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a b s t r a c t

This paper proposes a functional-coefficient panel data model with cross-sectional
dependence motivated by re-examining the empirical performance of conditional capital
asset pricing model. In order to characterize the time-varying property of assets’ betas
and alpha, our proposed model allows the betas to be unknown functions of some
macroeconomic and financial instruments. Moreover, a common factor structure is
introduced to characterize cross-sectional dependence which is an attractive feature
under a panel data regression setting as different assets or portfolios may be affected by
same unobserved shocks. Compared to the existing studies, such as the classic Fama–
MacBeth two-step procedure, our model can achieve substantial efficiency gains for
inference by adopting a one-step procedure using the entire sample rather than a
single cross-sectional regression at each time point. We propose a local linear common
correlated effects estimator for estimating time-varying betas by pooling the data.
The consistency and asymptotic normality of the proposed estimators are established.
Another methodological and empirical challenge in asset pricing is how to test the
constancy of conditional betas and the significance of pricing errors, we echo this
challenge by constructing an L2-norm statistic for functional-coefficient panel data
models allowing for cross-sectional dependence. We show that the new test statistic has
a limiting standard normal distribution under the null hypothesis. Finally, the method
is applied to test the model in Fama and French (1993) using Fama–French 25 and 100
portfolios, sorted by size and book-to-market ratio, respectively, dated from July 1963
to July 2018.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

A central issue in theoretical and empirical finance literature is how to explain the cross-sectional variation in assets’
xpected returns. The standard method, for example, introduced by Fama and MacBeth (1973), consists of a two-step
rocedure. In the first step, a cross-sectional regression is run by excess returns on multiple risk factors at each period
ith an intercept, and in the second step, the time series averages of these cross-sectional regression coefficients are
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computed and tests are conducted to examine whether these time series averages significantly differ from zero. The
advantage of the Fama and MacBeth procedure is that it allows us to easily include many risk factors in the model.
However, the standard procedure restricts the relation between expected returns and risk factors to be linear. In other
words, the Fama and MacBeth procedure assumes all regression coefficients to be constant.

Indeed, it has been well recognized by many studies that the betas of risk factors in the capital asset pricing models
depend on the state of economy; see, for example, Fama and French (1997), Ferson and Harvey (1999), Lettau and
Ludvigson (2001), Zhang (2005), Lewellen and Nagel (2006), Cai et al. (2015b), Guo et al. (2017), and among others.
An influential paper by Ferson and Harvey (1999) argued to adopt a set of lagged economy-wide instruments to capture
common dynamic patterns in returns. Both pricing errors (the alphas) and betas were set as a linear function of these
lagged instruments. Furthermore, some recent studies focused on estimating alphas and betas semi-parametrically or
nonparametrically. For example, Ferreira et al. (2011) and Ang and Kristensen (2012) considered the estimation of time-
varying betas, where betas are regarded as an unknown smooth function of time, and other studies treated betas as an
unknown function of state variables. To avoid the curse of dimensionality problem in a nonparametric setting, Connor
et al. (2012) considered an additive nonparametric regression model, while Cai et al. (2015b) and Guo et al. (2017) used
single index functional-coefficient models, which include the model in Ferson and Harvey (1999) as a special case. But,
both Cai et al. (2015b) and Guo et al. (2017) considered only time series model with ignoring the dependence among
individuals.

Another deficiency of most existing studies is to estimate a time series of betas only using single cross-sectional data at
each time period and then computing a time series average using a same weight for all cross sections. Such a procedure
causes two problems. Obviously, using a single cross section and then taking time series averages with same weights
might lose estimation efficiency. On the other hand, running cross section regressions separately is hard to control possible
cross-sectional relations among error terms, which may immensely distort estimation and testing results.

We propose a new model to deal with the aforementioned issues: the possible misspecification of betas and alpha and
the ignorance of potential cross-sectional dependence, in a simultaneous way. To this end, a functional-coefficient panel
data model with cross-sectional dependence is considered so that our model allows all coefficients, both the pricing error
alpha and the beta coefficients of risk factors, to depend on macroeconomic or financial instruments and be estimated
using the pool data rather than a single cross section, which should reach more powerful results for estimation and
testing. In addition, the model allows the error term to include an unobserved factor structure which is used to capture
cross-sectional dependence. Ferreira et al. (2011) considered to estimate betas using a system of equations allowing for
cross-sectional relations. Our model differs from theirs in not only capturing cross-sectional dependence but also allowing
for possible correlations between risk factors and other unobserved factors. Finally, we propose a local linear common
correlated effect estimator for both conditional alphas and betas and construct a nonparametric L2 type statistic for testing
conditional alphas and betas in a panel data model framework, together with establishing its asymptotic properties.

Our paper is closely related to the econometric literature on nonparametric and semiparametric panel data models
which impose relatively little restriction on model’s structures; see, for example, to name just a few, Cai and Li (2008),
Sun et al. (2009), Cai et al. (2015a), Sun et al. (2015), and Cai et al. (2018). However, the aforementioned literature focused
on nonparametric or semiparametric inference by assuming cross-sectional independence. Recently, studies on panel
data models with cross-sectional dependence have received increased attentions; for example, see the papers by Pesaran
(2006), Bai (2009), and Moon and Weidner (2015), and among others. While there is relatively rich literature on linear
panel data models with cross-sectional dependence, to the best of our knowledge, little work has been done in estimating
nonparametric or semiparametric panel data models with cross-sectional dependence. For example, Su and Jin (2012)
extended the work of Pesaran (2006) to a nonparametric heterogeneous panel data model with factor structure and
proposed a sieve estimation for their model and Huang (2013) considered a similar nonparametric panel data model with
fixed effect and factor structure. Note that a sieve method is a global parametric approximation, as far as testing for local
curvature of a smooth function, which is the focus of many empirical studies, it is natural to use a local estimator (such as
that of functional-coefficient models) to conduct a statistical testing. For details on the nonparametric or semiparametric
panel data models with cross-sectional dependence, readers are referred to the recent survey paper by Xu et al. (2016). Our
model can be regarded as an extension of Pesaran (2006) which contributes to the literature by proposing a kernel based
estimator for functional coefficients and a nonparametric test in a panel data model with cross-sectional dependence. In
particular, our model can be applied to making inferences on capital asset pricing models incorporating the dependence
among individuals.

The rest of the paper is organized as follows. Section 2 introduces the model and discusses the estimation method.
Asymptotic properties of proposed estimators are also established. In Section 3, a nonparametric test for testing
constancy in functional coefficients is proposed, together with providing not only the asymptotic distributions of the
proposed statistic but also a simply-implemented Bootstrap procedure to improve finite sample performance. Monte Carlo
simulation results are presented in Section 4. Section 5 revisits the empirical performance of the Fama–French model using
Fama–French 25 and 100 portfolios formed on size and book-to-market ratio dated from July 1963 to July 2018. Finally,
a concluding remark is given in Section 6. All proofs for the theorems are provided in the supplement (see Appendix).

2. Estimation methods and asymptotic theories

In this section, the model is first introduced, and then the idea of local linear common correlated effect (CCE) estimation
is presented for both heterogeneous and homogeneous functional coefficients. Finally, some theoretical assumptions are
given and the asymptotic properties of proposed estimators are stated.
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.1. Model setup

To be specific, let {Yit , Xit ,Uit} be the observed data on the ith cross-sectional unit at time t for 1 ≤ i ≤ N and 1 ≤ t ≤ T .
he following general functional-coefficient panel data model is considered

Yit = β⊤

i (Uit )Xit + γ ⊤

1i f1t + eit , (2.1)

here A⊤ denotes the transpose of A, Xit ∈ R
p
is a vector of individual-specific explanatory variables on the ith cross-

ectional unit at time t , βi(·) is a vector of smooth functions defined on R
du which has a continuous second derivative

nd may take different functional forms for different individuals, Uit ∈ R
du is a smooth variable,1 f1t is an m1 × 1 vector

of observed common factors, and {γ1i, i = 1, 2, . . . ,N} are factor loadings. The intercept term can be included in Xit
or f1t . However, they cannot both contain an intercept for the purpose of identification. To characterize cross-sectional
dependence, it is conventional to assume that eit follows the following multi-factor structure

eit = γ ⊤

2i f2t + εit , (2.2)

where f2t is an m2 × 1 vector of unobserved common factors, {γ2i, i = 1, 2, . . . ,N} are factor loadings, and εit is the
idiosyncratic error of Yit . In general, the unobserved factors f2t could be correlated with the observed data (Xit , Uit , f1t ).
To allow for such a possibility, similar to Pesaran (2006), the following fairly general model is adopted,

ωit ≡

(Xit
Uit
Zit

)
= Γ ⊤

1i f1t + Γ ⊤

2i f2t + vit , (2.3)

here Zit is pz × 1 vector of covariates specific to unit i, Γ1i and Γ2i are m1 × (p + pz + 1) and m2 × (p + pz + 1) factor
loading matrices, and {vit} are the error for ωit . Of interest for model (2.1) is to estimate nonparametric functionals βi(·)
nd γ1i is treated as a nuisance parameter.
In some applications, one might be interesting in considering a restricted model of (2.1) as follows:

Yit = β⊤(Uit )Xit + γ ⊤

1i f1t + eit . (2.4)

hat is, βi(·) = β(·), where β(·) is assumed to have a continuous second derivative, for all i in model (2.1). Follow-
ng Pesaran (2006), the functional-coefficient functions are called to be homogeneous when βi(·) = β(·) for all i and
heterogeneous otherwise.

A multi-factor asset pricing model introduced in the introduction can be regarded as a special case of Eq. (2.1). For
example, Yit can be an asset or portfolio excess return, Xit denotes a vector of risk factors, and Uit can be a vector of
economy-wide state variables. Particularly, in the Fama–French three-factor model, Xit includes market risk, size risk and
value risk factors. Note that the model allows for cross-sectional dependence among the errors eit , and furthermore, the
model also allows for possible correlations between risk factors and unobserved factors f2t . Details on how to apply model
(2.1) to making inferences on capital asset pricing models to analyze real examples are presented in Section 5.

To estimate both the heterogeneous functional coefficients βi(·) in (2.1) and the homogeneous functional coefficient
β(·) in (2.4), instead of using any global parametric approximation approaches, we propose a locally (kernel method)
common correlated effect estimator (LCCE) for the heterogeneous case by combining the CCE approach with the local
linear estimation method. For homogeneous case, we propose a locally common correlated effect pooled estimator (LCCEP)
to improve estimation efficiency by pooling the data. It will be shown that as both N and T go to infinity, the LCCE and
LCCEP estimators are not only consistent but also asymptotically normally distributed under certain mild conditions.
Moreover, a nonparametric goodness-of-fit statistic is proposed for testing the constancy of functional coefficients. This is
of interests in practice since the smoothing variables are often selected based on certain economic hypothesis. A constancy
test here amounts to testing economic theories.

2.2. Local linear estimation of βi(·) and β(·)

Following the idea of CCE estimation proposed by Pesaran (2006), first, unobserved factor f2t is approximated by the
cross-sectional averages of observable variables in Eq. (2.3). To be specific, let ωt ≡ N−1∑N

i=1 ωit . By the same token, one
can define Γ 1, Γ 2 and vt as cross-section averages of Γ1i, Γ2i and vit , respectively. Then, (2.3) implies that

ωt = Γ
⊤

1 f1t + Γ
⊤

2 f2t + vt . (2.5)

Premultiplying both sides of (2.5) by Γ 2 and solving for f2t implies that

f2t =

(
Γ 2Γ

⊤

2

)−1
Γ 2

(
ωt − Γ

⊤

1 f1t − vt

)
,

1 For simplicity, we only consider the case du = 1 in (2.1). Extension to the case du > 1 involves no fundamentally new ideas. Also, note that
models with large d are not practically useful due to the so-called ‘‘curse of dimensionality’’. Usually, d ≤ 3 in real application.
u u
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provided that rank(Γ 2) = m2 ≤ p + pz + 1 for sufficiently large N , which is imposed by Pesaran (2006). For each t , as
→ ∞, vt

p
→ 0 under some weak conditions. Then, it follows that

f2t −

(
Γ 2Γ

⊤

2

)−1
Γ 2

(
ωt − Γ

⊤

1 f1t
)

p
→ 0

as N → ∞, which suggests using qt =
(
f ⊤

1t , ω
⊤

t

)⊤
as a proxy for f2t . Note that it is not necessary to use all variables in ωt

to filter unobserved common factors. For example, Hjalmarsson (2010) only adopted the included explanatory variables.
To estimate the heterogeneous coefficients βi(·), the following augmented regression is considered

Yit = β⊤

i (Uit )Xit + ϑ⊤

i qt + ε∗

it (2.6)

where ε∗

it is the new error term which includes εit and the approximation error coming from replacing f2t by qt . Indeed,
(2.6) is a partially varying-coefficient model, which is usually estimated by a profile likelihood method or other two-step
semiparametric methods in order to achieve parametric convergence rate for the parametric part; see, for example, Fan
and Huang (2005). However, in model (2.6), ϑi is a nuisance parameter which is lack of interest, so that it simply
projects the term ϑ⊤

i qt out by using the idea of partitioned regression. Let Yi = (Yi1, . . . , YiT )
⊤, Q = (q1, . . . , qT )⊤

and ε∗

i =
(
ε∗

i1, . . . , ε
∗

iT

)⊤. Rewriting (2.6) in a vector form, one has

Yi =

⎛⎜⎝β⊤

i (Ui1)Xi1
...

β⊤

i (UiT )XiT

⎞⎟⎠+ Qϑi + ε∗

i . (2.7)

To estimate the unknown function βi(·), the local linear estimation method is employed. Given u0 ∈ R, if |Uit − u0| ≤ h,
t = 1, 2, . . . , T , using first order Taylor’s expansion, one obtains⎛⎜⎝β⊤

i (Ui1)Xi1
...

β⊤

i (UiT )XiT

⎞⎟⎠ = X̃iβ
∗

i (u0) + Op(h2), (2.8)

here X̃i is the T×2p matrix whose tth row is (X⊤

it , X⊤

it (Uit−u0/h)), and β∗

i (u0) =

(
β⊤

i (u0), hβ ′

i
⊤(u0)

)⊤

with β ′

i (·) denoting
he first order derivative of βi(·). By substituting (2.8) into (2.7) and ignoring the higher order term Op(h2), it is easy to
ee that the estimator of β∗

i (u0), denoted by β̂∗

i (u0), can be obtained by minimizing the following sum of locally weighted
quares,

β̂∗

i (u0) =

(
â
b̂

)
= argmin

a,b

T∑
t=1

[Yit − X⊤

it (a + b(Uit − u0)/h) − ϑ⊤

i qt ]2kh(Uit − u0),

here k(·) is a kernel function and kh(·) = k(·/h)/h. Note that the above local linear estimator can be viewed as a weighted
LS estimator of a working linear model

witYit = wit (X⊤

it , X⊤

it (
Uit − u0

h
))β∗

i (u0) + witq⊤

t ϑi + witε
∗

it , (2.9)

where wit =
√
kh(Uit − u0). Clearly, (2.9) can be re-written in a vector form as

W1/2
i,h (u0)Yi = W1/2

i,h (u0 )̃Xiβ
∗

i (u0) + W1/2
i,h (u0)Qϑi + W1/2

i,h (u0)ε∗

i

hich is a linear regression model, where Wi,h(u0) = diag(w2
i1, . . . , w

2
iT ). By Frisch–Waugh–Lovell Theorem in a linear

egression, one can obtain the following locally common correlated effect (LCCE) estimator,

β̂∗

i (u0) = [̃X⊤

i W1/2
i,h (u0)Mi(u0)W

1/2
i,h (u0 )̃Xi]

−1X̃⊤

i W1/2
i,h (u0)Mi(u0)W

1/2
i,h (u0)Yi, (2.10)

here Mi(u0) = IT − W1/2
i,h (u0)Q [Q⊤Wi,h(u0)Q ]

−1Q⊤W1/2
i,h (u0) and IK is a K × K identity matrix.

In sum, Eq. (2.6) is a transformation of Eq. (2.1) by approximating the unobservable factor f2t with cross-sectional av-
rages of observables. Estimating the workable model (2.6) instead of the original model (2.1) incurs some approximation
rror. However, as one can see in Lemma A.1.2 in the appendix, the error is of order Op(1/N) which is negligible when
→ ∞.
Now, it turns to the estimation of the homogeneous coefficients β(·). In order to improve estimation efficiency for the

omogeneous coefficients, β(·) is estimated by pooling all data together. Consider the following augmented regression in
vector form

Yi =

⎛⎜⎝β⊤(Ui1)Xi1
...

⊤

⎞⎟⎠+ Qϑi + ε∗

i .
β (UiT )XiT
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or ease of notations, ε∗

i is also used to denote the new error term as in (2.7). Using the first order Taylor’s expansion, Yi
can be approximated locally by

Yi ≈ X̃iβ
∗(u0) + Qϑi + ε∗

i ,

where β∗(u0) =

(
β⊤(u0), hβ ′⊤(u0)

)⊤

. Let Y =
(
Y⊤

1 , . . . , Y⊤

N

)⊤, X̃ =

(
X̃⊤

1 , . . . , X̃⊤

N

)⊤

, Q = IN ⊗ Q , ϑ =
(
ϑ⊤

1 , . . . , ϑ⊤

N

)⊤,
and ε∗

=
(
ε∗⊤

1 , . . . , ε∗⊤

N

)⊤, where ⊗ denotes the Kronecker product. By pooling all data together, one has

Y ≈ X̃β∗(u0) + Qϑ + ε∗. (2.11)

Using the same argument as in deriving (2.10), it is easy to show that with Wh(u0) = diag(W1,h(u0), . . . ,WN,h(u0)),

β̂∗(u0) =

[
X̃⊤W1/2

h (u0)M(u0)W
1/2
h (u0 )̃X

]−1
X̃⊤W1/2

h (u0)M(u0)W
1/2
h (u0)Y

=

[
N∑
i=1

X̃⊤

i W1/2
i,h (u0)Mi(u0)W

1/2
i,h (u0 )̃Xi

]−1 [ N∑
i=1

X̃⊤

i W1/2
i,h (u0)Mi(u0)W

1/2
i,h (u0)Yi

]
,

(2.12)

where M(u0) = INT −W1/2
h (u0)Q[Q⊤Wh(u0)Q]

−1Q⊤W1/2
h (u0). This is termed as the locally common correlated effect pooled

LCCEP) estimator for homogeneous functional coefficients.

.3. Large sample theories

.3.1. Notations and assumptions
To simplify notations used in the analysis, fi(Uit ) is used to denote the marginal density of Uit , fi1t (Ui1,Uit ) to be the

oint density of Ui1 and Uit , and fi(Uit , ξit ) to be the joint density of Uit and ξit , where ξit ∈ {Xit , vit}. Let µj =
∫

∞

−∞
ujk(u)du,

j =
∫

∞

−∞
ujk2(u)du, ηt =

(
f ⊤

1t , f
⊤

2t

)⊤, η = (η1, . . . , ηT )
⊤, Γ =

(
Im1 Γ 1

0 Γ 2

)
, bt = Γ ⊤ηt and B = ηΓ = (b1, . . . , bT )⊤.

Now, let fi(Uit , ςt ) to be the joint density of Uit and ςt , where ςt ∈ {qt , bt , f2t}, and fi(Uit , Xit , qt ) to be the joint density
of Uit , Xit and qt . Further, introduce the following notations: σi1t ≡ E(εi1εit ), σ 2

i ≡ E(ε2
i1), Ωixx(Uit ) = E(XitX⊤

it |Uit ),
Ωiqq(Uit ) = E(qtq⊤

t |Uit ), Ωixq(Uit ) = E(Xitq⊤
t |Uit ), Πi(u0) = Ωixq(u0)Ω−1

iqq (u0), Mit (u0) = Xit − Πi(u0)qt , Ωi(Uit ) =

E
{
Mi1(u0)M⊤

i1 (u0)|Uit
}
, Ωit (Ui1,Uit ) = E

{
Mi1(u0)M⊤

it (u0)|Ui1,Uit
}
, Ω(u0) ≡ p limN→∞ N−1∑N

i=1fi(u0)Ωi(u0), and Ω∗(u0) ≡

limN→∞ N−1∑N
i=1σ

2
i fi(u0)Ωi(u0).

Below are a set of assumptions needed for deriving asymptotic results. Note that these may not be necessary to be the
eakest conditions.

1. The kernel k(·) is a symmetric, nonnegative and bounded probability density function (PDF) with a compact support.

2. (i) There exists some δ > 0 such that max1≤i≤NE|ζi|
2(1+δ) < ∞ for ζi = εi1, f11, f21 and vi1. (ii) For each fixed

, {(εit , vit ) : t ≥ 1} is strictly stationary and α-mixing with the mixing coefficient satisfying αi(τ ) = O(τ−θ ), where
= (2 + δ)(1 + δ)/δ. (iii) The individual-specific errors εit and vjs are distributed independently for all i, j, t and s.

et εi = (εi1, . . . , εiT )
⊤ and vi = (vi1, . . . , viT )

⊤. εi and vi are independently distributed across i with zero means.
iv) The common factors {(f1t , f2t ) : t ≥ 1} are strictly stationary and α-mixing with the mixing coefficient satisfying
f (τ ) = O(τ−θ ). (v) (f1t , f2t ) are distributed independently of εis and vis for all i, t and s. (vi) There exists m ∈ (1, Th) such
hat Th/m ≫ T 2η̄ for some η̄ > 0 and NTα(m) = op(1) as (N, T ) → ∞, where α(τ ) = max{α1(τ ), . . . , αN (τ ), αf (τ )}, which
lso satisfies α(τ ) = O(τ−θ ).

3. (i) The factor loadings Γ1i, γ2i and Γ2i are independently and identically distributed with finite 2(1+ δ)th moments.
ii) γ2i and Γ2i are independent of vjt , εjt and (f1t , f2t ) for all j and t . (iii) Γ1i are independent of Γ2j, vjt , εjt and (f1t , f2t ) for
ll j and t . (iv) Rank(Γ2) = m2 ≤ p + pz + 1, where Γ2 = E(Γ2i).

4. (i) For any τ ≥ 1, fi(Ui0,Uiτ |(Xi0, q0), (Xiτ , qτ )), fi(Ui0,Uiτ |Xi0, Xiτ ) and fi(Ui0,Uiτ |q0, qτ ) are bounded conditional density
f (Ui0,Uiτ ) given ((Xi0, q0), (Xiτ , qτ )), (Xi0, Xiτ ) and (q0, qτ ). (ii) fi(Uit |ξit ), fi(Uit |ςt ) and fi(Uit |Xit , qt ) are uniformly bounded
onditional density of Uit given ξit , ςt and (Xit , qt ), where the definitions of ξit and ςt are given earlier. (iii) For any
≤ t ≤ T , fi1t (Ui1,Uit ) and Ωit (Ui1,Uit ) are continuous at (Ui1 = u0,Uit = u0). (iv) Ω̃i(Uit ) and fi(Uit ) are continuous

t u0, where Ω̃i(Uit ) ∈ {Ωixx(Uit ), Ωixq(Uit ), Ωiqq(Uit ), Ωi(Uit )}.

5. (i) h → 0, Th → ∞ as T → ∞ and N → ∞. (ii) max1≤i≤N E
XitX⊤

it

2(1+δ)
< ∞, max1≤i≤N E

Xitq⊤
t

2(1+δ)
< ∞

nd E
qtq⊤

t

2(1+δ)
< ∞. (iii) For j = 0, 1, 2, 3,

∫
|v|

j
|k(v)|dv = κj < ∞ and |vjk(v)| ≤ K̄ . (iv) max1≤i≤NsupuE[Ξit

⏐⏐U =

]fi(u) ≤ B1 < ∞, where Ξit ∈ {∥XitX⊤

it ∥
2(1+δ), ∥Xitq⊤

t ∥
2(1+δ), ∥qtq⊤

t ∥
2(1+δ)

}. (v) max1≤i≤N |Ω ′

i (·)f
′

i (·)| is bounded. Also,
ax1≤i≤N |Ω̃ ′

i (·)fi(·)| and max1≤i≤N |Ω̃i(·)f′i (·)| are bounded, where Ω̃i(·) ∈ {Ωixx(·), Ωixq(·), Ωiqq(·)}. (vi) T 1−1/θh(2+δ)/(1+δ)
→

.
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Remark 2.1 (Discussions of Conditions). A1 is a commonly used condition for kernel functions, which can be satisfied
by many widely used kernel functions including the Epanechnikov kernel. A2 imposes strict stationarity, and moments
and mixing conditions on common factors and error terms as well. Furthermore, A2(iii) and (v) also impose some
independence assumptions which are commonly used in the literature; see Pesaran (2006) and Su and Jin (2012). A3(iv)
is the rank condition required by the CCE approach, which is similar to Pesaran (2006). A4 requires some uniform
boundedness of conditional densities and smoothness conditions on involved functionals, which are quite mild and
standard. A5(i) is standard for nonparametric kernel estimation. Conditions A5(ii) and (vi) are similar to those widely
used for nonlinear time series models (e.g., Cai et al. (2000)). Note that A5(ii) imposes moment conditions directly on Xit
and qt . Instead, we can also make similar restrictions on factors, loadings, and error terms at the cost of more tedious
presentation. A5(iii)–(v) are required for establishing the uniform convergence results in order to prove Theorem 2.3.
Similar conditions are also imposed by Hansen (2008).

2.3.2. Asymptotic properties of β̂i(u0)
An application of Taylor’s expansion of βi(Uit ) around u0 leads to

βi(Uit ) = βi(u0) + hβ ′

i (u0)(
Uit − u0

h
) +

h2

2
β ′′

i (u0)(
Uit − u0

h
)2 + op(h2). (2.13)

nserting (2.13) into (2.1) and rewriting all the observations of i in vector forms implies that

Yi = X̃iβ
∗

i (u0) +
h2

2
Ai(u0)β ′′

i (u0) + f1γ1i + f2γ2i + εi + op(h2), (2.14)

here f1 = (f11, . . . , f1T )⊤, f2 = (f21, . . . , f2T )⊤, εi = (εi1, . . . , εiT )
⊤, and

Ai(u0) =

⎛⎜⎝X⊤

i1 ((Ui1 − u0)/h)2
...

X⊤

iT ((UiT − u0)/h)2

⎞⎟⎠ .

ombining (2.14) and (2.10), then, one has

β̂
∗

i (u0) − β
∗

i (u0)

=
h2

2
[̃X⊤

i W1/2
i,h (u0)Mi(u0)W

1/2
i,h (u0 )̃Xi]

−1X̃⊤

i W1/2
i,h (u0)Mi(u0)W

1/2
i,h (u0)Ai(u0)β ′′

i (u0)

+ [̃X⊤

i W1/2
i,h (u0)Mi(u0)W

1/2
i,h (u0 )̃Xi]

−1X̃⊤

i W1/2
i,h (u0)Mi(u0)W

1/2
i,h (u0)f2γ2i

+ [̃X⊤

i W1/2
i,h (u0)Mi(u0)W

1/2
i,h (u0 )̃Xi]

−1X̃⊤

i W1/2
i,h (u0)Mi(u0)W

1/2
i,h (u0)εi

+ op(h2), (2.15)

hich expresses the difference between β̂
∗

i (u0) and its true value as the sum of three terms plus a higher order term.
learly, each term has own mean. For example, the first term is a standard bias term of local linear estimators, which
ontributes to the asymptotic bias, the second one is due to the replacement of f2t by a linear combination of (f1t , ωt)
so that it gives an asymptotic bias too, the third contains the idiosyncratic errors εi, which determines the variance, and
the last term is a higher order reminder of Taylor expansion. Now, the asymptotic properties of β̂i(u0) are stated in the
following theorems.

Theorem 2.1. Suppose Conditions A1, A2(i)–(v), A3, A4, and A5(i)–(ii) hold, then, for any given i, we have

β̂i(u0) − βi(u0) −
h2

2
µ2β

′′

i (u0) = op(h2) + Op(
1

√
Th

) + MN , (2.16)

where MN = Op(1/
√
N).

Theorem 2.2. Under Conditions A1, A2(i)–(v), A3, A4, and A5(i)(ii)(vi), for any given i, we have
√
Th
(

β̂i(u0) − βi(u0) −
h2

2
µ2β

′′

i (u0) + MN

)
d

→ N(0, Θ2
i (u0)), (2.17)

here h2µ2β
′′

i (u0)/2 is the asymptotic bias term and Θ2
i (u0) = λ0σ

2
i Ω−1

i (u0)/fi(u0) is the asymptotic variance term with
i(·) given in Section 2.3.1.

emark 2.2. Theorem 2.1 gives the convergence rate of the LCCE estimator. Under A5(i), this result shows that the
CCE estimator is consistent. Theorem 2.2 reveals that the LCCE estimator is asymptotically normally distributed. The
symptotic distribution in (2.17) is a standard result for local linear estimation, except for the term M , the probability
N
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rder corresponding to the second summand in (2.15), which is the approximation error due to the replacement of f2t
y the linear combination of (f1t , ωt). Note that, as aforementioned, when estimating the heterogeneous model for fixed
∈ N , one actually considers a time series with length T . Therefore, the convergence rate for β̂i(u0) is

√
Th, depending on

he time dimension T and bandwidth h.

.3.3. Asymptotic properties of β̂(u0)
Similarly, by Taylor’s expansion of the homogeneous functional coefficients β(Uit ) around u0, one has

β(Uit ) = β(u0) + hβ ′(u0)(
Uit − u0

h
) +

h2

2
β ′′(u0)(

Uit − u0

h
)2 + op(h2). (2.18)

y substituting (2.18) into (2.4) and rewriting all the observations of i in vector forms, one obtains

Yi = X̃iβ
∗(u0) +

h2

2
Ai(u0)β ′′(u0) + f1γ1i + f2γ2i + εi + op(h2).

ooling all data together gives that

Y = X̃β∗(u0) +
h2

2
A(u0)β ′′(u0) + F1γ1 + F2γ2 + ε + op(h2), (2.19)

here A(u0) =
(
A⊤

1 (u0), . . . , A⊤

N (u0)
)⊤

, γ1 =
(
γ ⊤

11, . . . , γ
⊤

1N

)⊤
, γ2 =

(
γ ⊤

21, . . . , γ
⊤

2N

)⊤
, F1 = IN ⊗ f1, F2 = IN ⊗ f2 and

=
(
ε⊤

1 , . . . , ε⊤

N

)⊤. By combining (2.19) and (2.12), similar to (2.15), we express the difference between β̂
∗

(u0) and its
rue value as a summation of four terms as follows:

β̂
∗

(u0) − β
∗

(u0)

=
h2

2
[̃X⊤W1/2

h (u0)M(u0)W
1/2
h (u0 )̃X]

−1X̃⊤W1/2
h (u0)M(u0)W

1/2
h (u0)A(u0)β ′′(u0)

+ [̃X⊤W1/2
h (u0)M(u0)W

1/2
h (u0 )̃X]

−1X̃⊤W1/2
h (u0)M(u0)W

1/2
h (u0)F2γ2

+ [̃X⊤W1/2
h (u0)M(u0)W

1/2
h (u0 )̃X]

−1X̃⊤W1/2
h (u0)M(u0)W

1/2
h (u0)ε

+ op(h2). (2.20)

hen, the asymptotic distribution of the LCCEP estimator can be established by studying each of the above four terms.
ow, the asymptotic properties of β̂(u0) are stated in the following two theorems. Note that λmax(A) denotes the maximum
igenvalue of a real symmetric matrix A.

heorem 2.3. Suppose Conditions A1–A3, A4(i)–(iii), and A5(i)–(v) hold, and λmax(E(γ2γ
⊤

2 )) = O(rN ), then

β̂(u0) − β(u0) −
h2

2
µ2β

′′(u0) = op(h2) + Op(
1

√
NTh

) + M∗

N , (2.21)

where M∗

N = Op((r1/2N
+ 1)/N).

heorem 2.4. Under Conditions A1–A5, we have
√
NTh

(
β̂(u0) − β(u0) −

h2

2
µ2β

′′(u0) + M∗

N

)
d

→ N(0, λ0Ω
−1(u0)Ω∗(u0)Ω−1(u0)),

here Ω(u0) and Ω∗(u0) are defined in Section 2.3.1.

emark 2.3. Theorem 2.3 gives the convergence rate of the LCCEP estimator. Compared with Theorem 2.1, there are two
bvious changes. First, the term Op(1/

√
NTh) has a faster convergence rate than the corresponding term Op(1/

√
Th) in

2.16) as both N and T go to infinity simultaneously in Theorem 2.3. This reflects the benefit of using pooled data to
stimate the homogeneous model (2.4). Second, the probability order of the approximate error due to the replacement of
2t by observable variables has changed from MN to M∗

N . Note that M∗

N is not only dependent on N but also the order of the
maximum eigenvalue of E(γ2γ

⊤

2 ), which measures the strength of cross-sectional dependence (see Chudik et al. (2011)).
Theorem 2.4 shows that the LCCEP estimator is asymptotically normally distributed with convergence rate

√
NTh. This

onvergence rate is standard in the nonparametric/semiparametric panel literature (see, for example, Cai and Li (2008);
hen et al. (2012)).

. Hypothesis testing

In this section, a nonparametric test is proposed for testing constancy on functional coefficients and two kinds of
onstancy tests are considered. The first is for testing heterogeneous functional coefficients, i.e., testing whether βi(·) = βi,
here β is a constant which may assume different values for different i’s. The second is for testing homogeneous
i
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functional coefficients; that is to test whether β(·) = β0 for some constant β0. The test statistic of the former is easy
to be constructed and the asymptotic distribution under null hypothesis is standard by employing the results in Hjellvik
et al. (1998) and Fan and Li (1999), because given i, it is actually a time series model. The latter is more involved since the
test statistic (see (3.3) later) itself possesses the structure of a two-fold V-statistic where double summations are needed
along both the individual and time dimensions. Therefore, only focus here is on testing β(·) = β0 in the following study.

3.1. Test statistic

Consider the following null and alternative hypotheses:

H0 : β(u) = β0 versus Ha : β(u) ̸= β0 for some β0 ∈ R
p
.

The test statistic is constructed based on the weighted integrated squared difference between the constant and varying
coefficients; that is, L ≡

∫
[β(u) − β0]

⊤W(u)[β(u) − β0]du, where W(u) is a weight matrix. In Section 2, β(u) is estimated
based on the local linear method. This method is one of the best approaches for boundary correction since its bias does not
depend on the density function of u. However, when constructing a test statistic, the local linear estimator complicates
the asymptotic analysis of the test statistic. Furthermore, as shown in Lin et al. (2014), it suffices to use the local constant
estimator of β(u) to construct the test statistic. The local constant estimator of β(u) in (2.4), denoted by β̂lc(u), is given by

β̂lc(u) = [(NT )−1X⊤W1/2
h (u)M(u)W1/2

h (u)X]
−1(NT )−1X⊤W1/2

h (u)M(u)W1/2
h (u)Y

≡ D−1(u)W (u)Y , (3.1)

here the definition of D(u) and W (u) should be apparent from the above equation. The asymptotic distribution of β̂lc(u)
an be derived following similar steps as in the proof of Theorem 2.4. It is well known that the local constant estimator
nd the local linear estimator share identical asymptotic variance. To get a feasible test statistic, one can replace β(u) in L
ith β̂lc(u) and replace β0 with the CCEP estimator β̂0 proposed by Pesaran (2006) which has the following closed-form
xpression

β̂0 =

[
N∑
i=1

X⊤

i MwXi

]−1 N∑
i=1

X⊤

i MwYi,

here Mw = IT − Hw[H⊤
wHw]

−1H⊤
w , Hw = (hw1, . . . , hwT )⊤ and hwt = (f ⊤

1t , X
⊤

t , Y t )⊤ for 1 ≤ t ≤ T . Since the random
enominator D(u) in (3.1) is not bounded away from 0, a test statistic LNT is proposed based on a weighted integrated
quared difference with W(u) = D⊤(u)D(u) as the weight matrix; that is

LNT ≡

∫
{D(u)[β̂lc(u) − β̂0]}

⊤
{D(u)[β̂lc(u) − β̂0]}du

= (Y − X β̂0)⊤
[∫

W⊤(u)W (u)du
]
(Y − X β̂0).

The test statistic LNT contains the integration
∫
W⊤(u)W (u)du which is not easy to compute in practice. The main difficulty

in getting rid of the integration in LNT is that the multiplicand M(u) in W (u) is a function of u. Note that the purpose of
employing M(u)W1/2

h (u) is to remove Qϑ in (2.11) in the limit. The matrix MQ ≡ IN ⊗ MQ , which does not depend on u,
can achieve the same goal, where MQ = IT − Q (Q⊤Q )−1Q⊤. Thus, W ∗(u) ≡ (NT )−1X⊤W1/2

h (u)MQ is used instead of using
W (u). In addition, the matrix W1/2

h (u) in W ∗(u) can be replaced by Wh(u). The previous analysis results in the following
test statistic

L∗

NT =
1

N2T 2 (Y − X β̂0)⊤MQ

[∫
Wh(u)XX⊤Wh(u)du

]
MQ(Y − X β̂0)

=
1

N2T 2h2

N∑
i=1

N∑
j=1

(Yi − Xiβ̂0)⊤MQ

[∫
Wi(u)XiX⊤

j Wj(u)du
]
MQ (Yj − Xjβ̂0)

=
1

N2T 2h2

N∑
i=1

N∑
j=1

ν̃⊤

i

[∫
Wi(u)XiX⊤

j Wj(u)du
]

ν̃j,

here ν̃i = (ν̃i1, . . . , ν̃iT )⊤ = MQ (Yi −Xiβ̂0) and Wi(·) is obtained by replacing each appearance of kh(·) in Wi,h(·) by k(·/h)
or 1 ≤ i ≤ N . The (t, s)th element of

∫
Wi(u)XiX⊤

j Wj(u)du is X⊤

it Xjs
∫
k((Uit −u)/h)k((Ujs−u)/h)du = hX⊤

it Xjsk̄((Uit −Ujs)/h),
here k̄(v) =

∫
k(u)k(v−u)du is the twofold convolution kernel derived from k(·). As pointed out by Li et al. (2002) and Lin

t al. (2014), one does not even have to use the convolution kernels. Simply replacing k̄((U − U )/h) by k((U − U )/h)
it js it js
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esults in the following test statistic

L∗∗

NT =
1

N2T 2h

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

ν̃it ν̃jsX⊤

it Xjsk(
Uit − Ujs

h
)

=
1

N2T 2h

N∑
i=1

N∑
j=1

ν̃⊤

i W(ωi, ωj)ν̃j, (3.2)

here W(ωi, ωj) is the T × T matrix whose (t, s)th element is X⊤

it Xjsk((Uit − Ujs)/h). Finally, the i = j term in (3.2) is
ropped to remove a nonzero center term from L∗∗

NT under H0. Therefore, the final form of our test statistic is given by

L̂NT =
1

N2T 2h

N∑
i=1

N∑
j̸=i

ν̃⊤

i W(ωi, ωj)ν̃j. (3.3)

t is obvious that H0 is rejected if and only if |L̂NT | is over a certain critical value.

.2. Asymptotic theory of test statistic

In order to derive the asymptotic distribution of the test statistic, the following assumptions are necessary:

1. (i) Let εi = (εi1, . . . , εiT )
⊤, vi = (vi1, . . . , viT )

⊤, where {εi}
N
i=1 and {vi}

N
i=1 are independently and identically distributed

cross i. (ii) Let ∥εit∥δ1 = (E|εit |
δ1 )

1/δ1 , ∥εit∥δ1 < ∞, where δ1 > 4. Given i, let αε(τ ) be the α-mixing coefficient of
εit : t ≥ 1} such that

∑
∞

τ=1 ταε(τ )(δ1−4)/δ1 < ∞.

2. (i) Let fUit1
(Uj1t2 ) denote the conditional density of Uj1t2 given Uit1 , and fUit1 ,Uit2

(Uj1t3 ,Uj2t4 ) be the conditional density of
Uj1t3 ,Uj2t4 ) given (Uit1 ,Uit2 ). fUit1

(Uj1t2 ) and fUit1 ,Uit2
(Uj1t3 ,Uj2t4 ) are uniformly bounded. (ii) Let D = {Uit : i = 1, . . . ,N; t =

, . . . , T }, Xit,l the lth element of Xit , and qt,k the kth element of qt , respectively. For all 1 ≤ i1, i2 ≤ N , 1 ≤ t1, t2 ≤ T ,
≤ l,m ≤ p, and 1 ≤ k1, k2 ≤ d with d = m1 + p + pz + 1, ED |X⊤

i1t1
Xi2t2 |

8 < ∞, ED |Xi1t1,lXi2t2,m|
8 < ∞ and

D |qt1,k1qt2,k2 |
8 < ∞, where ED(·) is the conditional expectation conditional on D .

3. h → 0, Th → ∞, T/N → 0 as (N, T ) → ∞.

emark 3.1. Note that the proposed test statistic is of the form of a U-statistic. It intends to employ the theories developed
y Hall (1984) and Powell et al. (1989) for a U-statistic to derive the asymptotic distributions of L̂NT . To reach this goal,
n T1(i), εi and vi are assumed to be independently and identically distributed across the cross-sectional dimension. T1(ii)
s required by the use of the Davydov’s inequality to obtain some upper bound for the cross-moment for mixing random
ariables and T2 includes some boundedness conditions on functionals involved. Finally, in T3, it needs an additional
equirement that T/N → 0 as (N, T ) → ∞, which is also used in Theorem 4 of Pesaran (2006).

The asymptotic distributions of our proposed test statistic L̂NT under the null and alternative hypotheses are given in
he following two theorems.

heorem 3.1. If Assumptions A1, A2(i)–(v), A3 and Assumptions T1–T3 hold, we have, under the null hypothesis H0,

JNT = NTh1/2L̂NT/
√
V̂

d
→ N(0, 1), (3.4)

where

V̂ =
2

N2T 2h

N∑
i=1

N∑
j̸=i

∑
1≤t,s≤T

ν̃2
it ν̃

2
js(X

⊤

it Xjs)2k2(
Uit − Ujs

h
), (3.5)

is a consistent estimator of the asymptotic variance of NTh1/2L̂NT , i.e.,

V = plimT→∞

2
T 2

∑
1≤t,s≤T

EDf

[
ε2
1tε

2
2s(X

⊤

1tX2s)2
1
h
k2(

U1t − U2s

h
)
]

,

where EDf (·) denotes the conditional expectation given Df = {(f1t , f2t) : t = 1, . . . , T }.

Theorem 3.2. If Assumptions A1, A2(i)–(v), A3 and Assumptions T1–T3 hold, we have, under the alternative Ha,

Pr{JNT ≥ MNT } → 1 as (N, T ) → ∞,

here M is any non-stochastic, positive sequence such that M = o(NTh1/2).
NT NT
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Remark 3.2. Theorem 3.1 shows that, under H0, the standardized statistic JNT approaches toward the asymptotic standard
normal distribution at the rate NTh1/2. In addition, estimation of the asymptotic variance V involves the use of the
transformed residuals ν̃i = MQ (Yi − Xiβ̂0), which does not need to know the information of the unobserved factors.
herefore, our test statistic is user-friendly and easily computed. Theorem 3.2 shows that, under the alternative Ha, the
robability that the proposed test rejects the null hypothesis approaches 1 as both N and T go to infinity simultaneously,

which implies that the proposed test is consistent.

3.3. A bootstrap procedure

It is well-known that kernel-based nonparametric tests converge to the asymptotic distributions very slowly and
often suffer from finite sample size distortions. Therefore, in addition to Theorem 3.1, where the asymptotic normal
distribution is derived under H0 for the proposed test statistic, a bootstrap approach is proposed to improve its finite
sample performance.

For sake of exposition, here we only consider the case that f1t = 1 for all t . The general case can be dealt with in a
similar way. Therefore, under H0, the following model is considered:

Yit = X⊤

it β0 + γ1i + γ ⊤

2i f2t + εit .

Our bootstrap procedure is based on the ‘‘fixed regressor bootstrap’’ given by Hansen (2000) which generates a
bootstrapping sample using the observable covariates Xit and the estimated residuals ε̂it which is estimated by following
the common practice in panel data literature (e.g. Jin and Su (2013)) to estimate unobservable factors f2t and factor
loadings γ2i with the principal component analysis (PCA) method. Specifically, the bootstrapping procedure is given as
follows:

(i) Estimate the linear panel data model under H0 using the CCEP method proposed by Pesaran (2006) and obtain
ν̂it = Yit − X⊤

it β̂0 and ν̃i = MQ (Yi − Xiβ̂0) for all i and t . Calculate JNT using (3.3)–(3.5).
(ii) Estimate the unobservable common factor f2t and factor loadings γ2i by the PCA method. The estimates are

denoted by f̂2t and γ̂2i, respectively. Estimate γ1i using γ̂1i = T−1∑T
t=1[Yit − X⊤

it β̂0 − γ̂ ⊤

2i f̂2t ] for all i. Obtain the residuals
ε̂it = ν̂it − γ̂1i − γ̂ ⊤

2i f̂2t .
(iii) Compute the wild bootstrap errors from {ε̂it}i=1,...,N;t=1,...,T by ε̂∗

it = ε̂itη
∗

it where η∗

it is generated from IIDN(0,1)
for all i and t . Generate Y ∗

it via Y ∗

it = X⊤

it β̂0 + γ̂1i + γ̂ ⊤

2i f̂2t + ε̂∗

it for i = 1, . . . ,N and t = 1, . . . , T . Then regard
{(Xit ,Uit , Y ∗

it )}i=1,...,N;t=1,...,T as the bootstrapping sample.
(iv) Using the bootstrapping sample, one can recalculate the CCEP estimator for β0, denoted by β̂∗

0 , and then obtain
the bootstrapping transformed residuals via ν̃∗

i = (ν̃∗

i1, . . . , ν̃
∗

iT )
⊤

= MQ (Y ∗

i − Xiβ̂
∗

0 ) for all i, where Y ∗

i is defined in the
same way as Yi except that Yit is replaced by Y ∗

it wherever it occurs.
(v) Compute the bootstrap test statistic J∗

NT in the same way as JNT by using ν̃∗

i obtained from step (iv) instead. That
is,

J∗

NT = NTh1/2L̂∗

NT/

√
V̂ ∗,

where

L̂∗

NT =
1

N2T 2h

N∑
i=1

N∑
j̸=i

ν̃∗⊤

i W(ωi, ωj)ν̃∗

j

nd

V̂ ∗
=

2
N2T 2h

N∑
i=1

N∑
j̸=i

∑
1≤t,s≤T

ν̃∗2
it ν̃∗2

js (X⊤

it Xjs)2k2(
Uit − Ujs

h
).

(vi) Repeat steps (iii)–(v) B∗ times to get B∗ bootstrapping test statistics {J∗

NT ,b}
B∗

b=1. Calculate the bootstrapping p-value p∗

via p∗
= B∗−1∑B∗

b=1 1(J
∗

NT ,b ≥ JNT ). Then, reject the null hypothesis of constancy in coefficients if p∗ is smaller than the
prescribed level of significance.

4. Monte Carlo simulations

In this section, Monte Carlo simulations are conducted to evaluate the finite sample performance of the proposed
estimators and test statistic. Section 4.1 investigates the finite sample properties of LCCE and LCCEP estimators defined
by (2.10) and (2.12) and Section 4.2 assesses the size and power performance of our proposed test statistic for a given
sample size.
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Table 1
Median of RMSE1 of LCCE estimator.
N/T 50 100 200

LCCEfr LCCErd LCCEfr LCCErd LCCEfr LCCErd

50 0.5738 0.9161 0.3236 0.5304 0.2201 0.3562
100 0.7252 1.2353 0.3923 0.7134 0.2532 0.4494
200 0.9116 1.7876 0.4684 0.9838 0.3106 0.6251

4.1. Finite sample performance of estimators

Consider the following data generating process (DGP):

Yit = βi(Uit )Xit + γ1i + eit and eit = γ2i,1f2t,1 + γ2i,2f2t,2 + εit ,

where βi(Uit ) = exp(Uit )/(exp(Uit ) + 1) + δi(0.5Uit − 0.25U2
it ), Xit = Γ1i,x + Γ2i,x1f2t,1 + Γ2i,x2f2t,2 + vit,x, and Uit =

1i,u +Γ2i,u1f2t,1 +Γ2i,u2f2t,2 +vit,u. The above DGP follows closely to those of Pesaran (2006) and Su and Jin (2012). In this
GP, there are one observable common factor (f1t = 1), and two unobservable common factors (f2t,1, f2t,2). The individual
ffect γ1i is generated as γ1i = 0.5X̄i, where X̄i = T−1ΣT

t=1Xit , so that γ1i and Xit are correlated for 1 ≤ t ≤ T . Whether
r not the functional coefficients are heterogeneous depends on δi. The δi is generated from IIDU(0,1) for heterogeneous
unctional coefficients, while δi is set to be 0.5 for all 1 ≤ i ≤ N in the homogeneous case.

Other components in the DGP are generated as follows:

(1) The idiosyncratic errors εit are generated independently of each other as stationary AR(1) processes: εit = ρiεεi,t−1 +

σi

√
(1 − ρ2

iε
)ζit , t = −49, . . . , 1, . . . , T , where ζit ∼ IIDN(0, 1) across i and t , ρiε ∼ IIDU(0.05, 0.95) across i, and

σ 2
i ∼ IIDU(0.5, 1.5) across i.

(2) The individual-specific errors vit,x of Xit are generated independently of each other as stationary AR(1) processes:
vit,x = ρvixvi,t−1,x +wit,x, t = −49, . . . , 1, . . . , T , where wit,x ∼ IIDN(0, 1−ρ2

vix) across i and t , ρvix ∼ IIDU(0.05, 0.95)
across i, and wi,−50,x = 0 for all i. The individual-specific errors vit,u of Uit are generated in the same way as vit,x are
generated. For each i, {εit}Tt=1, {vit,x}

T
t=1 and {vit,u}

T
t=1 are generated independently of each other.

(3) The unobservable common factors f2t,j(j = 1, 2) are generated as independently stationary AR(1) processes: f2t,j =

ρfjf2,t−1,j + vft,j, t = −49, . . . , 1, . . . , T , where vft,j ∼ IIDN(0, 1 − ρ2
fj ) across t , ρfj = 0.5, and f2,−50,j = 0.

(4) The factor loadings Γ1i = (Γ1i,x, Γ1i,u)⊤ are generated as follows

Γ1i = (Γ1i,x, Γ1i,u)⊤ ∼ IIDN
((

0
0

)
,

(
1 0.5
0.5 1

))
.

The factor loadings γ2i = (γ2i,1, γ2i,2)⊤ of the unobservable common factors in eit are generated in the same way as
Γ1i are generated.

(5) For the factor loadings Γ2i of the unobservable common factors in Xit and Uit , two cases, denoted by A and B, are
considered, respectively. Γ2i are generated such that vec(Γ2i) = (Γ2i,x1, Γ2i,x2, Γ2i,u1, Γ2i,u2)

⊤

∼ IIDN(Γ2,τ , I4), τ = A,
B, where Γ2,A = (1, 0, 0, 1)

⊤

and Γ2,B = (1, 1, 0, 0)
⊤

. In view of A3(iv), Case A satisfies the full rank condition.
However, in Case B, the full rank condition is violated.

N, T ) are taken as pairs with (N , T = 50, 100, 200). The number of Monte Carlo replications is 1000. The Epanechnikov
ernel k(u) = 0.75(1−u2)1{|u| ≤ 1} is used to compute the local linear estimators. Similar to (5.9) in Fan and Yao (2003),
t is suggested to choose h = c0σ̂uT−1/5 for heterogeneous model and h = c0σ̂u(NT )−1/5 for homogeneous model, where
ˆu is the sample standard deviation of smoothing variable {Uit}i=1,...,N;t=1,...,T and c0 = 2.34.

Table 1 reports the medians of the root mean squared error (RMSE) from 1000 replications for the LCCE estimators.
he RMSE for heterogeneous model is defined by

RMSE2
1 =

1
NDgrid

ΣN
i=1Σ

Dgrid
k=1

[
β̂i(uk) − βi(uk)

]2
,

here {uk : k = 1, . . . ,Dgrid} are grid points. The simulation results are summarized in the case that the full rank
ondition is satisfied in the columns below LCCEfr in Table 1. Firstly, one can observe that the increase of N does not
elp the estimation of the unknown heterogeneous coefficient functions, which is as expected since larger N implies
ore heterogeneous relationships and the convergence rate of LCCE estimators only depends on the time dimension T .
owever, as T increases, RMSEs decrease for the estimators. The columns below LCCErd of Table 1 report the results for
he case when the rank condition is not satisfied. Clearly, in the rank deficient case, the LCCE estimators loss certain extent
f efficiency compared to the full rank case.
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Fig. 1. From left to right: plots of power curves against δ for c0 = 0.5, 1.0, and 2.0 at 5% significance level. For each c0 , power curves for N = 40
blue solid line), N = 50 (red dashed line), and N = 60 (green dotted line) are depicted, respectively. For each N , T is set to be ⌊N/4⌋.

Table 2
Median of RMSE2 of LCCEP estimator.
N/T 50 100 200

LCCEPfr LCCEPrd LCCEPfr LCCEPrd LCCEPfr LCCEPrd

50 0.0604 0.0720 0.0443 0.0568 0.0328 0.0455
100 0.0471 0.0542 0.0337 0.0414 0.0245 0.0337
200 0.0361 0.0416 0.0250 0.0321 0.0186 0.0255

To evaluate the estimation accuracy of the LCCEP estimators, the medians of RMSE from 1000 replications are computed
too and the RMSE for homogeneous model is defined by

RMSE2
2 =

1
Dgrid

Σ
Dgrid
k=1

[
β̂(uk) − β(uk)

]2
.

The simulation results are presented in Table 2, which imply that, as either N or T increases, the RMSEs of the proposed
LCCEP estimators decrease significantly as expected for both the full rank case and rank deficiency case. Moreover,
although there still exists efficiency loss, the difference between two cases in terms of RMSEs becomes smaller than
those in the LCCE estimators.

4.2. Finite sample performance of test

To assess the size and power performance of the proposed test statistic, one can consider the null hypothesis H0 :

βj(Uit ) = θj for j = 0, 1 versus the alternative Ha : βj(Uit ) ̸= θj for at least one j. The power is evaluated under a series
of alternative models indexed by δ, such that Ha : βj(Uit ) = θj + δ(β∗

j (Uit ) − θj) for j = 0, 1 and 0 ≤ δ ≤ 1, where
β∗

0 (Uit ) = exp(Uit )/(exp(Uit ) + 1) and β∗

1 (Uit ) = 2 sin(Uit ). θj is chosen to be the average height of β∗

j (Uit ) for j = 0, 1
(θ0 = 0.48 and θ1 = 0.01).

The following DGPs are considered in the evaluation of the finite sample size and power performance of our proposed
test statistic:

DGP0 : Yit = θ0Xit,1 + θ1Xit,2 + γ1i + eit ,
DGPδ : Yit = β0(Uit )Xit,1 + β1(Uit )Xit,2 + γ1i + eit ,

where eit = γ2i,1f2t,1+γ2i,2f2t,2+εit , Xit,1 = Γ1i,x1+Γ2i,x1f2t,1+Γ2i,x2f2t,2+vit,x1, Xit,2 = Γ1i,x2+Γ ∗

2i,x1f2t,1+Γ ∗

2i,x2f2t,2+vit,x2,
Uit = Γ1i,u + Γ2i,u1f2t,1 + Γ2i,u2f2t,2 + vit,u, and DGPδ indicates that β0(·) and β1(·) depend on δ. In order to demonstrate
how powers change over different values of δ, δ is set to be 0.10, 0.15, 0.20, 0.25, 0.30, and 0.35. v , v , f , Γ , Γ
it,xj it,u 2t,j 1i,xj 1i,u
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able 3
roportion of rejections under H0 .
DGP N T c0 = 0.5 c0 = 1 c0 = 2

1% 5% 10% 1% 5% 10% 1% 5% 10%

Tests based on standard normal critical values

0 50 ⌊N/8⌋ 0.006 0.044 0.096 0.008 0.042 0.066 0.006 0.014 0.032
⌊N/4⌋ 0.016 0.054 0.088 0.014 0.046 0.078 0.004 0.024 0.046
⌊N/2⌋ 0.008 0.050 0.116 0.010 0.038 0.054 0.008 0.034 0.058

60 ⌊N/8⌋ 0.010 0.054 0.086 0.018 0.048 0.078 0.006 0.030 0.054
⌊N/4⌋ 0.018 0.052 0.080 0.006 0.058 0.096 0.014 0.030 0.056
⌊N/2⌋ 0.016 0.056 0.098 0.010 0.058 0.088 0.006 0.024 0.058

70 ⌊N/8⌋ 0.014 0.050 0.082 0.010 0.048 0.076 0.008 0.028 0.054
⌊N/4⌋ 0.016 0.052 0.082 0.012 0.032 0.068 0.008 0.050 0.076
⌊N/2⌋ 0.016 0.050 0.082 0.012 0.046 0.078 0.010 0.040 0.058

Tests based on Bootstrap p-values

0 50 ⌊N/8⌋ 0.010 0.052 0.114 0.010 0.048 0.106 0.006 0.052 0.110
⌊N/4⌋ 0.010 0.050 0.102 0.012 0.050 0.088 0.008 0.040 0.082
⌊N/2⌋ 0.016 0.042 0.086 0.014 0.052 0.108 0.014 0.046 0.098

60 ⌊N/8⌋ 0.010 0.060 0.106 0.010 0.054 0.116 0.016 0.054 0.096
⌊N/4⌋ 0.008 0.044 0.102 0.018 0.070 0.106 0.018 0.056 0.094
⌊N/2⌋ 0.010 0.036 0.086 0.022 0.052 0.120 0.008 0.048 0.096

70 ⌊N/8⌋ 0.014 0.042 0.098 0.010 0.068 0.096 0.012 0.062 0.106
⌊N/4⌋ 0.018 0.046 0.090 0.024 0.054 0.110 0.012 0.062 0.116
⌊N/2⌋ 0.012 0.046 0.096 0.010 0.046 0.100 0.006 0.034 0.094

and εit are generated independently from IIDN(0,1) for j = 1 and 2. The factor loadings Γ2i of the unobservable common
actors in Xit,j (j = 1, 2) and Uit are generated from vec(Γ2i) = (Γ2i,x1, Γ2i,x2, Γ ∗

2i,x1, Γ ∗

2i,x2, Γ2i,u1, Γ2i,u2)
⊤

∼ IIDN(Γ2, I6),
where Γ2 = (1, 1.5, 1, 0, 0, 1)

⊤

. The factor loadings γ2i = (γ2i,1, γ2i,2)⊤ of the unobservable common factors in eit are
enerated in the same way as step (4) in Section 4.1 and γ1i = 0.5X̄i1 + 0.3X̄i2, where X̄ij = T−1ΣT

t=1Xit,j for j = 1 and
. For evaluating the size performance, N is chosen to 50, 60, and 70. Furthermore, in view of Assumption T3, we set
= ⌊N/8⌋, ⌊N/4⌋, ⌊N/2⌋ for each N , where ⌊r⌋ denotes the integral part of r . Table 3 reports the actual proportion

f rejections under H0 at nominal levels 1%, 5%, and 10%, respectively. The bandwidth h is taken as c0σ̂u(NT )−1/5 with
0 = 0.5, 1.0, and 2.0 to examine the sensitivity of the proposed test to the bandwidth selection. The upper panel of Table 3
eports the test results using critical values taken from the standard normal distribution. It is obvious that the results
ased on asymptotic distribution are sensitive to the choice of bandwidth. It tends to under-rejection when the value of
0 is large at 5% and 10% nominal levels. Therefore, it turns to using the proposed Bootstrapping method. The number
f replications is 500, and within each replication, 300 Bootstrapping samples are used to calculate the Bootstrapping
-values. The test results based on Bootstrapping p-values are reported in the lower panel of Table 3. It is obvious to
bserve that the proposed Bootstrapping method is much less sensitive to the choice of bandwidth than the asymptotic
ethod, and the former also improves the finite sample size performance immensely. The next is to demonstrate the
ower performance of our test statistic. N is taken as 40, 50, and 60. Meanwhile, T and c0 are chosen the same as those in
he size evaluation. Tables 4 and 5 display the actual proportion of rejections under the alternative Ha for different values
f δ. One can see that, for a fixed δ, the rejection rate increases as either N or T increases. In addition, when δ gets larger,
hich indicates a larger deviation from the null model, the rejection rate increases for all (N, T ) combinations. To better
emonstrate the power performance, the power functions are plotted against δ for c0 = 0.5, 1.0, and 2.0 at 5% nominal
evel in Fig. 1. For each c0, three power curves are computed corresponding to N = 40, 50, and 60 and T = ⌊N/4⌋. From
hese figures, one can find that the power curves are similar for different choices of c0. The power increases rapidly to 1
s δ increases, which shows a good power performance in finite samples.

. Empirical analysis

In this section, the empirical performance of the Fama and French (1993) (FF hereafter) three-factor model2 is re-
xamined using the proposed functional-coefficient panel data model with cross-sectional dependence. There has been
umerous empirical evidence of showing that betas in capital asset pricing models are in general time varying. For
xample, based on 25 portfolios formed on size and book-to-market ratio, Ferson and Harvey (1999) found a strong
vidence that betas in the FF model vary with lagged macroeconomic and financial instruments. Wang (2003) also
rovided a clear empirical evidence to argue that the market betas vary with conditioning variables such as the dividend
rice ratio and the one-month Treasury bill rate. To characterize the dynamic pattern of conditional betas, beta coefficients

2 A comprehensive discussion about the issue of choosing risk factors in a linear asset pricing model can be found in Fama and French (2018).
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Table 4
Proportion of rejections under Ha .
DGP N T c0 = 0.5 c0 = 1 c0 = 2

1% 5% 10% 1% 5% 10% 1% 5% 10%

δ Tests based on Bootstrap critical values

0.100 40 ⌊N/8⌋ 0.010 0.052 0.102 0.032 0.090 0.142 0.014 0.048 0.094
⌊N/4⌋ 0.032 0.148 0.206 0.054 0.136 0.250 0.056 0.156 0.250
⌊N/2⌋ 0.160 0.328 0.472 0.286 0.452 0.580 0.230 0.448 0.604

50 ⌊N/8⌋ 0.006 0.096 0.176 0.038 0.094 0.180 0.028 0.084 0.166
⌊N/4⌋ 0.058 0.228 0.352 0.118 0.276 0.378 0.098 0.286 0.442
⌊N/2⌋ 0.246 0.482 0.626 0.498 0.732 0.836 0.486 0.750 0.844

60 ⌊N/8⌋ 0.058 0.112 0.178 0.048 0.120 0.200 0.036 0.116 0.198
⌊N/4⌋ 0.148 0.366 0.508 0.286 0.482 0.640 0.234 0.468 0.624
⌊N/2⌋ 0.576 0.760 0.878 0.706 0.880 0.948 0.794 0.936 0.962

0.150 40 ⌊N/8⌋ 0.014 0.060 0.128 0.042 0.098 0.184 0.018 0.074 0.142
⌊N/4⌋ 0.110 0.300 0.446 0.154 0.372 0.498 0.134 0.342 0.470
⌊N/2⌋ 0.564 0.740 0.842 0.726 0.856 0.900 0.690 0.898 0.942

50 ⌊N/8⌋ 0.030 0.134 0.212 0.062 0.152 0.226 0.036 0.122 0.212
⌊N/4⌋ 0.240 0.458 0.580 0.332 0.626 0.724 0.352 0.574 0.758
⌊N/2⌋ 0.806 0.948 0.964 0.948 0.990 0.990 0.954 0.996 0.996

60 ⌊N/8⌋ 0.060 0.190 0.328 0.144 0.270 0.384 0.140 0.282 0.374
⌊N/4⌋ 0.508 0.756 0.840 0.732 0.874 0.924 0.756 0.896 0.944
⌊N/2⌋ 0.984 1.000 1.000 0.992 1.000 1.000 0.998 1.000 1.000

0.200 40 ⌊N/8⌋ 0.024 0.104 0.178 0.044 0.114 0.192 0.018 0.108 0.180
⌊N/4⌋ 0.246 0.422 0.574 0.328 0.556 0.674 0.280 0.634 0.744
⌊N/2⌋ 0.824 0.932 0.962 0.964 0.994 0.996 0.970 0.990 0.998

50 ⌊N/8⌋ 0.088 0.226 0.342 0.086 0.246 0.338 0.076 0.230 0.356
⌊N/4⌋ 0.544 0.766 0.846 0.698 0.882 0.920 0.698 0.888 0.938
⌊N/2⌋ 0.992 0.998 0.998 1.000 1.000 1.000 1.000 1.000 1.000

60 ⌊N/8⌋ 0.128 0.326 0.488 0.254 0.440 0.590 0.266 0.488 0.588
⌊N/4⌋ 0.860 0.946 0.968 0.950 0.988 0.992 0.954 0.992 0.996
⌊N/2⌋ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

are treated as unknown functions of macroeconomic and financial variables used in previous studies. Moreover, in contrast
with existing studies, to the best of our knowledge, this is the first attempt to estimate conditional betas using the entire
panel data allowing for possible cross-sectional dependence among portfolio returns. Finally, the nonparametric L2-norm
tatistic is applied to testing the constancy of betas and the significance of pricing errors.
We collect monthly returns of the Fama–French 25 and 100 portfolios which are sorted by size (‘‘S’’) and book-to-

arket ratio (‘‘B’’) for the period from July 1963 to July 2018. The data of portfolio returns, the monthly risk-free rate,
nd the FF three factors are all downloaded from the Kenneth French Data Library.3 Following Ferson and Harvey (1999)

and Cai et al. (2015b), various conditional variables are considered, including the one-month Treasury bill yield (RF), the
spread between the returns of the three-month and the one-month Treasury bill (r3m1), the spread between Moody’s
Baa and Aaa corporate bond yield (BmA), and the spread between a ten-year and one-year Treasury bond yields (r10m1).

The following heterogeneous vary-coefficient panel data model is adopted for estimating the conditional FF three-factor
model:

Rp,t+1 = αp(Up,t ) + βp,1(Up,t )MKTt+1 + βp,2(Up,t )HMLt+1 + βp,3(Up,t )SMBt+1 + ep,t+1 (5.1)

with ep,t = γ ⊤

2pf2t + εp,t , where Rp,t+1 is the excess return of portfolio p at time t +1, MKTt+1, HMLt+1 and SMBt+1 are the
Fama–French three factors at time t + 1, and Up,t is one of the four aforementioned lagged instruments. The f2t denotes
a vector of unobservable factors. In order to implement our proposed estimation procedure, additional covariates Zpt are
needed to filter the unobserved common factors. Particularly, Zpt are chosen to be the volatility, coskewness of Harvey
and Siddique (2000), and kurtosis of portfolio returns.

First, testing the constancy of alphas and betas using single time series data of each portfolio is considered for the FF
25 portfolios. The null hypothesis is

H0 : αp(u) = αp, βp,j(u) = βp,j for j = 1, 2, 3,

and the alternative hypothesis is

Ha : either αp(u) = fp,0(u) or βp,j(u) = fp,j(u) for some j ∈ {1, 2, 3},

3 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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roportion of rejections under Ha .
DGP N T c0 = 0.5 c0 = 1 c0 = 2

1% 5% 10% 1% 5% 10% 1% 5% 10%

δ Tests based on Bootstrap critical values

0.250 40 ⌊N/8⌋ 0.052 0.124 0.212 0.064 0.162 0.248 0.068 0.150 0.240
⌊N/4⌋ 0.416 0.654 0.784 0.542 0.800 0.872 0.590 0.838 0.900
⌊N/2⌋ 0.988 1.000 1.000 0.996 0.998 1.000 0.998 1.000 1.000

50 ⌊N/8⌋ 0.112 0.314 0.432 0.254 0.454 0.560 0.150 0.338 0.468
⌊N/4⌋ 0.758 0.918 0.952 0.920 0.980 0.990 0.918 0.986 0.992
⌊N/2⌋ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

60 ⌊N/8⌋ 0.232 0.560 0.676 0.342 0.650 0.738 0.414 0.598 0.720
⌊N/4⌋ 0.986 0.998 0.998 0.994 1.000 1.000 0.998 1.000 1.000
⌊N/2⌋ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.300 40 ⌊N/8⌋ 0.064 0.158 0.266 0.072 0.182 0.312 0.070 0.154 0.292
⌊N/4⌋ 0.710 0.852 0.928 0.814 0.924 0.964 0.742 0.926 0.962
⌊N/2⌋ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

50 ⌊N/8⌋ 0.196 0.396 0.518 0.326 0.486 0.624 0.250 0.458 0.590
⌊N/4⌋ 0.920 0.980 0.992 0.986 0.996 0.998 0.982 0.998 0.998
⌊N/2⌋ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

60 ⌊N/8⌋ 0.530 0.708 0.800 0.610 0.820 0.890 0.614 0.842 0.912
⌊N/4⌋ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
⌊N/2⌋ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.350 40 ⌊N/8⌋ 0.068 0.186 0.308 0.082 0.218 0.392 0.070 0.224 0.350
⌊N/4⌋ 0.878 0.964 0.982 0.950 0.984 0.994 0.942 0.992 0.998
⌊N/2⌋ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

50 ⌊N/8⌋ 0.254 0.478 0.628 0.372 0.574 0.708 0.324 0.608 0.758
⌊N/4⌋ 0.992 0.998 1.000 1.000 1.000 1.000 0.996 1.000 1.000
⌊N/2⌋ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

60 ⌊N/8⌋ 0.618 0.858 0.908 0.844 0.926 0.964 0.782 0.918 0.954
⌊N/4⌋ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
⌊N/2⌋ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 6
Bootstrap p-values for constancy test based on time series data.

B1 B2 B3 B4 B5

Panel A: p-values using RF as conditioning variable

S1 0.0180 0.0821 0.0841 0.0000 0.0150
S2 0.2062 0.0120 0.0220 0.0070 0.3784
S3 0.6176 0.0340 0.0020 0.0000 0.0200
S4 0.1181 0.0080 0.0000 0.0010 0.2943
S5 0.1502 0.0320 0.0400 0.0010 0.1041

Panel B: p-values using r3m1 as conditioning variable

S1 0.0050 0.0350 0.1251 0.0000 0.0090
S2 0.1962 0.0000 0.0050 0.0060 0.3754
S3 0.8669 0.0160 0.0000 0.0000 0.0050
S4 0.4114 0.0000 0.0000 0.0000 0.0881
S5 0.0781 0.0000 0.0210 0.0000 0.0470

Panel C: p-values using BmA as conditioning variable

S1 0.1912 0.2523 0.0000 0.6056 0.0130
S2 0.1351 0.0010 0.0460 0.0521 0.0330
S3 0.0571 0.1051 0.0010 0.0000 0.1622
S4 0.1772 0.0010 0.0000 0.0541 0.3133
S5 0.0190 0.0000 0.0030 0.0280 0.1652

Panel D: p-values using r10m1 as conditioning variable

S1 0.0160 0.1852 0.0090 0.7427 0.0170
S2 0.1512 0.0000 0.0190 0.0280 0.0000
S3 0.9640 0.0030 0.0050 0.0000 0.0140
S4 0.7548 0.0000 0.0000 0.0060 0.0561
S5 0.6246 0.0000 0.0180 0.0250 0.0420

where fp,j(·) for j = 0, 1, 2, 3 are unknown functions and at least one of them is varying with conditioning variable.
Following Wang (2003), the test is conducted for different choice of conditioning variables from RF, r3m1, BmA and
r10m1, respectively. The nonparametric test of Fan and Li (1999) is employed for testing the constancy of betas and
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Table 7
Bootstrap p-values for testing alpha based on time series data.

B1 B2 B3 B4 B5

Panel A: p-values using rf as conditioning variable

S1 0.2120 0.0470** 0.8660 0.2800 0.3170
S2 0.1520 0.7740 0.9430 0.4190 0.7380
S3 0.9920 0.5070 0.8550 0.6970 0.9900
S4 0.3150 0.5710 0.4530 0.4990 0.1400
S5 0.1310 0.0880* 0.7900 0.2140 0.2240

Panel B: p-values using r3m1 as conditioning variable

S1 0.1880 0.1850 0.1520 0.7900 0.6110
S2 0.5710 0.3110 0.0550* 0.1560 0.8900
S3 0.3310 0.0630* 0.2550 0.9670 0.6790
S4 0.3160 0.9090 0.6400 0.8230 0.4570
S5 0.1530 0.5210 0.5870 0.4500 0.0680*

Panel C: p-values using BmA as conditioning variable

S1 0.5190 0.6280 0.4850 0.2930 0.6310
S2 0.1000 0.3990 0.8890 0.2220 0.3570
S3 0.7000 0.5890 0.8600 0.3230 0.7850
S4 0.2150 0.8470 0.1540 0.1770 0.8250
S5 0.0810* 0.7600 0.5450 0.7910 0.6870

Panel D: p-values using r10m1 as conditioning variable

S1 0.2340 0.9690 0.1690 0.8350 0.1700
S2 0.8030 0.8340 0.1570 0.8580 0.8010
S3 0.1840 0.2020 0.1790 0.0070*** 0.3990
S4 0.4950 0.9900 0.0800* 0.7730 0.0700*
S5 0.2550 0.6110 0.5170 0.4600 0.6370

*Rejections at 10% appear in the table.
**Rejections at 5% appear in the table.
***Rejections at 1% appear in the table.

Table 8
Bootstrap p-values for constancy test based on panel data.

B1 B2 B3 B4 B5

Panel A: p-values using RF as conditioning variable

S1 0.4565 0.0521 0.0000 0.9540 0.9980
S2 0.0100 0.0000 0.0000 0.0000 0.0000
S3 0.0000 0.0000 0.0000 0.0000 0.0000
S4 0.0000 0.0000 0.0000 0.0000 0.0140
S5 1.0000 0.0000 0.0250 0.0020 0.0240

Panel B: p-values using r3m1 as conditioning variable

S1 0.4645 0.0581 0.0000 0.9520 0.9880
S2 0.3734 0.0000 0.0000 0.0000 0.0000
S3 0.0000 0.0000 0.0010 0.0000 0.0000
S4 0.0000 0.0000 0.0010 0.0000 0.0030
S5 1.0000 0.0000 0.0370 0.0040 0.0200

Panel C: p-values using BmA as conditioning variable

S1 0.4525 0.0671 0.0000 1.0000 1.0000
S2 0.0320 0.0000 0.0000 0.0000 0.0000
S3 0.0000 0.0000 0.0000 0.0000 0.0000
S4 0.0000 0.0000 0.0000 0.0000 0.0010
S5 1.0000 0.0000 0.0480 0.0030 0.0190

Panel D: p-values using r10m1 as conditioning variable

S1 0.4424 0.0621 0.0000 0.9910 0.9990
S2 0.0220 0.0000 0.0000 0.0000 0.0000
S3 0.0000 0.0000 0.0000 0.0000 0.0000
S4 0.0000 0.0000 0.0000 0.0010 0.0340
S5 1.0000 0.0000 0.0200 0.0010 0.0180

alphas. Table 6 reports the Bootstrapping p-values for testing H0 based on 1000 Bootstrapping samples. The notations S1
through S5 and B1 through B5 stand for the FF quantiles on size and book-to-market ratio. The numbers in the row of S1
and the column of B5, for example, are the p-values for testing the constancy for the portfolio of stocks in the smallest size
quantile and the highest book-to-market quantile. For each conditioning variable U , the bandwidth h = 2.34σ̂ T−0.2 is
t u
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Table 9
Bootstrap p-values for testing alpha based on panel data.

B1 B2 B3 B4 B5

Panel A: p-values using RF as conditioning variable

S1 1.0000 0.3640 0.4170 0.4530 0.6060
S2 0.1520 1.0000 0.5660 1.0000 1.0000
S3 0.9840 0.5200 0.4820 0.9850 0.4140
S4 0.1340 0.9360 1.0000 0.1410 0.3210
S5 0.9310 1.0000 0.5910 0.1480 0.9980

Panel B: p-values using r3m1 as conditioning variable

S1 0.9070 0.7680 0.5580 0.5470 0.6970
S2 0.3840 0.0940* 0.2870 0.1500 0.1890
S3 0.1060 0.1160 0.4150 0.3290 0.5290
S4 0.2020 0.3340 0.2840 0.3110 0.0930*
S5 0.0320** 0.1430 0.7370 0.1750 0.9960

Panel C: p-values using BmA as conditioning variable

S1 0.5910 0.8180 0.6950 0.8180 0.2650
S2 0.8870 0.7870 0.5380 0.8850 0.2460
S3 0.6140 0.4840 0.6580 0.4310 0.5030
S4 0.9310 0.6590 0.2710 0.6890 0.9260
S5 0.5530 0.2860 0.5260 0.8150 0.9570

Panel D: p-values using r10m1 as conditioning variable

S1 0.9370 0.9460 0.5500 0.7490 0.7730
S2 0.3060 0.1050 0.8410 0.7370 0.0940*
S3 0.4010 0.1600 0.4190 0.5940 0.7480
S4 0.4540 0.4180 0.1420 0.6720 0.4790
S5 0.6680 0.2680 0.6880 0.2920 0.9680

*Rejections at 10% appear in the table.
**Rejections at 5% appear in the table.

chosen, where σ̂u is the sample standard deviation of Ut and T = 660. From Table 6, one can find that the rejection ratios
at 5% nominal level for RF, r3m1, BmA and r10m1 are 0.64 (16/25, which means that 16 out of 25 portfolios reject the null
and the following notations are defined in the same fashion), 0.72 (18/25), 0.52 (13/25) and 0.72 (18/25), respectively.
These results are in line with the testing results (the majority of the 25 portfolios (17 out of 25) are in favor of time-varying
betas) in Cai et al. (2015b) using the Fama–French 25 portfolios from July 1963 to December 2009.

The next is to test H0 using FF 100 portfolios which are also formed on size and book-to-market ratio. Due to the issue
of missing data, the actual number of portfolios under study is 96. The four portfolios excluded from our analysis are
S7/B10, S10/B8, S10/B9, and S10/B10. The Bootstrapping p-values show that the rejection ratios at 5% nominal level for
RF, r3m1, BmA and r10m1 are now 0.50 (48/96), 0.55 (53/96), 0.42 (40/96) and 0.49 (47/96), respectively. These rejection
rates are significantly lower than those for 25 portfolios.

Now, it turns to testing the significance of the pricing error alpha. In view of the theory of conditional asset pricing
model, alpha represents the abnormal returns of risky assets. If the functional-coefficient FF three-factor model is correct,
one would expect that the estimated alphas are insignificant. Therefore, the following test is considered:

Hα,0 : αp = αp(u) = 0 versus Hα,1 : αp ̸= 0.

Here, restrictions are only on the alphas, but the betas are allowed to vary with the conditioning variables. Table 7 reports
the Bootstrapping p-values for testing Hα,0 using 1000 Bootstrapping samples, which gives that the rejection rates for
conditional variables r3m1 and BmA are 0 at 5% nominal level, but for the cases of RF and r10m1, the rejection rate is
0.04 (1/25) at 5% nominal level. The same procedure is then applied to the FF 100 portfolios. The rejection ratios at 5%
nominal level for RF, r3m1, BmA and r10m1 are 0.021 (2/96), 0.063 (6/96), 0.031 (3/96) and 0.042 (4/96), respectively.

Now, the proposed test is applied to test the constancy of alphas and betas using the entire panel data to examine
whether the power performance can be improved by using the pooled data. First, H0 and Hα,0 are re-tested using the
Bootstrapping procedure described in Section 3.3 for the FF 25 portfolios. The Bootstrapping p-values for testing H0 are
reported in Table 8, from which one can observe clearly that the rejection ratio at 5% nominal level for r3m1 is 0.76 (19/25)
and 0.80 (20/25) for other conditioning variables. The Bootstrapping p-values for testing Hα,0 are reported in Table 9, from
which one can see that only Hα,0 for the portfolio S5/B1 is rejected using r3m1 as the conditioning variable at 5% nominal
level.

Next, H0 and Hα,0 are also re-tested using the entire panel data for the FF 100 portfolios. The p-values of both tests
are demonstrated in Figs. 2 and 3 via heat maps, respectively.4 From Fig. 2, one can observe that the majority of the

4 Note that, in each heat map given in Figs. 2 or 3, the upper right corner has 4 blank grids which indicate the four portfolios whose data is
issing.
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Fig. 2. Heat maps of Bootstrap p-values for constancy test based on FF 100 portfolios panel data.

portfolios have p-values smaller than 0.05 in the constancy test no matter which conditioning variable is used. In fact, the
rejection ratios at 5% nominal level for RF, r3m1, BmA and r10m1 are 0.79 (76/96), 0.78 (75/96), 0.80 (77/96) and 0.79
(76/96), respectively. Therefore, the constancy test using the entire panel data does increase the test powers in general for
all conditioning variables. Moreover, contrary to the testing results based on time series data, our method gives a much
stronger support to the conditional asset pricing models with three factors.

For the pricing error testing results given in Fig. 3, it is obvious to see again that our method offers more powerful
support to the conditional FF three-factor model than the method using time series data. For example, using r3m1 as the
conditioning variable, the number of portfolios rejects by the time series data is 6. However, from the upper right heat
map in Fig. 3, one can easily recognize that only 3 portfolios (S3/B1, S5/B5, S8/B9) are rejected by our method.

Finally, to assess the robustness of these results, we conduct our previous tests using two different samples: the period
from July 1963 to December 1994, which is the sample used by Ferson and Harvey (1999), and the period from July 1963
to December 2009, which is analyzed by Cai et al. (2015b). The results are qualitatively similar to those reported above.
For brevity, these results are not shown here, but are available in the online supplementary material.5

6. Conclusion

Inferences on capital asset pricing model have gained a lot of attentions in the literature in the recent years. In this
paper, a novel functional-coefficient panel data model with cross-sectional dependence is proposed to revisit this issue. In
our model, the time-varying property of betas is characterized through unknown functions of certain macroeconomic and
financial instruments. Moreover, the model allows for possible cross-sectional dependence via a multi-factor structure.
A local common correlated effect estimation method is proposed to estimate the proposed model. The consistency and
asymptotic normality of the proposed estimators have been derived when both the cross-sectional dimension N and the

5 The web site is http://www.people.ku.edu/~z397c158/CFX-Supplement.pdf.

http://www.people.ku.edu/~z397c158/CFX-Supplement.pdf
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Fig. 3. Heat maps of Bootstrap p-values for testing alpha based on FF 100 portfolios panel data.

ime series dimension T tend to infinity simultaneously. We have also constructed a simple goodness-of-fit test for testing
he stability of the model coefficients based on L2-norm and showed that the new test statistic has an asymptotically
tandard normal distribution. The proposed test statistic is applied to test the constancy of conditional betas and the
ignificance of alphas in the Fama–French three-factor model. The empirical results of our study advocate the finding that
etas of risk factors depend on certain state variables. Besides, it is discovered that testing on conditional betas and pricing
rrors can achieve substantial efficiency gains by utilizing panel data. Our empirical findings suggest that applications of
ell-known asset pricing models should control for time-varying betas and take dependence among different assets into
ccount.
Future studies can be conducted on more general inference problems on varying and/or partially varying coefficients

n panel data models with cross-sectional dependence and it might be of interest in using the interactive fixed effect
stimation approach proposed in Bai (2009) to consider our model in (2.1). Such new models and their modeling
pproaches can be applied to making inference on the conditional capital asset pricing models.
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