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ABSTRACT
Testing for predictability of asset returns has been a long history in economics and finance. Recently, based
on a simple predictive regression, Kostakis, Magdalinos, and Stamatogiannis derived a Wald type test based
on the context of the extended instrumental variable (IVX) methodology for testing predictability of stock
returns, and Demetrescu showed that the local power of the standard IVX-based test could be improved
for some range of alternative hypotheses and the tuning parameter when a lagged predicted variable
is added to the predictive regression on purpose, which poses an important question on whether the
predictive model should include a lagged predicted variable. This article proposes novel robust procedures
for testing both the existence of a lagged predicted variable and the predictability of asset returns regardless
of regressors being stationary or nearly integrated or unit root and the AR model for regressors with or
without an intercept. A simulation study confirms the good finite sample performance of the proposed
tests before illustrating their practical usefulness in analyzing real financial datasets.
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1. Introduction

The introduction to the 2013 Nobel for Economic Sciences
states:

There is no way to predict whether the prices of stocks and
bonds will go up or down over the next few days or weeks. But
it is quite possible to foresee the broad course of the prices of
these assets over longer time periods, such as the next three
to five years....

Testing for predictability of asset returns has been a long his-
tory and is of importance in economics and finance, and such
a test is often built on a simple linear structural regression
model between a predicted variable and some regressors; see,
for example, the excellent survey articles by Campbell (2008)
and Phillips (2015). Typically, predicted variables employed
in the literature are low frequency data, such as the annual,
quarterly, and monthly CRSP value-weighted index in Campbell
and Yogo (2006), and the monthly S&P 500 excess returns in
Cai and Wang (2014) and Kostakis, Magdalinos, and Stamato-
giannis (2015). Some commonly employed regressors (financial
predictors or predicting variables) are dividend payout ratio,
long-term yield, dividend yield, dividend-price yield, T-bill rate,
earnings-price ratio, book-to-market value ratio, default yield
spread, net equity expansion, and term spread; see Kostakis,
Magdalinos, and Stamatogiannis (2015) for a detailed descrip-
tion of these variables.

Since empirical studies suggest that those regressors may be
persistent, such as near unit root (nearly integrated) or unit root
(integrated), classical tests for predictability built upon a linear
regression model are no longer valid. For example, Campbell
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and Yogo (2006) and Demetrescu and Rodrigues (2016) pointed
out that the usual asymptotic approximation of the t-test statis-
tic by employing the (standard) normal distribution performs
particularly bad when regressors are persistent with the largest
autoregressive roots of the typical regressor candidate being usu-
ally smaller than one but close to one. Instead, one may prefer
the nearly integrated asymptotics as an alternative framework
for statistical inference. However, in the context of nearly inte-
grated regressors, as addressed by Demetrescu and Rodrigues
(2016), the limiting distribution of the slope parameter esti-
mator is not centered at zero, and this bias depends on the
mean reversion parameter of the nearly integrated regressor.
Although nearly integrated asymptotics approximates the finite
sample behavior of the t-statistic for no predictability consid-
erably better when regressors are persistent, the exact degree
of persistence of a given regressor, and thus the correct critical
value for a predictability test, is unknown in practice. To over-
come these difficulties, several alternative (robust) approaches
have been proposed in the literature to test predictability with-
out characterizing the stochastic properties of regressors (i.e.,
whether they are stationary or nearly integrated or unit root);
see, for instance, Cavanagh, Elliott, and Stock (1995), Campbell
and Yogo (2006), Jansson and Moreira (2006), Phillips and Lee
(2013), Cai and Wang (2014), Breitung and Demetrescu (2015),
Kostakis, Magdalinos, and Stamatogiannis (2015), Demetrescu
and Rodrigues (2016), and references therein.

To better appreciate the proposed study in this article, we
start with summarizing existing results and methods for the
following simple predictive regression model:

Yt = α + βXt−1 + Ut , Xt = θ + φXt−1 + Vt . (1)
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Due to the dependence between Ut and Vt , researchers have
found that the least squares estimator for β based on the first
equation in (1) is biased in finite samples when the regres-
sor {Xt} is nearly integrated (see Stambaugh 1999), and some
bias-corrected inferences have been proposed in the literature
such as the linear projection method in Amihud and Hurvich
(2004) and Chen and Deo (2009). A comprehensive summary
of research for the model (1) can be found in Phillips and Lee
(2013). Using the linear projection of Ut onto Vt as Ut =
ρ0Vt + ηt , Cai and Wang (2014) derived the asymptotic dis-
tribution of an estimator for β when Xt is nearly integrated,
which depends on whether θ is zero or nonzero. Also, the
asymptotic nonnormal distribution depends on the degree of
persistence, which cannot be estimated consistently, if Xt is
nearly integrated. When (Ut , Vt)T has a bivariate normal distri-
bution with AT denoting the transpose of the matrix or vector
of A throughout, Campbell and Yogo (2006) proposed a Bon-
ferroni Q-test, based on the infeasible uniform most powerful
test, and showed that this new test is more powerful than the
Bonferroni t-test of Cavanagh, Elliott, and Stock (1995) in the
sense of Pitman efficiency. Implementing this Bonferroni Q-test
is nontrivial at all as it requires additional estimators and tables
in an unpublished technic report written by them. Under the
normality assumption, Chen, Deo, and Yi (2013) proposed a
weighted least squares approximated likelihood inference with
a limit depending on whether regressors are stationary or nearly
integrated or unit root. Without the normality assumption, Zhu,
Cai, and Peng (2014) proposed a robust empirical likelihood
inference for β with a chi-squared limit regardless of {Xt} being
stationary or nearly integrated or unit root and Choi, Jacewitz,
and Park (2016) proposed a unified test based on a so-called
Cauchy estimation regardless of {Xt} being nearly integrated or
unit root. Without using the information on the persistence level
of the predicting variable, the key idea in Zhu, Cai, and Peng
(2014) is to employ the property that |Xt| p→ ∞ as t → ∞
when {Xt} is either nearly integrated or unit root. Therefore,
the unified method in Zhu, Cai, and Peng (2014) is robust
concerning the stochastic properties of the predicting variable.

On the other hand, it is known in the econometrics literature
that an extended instrumental variable (dubbed as IVX) based
inference is attractive in handling the dependence between
Ut and Vt , and avoiding a nonstandard asymptotic limit; see
Phillips and Magdalinos (2007) for details. In particular, the
IVX estimation approach proposed by Magdalinos and Phillips
(2009) is popular in predictive regressions because the relevant
test statistic has the same limiting distribution in both stationary
and nonstationary cases. The key idea behind this method is to
construct less persistent instrumental variables (IV) to achieve
a unified normal limit. As illustrated by Kostakis, Magdalinos,
and Stamatogiannis (2015), the IVX methodology offers a
good balance between size control and power loss, and the
power depends on some tuning parameters in constructing the
IVX instruments with a sacrifice on the rate of convergence
for the nonstationary case; see the parameters Cz < 0 and
β ∈ (0, 1) defined in (4) and the rates of convergence in
Kostakis, Magdalinos, and Stamatogiannis (2015). Based on
some Monte Carlo simulation studies, Kostakis, Magdalinos,
and Stamatogiannis (2015) recommended taking Cz = −I and

β ∈ (0.9, 0.95).1 As Kostakis, Magdalinos, and Stamatogiannis
(2015) assumed zero intercept in modeling regressors, that
is, no θ in the second equation of (1), and it is known that
the divergent rate of a nearly integrated regressor depends on
whether a nonzero intercept exists in the AR model for the
regressor, we conjecture that the IVX method fails to unify the
cases of zero and nonzero intercept θ , which is confirmed by our
simulation study presented in Section 3.1. In summary, the IVX
method in Kostakis, Magdalinos, and Stamatogiannis (2015)
has difficulty in choosing tuning parameters, sacrifices the test
power in the nonstationary case, and fails to unify the cases of
zero and nonzero intercept.

To improve the local power of the IVX based tests, Deme-
trescu (2014) proposed adding the lagged predicted variable
into the model on purpose and found that IVX based tests
should have a better power for some range of alternative
hypotheses and the tuning parameter in the IVX method.
Specifically, Demetrescu (2014) considered the following
dynamic model with γ = 0, but the restriction is not imposed in
estimating parameters (termed as variable addition approach):

Yt = α + γ Yt−1 + βXt−1 + Ut , Xt = θ + φXt−1 + Vt ; (2)

see Demetrescu (2014) and Breitung and Demetrescu (2015) for
more details on this model and the variable addition approach.
Hence, an interesting question is whether the lagged variables
are econometrically needed in real applications, that is, how to
test the existence of a lagged predicted variable in a predictive
regression, which has not been formally addressed in predictive
regressions when regressors may be nearly integrated. This arti-
cle addresses this issue by proposing novel testing procedures for
the existence of the lagged predicted variables (H0 : γ = 0) and
the predictability (H0 : β = 0). The proposed tests are robust as
they work uniformly regardless of regressors being stationary
or nearly integrated or unit root and the AR model for the
regressors with or without intercept. Therefore, the proposed
study in this article assumes γ is unknown and tests for either
H0 : γ = 0 or H0 : β = 0 without requiring γ = 0,
while Demetrescu (2014) assumed γ = 0 and only tested for
H0 : β = 0.

Although many tests for predictability have been proposed
in the literature, conclusions on predictability are unfortunately
quite contradictory for different datasets, data periods, and
methods. For example, Kostakis, Magdalinos, and Stamatogian-
nis (2015) reported significant predictability for dividend yield,
dividend-price ratio, T-bill rate, earnings-price ratio, book-to-
market value ratio, default yield spread, net equity expansion for
the period 01/1927–12/1994, which is in line with the findings
in Campbell and Yogo (2006), and reported predictability only
for term spread for the period 01/1952–12/2008 while the
method in Campbell and Yogo (2006) showed predictability
for dividend payout ratio, dividend yield, T-bill rate, and term
spread; see Table 6 in Kostakis, Magdalinos, and Stamatogiannis
(2015). Implementing these tests assumes that Ut ’s in (1) are
uncorrelated errors, but this assumption has not been examined
in both Campbell and Yogo (2006) and Kostakis, Magdalinos,
and Stamatogiannis (2015). After plotting the autocorrelation

1Note that the β in Kostakis, Magdalinos, and Stamatogiannis (2015) is differ-
ent from the β in models (1) and (2).
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function (ACF) of Ût = Yt − α̂ − β̂Xt−1 from the model
(1) with α̂ and β̂ being the least squares estimators and Yt
being the CRSP value-weighted excess return for the periods
01/1927–12/1994, 01/1952–12/2015, and 01/1982–12/2015,
respectively, it is clear that the assumption of uncorrelated Ut ’s
is doubtful for the period 01/1927–12/1994, may be fine for
the period 01/1952–12/2015, and is quite reasonable for the
period 01/1982–12/2015. That is, conclusions on predictability
in the literature for the period from 01/1927 to 12/1994 may
be misleading due to the violation of the model assumption of
uncorrelated errors. On the other hand, after plotting the ACF of
Ût = Yt −α̂−β̂Xt−1 for Yt being the S&P 500 excess returns, we
conclude that the assumption of uncorrelated Ut ’s does not hold
for either of the three periods above. However, the ACF plots of
Ût = Yt − α̂ − γ̂ Yt−1 − β̂Xt−1 from (2) with Yt being either
S&P 500 excess returns or CRSP value-weighted excess returns
suggest that the assumption of uncorrelated Ut ’s is reasonable
for the period 01/1982–12/2015, which will be our focused time
window in Section 3. To save space, we do not include these
ACF plots in the article, which are available upon request.

The main contribution of this article is to propose novel
procedures for testing H0 : γ0 = 0 and H0 : β0 = 0
without characterizing the stochastic properties of the regressor
under model (2). Specifically, we investigate the possibility of
applying the idea of the robust empirical likelihood inference in
Zhu, Cai, and Peng (2014). Readers are referred to Owen (2001)
for an overview of the empirical likelihood method, which
has been proved to be quite effective in interval estimations
and hypothesis tests. The developed new methodologies and
theoretical results in this article are different from existing ones
in several folds. First, the method is different from that in Zhu,
Cai, and Peng (2014) as we have to deal with the lagged pre-
dicted variable carefully, and the developed power analysis is not
addressed in Zhu, Cai, and Peng (2014). Second, the proposed
unified inference has a faster rate of convergence than the IVX
methods in Demetrescu (2014) and Kostakis, Magdalinos, and
Stamatogiannis (2015) in the nonstationary case. Finally, the
new methods work well for all cases, while the IVX tests in these
two articles are severely undersized in testing H0 : β = 0,
especially when the intercept in modeling predicting variables
is nonzero; see the simulation study in Section 3.1.

The rest of this article is organized as follows. Section 2
presents the methodologies and the main asymptotic results. A
simulation study and real data analysis are given in Section 3.
Some concluding remarks are depicted in Section 4. All proofs
are relegated to the Appendix.

2. Methodologies and Main Asymptotic Results

We consider the following general dynamic predictive regres-
sion model

Yt = α + γ Yt−1 + βXt−1 + Ut , Xt = θ + φXt−1

+
∞∑

j=0
ψjVt−j, 1 ≤ t ≤ n, (3)

where {∑∞
j=0 ψjVt−j} is a strictly stationary sequence and

{(Ut , Vt)T} is a sequence of independent and identically

distributed (iid) random vectors with zero means and finite
variances. Of our interest is to test H0 : γ0 = 0 and H0 : β0 = 0
regardless of {Xt} being stationary (i.e., |φ0| < 1) or nearly
integrated (i.e., φ0 = 1 − ρ/n with ρ �= 0) or unit root (i.e.,
φ0 = 1). Throughout, we use α0, γ0, β0, θ0, φ0 to denote the
corresponding true values of parameters.

2.1. Model With a Known Intercept

To better appreciate the methodology, we first consider the case
by assuming that α = α0 is known, which has an independent
interest too. When the capital asset pricing model is applicable,
it is common to assume α = 0. The literature of mutual funds
shows that around 80% of U.S. actively managed mutual funds
have zero α in factor models; see, for example, Jensen (1968),
Kosowski et al. (2006), and Fama and French (2010).

In this case, to find the least squares estimator for (γ , β)T

based on the first equation in (3), one shall solve the following
score equations

n∑
t=1

(Yt − α0 − γ Yt−1 − βXt−1) Yt−1 = 0 and

n∑
t=1

(Yt − α0 − γ Yt−1 − βXt−1) Xt−1 = 0,

which are equivalent to⎧⎪⎪⎨
⎪⎪⎩

n∑
t=1

(Yt − α0 − γ Yt−1 − βXt−1) (Yt−1 − βXt−1) = 0,
n∑

t=1
(Yt − α0 − γ Yt−1 − βXt−1) Xt−1 = 0.

(4)

The reason to use Yt−1 − βXt−1 instead of Yt−1 is that {Yt−1 −
βXt−1} becomes stationary when {Xt} is a unit root process. To
make an inference about γ and β , one may directly apply the
empirical likelihood method based on estimating equations in
Qin and Lawless (1994) to (4), but it is easy to show that this
does not lead to a chi-squared limit in case of nearly integrated
{Xt}, that is, the Wilks theorem2 does not hold; see Zhu, Cai,
and Peng (2014) for details. To fix this issue, following the idea
in Zhu, Cai, and Peng (2014), we replace the second equation in
(4) by the following weighted score equation

n∑
t=1

(Yt − α0 − γ Yt−1 − βXt−1) Xt−1/
√

1 + X2
t−1 = 0. (5)

The purpose of adding weight into (5) is to ensure that{
n∑

t=1
(Yt − α0 − γ0Yt−1 − β0Xt−1)

Xt−1√
1+X2

t−1

}2

n∑
t=1

(Yt − α0 − γ0Yt−1 − β0Xt−1)2 X2
t−1

1+X2
t−1

d→ χ2(1)

as n → ∞ by noting that |Xt−1|/
√

1 + X2
t−1

p→ 1 as t → ∞
when {Xt} is a nearly integrated or unit root process.

2 The Wilks theorem says that the asymptotic limit is independent of the true
parameters; see Bickel and Doksum (2001) for details.
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To describe the proposed empirical likelihood tests, we
introduce the following notation. For t = 1, 2, . . . , n, define
Zt1(γ , β) = (Yt − α0 − γ Yt−1 − βXt−1)(Yt−1 − βXt−1) and
Zt2(γ , β) = (Yt − α0 − γ Yt−1 − βXt−1) Xt−1/

√
1 + X2

t−1.
Based on {Zt(γ , β)}n

t=1 with Zt(γ , β)= (Zt1(γ , β), Zt2(γ , β))T ,
the empirical likelihood function for γ and β is given by

L(γ , β) = sup

{ n∏
t=1

(npt) : p1 ≥ 0, . . . , pn ≥ 0,
n∑

t=1
pt = 1,

n∑
t=1

ptZt(γ , β) = 0

}
.

Then, it follows from the Lagrange multiplier technique that

−2 log L(γ , β) = 2
n∑

t=1
log{1 + λTZt(γ , β)},

where λ = λ(γ , β) satisfies the following equation
n∑

t=1

Zt(γ , β)

1 + λTZt(γ , β)
= 0.

If we are interested in testing H0 : γ0 = 0, then we consider the
profile empirical likelihood function LP1(γ ) = maxβ L(γ , β).
On the other hand, if the interest is in testing H0 : β0 = 0,
then one considers the profile empirical likelihood function
LP2(β) = maxγ L(γ , β). The following theorem shows that the
Wilks theorem holds for the above proposed empirical likeli-
hood method.

Theorem 1. Suppose model (3) holds with |γ0| < 1 and
E{|Ut|2+δ + |Vt|2+δ} < ∞ for some δ > 0, and α = α0
is known. Further assume either (i) |φ0| < 1 independent
of n (stationary case), or (ii) φ0 = 1 − ρ/n for some ρ �=
0 (nearly integrated case), or (iii) φ0 = 1 (unit root case).
Then, as n → ∞, −2 log LP1(0)

d→ χ2(1) under H0 :
γ0 = 0, −2 log LP2(0)

d→ χ2(1) under H0 : β0 = 0, and
−2 log L(0, 0)

d→ χ2(2) under H0 : γ0 = 0 & β0 = 0.

Based on the above theorem, a robust empirical likelihood
test for testing H0 : γ0 = 0 or H0 : β0 = 0 or H0 :
γ0 = 0 & β0 = 0 at level ξ is to reject H0 if −2 log LP1(0) >

χ2
1,1−ξ or −2 log LP2(0) > χ2

1,1−ξ or −2 log L(0, 0) > χ2
2,1−ξ ,

respectively, where χ2
1,1−ξ and χ2

2,1−ξ denote the (1 − ξ)th
quantile of a chi-squared limit with one degree of freedom and
with two degrees of freedom, respectively. The proposed robust
tests above do not need a prior on whether {Xt} is stationary or
nearly integrated or unit root, and whether θ0 = 0 or θ0 �= 0.
Finally, note that the above method is different from Zhu, Cai,
and Peng (2014) because of the term γ Yt−1. Moreover, this extra
term complicates the power analysis given below, which is not
provided in Zhu, Cai, and Peng (2014).

Remark 1. When {Ut} follows an autoregressive model rather
than independent random variables, the above theorem does
not hold. Instead one should take the error structure into
account like the studies in Xiao et al. (2003) and Liu, Chen,

and Yao (2010) for nonparametric regression models. Here, to
unify the cases of stationary, nearly integrated and unit root, one
can follow the idea in Li, Li, and Peng (2017) to take the model
structure of {Ut} into account by employing either empirical
likelihood method or jackknife empirical likelihood method in
Jing, Yuan, and Zhou (2009).

The following theorems analyze the test power of the above
empirical likelihood test separately for the cases of {Xt} being
stationary, nonstationary with zero intercept, and nonstationary
with nonzero intercept.

Theorem 2. Suppose model (3) holds with |γ0| < 1 and
E{|Ut|2+δ + |Vt|2+δ} < ∞ for some δ > 0, and α = α0 is
known. Further, assume |φ0| < 1 independent of n.

(i) Under Ha : γ0 = d1/
√

n for some d1 ∈ R and β0 =
d2/

√
n for some d2 ∈ R, we have

−2 log L(0, 0) = (W1 + D1)
T
−1

1 (W1 + D1) + op(1),

which has a noncentral chi-squared limit with two degrees of
freedom and noncentrality parameter DT

1 
−1
1 D1 > 0 when

d2
1 + d2

2 > 0, where W1 ∼ N(0, 
1),

D1 =
(d1{E(U2

1 ) + α2
0} + d2E{X1(U1 + α0)}

d1E(
(α0+U1)X1√

1+X2
1

) + d2E(
X2

1√
1+X2

1
)

)
,


1 = E(U2
1 )

⎛
⎝ E(U2

1 ) + α2
0 E(

(U1+α0)X1√
1+X2

1
)

E(
(U1+α0)X1√

1+X2
1

) E(
X2

1
1+X2

1
)

⎞
⎠ .

(ii) Under Ha : γ0 = d1/
√

n for some d1 ∈ R and β0 is a
nonzero constant, we have

−2 log LP1(0) = (W2 + D2)
T
−1

2 (W2 + D2) + op(1),

which has a noncentral chi-squared limit with one degree of
freedom and noncentrality parameter DT

2 
−1
2 D2 > 0 when

d1 �= 0, where W2 ∼ N(0, 
2),

D2 =
(

d1E{(α0 + β0X1 + U2)(α0 + U2 + β0X1 − β0X2)}
d1E(

(α0+β0X1+U2)X2√
1+X2

2
)

)
,


2 = E(U2
1 )⎛

⎝E(α0 + U2 + β0X1 − β0X2)
2 E(

(α0+U2+β0X1−β0X2)X2√
1+X2

2
)

E(
(α0+U2+β0X1−β0X2)X2√

1+X2
2

) E(
X2

1
1+X2

1
)

⎞
⎠ .

(iii) Under Ha : β0 = d2/
√

n for some d2 ∈ R and γ0 is a
nonzero constant, we have

−2 log LP2(0) = (W3 + D3)
T
−1

3 (W3 + D3) + op(1),

which has a noncentral chi-squared limit with one degree of
freedom and noncentrality parameter DT

3 
−1
3 D3 > 0 when
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d2 �= 0, where W3 ∼ N(0, 
3),

D3 = lim
t→∞

⎛
⎝ d2E{Xt−1(

α0
1−γ0

+ ∑t−1
j=1 γ

t−1−j
0 Uj)}

d2E(
X2

1√
1+X2

1
)

⎞
⎠ ,


3 = E(U2
1 ) lim

t→∞

⎛
⎝ E( α0

1−γ0
+ ∑t−1

j=1 γ
t−1−j
0 Uj)2

E{ Xt−1√
1+X2

t−1
( α0

1−γ0
+ ∑t−1

j=1 γ
t−1−j
0 Uj)}

E{ Xt−1√
1+X2

t−1
( α0

1−γ0
+ ∑t−1

j=1 γ
t−1−j
0 Uj)}

E(
X2

1
1+X2

1
)

⎞
⎟⎠ .

Theorem 3. Suppose model (3) holds with |γ0| < 1 and
E{|Ut|2+δ + |Vt|2+δ} < ∞ for some δ > 0, and α = α0 is
known. Further assume φ0 = 1 − ρ/n for some ρ ∈ R and
θ0 = 0.

(i) Under Ha : γ0 = d1/
√

n for some d1 ∈ R and β0 = d2/n
for some d2 ∈ R, we have

−2 log L(0, 0) = (W̃1 + D̃1)
T
̃−1

1 (W̃1 + D̃1) + op(1),
where W̃1 ∼ N(0, 
̃1),

D̃1 =
(

d1{E(U2
1 ) + α2

0} + d2α0
∫ 1

0 JV ,ρ(s) ds
d1α0 + d2

∫ 1
0 JV ,ρ(s) ds

)
,


̃1 = E(U2
1 )

(
E(U2

1 ) + α2
0 α0

α0 1

)
,

JV ,ρ(r) = ∫ r
0 e−(r−s)ρ dWV(s), and WV(s) = limn→∞ 1√

n∑[ns]
t=1

∑∞
j=0 ψjVt−j for s ∈ [0, 1].

(ii) Under Ha : γ0 = d1/n for some d1 ∈ R and β0 is a
nonzero constant, we have

−2 log LP1(0) = (W̃2 + D̃2)
T

[

̃−1

2 − 
̃−1
2 S̃2S̃T

2 
̃−1
2

S̃T
2 
̃−1

2 S̃2

]

(W̃2 + D̃2) + op(1),
where S̃2 = −(α0, 1)T , W̃2 ∼ N(0, 
̃2),

D̃2 = −S̃2d1β0

∫ 1

0
JV ,ρ(s) ds, and �̃2

= E(U2
1 )

(
E(U1 − β0

∑∞
j=0 ψjV1−j)2 + α2

0 α0
α0 1

)
.

(iii) Under Ha : β0 = d2/n for some d2 ∈ R and γ0 is a nonzero
constant, we have

−2 log LP2(0) = (W̃3 + D̃3)
T

[

̃−1

3 − 
̃−1
3 S̃3S̃T

3 
̃−1
3

S̃T
3 
̃−1

3 S̃3

]

(W̃3 + D̃3) + op(1),
where

S̃3 = −
⎛
⎝ lim

t→∞ E(

t∑
j=1

γ
t−j
0 Uj)

2 + (
α0

1 − γ0
)2,

α0
1 − γ0

⎞
⎠

T

,

W̃3 ∼ N(0, 
̃3),

D̃3 =
(

d2
α0

1−γ0

∫ 1
0 JV ,ρ(s) ds

d2
∫ 1

0 JV ,ρ(s) ds

)
, and 
̃3

= E(U2
1 ) lim

t→∞

(
E(

∑t
j=1 γ

t−j
0 Uj)2 + ( α0

1−γ0
)2 α0

1−γ0
α0

1−γ0
1

)
.

Theorem 4. Suppose model (3) holds with |γ0| < 1 and
E{|Ut|2+δ + |Vt|2+δ} < ∞ for some δ > 0, and α = α0 is
known. Further assume φ0 = 1 − ρ/n for some ρ ∈ R and
θ0 �= 0.

(i) Under Ha : γ0 = d1/
√

n for some d1 ∈ R and β0 =
d2/n3/2 for some d2 ∈ R, we have

−2 log L(0, 0) = (W̄1 + D̄1)
T
̄−1

1 (W̄1 + D̄1) + op(1),

which has a noncentral chi-squared limit with two degrees of
freedom and noncentral parameter D̄1
̄

−1
1 D̄1 > 0 when d2

1 +
d2

2 > 0, where W̄1 ∼ N(0, 
̄1),

D̄1 =
(

d1{E(U2
1 ) + α2

0} + d2α0θ0
∫ 1

0
1−e−ρs

ρ
ds

d1α0sgn(θ0) + d2|θ0|
∫ 1

0
1−e−ρs

ρ
ds

)
,


̄1 = E(U2
1 )

(
E(U2

1 ) + α2
0 α0

α0 1

)
,

and sgn(x) denotes the sign function.
(ii) Under Ha : γ0 = d1/n3/2 for some d1 ∈ R and β0 is a

nonzero constant, we have

−2 log LP1(0) = (W̄2 + D̄2)
T{
̄−1

2 − 
̄−1
2 S̄2S̄T

2 
̄−1
2

S̄T
2 
̄−1

2 S̄2
}

(W̄2 + D̄2) + op(1),

which has a central chi-squared limit with one degree of
freedom even when d1 �= 0, where S̄2 = −(

θ0(α0 −
β0θ0), |θ0|

)T ∫ 1
0

1−e−ρs

ρ
ds, W̄2 ∼ N(0, 
̄2), D̄2 = −S̄2d1β0,


̄2 = E(U2
1 )

(
E(α0 + U1 − β0θ0 − β0

∑∞
j=0 ψjV1−j)2

(α0 − β0θ0)sgn(θ0)

(α0 − β0θ0)sgn(θ0)
1

)
.

(iii) Under Ha : β0 = d2/n3/2 for some d2 ∈ R and γ0 is a
nonzero constant, we have

−2 log LP2(0) = (W̄3 + D̄3)
T{
̄−1

3 − 
̄−1
3 S̄3S̄T

3 
̄−1
3

S̄T
3 
̄−1

3 S̄3
}

(W̄3 + D̄3) + op(1),

which has a noncentral chi-squared limit with one degree of
freedom and noncentral parameter D̄3{
̄−1

3 − 
̄−1
3 S̄3S̄T

3 
̄−1
3

S̄T
3 
̄−1

3 S̄3
}D̄3 >

0 when d2 �= 0, where

S̄3 = −
⎛
⎝ lim

t→∞ E(

t∑
j=1

γ
t−j
0 Uj)

2 + (
α0

1 − γ0
)2,

α0sgn(θ0)

1 − γ0

⎞
⎠

T

,

W̄3 ∼ N(0, 
̄3),

D̄3 =
(

d2θ0
α0

1−γ0

∫ 1
0

1−e−ρs

ρ
ds

d2|θ0|
∫ 1

0
1−e−ρs

ρ
ds

)
,


̄3 = E(U2
1 ) lim

t→∞(
E(

∑t−1
j=1 γ

t−1−j
0 Uj)2 + ( α0

1−γ0
)2 α0

1−γ0
sgn(θ0)

α0
1−γ0

sgn(θ0) 1

)
.
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Remark 2. Theorems 3(ii) and 4(ii) show that testing for H0 :
β0 = 0 is more powerful than that for H0 : γ0 = 0 when {Xt}
is a nearly integrated or unit root process. The reason is that D̃2
and D̄2 become a multiplier of S̃2 and S̄2, respectively, in these
two cases.

Remark 3. When the predictive regression has a d-dimensional
predictor Xt = (Xt,1, . . . , Xt,d)

T and the number of nonsta-
tionary variables is less than or equal to one, we can develop a
similar empirical likelihood test by using weights { Xt−1,i√

1+X2
t−1,i

}d
i=1

in the corresponding score equations. However, this is not true
when the predictive regression has a d-dimensional predictor
with more than one nonstationary variable or has more than
one lagged predicted variable as some score equations become
asymptotically equivalent.

2.2. Model With an Unknown Intercept

Next, we consider the case that α in the model (3) is unknown.
Again, our interest is to test H0 : γ0 = 0 and H0 : β0 = 0
without knowing whether {Xt} is stationary or nearly integrated
or unit root.

As before, one may apply the empirical likelihood method to
the following weighted score equations:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑n
t=1{Yt − α − γ Yt−1 − βXt−1} = 0∑n
t=1{Yt − α − γ Yt−1 − βXt−1}{Yt−1 − βXt−1} = 0∑n
t=1{Yt − α − γ Yt−1 − βXt−1} Xt−1√

1+X2
t−1

= 0.

(6)
However, this does not work by noting that the joint normalized
limit of the first and third equations in (6) is degenerate in the
near unit root and unit root cases.

To unify all cases including zero or nonzero intercept θ , we
follow the idea in Zhu, Cai, and Peng (2014) by splitting the
data into two parts and using the difference with a big lag to
get rid of the intercept first to keep the differences of regressor
as a nonstationary process. This is important as inference with
nonstationarity has a faster rate of convergence than that in the
stationary case. Again, the study is more involved than that in
Zhu, Cai, and Peng (2014) as the extra term γ Yt−1 may be
stationary or nonstationary. More specifically, put m = [n/2]
with [·] denoting the ceiling function, and define X̃t = Xt+m −
Xt , Ỹt = Yt+m − Yt , Ũt = Ut+m − Ut and Ṽt = Vt+m − Vt for
t = 1, . . . , m. Then, the model (3) implies the following model

Ỹt = γ Ỹt−1 + βX̃t−1 + Ũt

without an intercept, which is the same as the model (3) with
known α = 0. Clearly, if {Ut} is independent, then is {Ũt}.
Furthermore, |X̃t| p→ ∞ and |X̃t|/

√
1 + X̃2

t
p→ 1 as t → ∞

when {Xt} is nearly integrated or unit root. As discussed before,
this property is the key to ensure that the Wilks theorem holds
for the proposed empirical likelihood test.

Therefore, similar to the model with known intercept in (3),
we define

Z̃t(γ , β) = (Z̃t1(γ , β), Z̃t2(γ , β))T ,

where{
Z̃t1(γ , β) = (Ỹt − γ Ỹt−1 − βX̃t−1)(Ỹt−1 − βX̃t−1),
Z̃t2(γ , β) = (Ỹt − γ Ỹt−1 − βX̃t−1) X̃t−1/

√
1 + X̃2

t−1.

Then, based on {Z̃t(γ , β)}m
t=1, the empirical likelihood function

for γ and β is defined as

L̃(γ , β) = sup

{ m∏
t=1

(mpt) : p1 ≥ 0, . . . , pm ≥ 0,
m∑

t=1
pt = 1,

m∑
t=1

ptZ̃t(γ , β) = 0

}
.

If we are interested in testing H0 : γ0 = 0, then we consider the
profile empirical likelihood function L̃P1(γ ) = maxβ L̃(γ , β).
On the other hand, if the interest is in testing H0 : β0 = 0,
then one considers the profile empirical likelihood function
L̃P2(β) = maxγ L̃(γ , β). The following theorem shows that the
Wilks theorem holds for this empirical likelihood test.

Theorem 5. Suppose model (3) holds with |γ0| < 1 and
E{|Ut|2+δ + |Vt|2+δ} < ∞ for some δ > 0. Further assume
either (i) |φ0| < 1 independent of n, or (ii) φ0 = 1 − ρ/n for
some ρ �= 0, or (iii) φ0 = 1. Then, as n → ∞, −2 log L̃P1(0)

d→
χ2(1) under H0 : γ0 = 0, −2 log L̃P2(0)

d→ χ2(1) under
H0 : β0 = 0, and −2 log L̃(0, 0)

d→ χ2(2) under H0 : γ0 =
0 & β0 = 0.

Again, based on the above theorem, a robust empirical like-
lihood test for H0 : γ0 = 0 or H0 : β0 = 0 or H0 :
γ0 = 0 & β0 = 0 under model (3) is to reject H0 at level ξ

whenever −2 log L̃P1(0) > χ2
1,1−ξ or −2 log L̃P2(0) > χ2

1,1−ξ

or −2 log L̃(0, 0) > χ2
2,1−ξ , respectively. These tests are robust

without knowing whether {Xt} is stationary or nearly integrated
or unit root and has a zero or nonzero intercept. Similar power
analyses like Theorems 2–4 can be done, and we skip this
theoretical analysis.

Remark 4. It is known that the IVX tests in Demetrescu (2014)
and Kostakis, Magdalinos, and Stamatogiannis (2015) employed
a less persistent instrumental variable to achieve a unified nor-
mal limit so that the rate of convergence is slower than the
standard rate in the nonstationary case with θ = 0. That is, the
IVX tests for H0 : β = 0 are less powerful than the proposed
unified empirical likelihood tests, which have the standard rate
given in Theorem 4(iii). Moreover, these IVX tests do not work
for the nonstationary case with θ �= 0.

3. Finite Sample Analysis

3.1. Monte Carlo Simulation Study

In this subsection, we investigate the performance of the pro-
posed robust tests in terms of size and power. Note that all
simulations are implemented in the statistical software R.

Consider model (3) with α = 0, θ = 0 or 0.2, ψ0 = 1,
ψj = 0 for j ≥ 1, and φ = 0.2 or 0.95 or 1. We generate
10,000 random samples with sample size n = 200 or 400 or 1000
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Table 1. Empirical sizes for testing the null hypothesis H0 : β = 0.

γ = 0 γ = 0.2 γ = 0.5

φ EL EL1 KMS Demes EL EL1 KMS Demes EL EL1 KMS Demes

Panel 1: θ = 0

n = 200
0.2 0.0557 0.0556 0.0370 0.0471 0.0545 0.0595 0.0388 0.0491 0.0579 0.0586 0.0408 0.0363
0.95 0.0588 0.0585 0.0314 0.0508 0.0562 0.0572 0.0346 0.0443 0.0555 0.0595 0.0343 0.0276
1 0.0533 0.0562 0.0298 0.0537 0.0537 0.0582 0.0311 0.0449 0.0567 0.0585 0.0310 0.0250

n = 400
0.2 0.0547 0.0553 0.0379 0.0502 0.0532 0.0551 0.0382 0.0474 0.0515 0.0524 0.0350 0.0310
0.95 0.0516 0.0480 0.0327 0.0476 0.0503 0.0524 0.0342 0.0415 0.0532 0.0600 0.0359 0.0284
1 0.0515 0.0563 0.0301 0.0522 0.0492 0.0577 0.0293 0.0419 0.0526 0.0530 0.0314 0.0241

n = 1000
0.2 0.0522 0.0509 0.0463 0.0507 0.0469 0.0469 0.0545 0.0485 0.0510 0.0537 0.0527 0.0330
0.95 0.0532 0.0534 0.0499 0.0472 0.0503 0.0534 0.0463 0.0511 0.0521 0.0506 0.0513 0.0310
1 0.0488 0.0553 0.0251 0.0483 0.0536 0.0546 0.0207 0.0404 0.0486 0.0528 0.0218 0.0264

Panel 2: θ = 0.2

n = 200
0.2 0.0545 0.0556 0.0380 0.0504 0.0524 0.0595 0.0394 0.0488 0.0581 0.0586 0.0377 0.0328
0.95 0.0591 0.0585 0.0326 0.0446 0.0575 0.0572 0.0329 0.0446 0.0552 0.0597 0.0381 0.0300
1 0.0506 0.0580 0.0097 0.0251 0.0543 0.0556 0.0088 0.0218 0.0517 0.0653 0.0096 0.0080

n = 400
0.2 0.0559 0.0553 0.0386 0.0487 0.0492 0.0551 0.0389 0.0505 0.0499 0.0524 0.0401 0.0325
0.95 0.0486 0.0480 0.0326 0.0433 0.0492 0.0524 0.0323 0.0395 0.0543 0.0600 0.0353 0.0262
1 0.0524 0.0516 0.0025 0.0190 0.0480 0.0549 0.0034 0.0137 0.0545 0.0549 0.0019 0.0024

n = 1000
0.2 0.0513 0.0509 0.0372 0.0510 0.0500 0.0469 0.0403 0.0450 0.0521 0.0537 0.0363 0.0331
0.95 0.0546 0.0534 0.0364 0.0519 0.0513 0.0534 0.0325 0.0465 0.0499 0.0506 0.0317 0.0342
1 0.0476 0.0513 0.0004 0.0019 0.0486 0.0514 0.0000 0.0000 0.0523 0.0528 0.0001 0.0001

NOTE: This table documents the empirical sizes for testing the null hypothesis H0 : β = 0 versus the alternative H1 : β �= 0 in Equation (3) under the 5% nominal size.
EL and EL1, respectively, represent the rejection rate for the Wald statistic calculated by the models with known α in Section 2.1 and unknown α in Section 2.2. KMS
and Demes, respectively, denote the rejection rate for the Wald statistic calculated by the models in Kostakis, Magdalinos, and Stamatogiannis (2015) and Demetrescu
(2014). Panel 1 refers to the case that θ = 0, while Panel 2 refers to the case that θ = 0.2. For each panel, the rejection rate is calculated through 10,000 repetitions with
γ ∈ {0, 0.2, 0.5} and n ∈ {200, 400, 1000}.

from model (3) with the above settings and (Ut , Vt)T having a
bivariate Gaussian copula C(F1(Ut), F2(Vt); �) with correlation
� = −0.5 and marginal distributions being t(5) and t(4). We
compute the empirical sizes and powers of the proposed tests for
H0 : β = 0 and H0 : γ = 0 at 5% level based on Theorem 1 (i.e.,
α is assumed to be known) and Theorem 5 (i.e., α is unknown)
by employing the R package “emplik.”

Results in Table 1 show that the size of the proposed test for
H0 : β = 0 with known α is slightly more accurate than that
with unknown α because the latter splits the data into two parts
and hence reduces the effective sample size in the inference, but
both have a quite accurate size for a larger n. In contrast, when
Xt has zero intercept, the IVX test in Kostakis, Magdalinos, and
Stamatogiannis (2015) tends to be undersized for all γ and that
in Demetrescu (2014) is undersized clearly for γ = 0.5. Both
become severely undersized when the predicting variable Xt is a
unit root with a nonzero drift, that is, φ = 1 and θ = 0.2. These
observations suggest that these IVX tests are not able to unify
zero and nonzero intercept in modeling predicting variables,
while the proposed empirical likelihood tests do unify all cases,
including zero or nonzero intercept θ .

Results in Table 2 show that the size of the proposed tests
for H0 : γ = 0 is accurate whenever α is known or unknown.
In contrast, the IVX test in Kostakis, Magdalinos, and Stam-
atogiannis (2015) is severely undersized when θ is nonzero and
generally is less accurate than the proposed empirical likelihood
tests when θ = 0. We do not report the empirical sizes by

the IVX method in Demetrescu (2014) because it is unavail-
able as γ = 0 is assumed in the model. Once again, these
results suggest that the IVX test fails to unify the zero and
nonzero θ .

We also compute the empirical powers for testing H0 : β = 0
and H0 : γ = 0. To save space, we only report results for testing
H0 : β = 0 when θ = 0 and sample size n = 200. Note
that the IVX test is severely undersized when θ �= 0. Figure 1
shows that the proposed empirical likelihood test with known α

is much more powerful than the IVX tests in Demetrescu (2014)
and Kostakis, Magdalinos, and Stamatogiannis (2015) when the
predicting variable Xt is a unit root, which confirms that the
IVX tests sacrifice the rate of convergence for achieving a unified
normal limit in the nonstationary case. The proposed empirical
likelihood test with unknown α is less powerful, but when β is
close to zero, it has better local power than the IVX tests in the
unit root case. Theoretically, the proposed test with unknown α

should be more powerful than the IVX tests in the nonstationary
case, but the technique of splitting data does impact the finite
sample performance.

In conclusion, the proposed robust methods for testing H0 :
γ = 0 and H0 : β = 0 provide an accurate size for all
cases, while the IVX tests in Demetrescu (2014) and Kostakis,
Magdalinos, and Stamatogiannis (2015) fail to unify zero and
nonzero θ . The IVX method for testing H0 : β = 0 in Kostakis,
Magdalinos, and Stamatogiannis (2015) is severely undersized
for all considered cases and that in Demetrescu (2014) suffers a
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Table 2. Empirical sizes for testing the null hypothesis H0 : γ = 0.

β = 0 β = 0.2 β = 0.5

φ EL EL1 KMS Demes EL EL1 KMS Demes EL EL1 KMS Demes

Panel 1: θ = 0

n = 200
0.2 0.0598 0.0647 0.0339 – 0.0620 0.0654 0.0346 – 0.0576 0.0647 0.0367 –
0.95 0.0670 0.0658 0.0358 – 0.0603 0.0673 0.0424 – 0.0596 0.0633 0.0447 –
1 0.0599 0.0658 0.0338 – 0.0604 0.0661 0.0461 – 0.0598 0.0613 0.0437 –

n = 400
0.2 0.0585 0.0568 0.0380 – 0.0537 0.0593 0.0362 – 0.0594 0.0578 0.0349 –
0.95 0.0559 0.0557 0.0318 – 0.0567 0.0559 0.0420 – 0.0532 0.0591 0.0470 –
1 0.0538 0.0568 0.0299 – 0.0570 0.0559 0.0437 – 0.0575 0.0605 0.0387 –

n = 1000
0.2 0.0551 0.0462 0.0528 – 0.0525 0.0542 0.0500 – 0.0483 0.0552 0.0519 –
0.95 0.0470 0.0510 0.0506 – 0.0502 0.0505 0.0550 – 0.0546 0.0517 0.0515 –
1 0.0530 0.0493 0.0519 – 0.0540 0.0504 0.0506 – 0.0563 0.0554 0.0430 –

Panel 2: θ = 0.2

n = 200
0.2 0.0596 0.0647 0.0338 – 0.0609 0.0654 0.0389 – 0.0573 0.0647 0.0358 –
0.95 0.0673 0.0658 0.0360 – 0.0621 0.0673 0.0396 – 0.0591 0.0633 0.0438 –
1 0.0603 0.0648 0.0273 – 0.0600 0.0666 0.0442 – 0.0621 0.0620 0.0411 –

n = 400
0.2 0.0581 0.0598 0.0382 – 0.0532 0.0620 0.0362 – 0.0579 0.0554 0.0369 –
0.95 0.0560 0.0554 0.0356 – 0.0556 0.0594 0.0433 – 0.0536 0.0587 0.0414 –
1 0.0544 0.0555 0.0258 – 0.0561 0.0630 0.0405 – 0.0563 0.0575 0.0366 –

n = 1000
0.2 0.0545 0.0516 0.0354 – 0.0521 0.0526 0.0338 – 0.0505 0.0508 0.0332 –
0.95 0.0485 0.0517 0.0372 – 0.0506 0.0514 0.0390 – 0.0522 0.0491 0.0423 –
1 0.0534 0.0517 0.0287 – 0.0538 0.0509 0.0363 – 0.0557 0.0528 0.0373 –

This table documents the empirical sizes for testing the null hypothesis H0 : γ = 0 versus the alternative H1 : γ �= 0 in Equation (3) under the 5% nominal size. EL and
EL1, respectively, represent the rejection rate for the Wald statistic calculated by the models with known α in Section 2.1 and unknown α in Section 2.2. KMS and Demes,
respectively, denote the rejection rate for the Wald statistic calculated by the models in Kostakis, Magdalinos, and Stamatogiannis (2015) and Demetrescu (2014). Panel 1
refers to the case that θ = 0, while Panel 2 refers to the case that θ = 0.2. For each panel, the rejection rate is calculated through 10,000 repetitions with β ∈ {0, 0.2, 0.5}
and n ∈ {200, 400, 1000}.

serious size distortion when γ is larger or {Xt} is nonstationary.
The proposed test with known α is most powerful in the non-
stationary case. The technique of splitting data for the proposed
test with unknown α does impact the finite sample performance,
although theoretically, it is better than the IVX method in the
nonstationary case.

3.2. Real Data Analyses

This subsection demonstrates the practical usefulness of the
proposed tests by applying them to test the predictability of
stock returns in the U.S. market regardless of the financial
variable (regressor) being stationary or nearly integrated or unit
root.

We revisit the data analysis in Kostakis, Magdalinos, and
Stamatogiannis (2015) and Cai and Wang (2014) by focusing
on the period 01/1982–12/2015 for one of the two predicted
variables, the CRSP value-weighted excess returns and the S&P
500 excess returns, and one of the ten financial predictors as
mentioned in Section 1. These predictors are confirmed to be
highly persistent by Kostakis, Magdalinos, and Stamatogiannis
(2015).

In Table 3, we report the p-values of the proposed robust
empirical likelihood tests for testing H0 : γ0 = 0 and H0 :
β0 = 0. When we say a known α in the model (3), it means
α is set to be the least squares estimator, that is, α minimizes the
least squares distance

∑n
t=1{Yt − α − γ Yt−1 − βXt−1}2. Some

findings are summarized as follows by comparing the obtained
p-values with the significance level of 10%.

• When the predicted variable is the CRSP value-weighted
excess return, the null hypothesis H0 : γ0 = 0 cannot be
rejected for all considered regressors and the predictability
(i.e., β0 �= 0) exists for dividend yield, dividend price ratio,
and earnings price ratio whenever α is treated as a known or
an unknown parameter.

• When the predicted variable is the S&P 500 excess return, the
null hypothesis H0 : γ0 = 0 is rejected for all cases whenever
α is known or unknown, and the predictability (i.e., β0 �=
0) exists for long-term yield, dividend yield, dividend price
ratio, and earnings price ratio when α is known, but there
exists no predictability for all regressors when α is unknown.

As argued in Section 1, the existing literature on testing
predictability often ignores checking uncorrelated errors, while
the employed tests for predictability heavily rely on this assump-
tion. For example, under the assumption of uncorrelated errors,
Demetrescu (2014) examined the IVX-based test by adding one
period lagged predicted variable into the model on purpose,
and found out that this improves the local power of the IVX-
based test when the tuning parameter η in the IVX-test is less
than 1/3. After checking the reasonable assumption of uncor-
related errors for the considered period, our proposed robust
tests do not reject H0 : γ0 = 0 for the predicted variable
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Figure 1. Empirical powers for testing H0 : β = 0 when θ = 0. Rejection rates for the proposed empirical likelihood tests and the IVX tests at level 5% are plotted against
β = 0.3 ∗ (j − 1)/

√
200, 0.68 ∗ (j − 1)/200, (j − 1)/200, j ∈ {0, 1, . . . , 25} with respect to φ = 0.2, 0.95, 1, respectively. The solid curve and dashed curve, respectively,

represent the proposed empirical likelihood tests with known α and unknown α, the dotted-dash curve and dotted curve, respectively, represent the IVX test in Kostakis,
Magdalinos, and Stamatogiannis (2015) and Demetrescu (2014). The six panels correspond to the cases when φ ∈ {0.2, 0.95, 1} and γ ∈ {0, 0.2}. For each panel, the
rejection rates are calculated through 10,000 repetitions with sample size n = 200.
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Table 3. Testing results for dynamic predictive regression.

Model with known α Model with unknown α

Regressor H0 : γ0 = 0 H0 : β0 = 0 H0 : γ0 = 0 H0 : β0 = 0

Panel 1: Predicted variable: the CRSP value-weighted excess return

Dividend payout ratio 0.505 0.500 0.288 0.748
Long-term yield 0.509 0.992 0.356 0.114
Dividend yield 0.604 0.000 0.418 0.066
Dividend-price ratio 0.498 0.000 0.331 0.065
T-bill rate 0.503 0.922 0.354 0.124
Earnings-price ratio 0.503 0.000 0.295 0.041
Book-to-market value ratio 0.494 0.010 0.328 0.053
Default yield spread 0.513 0.723 0.280 0.548
Net equity expansion 0.489 0.781 0.278 0.914
Term spread 0.511 0.740 0.276 0.929

Panel 2: Predicted variable: the S&P500 value-weighted excess return

Dividend payout ratio 0.000 0.465 0.000 0.843
Long-term yield 0.000 0.082 0.000 0.316
Dividend yield 0.000 0.000 0.000 0.124
Dividend-price ratio 0.000 0.000 0.000 0.267
T-bill rate 0.000 0.248 0.000 0.334
Earnings-price ratio 0.000 0.001 0.000 0.227
Book-to-market value ratio 0.000 0.382 0.000 0.209
Default yield spread 0.000 0.309 0.000 0.506
Net equity expansion 0.000 0.807 0.000 0.843
Term spread 0.000 0.763 0.000 0.885

p-values are reported for testing the null hypothesis H0 : γ0 = 0 and H0 : β0 = 0 with known and unknown α under model (3).

CRSP value-weighted excess return, which means the method
in Demetrescu (2014) by assuming no serial correlation and
adding a lagged predicted variable to improve the test power
for the less persistent case is valid for this predicted variable.
However, our proposed robust tests reject H0 : γ0 = 0 for
the predicted variable S&P 500 excess return, which means the
method in Demetrescu (2014) for improving the test power of
IVX-based tests is invalid for this predicted variable. Unlike the
results in Campbell and Yogo (2006) and Kostakis, Magdali-
nos, and Stamatogiannis (2015) for the period after 01/1952,
where the assumption of uncorrelated errors may be reason-
able, our tests clearly reject predictability for the term spread.
The predictability for dividend yield and no predictability for
default yield spread are consistent with that in Campbell and
Yogo (2006) for the period 1/1952–12/2008. In comparison with
findings in Cai and Wang (2014) and Kostakis, Magdalinos, and
Stamatogiannis (2015), the proposed robust tests clearly indicate
that it is necessary to include a lagged predicted variable into
the predictive regression for the predicted variable S&P 500
excess return. Furthermore, we implement the method in Zhu,
Cai, and Peng (2014) for testing the predictability under the
predictive regression without the lag and find that all predictors
for significant at the level 1% except the long-term yield for the
CRSP value-weighted excess return with p-value 0.137. That is,
it is important to study the proposed model.

4. Conclusions

Without characterizing the stochastic properties of regressors,
this article proposes new unified empirical likelihood tests based
on weighted score equations in a predictive regression to test
both the existence of the lagged variables and the predictability
and reexamines the empirical evidence on the predictability
of stock returns of Kostakis, Magdalinos, and Stamatogiannis
(2015) and Cai and Wang (2014) using the proposed new robust

tests. The Wilks theorem is proved for the proposed empiri-
cal likelihood tests regardless of regressors being stationary or
nearly integrated or unit root and zero or nonzero intercept in
modeling predictors. Hence, the proposed new tests are easy
to implement without any ad hoc method such as a bootstrap
method for obtaining critical values.

The Monte Carlo simulation study shows that the proposed
tests give accurate size and are powerful while the IVX tests for
H0 : β = 0 in Demetrescu (2014) and Kostakis, Magdalinos,
and Stamatogiannis (2015) are severely undersized, and the IVX
test for H0 : γ = 0 in Kostakis, Magdalinos, and Stamatogiannis
(2015) suffers a serious size distortion when the predicting vari-
able has a nonzero intercept. The proposed robust procedure
for testing H0 : γ0 = 0 can be employed to check whether
the method in Demetrescu (2014) is applicable as γ = 0 is
imposed in the model. The empirical analysis shows that adding
a lagged predicted variable for the S&P 500 excess return is
necessary while there is no need to add the lag for the CRSP
value-weighted excess return.

Appendix: Proofs of Theorems

Before proving theorems, we need some lemmas.

Lemma 1. Suppose model (3) holds with |γ0| < 1 and E{|Ut|2+δ +
|Vt|2+δ} < ∞ for some δ > 0, and α = α0 is known. Further, assume
|φ0| < 1 independent of n.

(i) If γ0 = d1/
√

n for some d1 ∈ R and β0 = d2/
√

n for some
d2 ∈ R, then

1√
n

n∑
t=1

Zt(0, 0) = W1 +
⎛
⎝d1{E(U2

1 ) + α2
0} + d2E{X1(α0 + U1)}

d1E(
(α0+U1)X1√

1+X2
1

) + d2E(
X2

1√
1+X2

1

)

⎞
⎠

+ op(1), (A.1)
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1
n

n∑
t=1

Zt(0, 0)ZT
t (0, 0) = E(U2

1 )

⎛
⎜⎜⎝

E(U2
1 ) + α2

0 E(
(α0+U1)X1√

1+X2
1

)

E(
(α0+U1)X1√

1+X2
1

) E(
X2

1
1+X2

1
)

⎞
⎟⎟⎠

+ op(1) := 
1 + op(1), (A.2)

and max
1≤t≤n

||Zt(0, 0)|| = op(n1/2), (A.3)

where W1 ∼ N(0, 
1).
(ii) If γ0 = d1/

√
n for some d1 ∈ R and β0 is a nonzero constant,

then
1√
n

n∑
t=1

Zt(0, β0) = W2

+
⎛
⎝ d1E{(α0 + β0X1 + U2)(α0 + U2 + β0X1 − β0X2)}

d1E(
(α0+β0X1+U2)X2√

1+X2
2

)

⎞
⎠

+ op(1),

1
n

n∑
t=1

Zt(0, β0)ZT
t (0, β0)

= E(U2
1 )

⎛
⎝E(α0 + U2 + β0X1 − β0X2)2

E(
(α0+U2+β0X1−β0X2)X2√

1+X2
2

)

E(
(α0+U2+β0X1−β0X2)X2√

1+X2
2

)

E(
X2

1
1+X2

1
)

⎞
⎟⎠ + op(1)

:= 
2 + op(1),

and max
1≤t≤n

||Zt(0, β0)|| = op(n1/2),

where W2 ∼ N(0, 
2).
(iii) If β0 = d2/

√
n for some d2 ∈ R and γ0 is a nonzero constant,

then

1√
n

n∑
t=1

Zt(γ0, 0) = W3 + lim
t→∞⎛

⎜⎝ d2E{Xt−1(
α0

1−γ0
+ ∑t−1

j=1 γ
t−1−j
0 Uj)}

d2E(
X2

1√
1+X2

1

)

⎞
⎟⎠ + op(1),

1
n

n∑
t=1

Zt(γ0, 0)ZT
t (γ0, 0) =

lim
t→∞⎛
⎜⎝ E(

α0
1−γ0

+ ∑t−1
j=1 γ

t−1−j
0 Uj)2

E{ Xt−1√
1+X2

t−1

(
α0

1−γ0
+ ∑t−1

j=1 γ
t−1−j
0 Uj)}

E{ Xt−1√
1+X2

t−1

(
α0

1−γ0
+ ∑t−1

j=1 γ
t−1−j
0 Uj)}

E(
X2

1
1+X2

1
)

⎞
⎟⎠ ×

E(U2
1 ) + op(1)

:= 
3 + op(1),

and max
1≤t≤n

||Zt(γ0, 0)|| = op(n1/2),

where W3 ∼ N(0, 
3).

Proof. (i) Since

Yt = α0
1 − γ t

0
1 − γ0

+ γ t
0Y0 +

t−1∑
j=0

γ
t−1−j
0 β0Xj +

t∑
j=1

γ
t−j
0 Uj, (A.4)

we have Yt − α0 − Ut = op(1) as t → ∞, which is used to show that

1√
n

n∑
t=1

Zt1(0, 0)

= 1√
n

n∑
t=1

UtYt−1 + d1
n

n∑
t=1

Yt−1Yt−1 + d2
n

n∑
t=1

Xt−1Yt−1

= 1√
n

n∑
t=3

Ut{α0
1 − (d1/

√
n)t−1

1 − d1/
√

n
+ (

d1√
n
)t−1Y0

+
t−2∑
j=0

(
d1√

n
)t−2−j d2√

n
Xj

+
t−2∑
j=1

(
d1√

n
)t−1−jUj + Ut−1} + d1{E(U2

1 ) + α2
0}

+ d2E{X1(α0 + U1)} + op(1)

= 1√
n

n∑
t=3

Ut(α0 + Ut−1) + d1{E(U2
1 ) + α2

0}

+ d2E{X1(α0 + U1)} + op(1)

and

1√
n

n∑
t=1

Zt2(0, 0)

= 1√
n

n∑
t=1

Ut
Xt−1√

1 + X2
t−1

+ d1
n

n∑
t=1

Yt−1Xt−1√
1 + X2

t−1

+ d2
n

n∑
t=1

X2
t−1√

1 + X2
t−1

= 1√
n

n∑
t=1

UtXt−1√
1 + X2

t−1

+ d1E(
(α0 + U1)X1√

1 + X2
1

)

+ d2E(
X2

1√
1 + X2

1

) + op(1),

which imply (A.1). Similarly, we can prove (A.2) and (A.3).
(ii) By noting that Yt − α0 − β0Xt−1 − Ut = op(1) as t → ∞,

results can be shown in a way similar to the proof of (i).
(iii) By noting that Yt − α0

1−γ0
− ∑t

j=1 γ
t−j
0 Uj = op(1) as t → ∞,

results follow from similar arguments in proving (i).

Lemma 2. Suppose model (3) holds with |γ0| < 1 and E{|Ut|2+δ +
|Vt|2+δ} < ∞ for some δ > 0, and α = α0 is known. Further,
assume φ0 = 1 − ρ/n for some ρ ∈ R and θ0 = 0. Put Z∗

t (γ , β) =
(Zt1(γ , β), Xn−1√

1+X2
n−1

Zt2(γ , β))T .

(i) If γ0 = d1/
√

n for some d1 ∈ R and β0 = d2/n for some d2 ∈ R,
then

1√
n

n∑
t=1

Z∗
t (0, 0) = W̃1 +

(
d1{E(U2

1 ) + α2
0} + d2α0

∫ 1
0 JV ,ρ(s) ds

d1α0 + d2
∫ 1

0 JV ,ρ(s) ds

)

+ op(1), (A.5)
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1
n

n∑
t=1

Z∗
t (0, 0)Z∗T

t (0, 0) = E(U2
1 )

(
E(U2

1 ) + α2
0 α0

α0 1

)
+ op(1)

:= 
̃1 + op(1), (A.6)

and max
1≤t≤n

||Z∗
t (0, 0)|| = op(n1/2), (A.7)

where W̃1 ∼ N(0, 
̃1).
(ii) If γ0 = d1/n for some d1 ∈ R and β0 is a nonzero constant,

then
1√
n

n∑
t=1

Z∗
t (0, β0) = W̃2 +

(
d1α0β0

∫ 1
0 JV ,ρ(s) ds

d1β0
∫ 1

0 JV ,ρ(s) ds

)
+ op(1), (A.8)

1
n

∑n
t=1 Z∗

t (0, β0)Z∗T
t (0, β0)

= E(U2
1 )

(
E(U1 − β0

∑∞
j=0 ψjV1−j)2 + α2

0 α0
α0 1

)
+ op(1)

:= 
̃2 + op(1),
(A.9)

and max
1≤t≤n

||Z∗
t (0, β0)|| = op(n1/2), (A.10)

where W̃2 ∼ N(0, 
̃2).
(iii) If β0 = d2/n for some d2 ∈ R and γ0 is a nonzero constant,

then
1√
n

n∑
t=1

Z∗
t (γ0, 0) = W̃3 +

(
d2

α0
1−γ0

∫ 1
0 JV ,ρ(s) ds

d2
∫ 1

0 JV ,ρ(s) ds

)
+ op(1), (A.11)

1
n

n∑
t=1

Z∗
t (γ0, 0)Z∗T

t (γ0, 0)

= E(U2
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t→∞
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E(
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)2 α0
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1
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+ op(1)

:= 
̃3 + op(1), (A.12)

and max
1≤t≤n

||Z∗
t (γ0, 0)|| = op(n1/2), (A.13)

where W̃3 ∼ N(0, 
̃3).

Proof. (i) It follows from Phillips (1987) that
1√
n

X[nr]
D→ JV ,ρ(r) in the space D[0, 1], (A.14)

where D[0, 1] is the collection of real-valued functions on [0, 1] which
are right continuous with left limits; see Billingsley (1999). By (A.4) and
(A.14), we have Yt − α0 − Ut = op(1) as t → ∞. Hence,

1√
n

n∑
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Zt1(0, 0)

= 1√
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and
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= 1√
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Xt−1√
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1 + X2
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+ d2
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n∑
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X2
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1 + X2
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+ op(1). (A.16)

Put S0 = 0 and St = ∑t
j=1 Uj for t = 1, . . . , n. Then

1√
n

∑n
t=1 Ut

Xt−1√
1+X2

t−1

= 1√
n

∑n
t=1(St − St−1)

Xt−1√
1+X2

t−1

= 1√
n Sn

Xn−1√
1+X2

n−1

+ 1√
n

∑n
t=1 St{ Xt−1√

1+X2
t−1

− Xt√
1+X2

t
}.

(A.17)

It follows from Taylor expansion that

Xt−1√
1 + X2

t−1

− Xt√
1 + X2

t

= (1 + ξ2
t )−3/2(Xt−1 − Xt), (A.18)

where ξt lies between Xt−1 and Xt . By (A.14), we have |Xt−1|/ta p→ ∞,
|Xt|/ta p→ ∞ and |Xt−1 − Xt|/ta p→ 0 for any a ∈ (0, 1/2) as t → ∞,
which imply that

|ξt|/ta p→ ∞ for any a ∈ (0, 1/2) as t → ∞. (A.19)

It follows from (A.18) and (A.19) that

1√
n

n∑
t=1
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Xt−1√

1 + X2
t−1

− Xt−2√
1 + X2

t−2

) = op(1). (A.20)

By (A.17) and (A.20), we have

1√
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n∑
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1 + X2
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n−1
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Similarly, we have⎧⎪⎪⎨
⎪⎪⎩

1
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1
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(A.22)
Hence, (A.5) follows from (A.14), (A.15), (A.16), (A.21), and (A.22).
(ii) It follows from (A.4) and (A.14) that

1√
n

Y[nr] = β0√
n

X[nr] + op(1)
D→ β0JV ,ρ(r) in the space D[0, 1].

(A.23)
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Hence,
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which imply (A.8). Similarly, we can prove (A.9) and (A.10).
(iii) By noting that Yt − α0
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which imply (A.11). Similarly, we can prove (A.12) and (A.13).

Lemma 3. Suppose model (3) holds with |γ0| < 1 and E{|Ut|2+δ +
|Vt|2+δ} < ∞ for some δ > 0, and α = α0 is known. Further, assume
φ0 = 1 − ρ/n for some ρ ∈ R and θ0 �= 0.

(i) If γ0 = d1/
√

n for some d1 ∈ R and β0 = d2/n3/2 for some
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and max
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where W̄1 ∼ N(0, 
̄1).
(ii) If γ0 = d1/n3/2 for some d1 ∈ R and β0 is a nonzero constant,

then
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(α0 − β0θ0)sgn(θ0)

(α0 − β0θ0)sgn(θ0)
1

)
+ op(1)

:= 
̄2 + op(1), (A.28)

and max
1≤t≤n

||Zt(0, β0)|| = op(n1/2), (A.29)

where W̄2 ∼ N(0, 
̄2).
(iii) If β0 = d2/n3/2 for some d2 ∈ R and γ0 is a nonzero constant,

then

1√
n

n∑
t=1

Zt(γ0, 0) = W̄3 +
(

d2θ0
α0

1−γ0

∫ 1
0

1−e−ρs
s ds

d2|θ0|
∫ 1

0
1−e−ρs

ρ ds

)
+ op(1),

(A.30)

1
n

n∑
t=1

Zt(γ0, 0)ZT
t (γ0, 0)

= E(U2
1 ) lim

t→∞

(
E(

∑t−1
j=1 γ

t−1−j
0 Uj)2 + (

α0
1−γ0

)2
α0

1−γ0
sgn(θ0)

α0
1−γ0

sgn(θ0)
1

)
+ op(1)

:= 
̄3 + op(1), (A.31)

and max
1≤t≤n

||Zt(γ0, 0)|| = op(n1/2), (A.32)

where W̄3 ∼ N(0, 
̄3).
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Proof. (i) By noting that X[ns]/n
p→ θ0 1−e−ρs

ρ for s ∈ [0, 1] and Yt −
α0 − Ut = op(1) as t → ∞, results follow from the same arguments in
proving Lemma 2(i).

(ii) By noting that Y[ns]/n = β0X[ns]/n + op(1)
p→ β0θ0 1−e−ρs

ρ
for s ∈ [0, 1], results follow from the same arguments in proving
Lemma 2(ii).

(iii) By noting that Yt − α0
1−γ0

− ∑t
j=1 γ

t−j
0 Uj = op(1) as t → ∞,

results follow from the same arguments in proving Lemma 2(iii).

Lemma 4. Suppose model (3) holds with |γ0| < 1 and E{|Ut|2+δ +
|Vt|2+δ} < ∞ for some δ > 0, and α = α0 is known. Further, assume
φ0| < 1 independent of n.

(i) Under H0 : γ0 = 0, with probability tending to one, L(0, β)

attains its maximum value at some point β∗ in the interior of the ball
|β − β0| ≤ n−1/δ0 for some δ0 ∈ (2, 2 + δ) as n → ∞, and β∗ and
λ∗ = λ∗(β∗) satisfy Q1n(β∗, λ∗) = 0 and Q2n(β∗, λ∗) = 0, where

Q1n(β , λ) := 1
n

n∑
t=1

Zt(0, β)

1 + λTZt(0, β)
and

Q2n(β , λ) = 1
n

n∑
t=1

1
1 + λTZt(0, β)

(
∂Zt(0, β)

∂β

)T
λ.

(ii) Under H0 : β0 = 0, with probability tending to one, L(γ , 0)

attains its maximum value at some point γ ∗ in the interior of the ball
|γ − γ0| ≤ n−1/δ0 for some δ0 ∈ (2, 2 + δ) as n → ∞, and γ ∗ and
λ∗ = λ∗(γ ∗) satisfy Q3n(γ ∗, λ∗) = 0 and Q4n(γ ∗, λ∗) = 0, where

Q3n(γ , λ) := 1
n

n∑
t=1

Zt(γ , 0)

1 + λTZt(γ , 0)
, and

Q4n(γ , λ) = 1
n

n∑
t=1

1
1 + λTZt(γ , 0)

(
∂Zt(γ , 0)

∂γ

)T
λ.

Proof. Using Lemma 1, this lemma follows from the arguments in the
proof of Lemma 1 of Qin and Lawless (1994).

Lemma 5. Suppose model (3) holds with |γ0| < 1 and E{|Ut|2+δ +
|Vt|2+δ} < ∞ for some δ > 0, and α = α0 is known. Further, assume
φ0 = 1 − ρ/n for some ρ ∈ R and θ0 = 0.

(i) Put β̄ = β
√

n, β̄0 = β0
√

n, Z̄∗
t (γ , β̄) = Z∗

t (γ , β) defined in
Lemma 2 and L̄(γ , β̄) = L(γ , β). Under H0 : γ0 = 0, with probability
tending to one, L̄(0, β̄) attains its maximum value at some point β̄∗ in
the interior of the ball |β̄ − β̄0| ≤ n−1/δ0 for some δ0 ∈ (2, 2 + δ)

as n → ∞, and β̄∗ and λ̄
∗ = λ̄

∗
(β̄∗) satisfy Q̃1n(β̄∗, λ̄∗

) = 0 and
Q̃2n(β̄∗, λ̄∗

) = 0, where

Q̃1n(β̄ , λ̄) := 1
n

n∑
t=1

Z̄∗
t (0, β̄)

1 + λ̄
T Z̄∗

t (0, β̄)
and

Q̃2n(β̄ , λ̄) = 1
n

n∑
t=1

1

1 + λ̄
T Z̄∗

t (0, β̄)

(
∂Z̄∗

t (0, β̄)

∂β̄

)T
λ̄.

(ii) Under H0 : β0 = 0, with probability tending to one, L(γ , 0)

attains its maximum value at some point γ ∗ in the interior of the ball
|γ − γ0| ≤ n−1/δ0 for some δ0 ∈ (2, 2 + δ) as n → ∞, and γ ∗ and
λ∗ = λ∗(γ ∗) satisfy Q̃3n(γ ∗, λ∗) = 0 and Q̃4n(γ ∗, λ∗) = 0, where

Q̃3n(γ , λ) := 1
n

n∑
t=1

Z∗
t (γ , 0)

1 + λTZ∗
t (γ , 0)

, and

Q̃4n(γ , λ) = 1
n

n∑
t=1

1
1 + λTZ∗

t (γ , 0)

(
∂Z∗

t (γ , 0)

∂γ

)T
λ.

Proof. Using Lemma 2, this lemma follows from the arguments in the
proof of Lemma 1 of Qin and Lawless (1994).

Lemma 6. Suppose model (3) holds with |γ0| < 1 and E{|Ut|2+δ +
|Vt|2+δ} < ∞ for some δ > 0, and α = α0 is known. Further, assume
φ0 = 1 − ρ/n for some ρ ∈ R and θ0 �= 0.

(i) Put β̄ = βn, β̄0 = β0n, Z̄t(γ , β̄) = Zt(γ , β) and L̄(γ , β̄) =
L(γ , β). Under H0 : γ0 = 0, with probability tending to one, L̄(0, β̄)

attains its maximum value at some point β̄∗ in the interior of the ball
|β̄ − β̄0| ≤ n−1/δ0 for some δ0 ∈ (2, 2 + δ) as n → ∞, and β̄∗ and
λ̄
∗ = λ̄

∗
(β̄∗) satisfy Q̄1n(β̄∗, λ̄∗

) = 0 and Q̄2n(β̄∗, λ̄∗
) = 0, where

Q̄1n(β̄ , λ̄) := 1
n

n∑
t=1

Z̄t(0, β̄)

1 + λ̄
T Z̄t(0, β̄)

, and

Q̄2n(β̄ , λ̄) = 1
n

n∑
t=1

1

1 + λ̄
T Z̄t(0, β̄)

(
∂Z̄t(0, β̄)

∂β̄

)T
λ̄.

(ii) Under H0 : β0 = 0, with probability tending to one, L(γ , 0)

attains its maximum value at some point γ ∗ in the interior of the ball
|γ − γ0| ≤ n−1/δ0 for some δ0 ∈ (2, 2 + δ) as n → ∞, and γ ∗ and
λ∗ = λ∗(γ ∗) satisfy Q̄3n(γ ∗, λ∗) = 0 and Q̄4n(γ ∗, λ∗) = 0, where

Q̄3n(γ , λ) := 1
n

n∑
t=1

Zt(γ , 0)

1 + λTZt(γ , 0)
, and

Q̄4n(γ , λ) = 1
n

n∑
t=1

1
1 + λTZt(γ , 0)

(
∂Zt(γ , 0)

∂γ

)T
λ.

Proof. Using Lemma 3, this lemma follows from the arguments in the
proof of Lemma 1 of Qin and Lawless (1994).

Proof of Theorem 1. Case A1: Assume φ0 = 1 − ρ/n, θ0 = 0 and H0 :
γ0 = 0 & β0 = 0. Then it follows from Lemma 2(i) with d1 = d2 =
0 and standard arguments in empirical likelihood method (see Owen
(2001)) that

−2 log L(0, 0) = W̃T
1 
̃−1

1 W̃1 + op(1)
d→ χ2(2) as n → ∞.

Case A2: Assume φ0 = 1 − ρ/n, θ0 = 0 and H0 : γ0 = 0. Using
notations in Lemma 5(i), it follows from (A.14) that

1
n

n∑
t=1

∂Z̄t1(0, β̄0)

∂β̄

= − 1
n

n∑
t=1

Xt−1√
n

(Yt−1 − β0Xt−1) − 1
n

n∑
t=1

Ut
Xt−1√

n

= − 1
n

n∑
t=1

Xt−1√
n

{α0 + Ut−1 − β0
∞∑

j=0
ψjVt−1−j} + op(1)

= − α0

∫ 1

0
JV ,ρ(s) ds + op(1)

and

1
n

n∑
t=1

∂Z̄∗
t2(0, β̄0)

∂β̄
= − Xn−1√

1 + X2
n−1

1
n

n∑
t=1

Xt−1√
n

Xt−1√
1 + X2

t−1

= −
∫ 1

0
JV ,ρ(s) ds + op(1),

which imply that

∂Q̃1n(β̄0, 0)

∂β̄
=

(
−α0

∫ 1
0 JV ,ρ(s) ds

− ∫ 1
0 JV ,ρ(s) ds

)
+ op(1) =: S̃∗

2 + op(1). (A.33)
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By Lemma 2(ii) with d1 = 0, we can show that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂Q̃1n(β̄0,0)

∂λ̄
= −
̃2 + op(1),

Q̃1n(β̄0, 0) = Op(n−1/2), Q̃1n(β̄0,0)

∂β̄
= Op(1),

∂Q̃2n(β̄0,0)

∂β̄
= 0, ∂Q̃2n(β̄0,0)

∂λ̄
= S̃∗

2 + op(1) = Op(1),

(A.34)

where 
̃2 is defined in Lemma 2(ii). By (A.33) and (A.34), expanding
Q̃1n(β̄∗, λ̄∗

) and Q̃2n(β̄∗, λ̄∗
) around (β̄0, 0)T yields

0 = Q̃1n(β̄0, 0) + ∂Q̃1n(β̄0, 0)

∂β̄
(β̄∗ − β̄0) + ∂Q̃1n(β̄0, 0)

∂λ̄
T λ̄

∗

+ op(||λ̄∗|| + |β̄∗ − β̄0|)
= Q̃1n(β̄0, 0) + S̃∗

2(β̄∗ − β̄0) − 
̃2λ̄
∗ + op(||λ̄∗|| + |β̄∗ − β̄0|)

and

0 = Q̃2n(β̄0, 0) + ∂Q̃2n(β̄0, 0)

∂β̄
(β̄∗ − β̄0) + ∂Q̃2n(β̄0, 0)

∂λ̄
T λ̄

∗

+ op(||λ̄∗|| + |β̄∗ − β̄0|)
= S̃∗T

2 λ̄
∗ + op(||λ̄∗|| + |β̄∗ − β̄0|),

which imply that

S̃∗T
2 
̃−1

2 S̃∗
2
√

n(β̄∗ − β̄0) = −S̃∗T
2 
̃−1

2
√

nQ̃1n(β̄0, 0) + op(1)

and
√

nλ̄
∗ = 
̃−1

2
√

nQ̃1n(β̄0, 0) + 
̃−1
2 S̃∗

2
√

n(β̄∗ − β̄0) + op(1)

= {
̃−1
2 − 
̃−1

2 S̃∗
2 S̃∗T

2 
̃−1
2

S̃∗T
2 
̃−1

2 S̃∗
2

}√nQ̃1n(β̄0, 0) + op(1)

= {
̃−1
2 − 
̃−1

2 S̃2S̃T
2 
̃−1

2
S̃T

2 
̃−1
2 S̃2

}√nQ̃1n(β̄0, 0) + op(1), (A.35)

where S̃2 = −(α0, 1)T . It follows from (A.35) and Taylor expansion
that

− 2 log LP1(0)

= − 2 log L̄(0, β̄∗)

=2
n∑

t=1
λ̄
∗T Z̄t(0, β̄∗) −

n∑
t=1

λ̄
∗T Z̄t(0, β̄∗)Z̄T

t (0, β̄∗)λ̄
∗

+ op(1)

=2nλ̄
∗TQ̃1n(β̄0, 0) + 2nλ̄

∗T ∂Q̃1n(β̄0, 0)

∂β̄
(β̄∗ − β̄0)

− nλ̄
∗T


̃2λ̄
∗ + op(1)

=2
√

nλ̄
∗T{√nQ̃1n(β̄0, 0) + S̃2

√
n(β̄∗ − β̄0)} − nλ̄

∗T

̃2λ̄

∗

+ op(1)

=2
√

nλ̄
∗T


̃2
√

nλ̄
∗ − nλ̄

∗T

̃2λ̄

∗ + op(1)

={√nQ̃1n(β̄0, 0)}T{
̃−1
2 − 
̃−1

2 S̃2S̃T
2 
̃−1

2
S̃T

2 
̃−1
2 S̃2

}
̃2{
̃−1
2

− 
̃−1
2 S̃2S̃T

2 
̃−1
2

S̃T
2 
̃−1

2 S̃2
}{√nQ̃1n(β̄0, 0)} + op(1)

=(
̃
−1/2
2 W̃2)T{I2×2 − 
̃

−1/2
2 S̃2S̃T

2 
̃
−1/2
2

S̃T
2 
̃−1

2 S̃2
}(
̃−1/2

2 W̃2) + op(1),

(A.36)

where I2×2 denotes the 2 × 2 identity matrix. Since the matrix I2×2 −

̃

−1/2
2 S̃2S̃T

2 
̃
−1/2
2

S̃T
2 
̃−1

2 S̃2
is idempotent and

rank(I2×2 − 
̃
−1/2
2 S̃2S̃T

2 
̃
−1/2
2

S̃T
2 
̃−1

2 S̃2
) = 2 − trace(


̃
−1/2
2 S̃2S̃T

2 
̃
−1/2
2

S̃T
2 
̃−1

2 S̃2
)

= 2 − trace(
S̃T

2 
̃
−1/2
2 
̃

−1/2
2 S̃2

S̃T
2 
̃−1

2 S̃2
) = 1,

it follows from Lemma 2(ii) with d1 = 0 that −2 log LP1(0)
d→ χ2(1)

as n → ∞.
Case A3: Assume φ0 = 1 − ρ/n, θ0 = 0 and H0 : β0 = 0. Like the

proof for Case A2, it follows from Lemmas 2(iii) with d2 = 0 and 5(ii)
that

−2 log LP2(0) = (
̃
−1/2
3 W̃3)T{I2×2 − 
̃

−1/2
3 S̃3S̃T

3 
̃
−1/2
3

S̃T
3 
̃−1

3 S̃3
}

× (
̃
−1/2
3 W̃3) + op(1),

where 
̃3 and W̃3 are defined in Lemma 2(iii), and

S̃3 = lim
n→∞

∂Q̃3n(γ0, 0)

∂γ

= −
⎛
⎝ lim

t→∞ E(

t∑
j=1

γ
t−j
0 Uj)

2 + (
α0

1 − γ0
)2,

α0
1 − γ0

⎞
⎠

T

.

Since the matrix I2×2 − 
̃
−1/2
3 S̃3S̃T

3 
̃
−1/2
3

S̃T
3 
̃−1

3 S̃3
is idempotent with rank one,

it follows from Lemma 2(iii) with d2 = 0 that −2 log LP2(0)
d→ χ2(1)

as n → ∞.
Therefore, it follows from Cases A1–A3 that Theorem 1 holds for

the case of φ0 = 1−ρ/n and θ0 = 0. Similarly, we can show Theorem 1
holds for the case of |φ0| < 1 by using Lemmas 1 and 4, and for the case
of φ0 = 1 − ρ/n and θ0 �= 0 by using Lemmas 3 and 6.

Proofs of Theorems 2–5. They can be shown in the same way as the
proof of Theorem 1 by using Lemmas 1–6. For computing the non-
central parameters in Theorems 3(ii) and 4(ii), we use the facts that

D̃T
2

{

̃−1

2 − 
̃−1
2 S̃2S̃T

2 
̃−1
2

S̃T
2 
̃−1

2 S̃2

}
D̃2

= d2
1β2

0

(∫ 1

0
JV ,ρ(s) ds

)2
S̃T

2

{

̃−1

2 − 
̃−1
2 S̃2S̃T

2 
̃−1
2

S̃T
2 
̃−1

2 S̃2

}
S̃2 = 0

and

D̄T
2

{

̄−1

2 − 
̄−1
2 S̄2S̄T

2 
̄−1
2

S̄T
2 
̄−1

2 S̄2

}
D̄2

= d2
1β2

0 S̄T
2

{

̄−1

2 − 
̄−1
2 S̄2S̄T

2 
̄−1
2

S̄T
2 
̄−1

2 S̄2

}
S̄2 = 0.
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