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ABSTRACT KEYWORDS

In this paper, we propose a simple method to estimate a partially varying- Fixed effects; Hausman-type
coefficient panel data model with fixed effects. By taking difference upon test; panel data; )

the nearest neighbor of the smoothing variables to remove the fixed  SPecification test; varying
effects, we employ the profile least squares method and local linear fitting coefficients

to estimate the parametric and nonparametric parts, respectively. JEL CLASSIFICATION
Moreover, a functional form specification test and a nonparametric C12; C13; C14; C23
Hausman type test are constructed and their asymptotic properties are

derived. Monte Carlo simulations are conducted to examine the finite sam-

ple performance of our estimators and test statistics.

1. Introduction

Panel data models have been of great interest in the literature of theoretical econometrics and
applied economics since the seminal work of Balestra and Nerlove (1966). Arellano (2003),
Baltagi (2008), and Hsiao (2014) provided excellent and detailed surveys of the panel data
literature. Panel data can provide a sample of individual observations over time. Compared to
cross-sectional and time-series data, one appealing feature of a panel data model is to control
unobserved heterogeneity in a regression model by employing individual effects." There are two
common methods to define the individual effects. The fixed effects model allows individual effects
to have an unspecified dependence upon regressors, while the random effects model assumes zero
correlation between individual effects and regressors. The random effects model can achieve effi-
cient estimation, but the lack of correlation between random effects and regressors is usually hard
to verify in practice. The fixed effects model can obtain consistent estimation even with nonzero
correlation between individual effects and regressors. As for how to choose them in real applica-
tions, Hausman and Taylor (1981) proposed a Hausman-type test to select a model specification
between the fixed and random effects models.

Nonparametric and semiparametric panel data models have become increasingly important
because they can provide flexible model specifications under relatively weak conditions. However,
the literature on nonparametric or semiparametric inference on fixed effects panel data models is
not well developed. In linear panel data models, the fixed effects can be removed by a first-order
differencing transformation, but in nonparametric or semiparametric panel data models, a

CONTACT Ying Fang @ yifst1l@xmu.edu.cn e Wang Yanan Institute for Studies in Economics, Ministry of Education Key
Laboratory of Econometrics and Fujian Key Laboratory of Statistical Sciences, Xiamen University, Xiamen, Fujian 361005, China.
"Panel data have many advantages over cross-sectional or time series data. More details can be found in Hsiao (2014).
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transformation based on a first-order difference leads to a difference of the same unknown func-
tion evaluated at different values, which may cause difficulty in estimation.

One approach to this problem is to treat the fixed effects as dummy variables and then avoid
the first-order differencing transformation. Indeed, Su and Ullah (2006) considered a partially lin-
ear panel data model with fixed effects and proposed dummy variable profile likelihood estima-
tion for both the parametric and nonparametric parts, Zhang et al. (2011) proposed an empirical
likelihood estimation for the same model as the one in Su and Ullah (2006), and Mammen et al.
(2009) considered a general additive panel data model with fixed effects and proposed a
smoothed backfitting approach to estimate the nonparametric part. Some studies focused on esti-
mating the difference of the same unknown function caused from the first order differencing
transformation. For example, Henderson et al. (2008) proposed an iterative procedure to estimate
the nonparametric part based on maximizing a local weighted profile likelihood, but without the-
ory, while Qian and Wang (2012) employed marginal integration to recover the nonparametric
part. Recent contributions to the nonparametric or semiparametric estimation of panel data mod-
els include, but not limited to, papers by Cai and Li (2008), Huang (2013), Hoover et al. (1998),
Li and Stengos (1996), Li et al. (2011), Su and Ullah (2007), Su and Jin (2012), and Xue and Zhu
(2007), and the references therein.

In this paper, we consider the estimation and testing of this partially varying-coefficient panel
data model with fixed effects:

Yie = X B(uie) + Zyyy + o + €ir. (1.1)

When regressors X;; only contain a constant term, the above model is reduced to a partially linear
panel data model with fixed effects; see, for example, Henderson et al. (2008), Qian and Wang
(2012), Su and Ullah (2006) and the references therein. By ignoring the fixed effects, model (1.1)
becomes to the one studied in Li and Stengos (1996) and a special case of model (1.1) was con-
sidered by Hoover et al. (1998) without including the parametric part and the fixed effects.

Our estimation of model (1.1) is based on a differencing transformation. However, local poly-
nomial estimation cannot be directly applied to the first-order differencing transformed model
because the Taylor series expansion is not guaranteed to well approximate both f(u;) and
P(ui—1) simultaneously, and furthermore, we do not know the order of the difference between
p(ui) and B(u;—1). Instead, we solve the above problem by taking the difference to the nearest
neighbor, denoted by u*, of u;; among the sample observations across t. Therefore, the maximal
distance ||f(ui) — p(u*)|| is bounded by O,(log T/T) based on the result in Janson (1987), and
then profile least square and local polynomial estimation can be applied to estimate the constant
and varying coefficients, respectively. Compared to existing estimation methods, our approach
based on nearest neighbor difference transformation is simple and can share most merits of local
polynomial estimation.

In partially varying-coefficient panel data models, it is interesting to test a specified parametric
model versus a nonparametric model. We construct a test statistic based on the weighted inte-
grated squared difference between the specified parametric function and the nonparametric esti-
mator, similar to Li et al. (2002). Another important specification issue in the panel data model is
to test a fixed effects model versus a random effects model. We construct a nonparametric
Hausman-type test similar to the one studied in Henderson et al. (2008). We derive the limiting
distributions of both test statistics and conduct simulations to investigate their finite sample per-
formance. However, note that the test statistics proposed in Henderson et al. (2008) are based on
an iteratively derived estimator, so that Henderson et al. (2008) did not provide their asymp-
totic properties.

In comparison with the existing literature on estimating and testing semiparametric fixed
effects panel data models, the main difficulty in deriving asymptotic properties is due to the
change of the variance-covariance matrix of the error terms after the nearest neighbor
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differencing transformation. Although the original observations are independently and identically
distributed across individuals, the transformed data may alter the distribution of data for a given
individual and lead to independently but nonidentically distributed observations across the cross-
sectional units. Therefore, the asymptotic analysis of the proposed estimators and statistics are
nontrivial, and it is much more involved to establish the asymptotical normality of parametric
functional form test statistics.

The rest of the paper is organized as follows. Section 2 introduces the model and estimation meth-
ods and Section 3 details the construction of the functional form specification test and the nonpara-
metric Hausman-type test and presents their asymptotic distributions. We provide asymptotic results
of our proposed estimators and test statistics in Section 4. Monte Carlo simulations are conducted in
Section 5 to investigate the finite sample performance of the proposed estimators and test statistics.
Section 6 summarizes our conclusions. All proofs are given in the appendices.

2 Model and estimation procedure

This paper considers the following partially varying-coefficient fixed effects panel data model:

Yie =X, Buw) + Zyy+oi+ e, 1<i<N1<t<T, (2.1)

1

where Y}, is a scalar dependent variable; X;; and Z; are p x 1 and q x 1 vectors, respectively; y
denotes a g x 1 constant coefficient, and f(u;) denotes a p x 1 vector of unknown smooth func-
tions defined on R? which has a continuous second derivative.> Here, o; represents the fixed
effects and model (2.1) allows the fixed effects to be correlated with the regressors in an arbitrary
way. Finally, €; is independently identically distributed (i.i.d.) random error. Note that AT
denotes the transpose of A. In practice, X;, is the vector of main variables that one cares about
for their time-varying partial effects on Y;, given Uj; that is, the conditional correlation between
Y, and X;, given Uy is nonlinear in Uy, whereas Z; is the vector of other covariates that should
be controlled for. The choice of U, is usually based on certain economic theory. Of course, it can
be chosen by using a data-driven method as suggested by Cai et al. (2000). Also, it is possible
that Uj; is a proper subset of Xj; or Z;,.

To remove the fixed effects, we first take the difference of model (2.1) upon the nearest neigh-
bor of u;, among all within-group observations. Denote by t* the position of the nearest neighbor
of ¢ such that u;» = argmin (U5 1<5<T, s #}Huis — uy]|. Then the transformed model is defined as

AYy = X; (uit) - X;*ﬂ(uit*) + A*Z;V + A€ty (2.2)

where A*Y;; = Y; — Y, and A*X;,A"Z;, and A%e; are defined in the same fashion. Under
some regular conditions, ||f(ui) — B(uir)|| = Op(log T/T), based on Janson (1987), where [|All
denotes the Frobenius norm of A, and then (2.2) can be further simplified to

A'Yy = A*X,I (uit) + A*Z,IV + P, 7 + A*eit)

where Py v = X.0,(log T/T). However, the variance-covariance matrix of A”¢; is usually sin-
gular due to the nearest neighbor difference. For example, if u;; and u;, are nearest neighbors,
then the variance-covariance matrix must contain two linear dependent columns. To avoid this
problem, we can achieve a nonsingular variance-covariance matrix by simply dropping some
sample observations within each group i € N according to the following rules: (1) When there is
more than one nearest neighbor, we choose the one with the smallest time index. For example, if
up and u;; are nearest to u;;, then we choose u;. (2) If, in the variance-covariance matrix, one

2For ease of notation, we only consider the case d=1. Extension to the case d > 1 involves no fundamentally new ideas. Also,
note that models with large d are not practically useful due to the so-called “curse of dimensionality.” Usually, d < 3 in real
applications.
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row can be expressed by another row, or more than one row, then we delete that row. For
example, if the nearest neighbor of u;; is u;, and the nearest neighbor of u;; is u;, then up is
deleted. Rearranging all the remaining observations, the transformed model is now given by

Ay = Nxj B(u) + Nzjy + Py r + A'ey, 1<i<N,1<t<T, (2.3)

where A%y, A"x;;, and A*z; represent transformed and rearranged sample observations, and T;
denotes the remaining number of observations in each group i. To simplify the notation, we con-
sider a balanced panel by assuming T; is the same for all i, denoted by T; = T for i = 1,...,N.
Indeed, (2.3) is a partially varying-coefficient model, which is usually estimated by a profile
likelihood method; see, for example, Chen et al. (2012) and Fan and Huang (2005). Define Y =

(A'y11, e A y17, s AN, s A*yNT)T, and define X, Z, and ¢ in the same fashion. Then model
(2.3) can be expressed in matrix form as

Y=M+Zy+Pr+e (2.4)
where
A*xﬂﬁ(uu) Pir,r X1T1*
A*XITﬁ(MlT) PlT*,T XIFT*
M= , Pr= = O,(log T/T), (2.5)
A", Blunt) Pyie,r Xyie
A"l Blunr) Pyre, 7 Xy

which implies that Y = Y — Zy — P = M + e. Assuming that y is known, the local linear estima-
tor of ff(u) and its first-order derivative are given by

u
) ={D/H,D,}'D]H,(Y — Zy), (2.6)

«, »

where /(1) denotes the first-order derivative of §,(-) at u, and the subscript “y” signifies that the
estimator depends on y. In addition, A is the bandwidth, H, = diag{Ky(u1; — u), ..., Kp(unr — 1)}
with Kj,(-) = K(-/h)/h,K(-) is the kernel function, and

A*xll A* T u“ u

A*xlT A x T MlT L
D, = : : . 2.7)

* * T uni—u
Ale A x5

* * T unt—u
ANxyr A XNt

Therefore, the local linear estimator of M is given by
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11

(A*xll’ 0) {D HunDun} Du11 u
M= : (Y —2Zy)

(A*xNT’ ){Duw UNT uNl} DuNTHMNT
=S(Y — zy),

(2.8)

where the definition of § should be apparent from the above equation. Next, replacing M in (2.4)
by (2.8), we obtain

(I-8)Y=(-8)Zy+Pr+e (2.9)

Simple calculation leads to the profile least square estimator of y:
A ~ _1 A ~
5= {ZT(I -8'1- s)z} Z'1-8)"(1-3)Y. (2.10)

Finally, substituting (2.10) into (2.6), the local linear estimator of f(u) and its first-order deriva-
tive are given by

ﬁ(u) o T -1 .7 o
(h,f)’/(u)> _{DuH“D“} DuHM(Y Z/)' (2-11)

3. Model specification tests

In this section, we develop two types of model specification tests in the partially varying-coeffi-
cient panel data model: the first one is to test whether the varying coefficients ff(u) can take a
specified parametric functional form, and the second is to test the fixed effects model versus the
random effects model.

3.1. Testing functional forms of varying coefficients

Consider the case that the varying coefficients f(u;;) in model (2.1) can take a specified func-
tional form due to some prior knowledge. Although the nonparametric treatment of varying coef-
ficients accommodates more model flexibility, a parametric estimate can achieve efficiency gains
if one believes that the parametric functional form is adequate. Therefore, it is of interest to test
the null hypothesis Hjo : f(u) = fy(u;0) for all u versus the alternative Hy; : ff(u) # fo(u;0),
where f,(u; ) denotes a specified parametric function with unknown parameter 6. Note that the
model under the null hypothesis has several interesting cases. For example, the test is reduced to
a significance test of X; when f,(u;0) =0, and it further reduces to a constancy test
when f,(u; 6) = 0.

Our consistent test statistic is constructed based on the weighted integrated squared difference
between the estimators of (1) and f,(u;6). In Section 2, f(u) is estimated based on the local
linear method. Although it can take care of boundary problems, the local linear estimator compli-
cates the asymptotic analysis of the test statistic if it is used to construct the test statistic.
Fortunately, as shown in Li et al. (2002), it suffices to use the local constant estimator of f(u) to

construct the test statistic. The local constant estimator of f(u) in (2.1), denoted by ﬁlc(u), is
given by

Bro(u) ZZA Xit(A"yie — A2 ) K (i — u) |,
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where B, = ﬁZfil Zthl A x; A" x;) Ky (uie — u). Let Bo(u) = fo(y; @7), where 0 is a root-NT con-
sistent estimator of 0. Our test statistic is given by

Wt = [ [Buit) = o] BBt — o) G.)

By substituting the expression of B, into the above equation, one obtains

N T

.
1 * * * ~ * .
Wyr = J lNT 21;A Xt (A yi — A z;y —A xgﬂo(u))Kh(ui, — u)]

' (3.2)

ZZA xjs(A"yjs — —A'x TBO( u)) Ky (ujs — u) | du.

] 1 s=1
Following Li et al. (2002), we delete the i =j terms in (3.2) to remove the nonzero center term of
Wyt under Hj,. Furthermore, ﬁo(u) in the first and second brackets is replaced by Bo(u,-t) and

Bo(ujs), respectively. These procedures lead to the following test statistic:

T T . T
Wyr = NZTZhZ ZZ [A xit(A'yi — Az, — A*x;ﬁo(u,»t))}
t=1 s=1 (33)

* * 7 Uit — Ujs
X A (A — A2l — A xjsﬁo(u]s))}K(%)’
where 3, ,; is the abbreviation for o 12; 1,ji> and K(v) = [K(u)K(v — u)du is the twofold
convolution kernel derived from K(-). As suggested by Li et al. (2002) and Lin et al. (2014), one
need not even use the convolution kernels. Simply replacing K((ui — ujs)/h) by K((ui — ujs)/h)
results in the following simple test statistic:

1 1 a * * * ~ * o T
WNT = mzzz |:A x,»,(A yit — A Z;'y — A x;[)’o(uit))}
i =1 s=1 (3.4)
Ui — Ujs
[A x]s(A Yis — Az j— A x]sﬁo(u]s))}K( t A . >

3.2. Testing fixed versus random effects

The selection between the fixed effects model and random effects model is an important issue in
the panel data literature. The fixed effects model can achieve consistent estimation under very
mild conditions, while the random effects model can achieve efficient estimation when the indi-
vidual effects are uncorrelated with the regressors. In other words, the fixed effects estimators can
guarantee consistent estimation, but the random effects estimators may achieve efficient estima-
tion bounds. Under the null hypothesis of the random effects, both estimators should be asymp-
totically close. Hausman and Taylor (1981) used this simple fact to develop a Hausman-type test
to compare both estimators. Henderson et al. (2008) proposed a nonparametric test of fixed
effects versus random effects. Instead of comparing fixed effects and random effects estimators,
they directly tested whether the individual effects are mean independence conditional on all
regressors. Since the test is based on conditional moments, it becomes a special case of Zheng
(1996). However, Henderson et al. (2008) did not provide the asymptotic property of their pro-
posed nonparametric Hausman-type test because their test is based on an iteratively derived
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estimator. This paper adopts a similar nonparametric test but constructs the test statistic using
the local linear estimator proposed in Section 2 to estimate f(u;).
Consider the original model (2.1). The null hypothesis of interest is Hyo : E(0;|%;) = 0 almost

everywhere, where %; denotes the set of all the regressors for unit i, and 1 <t < T, ie, %; =
(R],...R})" with Ry = (ui, X}, Z])". The alternative hypothesis is Hy; : E(2;|2%;) # 0 on a set
with positive measure. Let vy = o; + €;. Throughout this paper, we assume that ¢; is mean inde-
pendent of #; under either Hy or H,;. Therefore, the null and alternative hypotheses are equiva-
lent to

Hyy : E(vy|%;) =0  almost everywhere,
and
Hy : E(v¢|%;) #0 on a set with positive measure.
Let f(Ry) be the joint probability density function of R;,. Following Zheng (1996) and Henderson

et al. (2008), the proposed test statistic is based on E{v;E(v;|Ry)f (R;)} with the sample analogue
given by

N T
HNT = NT IZZVztE—zt Vzt|th (Rtt)
i=1 t=1

. . (3.5)

= (NT(NT — 1))_1222 Z f/il‘f/jSI<]i:,it,js’

=1 t=1 j=1s=1, {j, s}#{i, t}

where v; = Yy —X;ff (uir) — Z}% with ﬁ (uir) being the local linear estlmator as in Section 2,

K} iv.js = Ki (Rie — Rys), K (w) = ™™ [T, K(wi/h) with m =1+ p +g,” and
N T
—zt( 1t|R1t) = Z Z ‘A/jSK;,it,js/f—it(Rit)
J=1s=1, {j, s}A{i> 1}
and

N T
ffit(Rif) = (N(T - 1))71 Z Z K;;,it,js
j=1 s=1, {j, s}#{i> t}

are the leave-one-out estimators of E(v;|R;) and f(R;), respectively.

4. Asymptotic theories

In this section, we derive the asymptotic properties of the proposed estimators and test statistics
with their detailed proofs relegated to the appendices. To establish the asymptotic results, the fol-
lowing assumptions are needed, although they might not be the weakest ones.

4.1. Assumptions

Al. The observed data {(Y,-I,X,-t,Zﬁ, uy) :1<i<N,1<t< T} are independently and identically
distributed.

A2. The kernel K(-) is a symmetric and bounded probability density function with compact support.
Furthermore, it satisfies the Lipschitz condition.

3For simplicity, we use the same bandwidth h for different covariates.
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A3. The density function of u; is Lipschitz continuous and bounded away from zero on its sup-
port Q.

A4, The pxp matrix E(A*x;A"x)|u) is nonsingular for each u € Q. E(A"xyA'x}|u) and
E(A*xyA*z}} |u) are all Lipschitz continuous.

A5. h — 0 and NTh — oo as (N, T) — oo, and (v/NTlogT)/T — 0.

A6. E|X;|* < 00, E|Zy|* < 0.

4.2. Asymptotic properties

In order to present the main results, we first introduce some notation. Let cyr =
{log(l/h)/NTh}l/2 + K%, and define

O(u) = f(u) plim —ZZE “xiA gy |uie = ),

(N, T)—oo NT 452
Q(u) = f(u)vg phm ZZE{A*JC,,A* L E[A* € i, A x| [uye = u},
(N, T i=1 t=

where vy = [ K*(u)du
Now, we state the asymptotic properties of the proposed estimators and test statistics in the
following theorems.

Theorem 4.1. Suppose that Assumptions AI-A6 hold. Then we have
VNT(G —7) 5 NO,Z'Z'E)  as (N, T) — oo,

where X = plimy 1 AOONLTZ?I 1 ZtT:1 {E(A*ZitA* 5) = E[f " (uie) P (i) 0" (uhie) WP (i) }, and

= = plimy 1) E(ZT(I1—8) e (I1-9)2).

—00 NT

Theorem 4.2. Suppose that Assumptions AI-A6 hold. Then the following result holds:

. h? d
NTh [ﬁ(u) = B(u) — 7#2/3"(1«!){1 + Op(CNT)}:| — N(0,0(u))
as (N, T) — oo, where O(u) = ® ()" ()@ ' (u) and p, = [v?K(u)du.
Theorem 4.3. Under Assumptions A1-A6 and H,y, we have

Wiy = NTH2Wyr /) Vi 5 N(0,1), (4.1)

where

T

N T
Vi = NZTzhZZ

i#j t=1 s=

with A*¢;, defined as Ay, — Az} 9 — A*xIBO(u,-t).

A A (A x] A 'K (—””_ ”J>
1 h

Theorem 4.4. Under Assumptions A1-A6 and H,, we have

Hyr = NTR"2Hyr /\/ Vi 2 N(0,1) (4.2)

as h — 0 and NTh™ — oo, where
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> _ ~2 A2 k2
Vi = apagm T E E E § VieVieK it js-

Remark 1. Theorems 4.1 and 4.2 indicate that both estimators 7 and f8 (u) are asymptotically nor-
mal. Notice that } achieves the parametric convergence rate vV NT, while the convergence rate of
B (u) is VNTh, which is standard for nonparametric estimators using kernel methods. Theorems

4.3 and 4.4 show that, under Hj, and H,, the standardized statistics Wy and Hyr approach the
asymptotic standard normal distribution.

Theorem 4.5. Given Assumptions AI-A6,

(a) under H;;, we have
Pl’{WNT Z MNT} — 1 as (N, T) — 00,

where My is any nonstochastic, positive sequence such that Myt = o(NTh'/?).
(b) ifh— 0 and NTh™ — oo, then under H,,,

Pr{Hnr > My;} — 1 as (N,T) — oo,

where My is any nonstochastic, positive sequence such that My, = o(NTh™/?).

Remark 2. Theorem 4.5 (a) shows that, under the alternative Hj;, the probability that the pro-
posed functional form test rejects the null hypothesis approaches 1 as both N and T go to infinity
simultaneously, which implies that the proposed functional form test is consistent. Similarly,
Theorem 4.5 (b) shows that the proposed nonparametric Hausman test is consistent.

5. Monte Carlo simulations

In this section, we conduct Monte Carlo simulations to evaluate the finite sample performances
of the proposed estimators and test statistics. Section 5.1 investigates the finite sample properties
of estimators defined by (2.10) and (2.11), and Sections 5.2 and 5.3 assess the size and power per-
formance of the functional form test and nonparametric Hausman-type test, respectively.

5.1. Finite sample performance of estimators

We consider the following data generating process (DGP):
Vi = B(ui)Xit +7Zis + i + e, 1<i<N, 1<t<T, (5.1)

where f(u;) = sin (2u;), y=1, the smooth variable u;, is generated independently from a uni-
form distribution U(0, 1), Z; and X;, are generated independently from normal distribution
N(0,2%) and N(1,3?), respectively, the individual effect o; is generated as o; = k13" Xy +
npi=1,..,N with k=1/2, and 5, is generated independently from normal distributions
N(0,0.1%). Finally, the idiosyncratic error ¢ is generated from a standard normal distribution.
The number of Monte Carlo replications is 1000 for each of (N, T) pairs with N, T=20, 30,
40. The Epanechnikov kernel K(u) =3 (1 — u?)1{|u| < 1} is employed to compute the semipara-
metric estimators given in (2.10) and (2.11). When estimating y using (2.10), a relatively small

bandwidth h; = (NT)_Z/ > is used to reduce the influence of the estimation bias. The bandwidth

1/5

hy = co6,n /> is used for the estimation of f(-) with ¢y = 2.0, 2.5, 3.0, where 6, is the sample
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Table 1. Means and SDs of ADEs of estimator for y=1.

¢ =2.0 =25 ¢ =3.0
N\T 20 30 40 20 30 40 20 30 40
20 0.0275 0.0233 0.0195 0.0275 0.0240 0.0195 0.0281 0.0239 0.0199
(0.0207)  (0.0171)  (0.0147)  (0.0212)  (0.0179)  (0.0147)  (0.0216)  (0.0179)  (0.0151)
30 0.0233 0.0182 0.0157 0.0220 0.0185 0.0159 0.0223 0.0182 0.0167
(0.0174)  (0.0135)  (0.0179)  (0.0169)  (0.0137)  (0.0122)  (0.0172)  (0.0139)  (0.0119)
40 0.0207 0.0153 0.0144 0.0195 0.0156 0.0140 0.0194 0.0154 0.0142

(0.0157)  (0.0115)  (0.0110)  (0.0150)  (0.0118)  (0.0099)  (0.0155)  (0.0122)  (0.0110)

standard deviation of all the remaining smooth variables after data deletion,* and 7 is the number
of all remaining observations; i.e., n = Zil T;.
To evaluate the estimation accuracy of the proposed parametric estimator of 7, the absolute
deviation error (ADE) is used, and is defined by
ADE = [j —|.

To evaluate the performance of the proposed nonparametric estimator of f(-), the root mean
squared error (RMSE) is used, given by

RS = | £ 5 [ - g

k=1

where {u; : k=1,...,D} are grid points. Table 1 reports the means and standard deviations (SDs)
(in parentheses) of the ADEs from 1000 replications for the estimation of y=1. One can find that
the estimation accuracy in terms of ADE improves as either N or T increases. One can also see that
the simulation results are largely unaffected by the different values taken by ¢y, which is as expected,
since the choice of h, has little or no impact on the estimation of y. Table 2 reports the means and
SDs (in parentheses) of the RMSEs from 1000 replications for the estimation of f(u) = sin (2u).
This table shows that RMSEs decrease as either N or T increases. Moreover, it seems that the RMSEs
of the estimator for /(1) perform best for ¢y = 2.5 in h,.

5.2. Finite sample performance of functional form tests

Next, we study the finite sample performance of the functional form test. We consider the null
hypothesis Hy : f(ui) = p, versus the alternative H; : ff(u;;) # f,. The power is evaluated under
a series of alternative models indexed by 6, such that H; : f(uy) = By + (" (ui) — ) for 0 <
0 <1, where f*(u;) = sin (2u;). We choose f, to be the average height of sin (2u;) with u;
generated from U(0, 1) (f, = 0.71). The following DGP is considered in the evaluation of the
size performance of the proposed test statistic:

Yii = X +yZiy+ i + €, 1<i<N,1<t<T,

where Xy, Zy, ;, and €; are generated in the same way as in (5.1). To investigate the size of the test, the
simulation is conducted with (N, T) pairs, where N, T=30, 40, and 50. The kernel function and band-
width are chosen to be the Epanechnikov kernel and h = ¢yG,n~'/%, respectively. To investigate whether
the size performance is sensitive to the choice of bandwidth, ¢, is chosen to be 0.5, 1.0, 2.0. The critical
values for the test are taken from the standard normal distribution. Table 3 reports the empirical rejection
frequencies under H, based on 2000 replications of our proposed functional form test at 1%, 5%, and
10% nominal levels. As seen in Table 3, the sizes are close to the nominal sizes for most (N, T) pairs. In
addition, the size performance seems not to be sensitive to the choice of bandwidth.

“Recall that data deletion is required to obtain a nonsingular variance—covariance matrix of errors in (2.3).
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Table 2. Means and SDs of RMSEs of estimator for f(u) = sin (2u).

¢ =2.0 =25 ¢ =3.0
N\T 20 30 40 20 30 40 20 30 40
20 0.0403 0.0348 0.0300 0.0382 0.0322 0.0286 0.0388 0.0332 0.0299
(0.0155)  (0.0126)  (0.0109)  (0.0153)  (0.0132)  (0.0113)  (0.0164)  (0.0138)  (0.0127)
30 0.0341 0.0297 0.0263 0.0329 0.0274 0.0245 0.0334 0.0278 0.0255
(0.0128)  (0.0106)  (0.0090)  (0.0138)  (0.0105)  (0.0091)  (0.0139)  (0.0116)  (0.0107)
40 0.0299 0.0260 0.0230 0.0290 0.0244 0.0220 0.0299 0.0248 0.0223

(0.0106)  (0.0088)  (0.0078)  (0.0115)  (0.0086)  (0.0076)  (0.0170)  (0.0090)  (0.0078)

Table 3. Size performance of functional form test.

C():O.S =1 Co:2

N T 1% 5% 10% 1% 5% 10% 1% 5% 10%

30 30 0.0155 0.0500 0.0940 0.0125 0.0450 0.0880 0.0220 0.0565 0.0945
40 0.0130 0.0520 0.0810 0.0190 0.0575 0.0935 0.0175 0.0550 0.0870
50 0.0130 0.0610 0.0965 0.0240 0.0610 0.1000 0.0235 0.0555 0.0900
40 30 0.0145 0.0520 0.0880 0.0190 0.0540 0.0975 0.0175 0.0515 0.0815
40 0.0130 0.0435 0.0810 0.0190 0.0550 0.0920 0.0150 0.0600 0.1110
50 0.0175 0.0520 0.0980 0.0175 0.0510 0.0940 0.0190 0.0570 0.0925
50 30 0.0155 0.0485 0.0945 0.0185 0.0545 0.0950 0.0175 0.0465 0.0815
40 0.0105 0.0500 0.0935 0.0150 0.0515 0.0910 0.0230 0.0570 0.0980
50 0.0150 0.0560 0.1000 0.0210 0.0580 0.0970 0.0195 0.0545 0.0905

We now turn to the evaluation of the power performance. The empirical rejection frequencies
are computed under H, based on 2000 replications. To better visualize the change of powers as
the sample sizes and 0 grow, the power functions are plotted against ¢ for ¢y = 0.5, 1.0, and 2.0
in Figures 1 and 2 at the 5% nominal level. Figure 1 presents the power curves when T is fixed at
30 and N=30, 40, and 50, while Figure 2 is for cases when N is fixed at 30 and T=30, 40, and
50. As shown in these figures, for fixed J, the power of our test increases as either N or T
increases before it reaches 1. When 6 =0, the specified alternative hypothesis reduces to the null
hypothesis. Therefore, the power curves approach 0.05 (the horizontal dotted lines), the nominal
significance level. However, the power rapidly tends toward 1 as ¢ increases. These power func-
tions show that our proposed test indeed has good power performance.

5.3. Finite sample performance of nonparametric Hausman-type tests

Finally, we evaluate the finite sample performance of the nonparametric Hausman-type test for
differentiating between the fixed effects model and random effects model. The DGP is the same
as in Section 5.1 except that the individual effect «; is generated with x =0, 0.1, 0.2, and 0.3.
Note that x characterizes the extent that (5.1) deviates from random effects specification. In par-
ticular, when k=0, (5.1) collapses to a random effects model. The power behavior of our non-
parametric Hausman-type test is assessed by letting x gradually deviate from zero. To compute

Hyr in (3.5), we employ the univariate Gaussian kernel function for each variable in Ry =

(u,-t,X,-t,Z,-t)T. The bandwidth for u;, is chosen to be h, = 6,1/, where the definitions of &,
and n are the same as in Section 5.1. The bandwidths for X;; and Z; are defined similarly.
Tables 4 and 5 report the simulation results based on 2000 Monte Carlo replications. The critical
values for the test are still taken from the standard normal distribution. From these tables, one
can observe that the estimated sizes of our nonparametric Hausman-type test are close to the
asymptotic sizes when k¥ =0. As x gradually departs from zero, the power of the test quickly con-
verges to 1 for any (N, T) combination. Furthermore, for fixed x > 0, the power increases rapidly
as either N or T increases. These results show that the proposed nonparametric Hausman-type
test has a good finite sample size and power performance.
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Figure 1. Plot of power curves against o for fixed T.
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Figure 2. Plots of power curves against o for fixed N.
Table 4. Size and power performance of nonparametric Hausman-type test (T=40).
N=30 N=40 N=50
K 1% 5% 10% 1% 5% 10% 1% 5% 10%
0 0.0205 0.0675 0.1125 0.0165 0.0605 0.1135 0.0160 0.0635 0.1115
0.1 0.2700 0.4180 0.5210 0.3420 0.5125 0.6090 0.4305 0.5820 0.6785
0.2 0.9165 0.9605 0.9750 0.9750 0.9880 0.9925 0.9940 0.9970 0.9990
0.3 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

6. Conclusion

In this paper, we propose a novel way to estimate a partially varying-coefficient panel data model
with fixed effects which removes the individual effects by taking the difference of the nearest
neighbor of the smoothing variables. The profile least squares method based on first-stage local
linear fitting is developed to estimate both the parametric and nonparametric parts of the differ-
ence-transformed model. Moreover, a functional form specification test and a nonparametric
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Table 5. Size and power performance of nonparametric Hausman-type test (N = 40).

T=30 T=40 T=50
K 1% 5% 10% 1% 5% 10% 1% 5% 10%
0 0.0165 0.0640 0.1135 0.0160 0.0580 0.1170 0.0200 0.0630 0.1135
0.1 0.2785 0.4300 0.5210 0.3530 0.5059 0.6020 0.4210 0.5725 0.6785
02 09170 0.9665 0.9785 0.9665 0.9875 0.9940 0.9885 0.9970 0.9980
03 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Hausman-type test are constructed. The asymptotic properties of the proposed estimator and test
statistics are derived as well. Monte Carlo simulations are conducted to illustrate good finite sam-
ple performance for the proposed estimator and the test statistics.

There are some limitations in the current study. This paper assumes that the observed data is
independently and identically distributed. However, this assumption may be relaxed to stationary
time series on the time dimension and cross-sectional dependence on the cross-sectional dimen-
sion. We leave it as a future research topic.

Appendix
The following notations and definitions will be used in the proof of lemmas and theorems. Define
e = [ukK(u)du, vg = [uFK?(u)du, and

N T

. 1 * * T —
) =fl0) pim LSS B e =)

(N, T)—00 i=1 =1

Further let Z = (I — 8)Z and Z;, denote the [(i — 1)T + t]th column of z'.

Appendix A: Useful lemmas

Lemma Al. Let {Wy,u;} be independently and identically distributed bivariate random vectors, A* denote the
nearest neighbor difference defined in Section 2, and K(-) be a bounded positive function with a bounded support,
satisfying a Lipschitz condition. Further assume that E|W| < oo and sup, [ |W|’f(W,u)dW < oo, where f denotes

the joint density of (W, u). Given that (NT)zo‘flh — 00 for some § < 1—s7", then

N

T 1/2
ITZ Z A WKy (ui — u) — E(A" W Ky (uir — u))] =0, ({%} >

sup
u i=1 t=1

Proof of Lemma Al. Note that A*W; = W; — W= where W; is the nearest neighbor of W;,. Therefore, we have

N T

sup Z A WKy (uie — u) — E(A" WKy, (1 — u))]
i=1 t=1
1 &
< sup NTZZ[W‘K" uie — u) — E(Wi Ky (uie — u))]
u i=1 t=1
1 &
+ sup|— NT ZZ Wip Ky (uiy — u) — E(Wip Ky (ui — 1))
u i=1 t=1
= ]Il + Hz.

By Proposition 4 in Mack and Silverman (1982), it can be shown that

o {sm)™) -, o ({lestm)™)

This completes the proof of the lemma.
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Lemma A2. Suppose that Assumptions A1-A5 hold, we have

1 “ .
— 7T 1-8T1-3)z s,
NT I-8) (I-9) >

where X = plimy, ) N—IIZZI Zthl {E(A*zi,A*z E[f (i)W T (i) CI)‘l(u,-,)‘P(u”ﬂ }

Proof of Lemma A2. Firstly, we observe that

(A*xll’ ){D;,HuuDuu} D—ur”HHuZ

xNT’ {Du\THuwDMM } DT HMIZ

UNT

Also note that D] H,D, is given by
Zil Z:T:1 A*xitA*xIKh(”it —u)
> 12: 1 At A u,[

By Lemma Al, for the upper-left entry in the above matrix, it is easy to show that

u
K (uir — u)

.
Zil ZzT:1 A*xitA*xI ”h
w) SN Yo A A (M) K (i — w)

Kh(uit -

1

NT A*x,-tA*x;Kh(u,-, —u)

™M=
M'ﬂ

1 t=1

T 12
Sl o)

T
Z JA*qu xp K (i — w)f (A" x| )f (uir) AN xip sy

t=1

{oaftn))

=f( u){NTZZE *xiN X [ui = 1) }{1+OP (ent)}

i=1t
u {1+Op CNT)}-

By employing the same arguments, we can derive

i

|._ Z‘»—
~
M=

Z
ﬁ
M=

D(u) 0
—DTH D, 140, , Al
NT < 0 (D(M)H2>{ *Oplewr)} D
and, therefore,
-1
O (u) 0
T —
(NTD H,D ) = ( 0 @*l(u)ugl){l + Op(enr) }-
Similarly, a simple manipulation leads to
1 - Y(u)
N PuHeZ = < 0 {14 Op(enr)} (A2)
Combining the previous results gives
A, @7 (1) W (1)
§z= {1+ Oplenr)}- (A3)

B
A xNT

Finally, we observe that

~H(unr) ¥ (unr)
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1 1 T g
G2 1=8)T1-38)z

1 A N\T A
:N—T(Z—sz) (z-382)
N T

1
=T

i=1 t=

= ]13{1 + Op(CNT)}-

[A*Z,'t - ‘I"T(ui,)(lfl (uit)A*xit] [A*Z,'t - ‘I’T(uit)d)’l(ui[)A*x,-J T{l + Op(CNT)}
1

Note that the nearest neighbor difference causes some dependent structure over t. However, for a given i € N,

there are at most two elements among {(A*z;, A"x;) : s # t} that are correlated to (A*zj, A*x;). Therefore, it is
easy to show that Var(I3) — 0. Using Chebyshev inequality, we have

|
NiZ =8 1=8)z—%.

The lemma is established.

Lemma A3. Under Assumptions A1-A5, we have

2 (=8) (1= )M = 0,(&).

Proof of Lemma A3. Similarly to (A.3), we can show that
A" X[ B(un)
gM: {1+OP(CNT)}.

A"xlrBlun)

NT .

= r@- 82)T (M — SM)

= N—szi:Zl: [A"z,t — ¥ (y)d7! (ui[)A*x,»[] A'x;, (ui[){l + OP(CNT)}OP(CNT)
~0,E).

This completes the proof of the lemma.

Appendix B:Proofs of theorems

Proof Of Theorem 4.1. From Equation (2.10) and Lemma A2, we can derive that

VNT( —9) = {%zw— §) (- S)z}_ {\/LN_TzT(I— ) (1= 8)(M+Pr+ e)}

:zfl{ﬁzT(I—S)T(I—S)(M+PT+6)}{1+op(1)}4
Next, we consider
LZT
VNT
SR S PN P | P N T
——\/WZ (I-8) (1 S)M+—\/WZ (I-8) (I-S)Pr
1 .

+ WZT(If ) (I-9)e

EH4+H5+H5.

(I=8)"(I-8)(M+Pr+e)
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From Lemma A3, we have Iy = O, <\/NTc]2\,T). According to the definition of Py in (2.5), we have

AR NIE

N T 1 Tx
\/—EZ: th uxt)q) (uzt)A xrt]{ [A* T(I) (uxt) ]%}

x {14 Op(cnr) } 0, (log T/T)
(\/—log T)
T

I[5:

\ 3
b\]

=0, {1+ Op(enr)}

Finally, we turn to the analysis of Is. Note that

H6:

N T ~ 1
3 Zzit{ Ae, — (A*xI,o){DLH,mDW} DI“HM}.

1
NTzltl

ﬁ

By using the same argument as in the proof of Lemma A2, we have
T T T T
(A"}, 0){ D}, Hy, D, | D, Huye = A" 07 (s (i E(A el Op(ex)-

Then we can show that

ZZ{A*z,, u,,)(lfl(uit)A*xit}A*Eit{l +0,(1)}

i=1 t=1

ETZ 1+op

where Q; = (1/\/T) Zthl {A*zit — ‘I”T(uit)fl)’l(uit)A*xit}A*eit. We now show that ﬁZil Q; is normally distrib-
uted by employing the Cramér-Wold theorem and the Lindeberg-Feller central limit theorem.
For any unit vector d € R, let w; = d'Q;. Then,

%M
&]

RIS EL o
\/1\7,':1 1 \/_ﬁizl :

Note that, for a given i € N, there are at most two elements among {(A*z, A*x;) : s # t} that are correlated to
(A*zit, A"x;). By Assumption 6, it is easy to show that

Elo,* — 0,
4N2,Z

as (N, T) — oo, where p2 = plimy___(1/N) YN, d"E(QiQ/ )d. This completes the proof of the theorem.

o

Proof of Theorem 4.2. From (2.11), we can rewrite the local linear estimator of () as follows:
- —1 N
B(u) = [l 0,{D HuDu} Dy Hu(Y = Z9)
= llp O, {Dy HuD} DIHM + Z(7 = 9) + Py + ]

where I, is a p X p identity matrix, and 0, is a p X p zero matrix. Therefore, it is simple to show that

B(u) — p(u) = I; + Ig + Iy + Lo,

Blu)
wn (i)
Is = [Ip,0,]{D, H.D,} ' D] HuZ(7 — ),

-1
Iy = [I,,0,]{D, H,D,} D, H,Pr,
Ty = [I,0,]{D, H.D,} ' D] H,e.

where

—1
I = [,,0,]{D)H,D,} D} H,
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We first consider I;. Note that
- Bu)
I, = [I,,0,]{D H,D,} 'DH,|M - D,
7 [P P]{ utlu } u hﬁ'(u)

£ ()

= [I,,0,{D; H,D,} 'D] H, ) "(u){1 + op(h*)}.
N (5
Similar to the derivation of (A.1), it is easy to show that
% up—u) 2
1 Ay (45) D)
—D, H, : :( o 2){1+op(cm)}

NT *, T (unr—u\2
Axr (57)
Therefore, we have
hz //
I = ?Hzﬁ (”){1 + OP(CNT)}x
and
D h2 /1
VNTh|B(u) = B(u) == 1f (W){1+ Oplenr)} | = VNTh(Ig + Ty + ).

Next, we turn to the analysis of vV NThIg. By (A.1), (A.2), and Theorem 4.1, we can derive that
VNTHhI; = flp,op]{DTH D,} 'DIH,ZVNT(y — )
= Vho'! () {1+ Oplent) }Op(1).

As for VNThl, it can be shown that

D'H,D,\ ' D! H,Pr
VNThly = VNTh[I,, 0 w171 u_t
9 [P P]{ NT } NT

(e

=0 {1+ Oplenr) }-

Finally, we consider v NThl,,. Note that
VNThl, = VNTh[,,0,]{D, H,D, }_IDTH e

=0 ' (u)VN { ZZA XN €, Kpy (i — u)}{l +0, cNT)}.

tlt

The variance of \/NTh{ﬁ Zf\il E,TZI A x N €y Ky (uir — u)} can be derived as follows:
| N
NTh - Var {NZZ “xi N € Ky (i — u)}
LT
N*ZZ (A*xitA*ﬁitKh(uit - u))
=1
h
NT

N T
ZZZE(A*xitA*eitA*eigA*xIKh(uit — u) Ky, (v — u))
i=1 t=1 s#t
T
1/0— ZE{A*xﬂA* TE[A* 2 uie, A x,t] [uy = u}{l +O( )}

zlt

= Q" (w){1+0( h)}.

Now, note that
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N

1 N T

where QF = (1/VT) 2.1, \/EA*x,-,A*e,-,Kh(u,-t — u). For any unit vector d € R, let of =d' Q. It easy to show
that

1
PIN? 4=

as (N, T) — oo, where p? = d' Q" (u)d. By the Cramér-Wold theorem and the Lindeberg-Feller central limit the-
orem, the asymptotic normality is established.

Proof of Theorem 4.3. Under H,y, Equation (2.3) becomes Ay, = A*x;) fo(uir) + A2}y + P, 7 + Ay, Let
A w; be (A*x;,A*ZI)T. Further, define I'o(u;;) and fo(uit) as ([ioT(:,tit),yT)T and (ﬁg(uit),iT)T, respectively.
Then, Wyr can be decomposed as follows:

T T
* * * TP
WNT = NzTZh § E E [A xif(A Yit — A Zzt)) - A xitﬁo(uit))]
* * * ~ * . Uit — Ujs
X [A xjs(A ;s — A z;y —A ijﬂo(ujs))]K( t ) J)

sz%:,ii:{A 0 [Ae + A% () — Fo(u) + Pt }T
{8 A6+ A (Do) — Polu)) + P o] }K(%)

= ANt + 28087 + 28387 + Asnr + 2A58T + AenTs

where

1 T T i —

Ar :WZZZA*Q,A*QSA x5 A K== ),
iA =1 s=1

1 I X " " S Uit — Ujs

Aot = NZTZh;;;A thA Xit 1A xJSA w ( (”js) - FO(”}'S))K T >
T T —

A3N1 Nszhth;;A G,tA Xit A XJS js*, IK( h ))

1 L - T
Awr =y — ;;(To(un) — To(u)) A" A"x;

. ) Wir — U
X A WJI (Fo(ujs) — Fo(uﬁ))[{(%) >

1 s ¢ TA* * T A% Uit — Ujs
Asyr = NT2h .- ;;(ro(”it) —To(ui)) A myA x;p AP, 7K )

1 L * T A* Uit — Ujs
ANt = 5 D > P 1A X A" X Py 1K :

T°h iA =1 s=1 h

We complete the proof by showing that under Hy, (i) NTH/2ANr - N(0,Vy), where Vy =

Pl 1) s Dicicjon i S E[A A (AR A xR (U5) ], i) NTH Ay = 0y(1) for 7=
2,3,...,6, and (i) Vw = Vi + 0p(1).

Proposition 1. Under H;p, NTh'/?Anr - N(0, Viy).
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Proof. Rewrite NTh'/2 Ay as

NTH' ZAwr = Y Wy,

1<iGEN
where Wy = 2(NTh'/2)' 37, A*ei[A*ejsA*xiTtA*xjsK<%>. Note that 3°,_; .y Wy is a degenerate second
order U statistic. The asymptotically normality can be established through the application of Proposition 3.2 in de
Jong (1987) for independently but nonidentically distributed (INID) observations. To achieve this goal, we need to
verify the following conditions: (C1) G; = 3, i jen E(Wj) = 0(1), (C2) Gi =3, jojan EW Wi + WEWS +
WI%:'WI%J') = 0(1), and (C3) Gy = Zl§i<j<k<l§N E(W,]W,kWIJWZk + WijWiIijWkl + W,-kW,ﬂ/ijVVﬂ) = 0(1).
For (Cl), noting that
4 16 * * * * * * *
> Ewy) = TR S > E(Aen A A, A, A, A e A,
1<iGEN 1<SIGGEN 1<t o t5<T
x Aeig, A" x”l A*xﬂzA*x A'xg, Ax) A*xjtsA*x;7A*xj,8

its
X Klj, tit Kij, t3ty Kij, tste Kij, t7ty )’

(A4)

where Kj; i = K (@) Let .# be any index set, #.# denote the number of distinct elements in .#. Further, let &

be any set of random variables, #;,;.% denote the number of elements in the maximal mutually independent subset
of . If #{t1,...,ts} = 8, we consider four cases:

(Ia) #ind{A*Eitl’A*Eit;,’A*Eit5>A*€it7} =3 or 4, and #ind{A*ejtz, Aejp,, A€y, A*eﬂ&} =3 or 4,

(Ib) #ind{A*Eitv A*EizS;A*EitS’A*Em} =3 or 4, and #ind{A*ejtp A*Ejtq, A*Ejté, A*Ejtx} =2,

(Ic) #ind{A*Ein» A€y, Ay, A*e,-t7} =2, and #,-,,d{A*Ejtz,A*eth, A€y, A*Ejtg} =3or4,

(1d) #ina{ A €ir,, A" €iry, A€, A €ir, } = #ina{ A" €51, A" €0, A€, A€, } = 2.

According to these cases, (A.4) can be written as

Z E(W}) = Si + Si + Sic + Sua + S

1<i<j<N

where Sy denotes the corresponding summation for case (Il), I € {a,b,c}, and S}, corresponds to the summation
for #{{t,....ts} < 8. One can easily prove that S;; = Sy, = S. = 0. As for Sy, recall that, for any f, A"¢; are cor-
related with at most two elements among {A¢; : s # t}. Thus, it is easy to show that S;; = O(h*/N?) = o(1).
Using similar argument, we can prove that S;, = o(1), Gy = o(1), and Gy = o(1).

Finally, we have to show that Var(NTh'/2A,xr) = Viy 4 o(1). By Assumption Al, it is easy to see that
E(Aint) = 0. Therefore,

Var(NTh'2Anr) = E(N*T?h - Aly;)

4 T T T T
~ N°T?h Z ZZZZ (A eir, A", Aejs, A",

1<i<j<N Hi=1h=1s;=1s=1
* T A% * *
x A xitlA stlA x. A xjsz ij, tlSlKij fzsz)
_ 4 EA*ZA*ZA*TA*
= N°T°h x]S) z] i| To(l)
1<i<j<N t=1 s=1

Therefore, the asymptotic normality of NTh'/2A,yr has been established.
Proposition 2. Under H,, NThY2 AN = 0,(1) for r =2,3,...,6.

Proof. We only prove NTh'/2Aynr = 0p(1), and the proofs of other results follow in a similar manner. With the
help of the Mean Value Theorem, we can rewrite Aynr as follows
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i#j 1<t,s<T

0 — * * * —_ 0
Ay = ( B y) { Tlhz D B 00) A wi A A XA w;-:(ujS)GZ)Kij)ts}

Il
VRS
~= D
(.
~=
~—

4

2]

&

z

=
N
~= D
[
=
N~

and

_ o wid) _ o8 (i) o
E(u 0,) = a0 P4 ), E(uy, 0,) = a0 pxq
0454, Igxq 044, Igxq
where dj is the dimension of 0. -
From Theorem 4.1 and the fact that 0 is a v/NT consistent estimator of 0, we have <? 6) Op(l /V/NT).
In addition, we can easily show that Syyr = O, (1). Thus, we have r=7

NTH'2Agnp = NTH'/? . op(l/\/ﬁ) 0,(1) - op(l/\/N_T> = 0,(h'?) = 0,(1).

This proof is completed.
Proposition 3. Under Hyp, Viy = Vi + 0,(1).

Proof. 1t suffices to show that Vi = Vi + 0,(1), where

N
oy * 2 AK *T* Z2uit—uj5
Vo = sz;zzE[A GA" (A% Ax) K (—h )]

We first decompose Vw — Vi as follows
N T T
VW VW AXEZA* 2 A* TA*XJS) i ts
th;;;{ o
- E[A*ezA* 2 (A"x) A" 'K, ,]}
N T T
*A *A * T *
]\FTZI’!IX#}:;;{A 1tA ]s A Ax]‘) x]ts

_AF ZA* 2 (A* TA*xjs) 0 ts}
= Vinr + Vonr.

Noting that E(Vinyr) =0, and E(V2y;) =o(1) by Assumption Al. Applying the Chebyshev inequality, we
obtain Vinr = 0,(1).
For V,onr, We can write

2 N
Vonr = (A} A" X ) K2 (A6 — AT E2)(AE, — A€
Z\PTZh i#j 1<t,s<T h ' ! !
n LEN: 3 (WA )R (AT - ATE)AE,
N2T?h i# 1<t,s<T
N
+ LZ Z (A*XIA*XJS) Kf, tsA* 2(A*A2 —A* 2)
N*T?h i#j 1<t,s<T

= Vonr1 + Vonr,2 + Vonr s = Vot 1 + 2Vonr2-

We proceed to prove Vonr = 0,(1) by showing that (i1) Vonr,1 = 0,(1), and (i2) Vanr,2 = 0,(1).
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For V,nr,1, we have

c NN . 2
Vo S oy O |- ad) (a8 -ag)| | (anass,)|
i=1 j=1 1<f,s<T
_ C izN: (A*E.Z—AE)<A*A2 A*e 2)
Nszh i=1 j=1 1<t,s<T !
PP
X ZZA*'XI‘I,]A*ij,IA*xit,mA*ij,m
I=1 m=1
c NN . ., A LA .
< N2T2h ;;K;SST (A€ —A'e) <A €js ) <Z;|A xi,1A xit,m)
<ZZA Xjs, 1 A" X |>
1m
c IRLNE A 2
=% ZZZZ'A*git — Aeig] - | A€ + A eir| - |A X 1A X,
i=1 =1 |=1 m=1
N T
< c{ NTH) Y S (A — Aer) }
i=1 t=1

x{mwziip

=1 t=1 |=1 m=1

(A"€i + Aeir) (A*xit,lA*xit,m)Z}»

where A*x;; denotes the Ith element of A*x;, and the last inequality follows from the Cauchy-Schwarz inequality.
Note that A*¢;; = A*z] (y — §) + Ax] (Bo(ui) — i?o(u,-t)) + Py, 7 + A"€;. Under Hyy, the following relation holds

N T N T
DD NG =4y D NG,
i=1 (=1

i=1 t=1

which implies that

(A"&; + A*Eit)z(A*xit,lA*xiz,m)z

M@

N1y 33y

i=1 t=1 |=

§

p P

T
> D D D (NE + A ) (A i A i )

t=1 m=1

-1

EMZ

T
-1

p
Z A (A Xt 1A Xt )

—1 m=1

Mz

1

=1

= 0,(1).

Therefore, Vonr,1 = 0,(1) can be established by showing that (NTh) ™' SN, Z::I (A"t — A'ey)* = 0,(1). In fact,
since A*e;r — A€ = Az (y — 9) + A*x} (Bo(uie) — Bo(ui)) + Piee, 1

(NTh)™ ZZ (A€ — A €1t

i=1 t=

= (NTh)"IZH e — Al
= (NTh) IZHA* (0 —0)+Azi(y — ) + Pyr|

2T S (150~ DI + 182G — DI + [Pl
i=1

=0,(1),

where A*é, = (A*Eil, e A*é,’T)T,A*Ei = (A*E,‘l, ...,A*E,‘T)T,A*Zi = (A*Z“ A Z,T) , T — (Pil*,T) ~-~aPiT",T)) and
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* T ﬁﬂT(uxl;bl)
A'xy =55
ST

: , 0, lies between 6 and 0,t=1,..
A*x; _Off%‘gﬂr)
Now, we consider V,yr,,. Following the arguments in the proof of Lemma A23in Ca1 Fang and Xu (2020)
= [K(u)K(v — u)du. Thus,

we rewrite K(-) as a twofold convolution of another symmetric PDF K(-) : K(v

N N
[Vaonr,a| < h(NT)izzZ Z A€, A*ffs (A*x;A*xﬁ)ZKﬁ(ui[ - Us)

i=1 j=1 1<t,s<T

N N p r

<hINT) YN ST At - A ae <ZZ|A*x,~[,1A*x,»t,m|)
=1 m=1

i=1 j=1 1<t,s<T

P p
o (s i
Ir=1m'=1
p — —
A €L || A xjs,p A" gy |Kp (it — u) K (uip — u*)

= h(NT)? ”iii NG

i=1 t=1 |=1 m=1

T p »p
ZZZ -x]s l’A Xjs, m’|Kh(u]s -

1 s=17

u)f(’;, (ujs - u*)dudu*

X

M=

j
1/2 1/2
< V2NT 2, 1V2NT,2,2’

where
N T p p
Vontiaz = h(NT)" H SO S TS A A A
j=1 s=11I=1m'=1
2
X Kp(ws — w)Kp(us — u”) | dudu®
= h(NT)72 Z A*EZ A€ ‘A*xjs 7% Xjs, m/”A Xit, 1A* Xit, m|
1<, j<N 1<6, s<T 1<, m' <p 1<l m<p
X Kﬁ(u,‘[ - M]'S)
= Op(l)’
and
A* 2 |A Xit, lA Xit, m|

Vawr,21 = h(NT) ™ “ {iiii A&

i=1 t=1 |=1 m=
2

X Ky(uy — u)Kp(uy — u*)| dudu*

=hNT)2 Y > > > A -
1<i, j<SN 1<t, s<T 1<l', m'<p 1<l, m<p

‘A*xit, ZA*xit, m HA*xjs, I’A*xjs, m ‘Ki (uit

=0p(1),
where the last equality is obtained by employing the same arguments as we have shown in the analysis of |V,nr,1]

* 2 * a2 * 2
AeyllA € —A'e

— ujs)

Therefore, Vonr = 0,(1), which completes the proof.

To sum up, we have shown that
NTH2Wyr 2 N(0, Viy),

and Vyy, can be consistently estimated by Vw. Therefore, Wyr — N (0,1)
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Proof of Theorem 4.4. First, noting that Hyr can be decomposed as follows:

N T N

Hyr = (NT(NT=1))7") "3 "» Z Vi oK i

i=1 t=1 j=1s=1, {j,s}#{i,t}

N T N T N T
= (NTINT = 1) SN SN+ 30 | vk

i=1 1=1 \ j#i s=1  j=i s#t

= HNT,I + I:INT,2~

Comparing with H NT,1, it is not difficult to prove that H nT,2 is negligible. Thus, we focus on H ~T,1- By the defin-
ition of ¥;, we have

Vit = Vi + X (Blua) — B ) + 24 (7 = 9)-

Therefore,

Hyr,, = (NT(NT — 1))~ Z > abiK
i#j 1<t,s<T

= (NT(NT - 1)) IZ S [t X (Bl — b)) + 25~ 9)

i#j 1<t,s<T

X [Vjs +X;(ﬁ(ujs) - B(ujs)) + ZJI (v — ?)}Kz,n,]‘s

= (NT(NT — 1))~ Z > vy

i#j 1<t,s<T

+ 2(NT(NT — 1)) 12 D X (Bluws) — Blw))KG,
i#j 1<t,s<T

+ 2(NT(NT - 1)) IZ D vZ (= DK s

iAj 1<, s<T

+ (NT(NT -1)) 12 Z Puir) [g(uit)) (ﬁ(”}s)_ (”15))Kh it, js

i£j 1<t,s<T

N
+ 2(NT(NT — 1))_12 Z X (B(ui) */}(uzt))z (7 = DK i s

i 1<t,s<T

+ (NT(NT - 1)) IZ PR VAR R )T

iAj 1<t,s<T
= Bint + 2Bont + 2Bsnr + Banr + 2Bsnr + Benr-

An argument similar to the one used in the proof of Theorem 4.3 shows that NTH"/?B,nr = o0,(1)
forr=2,3,...,6.

For BNy, under Hy, it is a degenerate second-order U statistic with independent and identically distributed
observations. Using Theorem 1 of Hall (1984), one can show that NTh™?B,xr is asymptotically normal distrib-
uted. The detailed proof is a modification to the proofs of Lemma 3.3 in Zheng (1996) and thus is omitted. The
fact that the asymptotical variance of NTh™/?B,yr can be consistently estimated by V' can be proved by employ-
ing Lemma 3.1 of Powell et al. (1989). The detailed proof follows closely from the proof of Lemma 3.3e in Zheng
(1996) and is also omitted.

Proof of Theorem 4.5. The proof of Theorem 4.5 is similar to the proofs of Theorems 4.3 and 4.4, and thus we
only sketch it. o
(a) Under Hy;, Assumptions A1-A6 ensure that § =% 4 O,((NT)~ 1/2) and 0 =0+ OP((NT)fl/Z), where 7}

and 0 are the probability limits of § and 0, respectively. Then, we have
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T T
* * n T
Wr = N2T2h ZZ A Xt (A'yi — Az y — A x;ﬁo(”it))}
* * Uit — Ujs
X [A Xjs(Ays — A st -A x]Sﬁo(“JS))]K(%) [1+0,(1)]

TthZZ{AUC" (A€ + Ay (T(wi) — To(ua)) + Pie 7] }T

i#j t=1 s=1

{8 80 80 (Fla) = o) + B (M)

x [140,(1)]
= {AINT + 280n7 + 28387 + Ayt + 28587 + AsNT} [ + 0y( )]

where Bo(u) = fo(u:0), T(wi) = (B (wi).9™) ", Tolui) = (By (wi).77) ", and

Agyr = thz ZZA*E,,A xp A A ] (T () — l;o(ujs))K(uit - ”f‘>,

i#j t=1 s=1
A4NT NszhZZZ uzt uzt)) A wztA x A xjs

t=1 s=1
« — Ujp — Ujs
x Ny (T(w) — Fo(ujs))K( ! - f),

Mﬂ

T T A% * Uit — Uj
u,t — Fo(u,-t)) A w,‘tA XIIA*XJ'SP]'S*)TK(%).

T
Asyr = NZTZh Z Z

i#j t=1s 1

By utilizing the similar arguments in the proof of Theorem 3.2 in Lin et al. (2014), we can show that A;yr EN Ci
where C; is a positive constant. Furthermore, following similar steps as in the proof of Proposition 2, we have
NThl/zA,NT:op(l) for r=2, 4, 5, and NThl/2A,NT:op(1) for r=3, 6. A modification of the proof of

Proposition 3 shows that Vi N C,, where C, is also a positive constant. Therefore,

War = NTR > War/y/ T = {NTR2C/v/Ca } 1+ 0,(1)],

which leads to (a).
(b) The detailed proof is a modification of the proof of Theorem 2 in Zheng (1996) and thus is omitted.

Funding

This research was partially supported from the National Science Fund of China (NSFC) for Distinguished Scholars
(71625001), the NSFC key projects with grant numbers 71631004 and 71131008, and the Basic Scientific Center
Project of NSFC (71988101).

References

Arellano, M. (2003). Panel Data Econometrics, Oxford: Oxford University Press.

Balestra, P., Nerlove, M. (1966). Pooling cross section and time series data in the estimation of a dynamic model:
the demand for natural gas. Econometrica 34(3):585-612. doi:10.2307/1909771

Baltagi, B. (2008). Econometric Analysis of Panel Data, New York: John Wiley & Sons.

Cai, Z., Fan, J.,, Yao, Q. (2000). Functional-coefficient regression models for nonlinear time series. Journal of the
American Statistical Association 95(451):941-956. doi:10.1080/01621459.2000.10474284

Cai, Z., Fang, Y., Xu, Q. (2020). Testing capital asset pricing models using functional-coefficient panel data models
with cross-sectional dependence. Journal of Econometrics. Advance online publication. doi:10.1016/j.jeconom.
2020.07.018

Cai, Z., Li, Q. (2008). Nonparametric estimation of varying coefficient dynamic panel data models. Econometric
Theory 24(5):1321-1342. doi:10.1017/S0266466608080523


https://doi.org/10.2307/1909771
https://doi.org/10.1080/01621459.2000.10474284
https://doi.org/10.1016/j.jeconom.2020.07.018
https://doi.org/10.1016/j.jeconom.2020.07.018
https://doi.org/10.1017/S0266466608080523

ECONOMETRIC REVIEWS . 943

Chen, J., Gao, J., Li, D. (2012). Semiparametric trending panel data models with cross-sectional dependence.
Journal of Econometrics 171(1):71-85. doi:10.1016/j.jeconom.2012.07.001

de Jong, P. (1987). A Central limit theorem for generalized quadratic forms. Probability Theory and Related Fields
75(2):261-277. doi:10.1007/BF00354037

Fan, J., Huang, T. (2005). Profile likelihood inferences on semiparametric varying-coefficient partially linear mod-
els. Bernoulli 11(6):1031-1057. doi:10.3150/bj/1137421639

Hall, P. (1984). Central limit theorem for integrated square error of multivariate nonparametric density estimators.
Journal of Multivariate Analysis 14(1):1-16. doi:10.1016/0047-259X(84)90044-7

Hausman, J. A, Taylor, W. E. (1981). Panel data and unobservable individual effects. Econometrica 49(6):
1377-1398. doi:10.2307/1911406

Henderson, D. J., Carroll, R. J., Li, Q. (2008). Nonparametric estimation and testing of fixed effects panel data
models. Journal of Econometrics 144(1):257-275. doi:10.1016/j.jeconom.2008.01.005

Hoover, D. R, Rice, J. A, Wu, C. O, Yang, L.-P. (1998). Nonparametric smoothing estimates of time-varying coef-
ficient models with longitudinal data. Biometrika 85(4):809-822. doi:10.1093/biomet/85.4.809

Hsiao, C. (2014). Analysis of Panel Data, 3rd edition, Cambridge: Cambridge University Press.

Huang, X. (2013). Nonparametric estimation in large panels with cross-sectional dependence. Econometric Reviews
32(5-6):754-777. d0i:10.1080/07474938.2013.740998

Janson, S. (1987). Maximal spacings in several dimensions. The Annals of Probability 15(1):274-280. doi:10.1214/
aop/1176992269

Li, D., Chen, J., Gao, J. (2011). Non-parametric time-varying coefficient panel data models with fixed effects. The
Econometrics Journal 14(3):387-408. doi:10.1111/j.1368-423X.2011.00350.x

Li, Q, Huang, C. ], Li, D., Fu, T.-T. (2002). Semiparametric smooth coefficient models. Journal of Business and
Economic Statistics 20(3):412-422. doi:10.1198/073500102288618531

Li, Q., Stengos, T. (1996). Semiparametric estimation of partially linear panel data models. Journal of Econometrics
71(1-2):389-397. d0i:10.1016/0304-4076(94)01711-5

Lin, Z., Li, Q., Sun, Y. (2014). A consistent nonparametric test of parametric regression functional form in fixed
effects panel data models. Journal of Econometrics 178(1):167-179. doi:10.1016/j.jeconom.2013.08.014

Mack, Y.-P., Silverman, B. W. (1982). Weak and strong uniform consistency of kernel regression estimates.
Zeitschrift fur Wahrscheinlichkeitstheorie Und Verwandte Gebiete 61(3):405-415. doi:10.1007/BF00539840

Mammen, E., Steve, B., Tjestheim, D. (2009). Nonparametric additive models for panels of time series.
Econometric Theory 25(2):442-481. doi:10.1017/S0266466608090142

Powell, J. L., Stock, J. H., Stoker, T. M. (1989). Semiparametric estimation of index coefficients. Econometrica
57(6):1403-1430. doi:10.2307/1913713

Qian, J., Wang, L. (2012). Estimating semiparametric panel data models by marginal integration. Journal of
Econometrics 167(2):483-493. doi:10.1016/j.jeconom.2011.09.030

Su, L., Jin, S. (2012). Sieve estimation of panel data models with cross section dependence. Journal of Econometrics
169(1):34-47. doi:10.1016/j.jeconom.2012.01.006

Su, L., Ullah, A. (2006). Profile likelihood estimation of partially linear panel data models with fixed effects.
Economics Letters 92(1):75-81. doi:10.1016/j.econlet.2006.01.019

Su, L., Ullah, A. (2007). More efficient estimation of nonparametric panel data models with random effects.
Economics Letters 96(3):375-380. doi:10.1016/j.econlet.2007.02.018

Xue, L., Zhu, L. (2007). Empirical likelihood for a varying coefficient model with longitudinal data. Journal of the
American Statistical Association 102(478):642-654. d0i:10.1198/016214507000000293

Zhang, J., Feng, S., Li, G., Lian, H. (2011). Empirical likelihood inference for partially linear panel data models
with fixed effects. Economics Letters 113(2):165-167. doi:10.1016/j.econlet.2011.07.014

Zheng, J. X. (1996). A consistent test of functional form via nonparametric estimation techniques. Journal of
Econometrics 75(2):263-289.


https://doi.org/10.1016/j.jeconom.2012.07.001
https://doi.org/10.1007/BF00354037
https://doi.org/10.3150/bj/1137421639
https://doi.org/10.1016/0047-259X(84)90044-7
https://doi.org/10.2307/1911406
https://doi.org/10.1016/j.jeconom.2008.01.005
https://doi.org/10.1093/biomet/85.4.809
https://doi.org/10.1080/07474938.2013.740998
https://doi.org/10.1214/aop/1176992269
https://doi.org/10.1214/aop/1176992269
https://doi.org/10.1111/j.1368-423X.2011.00350.x
https://doi.org/10.1198/073500102288618531
https://doi.org/10.1016/0304-4076(94)01711-5
https://doi.org/10.1016/j.jeconom.2013.08.014
https://doi.org/10.1007/BF00539840
https://doi.org/10.1017/S0266466608090142
https://doi.org/10.2307/1913713
https://doi.org/10.1016/j.jeconom.2011.09.030
https://doi.org/10.1016/j.jeconom.2012.01.006
https://doi.org/10.1016/j.econlet.2006.01.019
https://doi.org/10.1016/j.econlet.2007.02.018
https://doi.org/10.1198/016214507000000293
https://doi.org/10.1016/j.econlet.2011.07.014

	Abstract
	Introduction
	Model and estimation procedure
	Model specification tests
	Testing functional forms of varying coefficients
	Testing fixed versus random effects

	Asymptotic theories
	Assumptions
	Asymptotic properties

	Monte Carlo simulations
	Finite sample performance of estimators
	Finite sample performance of functional form tests
	Finite sample performance of nonparametric Hausman-type tests

	Conclusion
	mkchapLECR_S0008_sec
	mkchapLECR_S0009_sec
	mkchapLECR_S0010_sec

	Funding
	References


