–

Ra
te

1.
00

0
(0

.0
14

)
0.

90
4

(0
.1

91
)

1.
00

0
(0

.0
03

)
0.

97
5

(0
.1

12
)

1.
00

0
(0

.0
00

)
0.

99
4

(0
.0

54
)

M
od

el
3
+

M
od

el
4

M
SE

0.
83

1
–

0.
87

4
–

0.
53

3
–

0.
51

2
–

0.
23

0
–

0.
22

2
–

Ra
te

1.
00

0
(0

.0
09

)
0.

89
9

(0
.2

33
)

1.
00

0
(0

.0
00

)
0.

96
4

(0
.1

28
)

1.
00

0
(0

.0
00

)
1.

00
0

(0
.0

72
)

C
om

bi
na

ti
on

:G
um

be
l+

Fr
an

k

T
=

20
0

T
=

50
0

T
=

10
00

Pa
ne

l3
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n

M
od

el
1
+

M
od

el
2

M
SE

–
0.

81
4

0.
93

3
–

–
0.

51
3

0.
48

1
–

–
0.

28
9

0.
22

7
–

Ra
te

(0
.0

03
)

0.
97

5
0.

87
4

(0
.1

51
)

(0
.0

01
)

0.
98

7
0.

95
7

(0
.0

78
)

(0
.0

00
)

0.
99

8
0.

98
3

(0
.0

23
)

M
od

el
1
+

M
od

el
3

M
SE

–
0.

85
3

0.
89

1
–

–
0.

50
3

0.
46

5
–

–
0.

27
5

0.
20

1
–

Ra
te

(0
.0

00
)

0.
98

2
0.

90
1

(0
.1

87
)

(0
.0

00
)

0.
98

6
0.

98
9

(0
.0

84
)

(0
.0

00
)

0.
99

3
0.

98
1

(0
.0

51
)

M
od

el
1
+

M
od

el
4

M
SE

–
0.

93
0

0.
94

2
–

–
0.

53
5

0.
52

6
–

–
0.

20
8

0.
26

7
–

Ra
te

(0
.0

04
)

0.
97

4
0.

88
7

(0
.1

74
)

(0
.0

00
)

0.
98

3
0.

94
6

(0
.0

81
)

(0
.0

00
)

1.
00

0
0.

99
2

(0
.0

38
)

M
od

el
2
+

M
od

el
3

M
SE

–
0.

72
7

0.
86

5
–

–
0.

51
7

0.
57

4
–

–
0.

30
5

0.
26

4
–

Ra
te

(0
.0

02
)

0.
98

6
0.

93
9

(0
.1

52
)

(0
.0

00
)

0.
97

7
0.

95
1

(0
.0

73
)

(0
.0

00
)

0.
99

7
0.

99
8

(0
.0

47
)

(C
on

tin
ue

s)



LIU et al. 305

T
A

B
L

E
2

(C
on

tin
ue

d)

C
om

bi
na

ti
on

:G
um

be
l+

Fr
an

k

T
=

20
0

T
=

50
0

T
=

10
00

Pa
ne

l3
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
M

od
el

2
+

M
od

el
4

M
SE

–
0.

95
8

0.
77

1
–

–
0.

46
6

0.
39

7
–

–
0.

26
8

0.
20

3
–

Ra
te

(0
.0

01
)

0.
96

7
0.

85
3

(0
.1

31
)

(0
.0

00
)

0.
98

1
0.

97
6

(0
.0

62
)

(0
.0

00
)

1.
00

0
0.

99
3

(0
.0

13
)

M
od

el
3
+

M
od

el
4

M
SE

–
0.

78
3

0.
73

2
–

–
0.

46
3

0.
40

2
–

–
0.

32
6

0.
34

0
–

Ra
te

(0
.0

00
)

0.
95

8
0.

94
4

(0
.1

47
)

(0
.0

01
)

0.
96

7
0.

98
3

(0
.0

64
)

(0
.0

00
)

0.
98

7
0.

98
7

(0
.0

22
)

Tr
ue

C
op

ul
a:

C
la

yt
on

+
G

au
ss

ia
n

T
=

20
0

T
=

50
0

T
=

10
00

Pa
ne

l4
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n

M
od

el
1
+

M
od

el
2

M
SE

0.
70

7
–

–
0.

00
5

0.
41

1
–

–
0.

00
3

0.
23

1
–

–
0.

00
1

Ra
te

1.
00

0
(0

.0
11

)
(0

.1
93

)
0.

96
1

1.
00

0
(0

.0
04

)
(0

.0
81

)
0.

99
8

1.
00

0
(0

.0
00

)
(0

.0
42

)
1.

00
0

M
od

el
1
+

M
od

el
3

M
SE

0.
73

5
–

–
0.

00
7

0.
39

8
–

–
0.

00
4

0.
25

0
–

–
0.

00
3

Ra
te

1.
00

0
(0

.0
05

)
(0

.1
52

)
0.

95
4

1.
00

0
(0

.0
01

)
(0

.0
78

)
0.

97
2

1.
00

0
(0

.0
00

)
(0

.0
39

)
0.

99
5

M
od

el
1
+

M
od

el
4

M
SE

0.
85

2
–

–
0.

00
8

0.
50

1
–

–
0.

00
4

0.
22

2
–

–
0.

00
1

Ra
te

1.
00

0
(0

.0
11

)
(0

.1
83

)
0.

95
7

1.
00

0
(0

.0
00

)
(0

.0
75

)
0.

98
4

1.
00

0
(0

.0
00

)
(0

.0
37

)
1.

00
0

M
od

el
2
+

M
od

el
3

M
SE

0.
75

3
–

–
0.

00
6

0.
44

3
–

–
0.

00
4

0.
20

5
–

–
0.

00
2

Ra
te

1.
00

0
(0

.0
16

)
(0

.1
79

)
0.

94
7

1.
00

0
(0

.0
01

)
(0

.0
83

)
0.

98
8

1.
00

0
(0

.0
00

)
(0

.0
41

)
1.

00
0

M
od

el
2
+

M
od

el
4

M
SE

0.
84

9
–

–
0.

00
5

0.
52

9
–

–
0.

00
3

0.
23

0
–

–
0.

00
1

Ra
te

1.
00

0
(0

.0
21

)
(0

.1
82

)
0.

95
7

1.
00

0
(0

.0
03

)
(0

.0
86

)
0.

99
7

1.
00

0
(0

.0
00

)
(0

.0
47

)
1.

00
0

M
od

el
3
+

M
od

el
4

M
SE

0.
83

1
–

–
0.

00
6

0.
47

7
–

–
0.

00
3

0.
20

9
–

–
0.

00
1

Ra
te

1.
00

0
(0

.0
08

)
(0

.1
76

)
0.

94
4

1.
00

0
(0

.0
00

)
(0

.0
81

)
0.

98
9

1.
00

0
(0

.0
00

)
(0

.0
39

)
1.

00
0

(C
on

tin
ue

s)



306 LIU et al.

T
A

B
L

E
2

(C
on

tin
ue

d)

C
om

bi
na

ti
on

:G
um

be
l+

G
au

ss
ia

n

T
=

20
0

T
=

50
0

T
=

10
00

Pa
ne

l5
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n

M
od

el
1
+

M
od

el
2

M
SE

–
0.

88
3

–
0.

00
8

–
0.

47
4

–
0.

00
5

–
0.

20
8

–
0.

00
2

Ra
te

(0
.0

00
)

0.
93

1
(0

.2
45

)
0.

96
4

(0
.0

00
)

0.
97

4
(0

.1
21

)
1.

00
0

(0
.0

00
)

0.
99

8
(0

.0
52

)
1.

00
0

M
od

el
1
+

M
od

el
3

M
SE

–
0.

92
0

–
0.

00
7

–
0.

44
8

–
0.

00
5

–
0.

23
3

–
0.

00
2

Ra
te

(0
.0

00
)

0.
94

5
(0

.1
96

)
0.

94
7

(0
.0

00
)

0.
96

1
(0

.0
89

)
0.

99
5

(0
.0

00
)

0.
99

4
(0

.0
37

)
1.

00
0

M
od

el
1
+

M
od

el
4

M
SE

–
0.

84
4

–
0.

00
8

–
0.

50
3

–
0.

00
6

–
0.

22
0

–
0.

00
3

Ra
te

(0
.0

00
)

0.
92

7
(0

.2
03

)
0.

95
3

(0
.0

00
)

0.
97

9
(0

.1
17

)
0.

98
9

(0
.0

00
)

0.
98

7
(0

.0
66

)
0.

99
4

M
od

el
2
+

M
od

el
3

M
SE

–
0.

79
7

–
0.

00
8

–
0.

42
7

–
0.

00
5

–
0.

26
9

–
0.

00
2

Ra
te

(0
.0

00
)

0.
95

8
(0

.1
92

)
0.

96
1

(0
.0

00
)

0.
97

8
(0

.1
02

)
0.

99
3

(0
.0

00
)

0.
99

3
(0

.0
51

)
1.

00
0

M
od

el
2
+

M
od

el
4

M
SE

–
0.

83
5

–
0.

00
6

–
0.

47
4

–
0.

00
4

–
0.

28
3

–
0.

00
2

Ra
te

(0
.0

00
)

0.
94

4
(0

.2
35

)
0.

95
5

(0
.0

00
)

0.
98

0
(0

.1
15

)
0.

98
7

(0
.0

00
)

0.
99

8
(0

.0
64

)
1.

00
0

M
od

el
3
+

M
od

el
4

M
SE

–
0.

93
7

–
0.

00
7

–
0.

53
9

–
0.

00
4

–
0.

31
7

–
0.

00
2

Ra
te

(0
.0

00
)

0.
93

6
(0

.1
97

)
0.

94
1

(0
.0

00
)

0.
97

9
(0

.0
99

)
0.

97
9

(0
.0

00
)

0.
98

7
(0

.0
33

)
0.

99
8

(C
on

tin
ue

s)



LIU et al. 307

T
A

B
L

E
2

(C
on

tin
ue

d)

C
om

bi
na

ti
on

:F
ra

nk
+

G
au

ss
ia

n

T
=

20
0

T
=

50
0

T
=

10
00

Pa
ne

l6
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n

M
od

el
1
+

M
od

el
2

M
SE

–
–

0.
87

9
0.

01
1

–
–

0.
51

2
0.

00
8

–
–

0.
27

4
0.

00
3

Ra
te

(0
.0

00
)

(0
.0

11
)

0.
87

5
0.

98
3

(0
.0

00
)

(0
.0

00
)

0.
91

3
1.

00
0

(0
.0

00
)

(0
.0

00
)

0.
98

3
1.

00
0

M
od

el
1
+

M
od

el
3

M
SE

–
–

0.
74

2
0.

00
9

–
–

0.
44

2
0.

00
6

–
–

0.
26

0
0.

00
2

Ra
te

(0
.0

00
)

(0
.0

13
)

0.
85

4
0.

98
7

(0
.0

00
)

(0
.0

00
)

0.
90

7
1.

00
0

(0
.0

00
)

(0
.0

00
)

0.
99

2
1.

00
0

M
od

el
1
+

M
od

el
4

M
SE

–
–

0.
83

3
0.

01
3

–
–

0.
43

5
0.

00
9

–
–

0.
27

9
0.

00
5

Ra
te

(0
.0

00
)

(0
.0

15
)

0.
88

6
0.

99
1

(0
.0

00
)

(0
.0

00
)

0.
91

4
1.

00
0

(0
.0

00
)

(0
.0

00
)

0.
98

5
1.

00
0

M
od

el
2
+

M
od

el
3

M
SE

–
–

0.
85

8
0.

00
8

–
–

0.
40

8
0.

00
5

–
–

0.
25

1
0.

00
3

Ra
te

(0
.0

00
)

(0
.0

12
)

0.
87

3
0.

98
9

(0
.0

00
)

(0
.0

00
)

0.
90

5
0.

99
3

(0
.0

00
)

(0
.0

00
)

0.
99

0
1.

00
0

M
od

el
2
+

M
od

el
4

M
SE

–
–

0.
90

3
0.

01
1

–
–

0.
51

1
0.

00
6

–
–

0.
28

1
0.

00
3

Ra
te

(0
.0

00
)

(0
.0

11
)

0.
86

2
0.

99
1

(0
.0

00
)

(0
.0

00
)

0.
91

6
1.

00
0

(0
.0

00
)

(0
.0

00
)

0.
98

9
1.

00
0

M
od

el
3
+

M
od

el
4

M
SE

–
–

0.
94

4
0.

01
3

–
–

0.
55

3
0.

00
7

–
–

0.
30

2
0.

00
3

Ra
te

(0
.0

00
)

(0
.0

15
)

0.
88

7
0.

98
3

(0
.0

00
)

(0
.0

00
)

0.
92

0
1.

00
0

(0
.0

00
)

(0
.0

00
)

0.
98

3
1.

00
0



308 LIU et al.

T
A

B
L

E
3

M
ea

n
sq

ua
re

d
er

ro
rs

(M
SE

s)
of

co
pu

la
pa

ra
m

et
er

es
tim

at
es

an
d

ac
cu

ra
te

(in
ac

cu
ra

te
)r

at
es

of
se

le
ct

io
n

by
Lo

ng
in

&
So

ln
ik

(2
00

1)
an

d
G

ar
ci

a
an

d
Ts

af
ac

k
(2

01
1)

co
ns

ta
nt

m
ix

tu
re

co
pu

la
(C

W
)w

he
n

th
e

tr
ue

m
od

el
is

a
co

nd
iti

on
al

m
ix

tu
re

co
pu

la

C
om

bi
na

ti
on

:C
la

yt
on

+
G

um
be

l

T
=

20
0

T
=

50
0

T
=

10
00

Pa
ne

l1
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
M

od
el

1
+

M
od

el
2

M
SE

4.
83

6
3.

12
9

–
–

3.
16

6
2.

64
6

–
–

2.
40

1
1.

48
0

–
–

Ra
te

1.
00

0
0.

93
1

(0
.1

74
)

(0
.2

54
)

1.
00

0
0.

95
5

(0
.1

06
)

(0
.1

83
)

1.
00

0
0.

99
3

(0
.0

33
)

(0
.1

04
)

M
od

el
1
+

M
od

el
3

M
SE

3.
99

1
3.

52
8

–
–

2.
59

7
2.

44
5

–
–

1.
93

1
1.

55
8

–
–

Ra
te

1.
00

0
0.

92
1

(0
.1

12
)

(0
.2

87
)

1.
00

0
0.

94
8

(0
.0

54
)

(0
.1

13
)

1.
00

0
0.

98
4

(0
.0

13
)

(0
.0

65
)

M
od

el
1
+

M
od

el
4

M
SE

3.
82

1
3.

68
1

–
–

2.
63

8
2.

35
3

–
–

1.
51

4
1.

23
1

–
–

Ra
te

1.
00

0
0.

93
0

(0
.1

04
)

(0
.2

96
)

1.
00

0
0.

96
4

(0
.0

35
)

(0
.1

52
)

1.
00

0
1.

00
0

(0
.0

07
)

(0
.0

77
)

M
od

el
2
+

M
od

el
3

M
SE

4.
65

8
4.

43
6

–
–

2.
70

1
2.

41
1

–
–

1.
51

2
1.

38
2

–
–

Ra
te

1.
00

0
0.

91
6

(0
.1

58
)

(0
.2

53
)

1.
00

0
0.

95
8

(0
.0

49
)

(0
.0

93
)

1.
00

0
0.

98
9

(0
.0

14
)

(0
.0

39
)

M
od

el
2
+

M
od

el
4

M
SE

4.
81

9
4.

62
7

–
–

2.
70

6
2.

56
8

–
–

1.
70

5
1.

58
8

–
–

Ra
te

1.
00

0
0.

94
8

(0
.1

29
)

(0
.3

01
)

1.
00

0
0.

96
2

(0
.0

34
)

(0
.1

54
)

1.
00

0
1.

00
0

(0
.0

15
)

(0
.0

88
)

M
od

el
3
+

M
od

el
4

M
SE

3.
15

8
3.

68
7

–
–

2.
54

6
2.

61
0

–
–

1.
44

7
1.

65
8

–
–

Ra
te

1.
00

0
0.

90
5

(0
.1

57
)

(0
.2

58
)

1.
00

0
0.

93
2

(0
.0

79
)

(0
.1

28
)

1.
00

0
1.

00
0

(0
.0

19
)

(0
.0

41
)

C
om

bi
na

ti
on

:C
la

yt
on

+
Fr

an
k

T
=

20
0

T
=

50
0

T
=

10
00

Pa
ne

l2
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n

M
od

el
1
+

M
od

el
2

M
SE

3.
76

9
–

3.
19

7
–

2.
47

7
–

2.
65

3
–

1.
29

6
–

1.
42

4
–

Ra
te

1.
00

0
(0

.0
23

)
0.

93
1

(0
.2

05
)

1.
00

0
(0

.0
05

)
0.

92
3

(0
.1

34
)

1.
00

0
(0

.0
00

)
1.

00
0

(0
.0

72
)

(C
on

tin
ue

s)



LIU et al. 309

T
A

B
L

E
3

(C
on

tin
ue

d)

C
om

bi
na

ti
on

:C
la

yt
on

+
Fr

an
k

T
=

20
0

T
=

50
0

T
=

10
00

Pa
ne

l2
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
M

od
el

1
+

M
od

el
3

M
SE

3.
82

5
–

3.
00

3
–

2.
40

2
–

1.
84

7
–

1.
83

8
–

1.
09

7
–

Ra
te

1.
00

0
(0

.0
25

)
0.

92
5

(0
.2

37
)

1.
00

0
(0

.0
00

)
0.

94
4

(0
.1

18
)

1.
00

0
(0

.0
00

)
1.

00
0

(0
.0

63
)

M
od

el
1
+

M
od

el
4

M
SE

3.
77

0
–

3.
56

8
–

2.
58

1
–

2.
41

9
–

1.
40

3
–

1.
37

0
–

Ra
te

1.
00

0
(0

.0
20

)
0.

89
5

(0
.2

62
)

1.
00

0
(0

.0
03

)
0.

94
6

(0
.1

20
)

1.
00

0
(0

.0
00

)
1.

00
0

(0
.0

55
)

M
od

el
2
+

M
od

el
3

M
SE

3.
70

4
–

3.
23

9
–

2.
68

8
–

2.
17

2
–

1.
52

2
–

1.
16

5
–

Ra
te

1.
00

0
(0

.0
18

)
0.

90
7

(0
.2

89
)

1.
00

0
(0

.0
01

)
0.

95
7

(0
.1

54
)

1.
00

0
(0

.0
00

)
1.

00
0

(0
.0

69
)

M
od

el
2
+

M
od

el
4

M
SE

2.
91

1
–

2.
94

1
–

2.
24

9
–

2.
44

7
–

1.
23

9
–

1.
38

4
–

Ra
te

1.
00

0
(0

.0
15

)
0.

92
2

(0
.2

64
)

1.
00

0
(0

.0
03

)
0.

95
5

(0
.1

16
)

1.
00

0
(0

.0
00

)
1.

00
0

(0
.0

48
)

M
od

el
3
+

M
od

el
4

M
SE

3.
33

5
–

3.
56

9
–

2.
13

7
–

2.
39

8
–

1.
39

3
–

1.
37

1
–

Ra
te

1.
00

0
(0

.0
13

)
0.

87
3

(0
.2

62
)

1.
00

0
(0

.0
00

)
0.

93
1

(0
.1

73
)

1.
00

0
(0

.0
00

)
0.

99
8

(0
.0

87
)

C
om

bi
na

ti
on

:G
um

be
l+

Fr
an

k

T
=

20
0

T
=

50
0

T
=

10
00

Pa
ne

l3
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n

M
od

el
1
+

M
od

el
2

M
SE

–
3.

58
4

3.
27

6
–

–
2.

47
3

2.
44

3
–

–
1.

39
7

1.
26

6
–

Ra
te

(0
.0

05
)

0.
98

5
0.

90
3

(0
.1

87
)

(0
.0

01
)

1.
00

0
0.

99
2

(0
.0

85
)

(0
.0

00
)

1.
00

0
0.

99
5

(0
.0

31
)

M
od

el
1
+

M
od

el
3

M
SE

–
3.

74
7

3.
25

5
–

–
2.

46
5

2.
67

7
–

–
1.

37
8

1.
52

3
–

Ra
te

(0
.0

00
)

0.
95

7
0.

94
2

(0
.1

95
)

(0
.0

00
)

0.
99

4
1.

00
0

(0
.0

82
)

(0
.0

00
)

1.
00

0
1.

00
0

(0
.0

50
)

M
od

el
1
+

M
od

el
4

M
SE

–
3.

72
6

3.
58

0
–

–
2.

46
1

2.
06

2
–

–
1.

38
5

1.
03

7
–

Ra
te

(0
.0

05
)

0.
98

9
0.

89
6

(0
.1

93
)

(0
.0

00
)

0.
99

0
0.

97
7

(0
.0

88
)

(0
.0

00
)

1.
00

0
1.

00
0

(0
.0

45
)

(C
on

tin
ue

s)



310 LIU et al.

T
A

B
L

E
3

(C
on

tin
ue

d)

C
om

bi
na

ti
on

:G
um

be
l+

Fr
an

k

T
=

20
0

T
=

50
0

T
=

10
00

Pa
ne

l3
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
M

od
el

2
+

M
od

el
3

M
SE

–
3.

10
5

3.
17

5
–

–
2.

56
2

2.
40

3
–

–
1.

50
2

1.
14

3
–

Ra
te

(0
.0

01
)

0.
97

1
0.

94
4

(0
.1

88
)

(0
.0

00
)

0.
99

1
0.

98
4

(0
.0

73
)

(0
.0

00
)

1.
00

0
1.

00
0

(0
.0

17
)

M
od

el
2
+

M
od

el
4

M
SE

–
3.

71
6

3.
52

8
–

–
2.

52
7

2.
50

8
–

–
1.

46
8

1.
39

5
–

Ra
te

(0
.0

00
)

0.
96

3
0.

90
7

(0
.1

72
)

(0
.0

00
)

1.
00

0
0.

99
7

(0
.0

89
)

(0
.0

00
)

1.
00

0
1.

00
0

(0
.0

13
)

M
od

el
3
+

M
od

el
4

M
SE

–
3.

45
4

3.
72

1
–

–
2.

40
9

2.
11

6
–

–
1.

44
3

1.
22

2
–

Ra
te

(0
.0

02
)

0.
97

0
0.

90
5

(0
.1

33
)

(0
.0

01
)

0.
98

7
1.

00
0

(0
.0

61
)

(0
.0

00
)

0.
99

8
1.

00
0

(0
.0

24
)

C
om

bi
na

ti
on

:C
la

yt
on

+
G

au
ss

ia
n

T
=

20
0

T
=

50
0

T
=

10
00

Pa
ne

l4
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n

M
od

el
1
+

M
od

el
2

M
SE

3.
89

4
–

–
0.

02
7

2.
50

2
–

–
0.

01
6

1.
29

9
–

–
0.

00
5

Ra
te

1.
00

0
(0

.0
17

)
(0

.2
27

)
0.

95
7

1.
00

0
(0

.0
08

)
(0

.1
03

)
1.

00
0

1.
00

0
(0

.0
00

)
(0

.0
34

)
1.

00
0

M
od

el
1
+

M
od

el
3

M
SE

3.
78

0
–

–
0.

03
2

3.
49

5
–

–
0.

01
9

3.
30

6
–

–
0.

00
9

Ra
te

1.
00

0
(0

.0
04

)
(0

.2
04

)
0.

97
4

1.
00

0
(0

.0
00

)
(0

.0
94

)
0.

98
6

1.
00

0
(0

.0
00

)
(0

.0
62

)
1.

00
0

M
od

el
1
+

M
od

el
4

M
SE

3.
82

7
–

–
0.

04
4

3.
55

3
–

–
0.

02
2

3.
26

9
–

–
0.

00
8

Ra
te

1.
00

0
(0

.0
16

)
(0

.1
76

)
0.

97
7

1.
00

0
(0

.0
00

)
(0

.0
68

)
0.

98
2

1.
00

0
(0

.0
00

)
(0

.0
49

)
1.

00
0

M
od

el
2
+

M
od

el
3

M
SE

2.
82

0
–

–
0.

02
3

1.
84

9
–

–
0.

01
3

1.
03

1
–

–
0.

00
6

Ra
te

1.
00

0
(0

.0
15

)
(0

.2
13

)
0.

96
5

1.
00

0
(0

.0
00

)
(0

.0
91

)
0.

97
5

1.
00

0
(0

.0
00

)
(0

.0
63

)
1.

00
0

M
od

el
2
+

M
od

el
4

M
SE

2.
91

7
–

–
0.

02
3

2.
04

1
–

–
0.

01
1

1.
66

5
–

–
0.

00
5

Ra
te

1.
00

0
(0

.0
29

)
(0

.2
04

)
0.

97
3

1.
00

0
(0

.0
05

)
(0

.0
85

)
0.

98
4

1.
00

0
(0

.0
00

)
(0

.0
59

)
0.

99
7

(C
on

tin
ue

s)



LIU et al. 311

T
A

B
L

E
3

(C
on

tin
ue

d)

C
om

bi
na

ti
on

:C
la

yt
on

+
G

au
ss

ia
n

T
=

20
0

T
=

50
0

T
=

10
00

Pa
ne

l4
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
M

od
el

3
+

M
od

el
4

M
SE

3.
60

6
–

–
0.

03
5

2.
56

3
–

–
0.

01
2

1.
71

7
–

–
0.

00
4

Ra
te

1.
00

0
(0

.0
05

)
(0

.1
98

)
0.

96
8

1.
00

0
(0

.0
02

)
(0

.0
94

)
0.

97
0

1.
00

0
(0

.0
00

)
(0

.0
45

)
1.

00
0

C
om

bi
na

ti
on

:G
um

be
l+

G
au

ss
ia

n

T
=

20
0

T
=

50
0

T
=

10
00

Pa
ne

l5
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n

M
od

el
1
+

M
od

el
2

M
SE

–
3.

54
8

–
0.

04
8

–
2.

51
7

–
0.

02
7

–
1.

42
2

–
0.

00
8

Ra
te

(0
.0

00
)

0.
94

4
(0

.2
78

)
0.

97
4

(0
.0

00
)

0.
98

8
(0

.1
33

)
1.

00
0

(0
.0

00
)

1.
00

0
(0

.0
48

)
1.

00
0

M
od

el
1
+

M
od

el
3

M
SE

–
3.

56
9

–
0.

03
3

–
2.

56
2

–
0.

02
0

–
1.

83
5

–
0.

00
6

Ra
te

(0
.0

00
)

0.
94

1
(0

.2
12

)
0.

93
1

(0
.0

00
)

0.
95

5
(0

.1
20

)
1.

00
0

(0
.0

00
)

1.
00

0
(0

.0
46

)
1.

00
0

M
od

el
1
+

M
od

el
4

M
SE

–
3.

73
0

–
0.

04
4

–
2.

37
7

–
0.

03
2

–
1.

34
8

–
0.

00
9

Ra
te

(0
.0

00
)

0.
90

8
(0

.1
74

)
0.

94
8

(0
.0

00
)

0.
97

6
(0

.1
19

)
1.

00
0

(0
.0

00
)

0.
99

7
(0

.0
57

)
1.

00
0

M
od

el
2
+

M
od

el
3

M
SE

–
3.

02
6

–
0.

04
2

–
2.

22
0

–
0.

01
9

–
1.

53
4

–
0.

00
9

Ra
te

(0
.0

00
)

0.
92

3
(0

.2
28

)
0.

97
7

(0
.0

00
)

0.
98

3
(0

.1
25

)
1.

00
0

(0
.0

00
)

1.
00

0
(0

.0
61

)
1.

00
0

M
od

el
2
+

M
od

el
4

M
SE

–
4.

08
2

–
0.

02
4

–
2.

62
6

–
0.

01
1

–
1.

48
8

–
0.

00
7

Ra
te

(0
.0

00
)

0.
91

1
(0

.2
93

)
0.

93
4

(0
.0

00
)

0.
98

7
(0

.1
27

)
0.

99
8

(0
.0

00
)

1.
00

0
(0

.0
73

)
1.

00
0

M
od

el
3
+

M
od

el
4

M
SE

–
3.

43
0

–
0.

03
5

–
2.

43
5

–
0.

01
7

–
1.

41
5

–
0.

01
0

Ra
te

(0
.0

00
)

0.
95

0
(0

.2
04

)
0.

95
0

(0
.0

00
)

0.
95

9
(0

.1
10

)
1.

00
0

(0
.0

00
)

1.
00

0
(0

.0
41

)
1.

00
0

(C
on

tin
ue

s)



312 LIU et al.

T
A

B
L

E
3

(C
on

tin
ue

d)

C
om

bi
na

ti
on

:F
ra

nk
+

G
au

ss
ia

n

T
=

20
0

T
=

50
0

T
=

10
00

Pa
ne

l6
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n
C

la
yt

on
G

um
be

l
Fr

an
k

G
au

ss
ia

n

M
od

el
1
+

M
od

el
2

M
SE

–
–

3.
62

5
0.

05
9

–
–

2.
38

2
0.

03
6

–
–

1.
21

7
0.

01
5

Ra
te

(0
.0

00
)

(0
.0

16
)

0.
89

1
0.

97
4

(0
.0

00
)

(0
.0

00
)

0.
93

2
1.

00
0

(0
.0

00
)

(0
.0

00
)

0.
99

8
1.

00
0

M
od

el
1
+

M
od

el
3

M
SE

–
–

3.
77

0
0.

04
3

–
–

2.
58

7
0.

03
0

–
–

1.
22

6
0.

00
8

Ra
te

(0
.0

00
)

(0
.0

14
)

0.
86

3
0.

95
4

(0
.0

00
)

(0
.0

00
)

0.
89

4
1.

00
0

(0
.0

00
)

(0
.0

00
)

1.
00

0
1.

00
0

M
od

el
1
+

M
od

el
4

M
SE

–
–

3.
44

5
0.

06
5

–
–

2.
28

2
0.

04
2

–
–

1.
10

2
0.

02
0

Ra
te

(0
.0

00
)

(0
.0

10
)

0.
89

5
0.

98
7

(0
.0

00
)

(0
.0

00
)

0.
90

7
1.

00
0

(0
.0

00
)

(0
.0

00
)

0.
99

1
1.

00
0

M
od

el
2
+

M
od

el
3

M
SE

–
–

4.
31

1
0.

04
3

–
–

2.
73

0
0.

02
9

–
–

1.
75

5
0.

00
8

Ra
te

(0
.0

00
)

(0
.0

17
)

0.
91

4
0.

98
0

(0
.0

00
)

(0
.0

00
)

0.
91

3
1.

00
0

(0
.0

00
)

(0
.0

00
)

0.
98

6
1.

00
0

M
od

el
2
+

M
od

el
4

M
SE

–
–

4.
43

0
0.

05
4

–
–

2.
99

3
0.

03
0

–
–

1.
94

4
0.

01
0

Ra
te

(0
.0

00
)

(0
.0

14
)

0.
88

2
0.

97
6

(0
.0

00
)

(0
.0

00
)

0.
89

6
1.

00
0

(0
.0

00
)

(0
.0

00
)

0.
99

3
1.

00
0

M
od

el
3
+

M
od

el
4

M
SE

–
–

3.
70

9
0.

06
4

–
–

2.
44

3
0.

03
1

–
–

1.
67

5
0.

00
9

Ra
te

(0
.0

00
)

(0
.0

12
)

0.
85

4
0.

96
3

(0
.0

00
)

(0
.0

00
)

0.
91

9
1.

00
0

(0
.0

00
)

(0
.0

00
)

0.
98

0
1.

00
0



LIU et al. 313

F I G U R E 2 Estimated paths for copula parameters (𝜽) when the true model is a combination of the
Clayton and Frank copulas. Notes. Panel (a) displays the parameter estimates for the Clayton (up) and Frank
(down) copulas when 𝜃Cl = Model 1 and 𝜃Fr = Model 2. Panel (b) displays the parameter estimates for the
Clayton (up) and Frank (down) copulas when 𝜃Cl = Model 1 and 𝜃Fr = Model 3. Panel (c) displays the parameter
estimates for the Clayton (up) and Frank (down) copulas when 𝜃Cl = Model 1 and 𝜃Fr = Model 4. Panel (d)
displays the parameter estimates for the Clayton (up) and Frank (down) copulas when 𝜃Cl = Model 2 and 𝜃Fr =
Model 3. Panel (e) displays the parameter estimates for the Clayton (up) and Frank (down) copulas when 𝜃Cl =
Model 2 and 𝜃Fr = Model 4. Panel (f) displays the parameter estimates for the Clayton (up) and Frank (down)
copulas when 𝜃Cl = Model 3 and 𝜃Fr = Model 4. Model 1: 𝜃(z) = 10 − 1.5z2. Model 2: 𝜃(z) = 10 − 0.02z2 + 0.4z3.
Model 3: 𝜃(z) = 3 + z + 2e−2z2 . Model 4: 𝜃(z) = 5 + 2 sin(𝜋z) + 2e−16z2 . The black solid line denotes the true path
of 𝜃(z). The red dotted line and the blue dashed line respectively denote the mean and median of the copula
parameter function estimates at the grid points with 1000 simulations. The brown solid line denotes the mean of
the estimates with 1000 simulations by Garcia and Tsafack (2011). The black dotted-dashed lines denote the 5%
and 95% percentiles of the copula parameter estimates at the grid points. The sample size T = 1000 in all panels

Finally, we compare the performance of CM and CW when the true mixture cop-
ula model exhibits constant parameters. To save space, we only consider two scenarios.
First, we assume data are generated from an individual Clayton copula with the depen-
dence parameter equals either 5 or 7. Second, we generate data from a combination of
the Clayton and Gumbel copulas. For simplicity, we assume the two copulas are equally
weighted with two pairs of constant copula parameters, (𝜃Cl = 5, 𝜃Gu = 4) and (𝜃Cl = 7, 𝜃Gu = 6).
Table 5 shows that, when the true copula model exhibits constant parameters, the CW
method exhibits better performance than the proposed CM method because the MSEs pro-
duced by CW are slightly lower than those by CM. This should be expected because CW
exhibits higher estimation efficiency when parameters in a mixture copula are indeed con-
stant. In terms of picking up the correct copula functions, both methods exhibit similar
performance.

We additionally conduct simulations to investigate the performance of our method when:
(i) the conditional mixture model contains three- and four-dimensional copulas, and (ii)
data are generated from copulas not included in the candidate set (i.e., the mixture cop-
ula is misspecified). These additional simulation results, displayed in Appendix D, provide
further evidence that the proposed CM method still displays good performance in the two
scenarios.
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T A B L E 5 Mean squared errors (MSEs) of copula parameter estimates and accurate (inaccurate) rates of
selection by the proposed conditional mixture copula (CM) and Cai and Wang (2014) constant mixture copula
(CW) when the true model is an individual constant copula (Panel 1) and a constant mixture copula (Panel 2)

True Copula: Clayton

T = 200

Clayton Gumbel Frank Gaussian

Panel 1 CM CW CM CW CM CW CM CW

𝜽Cl = 5 MSE 0.173 0.121 – – – – – –

Rate 1.000 1.000 (0.000) (0.000) (0.000) (0.000) (0.013) (0.000)

𝜃Cl = 7 MSE 0.135 0.119 – – – – – –

Rate 1.000 1.000 (0.000) (0.000) (0.000) (0.000) (0.004) (0.000)

T = 500

Clayton Gumbel Frank Gaussian

CM CW CM CW CM CW CM CW

𝜃Cl = 5 MSE 0.104 0.075 – – – – – –

Rate 1.000 1.000 (0.000) (0.000) (0.000) (0.000) (0.002) (0.000)

𝜃Cl = 7 MSE 0.071 0.062 – – – – – –

Rate 1.000 1.000 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

T = 1000

Clayton Gumbel Frank Gaussian

CM CW CM CW CM CW CM CW

𝜃Cl = 5 MSE 0.047 0.033 – – – – – –

Rate 1.000 1.000 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

𝜃Cl = 7 MSE 0.034 0.029 – – – – – –

Rate 1.000 1.000 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

True Copula: Clayton + Gumbel (equally weighted)

T = 200

Clayton Gumbel Frank Gaussian

Panel 2 CM CW CM CW CM CW CM CW

𝜃Cl = 5, 𝜃Gu = 4 MSE 0.253 0.194 0.367 0.231 – – – –

Rate 1.000 1.000 0.859 0.831 (0.118) (0.125) (0.236) (0.221)

𝜃Cl = 7, 𝜃Gu = 6 MSE 0.385 0.253 0.513 0.277 – – – –

Rate 1.000 1.000 0.893 0.865 (0.127) (0.167) (0.262) (0.258)

T = 500

Clayton Gumbel Frank Gaussian

CM CW CM CW CM CW CM CW

𝜃Cl = 5, 𝜃Gu = 4 MSE 0.172 0.110 0.218 0.138 – – – –

Rate 1.000 1.000 0.941 0.922 (0.053) (0.051) (0.115) (0.107)

(Continues)
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T A B L E 5 (Continued)

True Copula: Clayton + Gumbel (equally weighted)

T = 200

Clayton Gumbel Frank Gaussian

Panel 2 CM CW CM CW CM CW CM CW
𝜃Cl = 7, 𝜃Gu = 6 MSE 0.243 0.183 0.324 0.206 – – – –

Rate 1.000 1.000 0.949 0.958 (0.044) (0.049) (0.127) (0.139)

T = 1000

Clayton Gumbel Frank Gaussian

CM CW CM CW CM CW CM CW

𝜃Cl = 5, 𝜃Gu = 4 MSE 0.106 0.071 0.133 0.079 – – – –

Rate 1.000 1.000 0.981 0.991 (0.009) (0.006) (0.035) (0.022)

𝜃Cl = 7, 𝜃Gu = 6 MSE 0.166 0.105 0.218 0.133 – – – –

Rate 1.000 1.000 0.983 0.977 (0.005) (0.002) (0.030) (0.031)

F I G U R E 3 Estimated paths for weights (𝝎) when the true model is a combination of the Clayton and
Frank copulas. Notes. Panel (a) displays the weight estimates for the Clayton (up) and Frank (down) copulas
when 𝜃Cl = Model 1 and 𝜃Fr = Model 2. Panel (b) displays the weight estimates for the Clayton (up) and Frank
(down) copulas when 𝜃Cl = Model 1 and 𝜃Fr = Model 3. Panel (c) displays the weight estimates for the Clayton
(up) and Frank (down) copulas when 𝜃Cl = Model 1 and 𝜃Fr = Model 4. Panel (d) displays the weight estimates
for the Clayton (up) and Frank (down) copulas when 𝜃Cl = Model 2 and 𝜃Fr = Model 3. Panel (e) displays the
weight estimates for the Clayton (up) and Frank (down) copulas when 𝜃Cl = Model 2 and 𝜃Fr = Model 4. Panel (f)
displays the weight estimates for the Clayton (up) and Frank (down) copulas when 𝜃Cl = Model 3 and 𝜃Fr =
Model 4. The black solid line denotes the true path of 𝜔(z). The red dotted line and the blue dashed line,
respectively, denote the mean and median of the weight estimates at the grid points with 1000 simulations. The
brown solid line denotes the mean of the estimates with 1000 simulations by Hu (2006), and Cai and
Wang (2014). The black dotted-dashed lines denote the 5% and 95% percentiles of the weight estimates at the grid
points. The sample size T = 1000 in all panels
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4 AN EMPIRICAL ILLUSTRATION

In this section we apply the proposed methods to investigate how the dependence structures
among the international equity markets evolve with the volatility in exchange rate markets.
Equity price and exchange rate are two important financial variables that are closely linked to
each other. Shocks in the exchange rate market cause fluctuations in the value of a domestic cur-
rency, impacting trade flows, capital movements and equity prices. Therefore, understanding the
relation between exchange rate markets and equity markets and the spillover effect of exchange
rate markets on equity prices has substantive implications in terms of risk management.

From CRSP, we collect the weekly MSCI equity prices in four developed economies (France,
Germany, the United States, and the United Kingdom) and the weekly exchange rates among the
U.S. dollar (USD), the British pound (GBP) and the euro (EUR). The observations are between
July 1, 1999 and July 11, 2018. We transform the weekly equity prices and exchange rates into log
returns by taking the first-order differences on their logarithmic levels. The first panel in Table 6
documents some summary statistics of the weekly log returns of the equity prices and exchange
rates. One can observe that the European stock markets exhibit larger fluctuations than the United
States market during the sample period, while the latter gives relatively higher average returns.
Compared with the equity markets, both returns and fluctuations are lower in these exchange
rate markets. The Jarque–Bera test results show that the null hypothesis of normality is rejected
for all six return series. The second panel in Table 6 displays that the linear (Pearson) correla-
tion coefficients across the four equity markets are very high, which is expected considering the
economic synchronization of the four developed economies.

Preliminary examinations suggest that the autocorrelation and conditional heteroscedasticity
exist in these log return series. Thus, we follow Zimmer (2012) and use an AR-GARCH process
to model the conditional mean and conditional variance. Specifically, we fit the series of returns
to an AR(1)-GARCH(1,1) process written as

xit = 𝛾i0 + 𝛾i1xi,t−1 + eit, eit = 𝜎it𝜖it,

where xit denotes the return at time t for country i. The innovations 𝜖it are assumed to be i.i.d.
The conditional variance is defined as

𝜎2
it = 𝛼i0 + 𝛼i1𝜎

2
i,t−1 + 𝛼i2e2

i,t−1,

where 𝛼i0, 𝛼i1, and 𝛼i2 are parameters of GARCH(1,1) for country i with 𝛼i0 > 0, 𝛼i1 ≥ 0, 𝛼i2 ≥ 0 and
𝛼i1 + 𝛼i2 < 1. Table 7 summarizes the coefficients of the AR(1)-GARCH(1,1) filtering and shows
that most estimates are statistically significant. For all cases, the Ljung–Box test statistics are not
significant at any conventional levels, implying the effectiveness of the AR-GARCH procedure in
filtering out the linear dependence in the series of returns.

Because our target is to investigate the dynamic pattern of the dependence among the interna-
tional equity markets along the path of the exchange rate volatility, we first, respectively, estimate
the volatility of USD-EUR and USD-GBP by the AR(1)-GARCH(1,1) model discussed above.
Figure 4 demonstrates the time series plots of the four countries’ weekly equity prices along the
estimated volatility of the exchange rates (black dashed) for USD-GBP and USD-EUR. Unlike
the equity prices which substantially fluctuate during the sample period, the volatility paths of
exchange rates are relatively stable. As a matter of fact, the exchange rate markets witnessed
a tranquil period during 1999–2007 with the estimated volatility of USD-EUR and USD-GBP
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T A B L E 6 Summary statistics

FR DE US UK USD-EUR USD-GBP

Panel 1: Summary statistics

Mean (%) 0.037 0.031 0.078 −0.007 0.003 0.023

Median (%) 0.266 0.282 0.244 0.155 0.039 −0.038

Min (%) −17.581 −17.504 −16.748 −15.220 −9.010 −5.547

Max (%) 12.829 13.977 10.344 10.915 6.085 10.222

Std. Dev 0.033 0.035 0.023 0.028 0.013 0.013

Skewness −0.514 −0.698 −0.678 −0.521 −0.256 0.704

Kurtosis 2.916 3.081 5.043 3.079 2.788 5.377

JB 415* * * 497* * * 1184* * * 459* * * 349* * * 1341* * *

Panel 2: Linear correlation coefficients

DE US UK

FR 0.932 0.740 0.878

DE – 0.740 0.830

US – – 0.735

Notes. Panel 1 documents the summary statistics of the weekly log returns of the MSCI equity prices in France, Germany, the
United States and the United Kingdom, and the weekly log returns of the U.S. dollar-euro and U.S. dollar–British pound
exchange rates. JB denotes the statistic of the Jarque–Bera test with the null hypothesis of normality. * * *indicates rejection of
the null at 1%. Panel 2 documents the linear correlation coefficients among the four international equity markets’ weekly log
returns. The sample period are between July 1, 1999 and July 11, 2018.

ranged between 0.007 and 0.02, whereas the equity markets in these countries were shocked
by a sequence of events such as the recession induced by the burst of the dotcom bubbles, the
9/11 terrorism attack, and two military operations against Afghanistan and Iraq, etc. However,
sometimes the tranquility in the exchange rate markets could also be interrupted by a domestic
or international event. As can be seen in the first two panels in Figure 4, there is a remarkable
peak on the volatility path of USD-EUR in 2008 when the global financial crisis caused severe
recession and stock markets crashed in all developed economies. For example, Figure 4(a) shows
that just in 2008 the stock price dropped by 46% in France (blue solid) and 40% in the United
States (red solid), while the volatility of the USD-EUR exchange rate is nearly tripled at the end of
2008, jumping from 0.012 to 0.034. One could observe similar patterns from the other two pairs.
One distinctive feature of the USD-GBP volatility path is that, besides the spike in 2008, there is
another remarkable peak in June of 2017 due to panics among investors induced by the passage
of the Brexit referendum.

Next, we fit the filtered equity returns (i.e., the residuals) to the conditional mixture copula
model that contains the Clayton, Gumbel, and Frank copulas. In the first step, we apply the two
proposed model selection procedures to determine which candidate copula(s) should be included
in the mixture model. We firstly consider the information criterion method. Because the mixture
copula model contains three components, for each pair of markets, we need to respectively esti-
mate 23 − 1= 7 copula models and calculate their corresponding BIC values. Then, as discussed
in Section 2.4, we make a comparison and choose the model with the lowest BIC value among the
seven BICs. Table 8 documents the BIC values of the seven models for the three pairs of equity
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F I G U R E 4 Time series plots for weekly equity prices and estimated volatility of exchange rates. Notes. This
figure displays four developed economies’ weekly MSCI stock prices (July 1, 1999 = 100) and the volatility of
exchange rates estimated by the AR(1)-GARCH(1,1) during July 1, 1999 – July 11, 2018. Panel(a) plots the
volatility of the exchange rate between the U.S. dollar and the euro (black dashed) and the MSCI stock prices in
France (blue solid) and the United States (red solid). Panel (b) plots the volatility of the exchange rate between
the US dollar and the euro (black dashed) and the MSCI stock prices in Germany (blue solid) and the United
States (red solid). Panel (c) plots the volatility of the exchange rate between the U.S. dollar and the British pound
(black dashed) and the MSCI stock prices in the United Kingdom (blue solid) and the United States (red solid)
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T A B L E 7 The estimates of AR(1)-GARCH(1,1)

AR(1) Part GARCH(1, 1) Part

𝜸1 𝜶0 𝜶1 𝜶2 LB

(p-value) (p-value) (p-value) (p-value) (p-value)

Panel 1: Equity Return

France −0.119* * * 0.000* * * 0.805* * * 0.161* * * 0.755

(.000) (.000) (.000) (.000) (.385)

Germany −0.079** 0.000* * * 0.836* * * 0.129* * * 0.127

(.018) (.006) (.000) (.000) (.722)

United States −0.122* * * 0.000* * * 0.795* * * 0.169* * * 1.763

(.000) (.002) (.000) (.000) (.184)

United Kingdom −0.088* * * 0.000* * * 0.755* * * 0.181* * * 1.716

(.009) (.000) (.000) (.000) (.190)

Panel 2: Exchange Rate

USD-EUR 0.043 0.000** 0.898* * * 0.086* * * 0.029

(.176) (.039) (.000) (.000) (.864)

USD-GBP 0.013 0.000* * * 0.799* * * 0.126* * * 2.160

(.706) (.008) (.000) (.000) (.142)

Notes. This table summarizes the results of the AR(1)-GARCH(1,1) filtering. LB denotes the statistic of the Ljung-Box test
with the null of zero autocorrelation for the residuals filtered by AR(1)-GARCH(1,1). Values in parentheses are
corresponding p-values. ** and * * *, respectively, indicates rejection of the null at 5% and 1%.

markets. It shows that the mixture model with the Clayton and Frank copulas are selected for all
three pairs as it exhibits the lowest BIC among the seven BIC values. In other words, based on
the comparison among the BICs associated with the seven candidate models, the final mixture
copula should be constructed as 𝜔ClCCl + 𝜔FrCFr.

For comparing purposes, we alternatively apply the hypothesis test method to check which
component copulas should be kept. Similar to the procedures of the backward elimination, we
start with a mixture model with all three component copulas. Then we test whether the three
weight parameters 𝜔Cl, 𝜔Gu, and 𝜔Fr, respectively, equal to zero, and remove the copula whose
weight parameter’s p-value is the highest among those greater than 0.05, the significance level.
We then refit the model until the p-values of the weight parameters of the remaining compo-
nent copulas are all lower than 0.05. The sequence of the hypothesis tests and the results are
displayed in Table 9. In Panel 1, the hypothesis test results show that the p-values for the Gumbel
copula’s weight parameters are remarkably greater than 0.05 in all three market pairs, indicat-
ing that the weight parameters of the Gumbel copula are insignificantly different from zero and
the Gumbel copula should be filtered out from the mixture models in the first step. Next, we
refit the mixture model which only contains the Clayton and Frank copulas. Panel 2 of Table 9
suggests that both component copulas should be kept as the p-values of their weight param-
eters are lower than 0.05 in all three market pairs. That is, the final mixture copula selected
by the hypothesis test method is consistent with the one selected by the information criterion
method.
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T A B L E 8 BIC values for different copula models
United States-
Germany

United States-
France

United States-
United Kingdom

Clayton −11,800.282 −11,508.044 −11,789.353

Gumbel −11,043.538 −10,738.931 −11,056.510

Frank −10,747.739 −10,763.693 −10,789.578

Clayton+Gumbel −12,692.052 −12,448.875 −12,705.331

Clayton+Frank −12,940.750 −12,685.836 −12,965.381

Gumbel+Frank −12,579.391 −12,356.165 −12,590.426

Clayton+Gumbel+Frank −11,743.994 −11,542.665 −11,701.498

Notes. This table reports the BIC values of seven individual and mixture copula models for the pairs of United
States-Germany, United States-France and United States-United Kingdom. The best models are in bold.

T A B L E 9 p-values of the hypothesis tests

U.S.- France United States–Germany United States–UK

p-value p-value p-value

Panel 1: Mixture model = 𝜔ClCCl + 𝜔GuCGu + 𝜔FrCFr

H0 ∶ 𝜔Cl = 0 v.s. H1 ∶ 𝜔Cl ≠ 0 .000 .000 .000

H0 ∶ 𝜔Gu = 0 v.s. H1 ∶ 𝜔Gu ≠ 0 .217 .335 .241

H0 ∶ 𝜔Fr = 0 v.s. H1 ∶ 𝜔Fr ≠ 0 .000 .000 .000

Panel 2: Mixture model = 𝜔ClCCl + 𝜔FrCFr

H0 ∶ 𝜔Cl = 0 v.s. H1 ∶ 𝜔Cl ≠ 0 .000 .000 .000

H0 ∶ 𝜔Fr = 0 v.s. H1 ∶ 𝜔Fr ≠ 0 .000 .000 .000

Notes. This table displays the p-values for the estimates of the weight parameters in a sequence of hypothesis tests with the
.05 significance level. In Panel 1, the mixture model is assumed to contain all three component copulas and three hypothesis
tests are respectively implemented. The component copula with the highest p-value among those greater than .05 is filtered
out. In Panel 2, we refit the mixture model with two component copulas and implement two hypothesis tests. We will
exclude the copula whose weight estimate’s p-value is greater than .05. Otherwise we will keep both component copulas.

When a mixture copula contains many component copulas, it would be efficient if we can
simultaneously filter out several candidate copulas in one step. To this end, in this example we also
apply the hypothesis test by firstly examining the joint hypothesis tests. Specifically, in the first
step, we, respectively, test whether each two of the three copulas’ weight parameters are simul-
taneously equal to zero. Failing to reject the null hypothesis of any of these joint tests indicates
that the mixture copula only contains an individual copula. In our example, we reject the null
hypotheses of all the joint tests for the three market pairs at the 0.05 significance level, suggesting
that the mixture model should include more than one component copula. Next, we implement
hypothesis tests to examine whether the three weight parameters are, respectively, equal to zero.
The test results show that, for all three pairs, we cannot reject 𝜔Gu = 0 at any conventional
levels. Therefore, the final choice of the mixture model should be constructed by the Clayton
and Frank copulas. The detailed results for this sequence of hypothesis tests are available upon
request.
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Our finding is in line with Acar et al. (2013), Gijbels et al. (2017), and Derumigny and
Fermanian (2017) who argue that a combination of the Gaussian and rotated Gumbel copulas out-
performs the other models in examining comovements among stock returns along the exchange
rate volatility. Given the observed downward comovements among the equity markets when the
exchange rates become extremely volatile, it is expected that the Clayton copula should be kept
in the mixture model to capture the lower tail dependence. The inclusion of the Frank copula is
also intuitive because, as Figure 4 shows, except for the extreme scenario in 2008, in general we
do not observe obvious tail dependence of equity returns along the exchange rate volatility over
the sample period.

Subsequently, we fit the data to the selected conditional mixture copula model and obtain the
estimated weight and copula parameters through the proposed method. Since parameters from
different copulas are not directly comparable, here we transform the copulas’ parameter estimates
into Kendall’s 𝜏s. As a measure of concordance between random variables, Kendall’s 𝜏 is invariant
to nonlinear transformations and thus can capture nonlinear dependence which is unable to be
measured by the linear correlation coefficient. For example, for X1 and X2 with their respective
CDFs u1 and u2, it is possible to express Kenadall’s 𝜏 in terms of a copula which connects the two
random variables as 𝜏 = 4 ∫ 1

0 ∫ 1
0 C(u1,u2; 𝜃)dC(u1,u2; 𝜃) − 1. For Clayton, Kendall’s 𝜏Cl = 𝜃

𝜃+2
. For

Gumbel, 𝜏Gu = 1 − 1
𝜃

. For Frank, 𝜏Fr = 1 − 4
𝜃

(
1 − ∫ 𝜃

0
t

et−1
dt
)

.
Figure 5 demonstrates the estimates (solid curves) of Kendall’s 𝜏s and the weights of the Clay-

ton and Frank copulas for the U.S.-Germany equity returns along the volatility of USD-EUR,
and the 5% and 95% percentiles (dashed curves) obtained through the proposed block boot-
strap method. Figure 5(a) shows that the magnitude of the lower tail dependence, measured by
Kendall’s 𝜏 of Clayton, doubles from 0.15 to about 0.3 as the volatility of USD-EUR is more than
tripled from about 0.01 to 0.035. Such strengthened asymmetric dependence is further amplified
by the increasing weight associated with the Clayton copula, as displayed by Figure 5(b): as the
exchange rate between the U.S. dollar and the euro becomes increasingly volatile, the effect of the
lower tail dependence turns to be more dominant. On the contrary, both the estimates of Kendall’s
𝜏 and the weight of the Frank copula decrease as the volatility of USD-EUR increases. Even though
the magnitude of the decline in Kendall’s 𝜏 for the Frank copula is relatively small, its dominance
in the dependence structure is remarkably weakened due to the decreased weight in the mixture
model. For the pairs of United States–France and United States-United Kingdom, Figures 6 and 7
show quite similar patterns: when the exchange rate becomes increasingly volatile, the lower tail
dependence is strengthened as the estimates of Kendall’s 𝜏 and the weight associated with the
Clayton copula simultaneously increase, while both Kendall’s 𝜏 and the weight of the Frank cop-
ula shrink. Given the close economic and political connections of the three countries to the United
States, the similar patterns of Kendall’s 𝜏s along the exchange rate volatility should be expected.
When the exchange rate becomes extremely volatile (e.g., during the global economic recession),
the weight of the Clayton copula exceeds that of the Frank copula, indicating that the lower tail
dependence dominates the mixture dependence structure so that the two equity markets exhibit
a higher probability to crash simultaneously. The fact that higher volatility in exchange rate mar-
kets is associated with more extreme asymmetric dependence among equity markets is not only
in line with our observations in Figures 5–7, but also consistent with the findings in the literature
such as Cai and Wang (2014). An extreme jump in the exchange rate usually leads to an extreme
comovement in equity markets. As Cai and Wang (2014) argue, when a sudden and unexpected
shock hits an economy with a very active currency market, transmission through the latter makes
a downside comovement of equity markets more likely than in a calm period of the exchange rate
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F I G U R E 5 United States–Germany: The estimated paths for Kenall’s 𝝉s and weights. Notes. This figure
displays the estimates of Kendall’s 𝜏s and the weights of the Clayton and Frank copulas for equity returns
between United States and Germany, along the estimated volatility of USD-EUR. Panel (a) shows the Kendall’s 𝜏
estimate of Clayton along the estimated volatility of USD-EUR. Panel (b) shows the weight estimate of Clayton
along the estimated volatility of USD-EUR. Panel (c) shows the Kendall’s 𝜏 estimate of Frank along the estimated
volatility of USD-EUR. Panel (d) shows the weight estimate of Frank along the estimated volatility of USD-EUR.
The two dashed lines in all four panels denote the 5% and 95% percentiles. The data are at weekly frequency and
span from July 1, 1999 to July 11, 2018

market. This may partially explain why the Clayton copula’s weight and Kendall’s 𝜏 both increase
as the exchange rate market becomes more volatile.

5 CONCLUSION

This paper proposes a semi-parametric conditional mixture copula model in which both weight
and copula parameters can vary with a covariate in a nonparametric way. The conditional mixture
copula exploits the advantages of both the conditional copula which can capture a covariate’s
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F I G U R E 6 United States–France: The estimated paths for Kenall’s 𝝉s and weights. Notes. This figure
displays the estimates of Kendall’s 𝜏s and the weights of the Clayton and Frank copulas for equity returns
between United States and France, along the estimated volatility of USD-EUR. Panel (a) shows the Kendall’s 𝜏
estimate of Clayton along the estimated volatility of USD-EUR. Panel (b) shows the weight estimate of Clayton
along the estimated volatility of USD-EUR. Panel (c) shows the Kendall’s 𝜏 estimate of Frank along the estimated
volatility of USD-EUR. Panel (d) shows the weight estimate of Frank along the estimated volatility of USD-EUR.
The two dashed lines in all four panels denote the 5% and 95% percentiles. The data are at weekly frequency and
span from July 1, 1999 to July 11, 2018

impact on the degree of dependence (see Cai & Wang, 2014), and the mixture copula which can
combine copula families with different dependence patterns (see Cai & Wang’s, 2014). Therefore,
it provides extra flexibility and an unified way for practitioners to measure the dependence pattern
and the degree of dependence.

In the theoretical part, we provide a two-step estimation procedure to separately estimate
the marginal distributions and the weight and copula parameters in the model, and the large
sample properties of these estimators are derived. Moreover, we introduce two model selection
approaches to choose an appropriate conditional mixture copula model from a large copula
candidate set. Monte Carlo simulation results confirm that the proposed estimation and model
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F I G U R E 7 United States–United Kingdom: The estimated paths for Kenall’s 𝝉s and weights. Notes. This
figure displays the estimates of Kendall’s 𝜏s and the weights of the Clayton and Frank copulas for equity returns
between United States and United Kingdom, along the estimated volatility of USD–GBP. Panel (a) shows the
Kendall’s 𝜏 estimate of Clayton along the estimated volatility of USD-GBP. Panel (b) shows the weight estimate of
Clayton along the estimated volatility of USD-GBP. Panel (c) shows the Kendall’s 𝜏 estimate of Frank along the
estimated volatility of USD-GBP. Panel (d) shows the weight estimate of Frank along the estimated volatility of
USD-GBP. The two dashed lines in all four panels denote the 5% and 95% percentiles. The data are at weekly
frequency and span from July 1, 1999 to July 11, 2018

selection procedures perform reasonably well in estimating unknown parameters and selecting
component copulas. The only exception is when weights and copula parameters in a mixture cop-
ula are constants: simulation results show that although the proposed conditional mixture copula
estimation method still provides accurate copula selection, its estimation accuracy, measured by
MSE, becomes slightly lower than the constant mixture copula estimation method proposed by
Cai and Wang’s (2014). In an empirical illustration, we apply the proposed methods to examine
how the dependence structures among the international equity markets evolve with the volatility
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in the exchange rate markets and find that both the weight of the Clayton copula and the degree
of the lower tail dependence among the equity markets remarkably increase when the exchange
rate markets become more volatile.

In practice, because whether weights and copula parameters are constants or not is unknown
ex ante, the conditional mixture copula is an ideal model if practitioners have strong belief that
both the pattern of dependence (summarized by weights of component copulas) and degree of
dependence (measured by copula parameters) are affected by certain covariate. For example,
applying the proposed conditional mixture copula, practitioners can extend Cai and Wang’s (2014)
and investigate how strength and direction of comovement among housing markets in the United
States evolved with certain economic indicator such as per capita disposable income in the past
four decades. In this analysis, as in the empirical illustration in Section 4, we need the conditional
mixture copula to detect effects of the covariate on dependence structure. Alternatively, if practi-
tioners need a quick examination on tail dependence and degree of dependence, the CW method
would be an useful model with fewer parameters to estimate. In this study, we skip testing the
irrelevance of the covariate and refer interested readers to Cai and Wang’s (2014) for discussions
and empirical illustrations in the i.i.d. scenario. Testing the “simplifying assumption” with weakly
dependent data deserves a separate study in the future.

Some interesting future research topics related to this article should be mentioned. First, the
proposed method can be extended to a higher dimension of Z because the dependence structure
could be potentially affected by several economic variables simultaneously. In other words, the
copula parameter 𝜃k(⋅) in Equation (1) can be written as 𝜃k(𝛾⊺Zt), where 𝜃k(𝛾⊺Zt) now is a flexible
function of the so-called single-index 𝛾⊺Zt, that is, a linear combination of pz-dimensional eco-
nomics variable Zt with 𝛾 being a pz-dimensional vector loading, and Zt = (Z1t, … ,Zpzt)⊺. Second,
our model can be applied by empirical practitioners to study how dependence structures among
the international stock markets abruptly changed amid the outbreak of the COVID-19 pandemic
when equity prices crashed in global markets.
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