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This paper proposes the Cramér–von Mises type test statistic for testing heteroskedasticity in predictive
regression when regressors are nonstationary. A Monte Carlo simulation study is conducted to illustrate
the finite sample performance and a real empirical example is examined.
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1. Introduction

In the recent three decades, testing predictability of asset
eturns has not only attracted vast amounts of attention from fi-
ancial practitioners due to its key component to evaluate mutual
und managers’ performance, examine the validity of asset pricing
odels, and improve asset allocation efficiency, but also has been
n important research topic in financial economics in academia.
large literature has been devoted to testing whether asset

eturns are predictable or not. The typical econometric method
sed in literature is an ordinary least squares (OLS) regression of
eturns versus the lag of the financial variables, and conventional
-statistics are used to check the significance of coefficients.

For easy exposition, a structural simple predictive regression
odel is given by

t = β0 + β1 xt−1 + ut , 1 ≤ t ≤ T , (1)

where xt−1 is a nonstationary time series. Here, Var(ut | xt−1) =
2
t might not be a constant. Then, ut can be written as ut = σtϵt ,

✩ The authors acknowledge the financial supports, in part, from the Na-
tional Natural Science Foundation of China with grant numbers 71631004 and
72033008.

∗ Correspondence to: 121 Zhangjia Lukou, Fengtai District, Beijing 100070,
China.

E-mail address: zhangzhengyi@cueb.edu.cn (Z. Zhang).
 s

ttps://doi.org/10.1016/j.econlet.2021.109781
165-1765/© 2021 Elsevier B.V. All rights reserved.
where {ϵt} is a sequence of iid random variable or a stationary
time series with E(ϵt ) = 0 and Var(ϵt ) = 1. Thus, (1) can be
written as

yt = β0 + β1 xt−1 + σt ϵt , (2)

where it is commonly assumed that σt is a constant and xt−1
atisfies the following autoregressive (AR) model

t = ρ xt−1 + vt , (3)

where ρ = 1 + c/T for some unknown constant c , and vt is a
eakly stationary time series, say, an α-mixing process. Clearly,

if c = 0, xt is a unit root process, denoted by I(1) and it is
nearly integrated process, denoted by NI(1), if c < 0. Under the
assumption that σt is a constant and xt−1 satisfies (3), there is
vast amounts of literature for testing the predictability as H0 :

β1 = 0. The reader is referred to the recent survey paper by
Liao et al. (2018) for details on the various methods, from which,
one can see that when xt is nonstationary, the assumption that
σt is constant is key to derive the asymptotic theory for testing
H0 : β1 = 0. Recently, by extending the work by Park (2002), Choi
et al. (2016) reexamined stock return predictability by assuming
that σt = σ0(t/T ) or σt = σ0(zt/

√
T ) for some known function

σ0(·) to satisfy some conditions.
Therefore, by assuming that σt is possibly nonstationary and a

function of xt−1 as σt = σ (xt−1), it is of great importance to con-
ider the following test problem; that is to test heteroskedasticity,
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able 1
ize performance with nominal size 5%.

δ = −0.95 δ = −0.25

T = 500 T = 1000 T = 500 T = 1000

h1 0.046 0.050 0.040 0.042
c = 0 h2 0.049 0.046 0.044 0.048

h3 0.033 0.041 0.040 0.040

h1 0.036 0.041 0.032 0.044
c = −5 h2 0.046 0.049 0.043 0.047

h3 0.026 0.037 0.022 0.033

h1 0.036 0.044 0.034 0.040
c = −30 h2 0.041 0.045 0.049 0.045

h3 0.027 0.034 0.024 0.032

H0 : σ (·) = σ0, (4)

where σ0 is an unknown or known parameter. Of course, it would
be interesting to consider other types of test.

The rest of the paper is organized as follows. The construction
of the proposed test statistic is presented in Sections 2 and 3
is devoted to presenting studies on the Monte Carlo simulations
and real applications. Concluding remarks conclude the paper in
Section 4.

2. Specification test

Let δ =corr(ut , vt ). As argued by Campbell and Yogo (2006),
δ might not be zero in many applications, so that the so-called
embedded endogeneity causes the estimation bias for estimating
β0 and β1 by running directly the model in (1). To overcome
this difficulty, following Cai and Wang (2014), one can use a
projection approach of ut onto vt as ut = γ vt + ηt and run the
following regression with estimated regressor

yt = β0 + β1xt−1 + γ v̂t + ηt , 1 ≤ t ≤ T , (5)

to estimate β0 and β1, where v̂t = xt − ρ̂ xt−1 from (3), so that
one can obtain the residual ût , from which ût = ut + Op(T−1/2)
based on Theorem 1 in Cai and Wang (2014) under some mild
conditions. Therefore, by letting rt = u2

t and r̂t = û2
t , we have

r̂t − rt = 2
[
(β0 − β̂0) + (β1 − β̂1)xt−1

]
σ (xt−1)ϵt + Op(T−1). (6)

It is intuitively clear that the biases of the squared residuals are of
order Op(T−1), and this is the effect of estimated β0 and β1 in (5)
on the estimated variance function σ 2(x). This result also paves
the way for employing a fully data-driven bandwidth procedure
in the estimation given in (7) below.

Since σ 2(xt−1) = E(rt | xt−1), then, rt can be written as a mean
regression form as follows

rt = σ 2(xt−1) + ξt ,

where E(ξt | xt−1) = 0. Thus, under H0 in (4), a consistent
estimate of σ 2

0 is

σ̃ 2
0 =

1
T − 1

T∑
t=2

rt

if rt would be known. But, rt is unknown in practice, it should be
replaced by r̂t according to (6). Clearly, in view of (6),

1
T − 1

T∑
t=2

r̂t − σ̃ 2
0 = 2σ0(β0 − β̂0)ϵ̄ + 2σ0(β1 − β̂1)xϵ + Op(T−1),

here ϵ̄ =
∑T

t=2 ϵt/(T − 1) and xϵ =
∑T

t=2 xt−1ϵt/(T − 1), which
can be easily shown that ϵ̄ = op(1) and xϵ = Op(1). Therefore,

σ̃ 2
0 =

1
T − 1

T∑
r̂t + op(1) ≈

1
T − 1

T∑
r̂t ≡ σ̂ 2

0 ,
t=2 t=2

2

so that 1
T−1

∑T
t=2 r̂t is used to estimate σ 2

0 consistently.
Under the alternative, σ 2(xt−1) = E(rt | xt−1) is a nonparamet-

ic function of xt−1, so that based on nonparametric estimation
rocedure, one can estimate σ 2(x) for a given x by the following
ernel method (local constant approach) as in Han and Zhang
2012),

˜
2(x) =

T∑
t=2

rt Kh(xt−1 − x)/DT (x), (7)

here DT (x) =
∑T

t=2 Kh(xt−1 − x), Kh(x) = K (x/h)/h, K (x) is a
ernel function, and h is the bandwidth satisfying h → 0 and
h → ∞. Note that different from the local linear estimation of
2(x) for stationary case in Fan and Yao (1998), a local constant
stimation is employed here since both have the exact same
symptotic behaviors for nonstationary regressors as argued in
ai (2011). Similar to Theorem 3 in Cai (2011) and Han and Zhang
2012), one can show easily that

˜
2(x) = σ 2(x) + BT (x) + Op(T−1/5) (8)

here BT (x) = h2 µ2(K )σ̈ 2(x)/2 with σ̈ 2(x) being the second
erivative of σ 2(x) and µ2 =

∫
x2K (x)dx. Based on the above

iscussions in (6) and (8), rt can be replaced by r̂t , so that

ˆ
2(x) =

T∑
t=2

r̂t Kh(xt−1 − x)/DT (x). (9)

imilarly, one can show that (8) holds true for σ̂ 2(x), which
mplies that σ̂ 2(x) is a consistent estimate of σ 2(x).

To test H0, similar to the test in Cai et al. (2015), we make
se of the following weighted Cramér–von Mises test statistic
L2-type) test statistic

T =

∫ [
(σ̂ 2(x) − σ̂ 2

0 )DT (x)
]2
dx,

hich can be simplified, by removing by the global center, i.e., the
um where t = s in the above equation, as follows

T =

∑
t,s=2

∑
t ̸=s

ξ̂t ξ̂sW ((xt−1 − xs−1)/h), (10)

here ξ̂t = r̂t − σ̂ 2
0 and W (u) =

∫
K (v)K (u − v)dv is the con-

olution kernel. Note that the reason of employing the weighted
2-type test statistic is to get ride of the random denominator,
hich has been commonly used in the literature.
Note that the test statistic in (10) is similar to the kernel

moothed test statistic, which has commonly been applied to
est parametric specifications in the econometrics literature, see,
or example, Fan and Li (1996) and Li (1999) for stationary time
eries mean regression and in Wang and Phillips (2012) for non-
tationary regressor. Under some regularity assumptions, which
re similar to Assumptions 1–5 in Wang and Phillips (2012), by
ollowing the proof in Wang and Phillips (2012), it is not difficult
o show that

T/

√
2 Σ̂T −→D N(0, 1),

which is similar to (3.10) in Zheng (1996) for iid case, and (3.1)
in Wang and Phillips (2012) for nonstationary situations, where

Σ̂T =

∑
s,t=2

∑
s̸=t

ξ̂ 2
t ξ̂ 2

s W
2((xt − xs)/h),

which is the exact same as that for the iid case in Zheng (1996)
and for time series context in Fan and Li (1996) and Li (1999) as
well as for nonstationary time series in Wang and Phillips (2012).
Also, one can show that the test statistic S is a consistent test.
T
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Table 2
Testing results for both log d-p ratio and log e-p ratio.

log d-p ratio log e-p ratio

δ̂ Test statistics p-value δ̂ Test statistics p-value

S&P 500 −0.8409 5.3865 <0.0001 −0.6589 2.6143 0.0089
NYSE/AMEX −0.9473 5.6063 <0.0001 −0.6708 2.8815 0.0040
Fig. 1. Powers of the alternatives (11) with c = 0, δ = −0.95 and T = 500 in the left figure and c = −30, δ = −0.95 and T = 500 in the right figure.
Fig. 2. Powers of alternatives (11) with δ = −0.95 and T = 500 in the left figures and δ = −0.95 and T = 1000 in the right figure.
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. Applications

To investigate the finite sample performance of the proposed
est statistics, we conduct a Monte Carlo simulation study with
onstant and time-varying σ 2(·). For simplicity, in following com-
utations, the Gaussian kernel is used so that the convolution
ernel is an N(0, 2) density function.

.1. Monte Carlo Simulations

The data generating process from predictive regression model
s

t = β0 + β1 xt−1 + σ (xt−1) ϵt , xt = ρ xt−1 + vt ,

here β0 = 0.5, β1 = 0.75 and ρ = 1 + c/T with c taking 0,
5, and −30. Clearly, the degree of persistence of xt is controlled
y nuisance parameter c and the three levels of persistence
orrespond to the cases when predictor xt is a unit root process,
nearly unit root process and a stationary process, respectively.
3

he innovations ϵt and vt are jointly generated by standard bi-
ariate normal distribution with correlation coefficient δ taking
0.95 and −0.25.
To study the finite sample performance of proposed testing

ethod, we consider the following case:
2(xt−1) = σ 2

0 + τ x2t−1, (11)

ith σ 2
0 = 1. When τ = 0, it collapses to the null hypothesis

o that the empirical test size can be computed. When τ ̸= 0, it
educes to a series of alternatives, which delivers the empirical
ower indexed by τ .
The Monte Carlo simulation is considered with T = 500 and

000, δ = −0.95 and −0.25, and three values for nuisance
arameter c , and it is repeated 1000 times for each setting. In
rder to demonstrate the finite sample behavior of the proposed
est statistic, we examine the sizes and the powers under three
hoices of bandwidth (h1, h2, h3) = (h, 0.5h, 1.5h) with h =
−1/10 for c = 0 and −5, and h = T−1/5 for c = −30. The
est sizes are reported in Table 1, from which one can observe
hat the test sizes are close to the nominal size under all settings.
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herefore, one can conclude that the test is not very sensitive
o the choice of bandwidth as long as the bandwidth is in the
easonable range and performs very well. Now, we evaluate the
ower of the proposed test by two typical examples. Indeed, the
ower is computed by τ in (11) in the range [0, 0.01] with an
ncrement 0.001 when c = 0 and τ ∈ [0, 0.1] with an increment
.01 when c = −30 (see Fig. 1). The powers vary slightly with
andwidth but they are quite close in general, given such small
ncrement in alternatives. Meanwhile, with smaller choice of τ

n the series of alternatives when c = 0, the performance of
roposed test statistic is better for nonstationary scenario than
or stationary case in terms of test power. Fig. 2 also demonstrates
his property. In Fig. 2, we fix the bandwidth h = T−1/5 for all
cenarios and compute powers by τ ∈ [0, 0.1] with an increment
.01 when T = 500 and τ ∈ [0, 0.03] with an increment 0.003
hen T = 1000. We also compute powers with δ = −0.25, and
he results are almost the same and thus omitted for saving space.

.2. An empirical example

As an illustration of our methodology, we test heteroskedas-
icity for predictive regression of stock return with dividend-price
atio and earning price ratio as the predictors. Two different series
f stock returns are employed, the returns on NYSE/AMEX value-
eighted index and S&P 500 index from the Center for Research

n Security Prices (CRSP). We use monthly data from November
926 to December 2019.
The dividend price (d-p) ratio is constructed as the ratio of

verage dividends during the last year over the current price
evel, we take the natural log on it in actual predictive regression.
or both indexes, the log d-p ratios have been identified as an I(1)
rocess by ADF test and we first consider the following predictive
egression

t = α + βxt−1 + ut , (12)

here rt is the excess return and xt represents the associated log
d-p ratio. Denoted by v̂t the OLS residuals from the AR(1) model,
xt = ρxt−1 + vt , and ût the OLS residuals from model (12). The
sample correlation coefficients between ût and v̂t are reported in
Table 2, these nonzero values imply the existence of embedded
endogeneity (xt−1 and ut may be correlated) problem which leads
to biased estimates. Following Cai and Wang (2014), we employ
the projection approach to deal with endogeneity problem and
the regression model is

rt = β0 + β1xt−1 + γ v̂t + σ (xt−1) ϵt .

Our interest is to test heteroskedasticity; that is, test H0 : σ 2(xt−1)
= σ 2

0 , where σ 2
0 is unknown. The test statistics and p-values of

the test are reported in Table 2. With 5% significance level, both
null hypotheses are rejected. This means that σ (xt−1) depends
on xt−1.
4

In addition, we also consider the earning price (e-p) ratio
as the predictor of stock return and the log e-p ratio is com-
puted based on the cyclically adjusted price earnings ratio (CAPE),
which is proposed by Shiller (2000). To be specific, we take the
natural log on the inverse of CAPE and apply the same testing
methodology as above. The results are reported in Table 2, from
which one can conclude that σ (xt−1) depends on xt−1 in this
pplication example as well.

. Conclusion

In this paper, to test heteroskedasticity in predictive regres-
ion when regressors are nonstationary, a Cramér–von Mises type
est statistic is proposed and the limiting distribution is derived.
he simulation experiments show that our proposed test works
ery well even in a small sample size. We also apply our testing
ethod to test heteroskedasticity for predictive regression of
tock return with dividend-price ratio and earning price ratio as
he predictors. We find the conditional variance σ 2(xt−1) is not a
onstant for both predictors.
Finally, we note several possible extensions of the present

tudy. For example, the proposed test procedure might be ap-
lied to testing if the conditional variance σ 2(xt−1) might have a
pecific parametric form due to some particular application. We
eave such extensions as possible future research topics.
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