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ABSTRACT
We use ten common macroeconomic variables to test for the predictability of the quarterly growth rate of
house price index (HPI) in the United States during 1975:Q1–2018:Q2. We extend the instrumental variable
based Wald statistic (IVX-KMS) proposed by Kostakis, Magdalinos, and Stamatogiannis to a new instrumental
variable based Wald statistic (IVX-AR) which accounts for serial correlation and heteroscedasticity in the error
terms of the linear predictive regression model. Simulation results show that the proposed IVX-AR exhibits
excellent size control regardless of the degree of serial correlation in the error terms and the persistency in
the predictive variables, while IVX-KMS displays severe size distortions. The empirical results indicate that
the percentage of residential fixed investment in GDP is fairly a robust predictor of the growth rate of HPI.
However, other macroeconomic variables’strong predictive ability detected by IVX-KMS is likely to be driven
by the highly correlated error terms in the predictive regressions and thus becomes insignificant when the
proposed IVX-AR method is implemented. Supplementary materials for this article, including a standardized
description of the materials available for reproducing the work, are available as an online supplement.
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1. Introduction

An empirical observation about households in the United States
is that they tend to concentrate their family holdings and assets
on residential houses. Indeed, based on the Federal Reserve’s
2017 Survey of Consumer Finances, it reveals that 63.7% of fam-
ilies own a primary residence with a median value of $185,000,
which accounts for more than 60% of the net wealth of the
median household. Due to the widespread increases in home
prices after the global financial crisis, ownership rates and
median and mean values of other residential property, which
includes residences such as second homes and timeshares, also
rose during the period of 2013–2017. It is well known that
abnormal fluctuations in housing prices substantially impact the
value of assets held by families and therefore, affect their deci-
sions on consumption and investment. To closely track hous-
ing prices and predict the pattern of its movement, investors
and policymakers usually rely on prior experience and some
publicly available economic information. The relation between
housing prices and various macroeconomic indicators has been
extensively studied over the past decade, especially after the
global financial crisis. For example, Del Negro and Otrok (2007)
investigate how the expansionary monetary policy contributes
to the increases in housing prices. Observing the path of the
historical housing price, Shiller (2007) points out that the federal
funds rate and the percentage of residential fixed investment in
GDP can be useful indicators to predict housing bubbles. In a
recent study, Kallberg, Liu, and Pasquariello (2014) examine the
relation between the housing price in some U.S. cities and a large
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set of macroeconomic variables such as unemployment rate
and per capita disposable income. Categorizing these variables
as underlying systematic real and financial factors, they argue
that the comovements among housing markets can be largely
explained by changes in these factors.

In this article, we explore the possibility of using macroeco-
nomic variables to predict the growth rate of the house price
index. Testing predictability of returns of assets such as hous-
ing prices via lagged economic and financial variables with an
unknown degree of persistence has been a cornerstone research
topic in empirical finance. The classical predictive linear regres-
sion commonly employed in the literature is often built upon the
following simultaneously structural linear model:

yt = α+βxt−1+ut and xt = πxt−1+et , 1 ≤ t ≤ T, (1)

where {(ut , et)}T
t=1 is a martingale difference sequence, and ut

and et may be correlated. The predictive variable xt−1 is assumed
to follow an AR(1) process in (1) although the extension to a
higher order autoregressive process such as AR(k) with k >

1 is straightforward. The above predictive regression model
has been widely used in empirical economics and finance, for
example, Granger causality testing, efficient market hypothesis,
linear rational expectations hypothesis, asset pricing theories,
and performance of a mutual fund.

Since the predictive variables xt−1 above (e.g., unemploy-
ment rate, interest rate, etc.) often exhibit a high degree of
persistence (Welch and Goyal 2008), much like a nonstation-
ary process, standard t-test result obtained from the ordinary
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least squares (OLS) method is no longer valid. The correlation
coefficient between ut and et is usually nonzero and negative in
many real applications (see Table 4 in Campbell and Yogo (2006)
and a real example in Cai and Wang (2014)), which causes the
so-called “embedded endogeneity.” In an early study, Stambaugh
(1999) pointed out that this endogeneity will lead to a biased
estimate of the slope coefficient β in finite samples and over-
rejection of the null hypothesis of no predictive ability. This
over-rejection can be interpreted as a tendency toward finding
spurious predictive ability in a predictive regression model.
Some bias-corrected based inferences have been proposed in
the literature, such as the first order bias correction (Stambaugh
1999), the second-order bias correction (Amihud and Hurvich
2004), and the conservative bias-adjusted estimator (Lewellen
2004).

An alternative framework for inference is to assume that the
predictive variable follows a near unit root process with the
AR(1) coefficient π = 1− c/T where c is a constant and T is the
sample size. The asymptotic properties for the coefficient of the
near unit root predictive variable have been well developed in
the previous studies (see Elliott and Stock 1994; Campbell and
Yogo 2006; Jansson and Moreira 2006; Hjalmarsson 2011; Cai
and Wang 2014). However, the constant term c in the coefficient
cannot be consistently estimated in a limiting distribution, and
thus the critical value for a predictability test cannot be correctly
obtained.

During the last two decades, there have been many efforts to
developing unified inferences that are robust to the persistent
characteristics of the predictive variables and the embedded
endogeneity arising from the two error terms in (1). The pioneer
one is the Q-test which is based on the Bonferroni approach
(Campbell and Yogo 2006). However, as pointed out by Phillips
and Lee (2013), this approach might lead to severe undersizing,
and the testing power is negligible.

The second line of the unified approach is to employ a
weighted empirical likelihood method. For example, Zhu, Cai,
and Peng (2014) propose a robust empirical likelihood infer-
ence for β , which always has a chi-squared limit regardless
of the degree of persistence in predictive variables. To include
the case of a stationary predicted variable on the left hand
side and nonstationary predictive variables on the right hand
side, Liu et al. (2019) construct a unified empirical likelihood
inference to test the predictability by including the differ-
ence of the predictive variable into a simple linear predictive
regression.

The third line of the unified approach is the instrumental
variable estimation method (IVX) proposed by Magdalinos and
Phillips (2009). At the cost of sacrificing the rate of convergence
in the case of near unit root, the fundamental idea of this
method is to construct instrumental variables that exhibit a
lower degree of persistence than that of predictive variables to
eliminate the endogeneity problem and robustify inference to
the uncertainty over the precise nature of the integration. To
test the general restrictions on predictive variables, Kostakis,
Magdalinos, and Stamatogiannis (2015) showed that the IVX-
based Wald test (IVX-KMS hereafter) yields a standard chi-
squared distribution. In their article, the IVX-based test is
robust to regressors’ degree of persistence, ranging from purely
stationary to purely nonstationary processes, in the presence

of endogenous and heteroscedastic errors.1 Meanwhile, Phillips
and Lee (2016) show that this test remains valid for regressors
with local unit roots in the explosive direction and mildly
explosive roots. To reduce the bias in the predictive variable’s
slope coefficient, Demetrescu and Rodrigues (2016) proposed
a residual-augmented IVX test statistic in a predictive regres-
sion context which is analog to that of Amihud and Hurvich
(2004). They argued that their method is comparable in small
samples under distinctive conditions such as strong persis-
tence, endogeneity, non-Gaussian innovations, and heterogene-
ity. Also, Lee (2016) extended IVX filtering to quantile regres-
sion by correcting the distortions arising from highly persis-
tent multivariate predictors while preserving the discriminatory
power.

To test the predictability of the growth rate in housing price,
one may apply one of the above unified methods with no need to
concern the persistency of the predicting variables. Using Equa-
tion (1) to regress the growth rate of housing prices on some
macroeconomic variables, one could obtain the estimated ut and
plot its autocorrelation coefficients. Results in Section 4 suggest
that the assumption of uncorrelated error terms is questionable.
Besides serial correlation, we also find evidence of persistent
volatility in housing prices. To filter the linear dependence and
the persistent volatility in ut , we take a further step to fit an
AR(p)-GARCH(m, n) model. The analysis with details given in
Section 4 calls for an alternative predictability test for the growth
rate of housing price, which should not only unify various
degrees of persistency in predicting variables but also allow
the error terms in the linear predictive regression to be serially
correlated and heteroscedastic.

In this study, we propose a unified IVX-AR Wald statistic
that accounts for such serial correlation in the error terms of the
linear predictive regression model, which generalizes the IVX
method in Kostakis, Magdalinos, and Stamatogiannis (2015)
and Phillips and Lee (2016). Simulation results show that, if
the error terms in the predictive regression are indeed serially
correlated, IVX-KMS by Kostakis, Magdalinos, and Stamato-
giannis (2015) suffers severe size distortions especially when the
error terms are highly correlated, and the predictive variables
are highly persistent. On the other hand, the proposed IVX-
AR corrects the size distortions arising from serially correlated
errors even in the presence of strong persistence and endogene-
ity. When the error terms are not serially correlated, these two
methods exhibit similar performance.

Indeed, our motivation for this study is to implement the
proposed method to test the predictive ability of ten widely used
macroeconomic variables on the quarterly growth rate of the
housing price in the United States during 1975:Q1–2018:Q2.
We first consider the univariate case in which the growth rate
of housing price is regressed on the ten regressors one by one,
and the individual Wald tests are conducted under the null
hypothesis that the individual regressor exhibits no predictive
ability. By the IVX-AR method, only the percentage of residen-
tial fixed investment in GDP and the civilian unemployment rate

1The main assumption in Kostakis, Magdalinos, and Stamatogiannis (2015)
is to assume that the error terms in the predictive model are a martingale
difference sequence. However, many empirical studies have cast doubt on
this assumption. See Ball and Kothari (1989), Case and Shiller (1989), and
Getmansky, Lo, and Makarov (2004) as examples.
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are found to have significant predictive ability with respect to
the growth rate of housing prices. However, using IVX-KMS
by Kostakis, Magdalinos, and Stamatogiannis (2015), we find
that all ten regressors exhibit significant predictive ability on the
growth rate of housing prices. In the multivariate case, we con-
sider five combinations of the ten regressors and find that three
of them are jointly significant, including the “kitchen sink” com-
bination which accommodates all ten variables. This finding
differs from that by Kostakis, Magdalinos, and Stamatogiannis
(2015), who showed all five combinations are jointly significant.
We apply the same procedures to a subperiod ranging from
2000:Q1 to 2018:Q2 and still find contradictory results. Given
the main difference between IVX-AR and IVX-KMS is that the
former accounts for the serial correlation in the error terms,
we attribute the predictive ability falsely detected by IVX-KMS
to the existence of high order of serial correlation in the error
terms.

The remaining structure of the article is as follows. Section 2
introduces the IVX-AR based predictive regression model with
an AR(p)+GARCH(m, n) process in the error terms. In the
same section, we develop the estimation procedures and two
hypothesis tests. Section 3 reports the finite-sample simulation
results. Section 4 applies the proposed model to investigate the
predictive ability of macroeconomic variables on the growth rate
of housing prices. The final section draws conclusions, and the
technical proofs are provided in the Appendix (supplementary
materials).

2. Econometric Modeling

2.1. Model Setup and Assumptions

We consider the following linear predictive regression model
with autocorrelation and conditional heteroscedasticity in error
terms:

yt = α + xᵀ
t−1β + ut , 1 ≤ t ≤ T, (2)

where yt is a predicted variable, for example, the growth
rate of house price indexes or other asset returns, xt−1 =
(xt−1,1, . . . , xt−1,d)

ᵀ is a vector of d-dimensional predictive vari-
ables, for example, unemployment rate and interest rate, α is a
constant, β is a vector of the corresponding slope coefficients
of xt−1, T is the sample size, and Aᵀ denotes the transpose
of a vector/matrix of A. In addition, we assume that the data
{x0, x−1, . . . , x−q} are observed, and the error terms ut are gov-
erned by an AR(q)+GARCH(m, n) process

ut = φ1ut−1 + φ2ut−2 + · · · + φqut−q + vt , (3)

vt = σtεt , σ 2
t = ω0 +

m∑
i=1

aiv2
t−i +

n∑
j=1

bjσ
2
t−j, (4)

where φ = (φ1, φ2, . . . , φq)ᵀ is a vector of coefficients for the
AR(q). This idea of taking the AR error structure into account
has been extensively studied; see Xiao, Linton, Carroll and
Mammen (2003) and Liu, Chen, and Yao (2010) for nonpara-
metric regression models; Hall and Yao (2003) for parametric
regression models; Hill, Li, and Peng (2016) for a near unit root
process. However, to the best of our knowledge, it is the first time

to combine this idea with the IVX method to provide a unified
predictability test allowing various persistency of predicting
variables and correlated and heteroscedastic errors in the linear
predictive regression.

Innovation {εt} is a sequence of the independent and iden-
tically distributed (iid) random variables with mean 0 and
variance 1. In the literature, εt is usually assumed to follow
a standard normal or standardized Student’s t distribution or
the generalized error distribution. The conditional volatility
σ 2

t follows a GARCH(m, n) model with parameters satisfying
ω0 > 0, ai ≥ 0, bj ≥ 0, and

∑max(m,n)
i=1 (ai + bi) < 1,

in which the constraint on ai + bi implies the unconditional
variance of vt is finite, whereas its conditional variance σ 2

t
evolves, see Tsay (2010). Specifically, model (4) reduces to an
ARCH(m) model if n = 0. The IVX-KMS method by Kostakis,
Magdalinos, and Stamatogiannis (2015) originally specifies the
same GARCH(m, n) process as in Equation (4) and we use the
same setting for conditional heteroscedasticity here.

Moreover, the predictive variables xt are assumed to follow a
vector autoregressive process as

xt = 	xxt−1 + et , et =
∞∑


=0
ψ
εt−
, (5)

where 	x = Id + C/Tηx for some matrix C = diag(c1, . . . , cd)
and some 0 ≤ ηx ≤ 1, the notation Id stands for the identity
matrix of order d, {et = ∑∞


=0 ψ
εt−
} is a strictly stationary
process, and vt and εt may be correlated. By construction,
the predictive variable belongs to one of the following persis-
tence classes (Kostakis, Magdalinos, and Stamatogiannis 2015;
Phillips and Lee 2016):

(I) Stationarity (cj < 0 for j = 1, . . . , d and ηx = 0);
(II) Moderate deviation from a unit root (cj < 0 for j =

1, . . . , d and 0 < ηx < 1);
(III) Near unit root (cj < 0 for j = 1, . . . , d and ηx = 1);
(IV) Unit root (cj = 0 for j = 1, . . . , d);
(V) Local unit root on the explosive side (cj > 0 for j =

1, . . . , d and ηx = 1);
(VI) Mildly explosive root (cj > 0 for j = 1, . . . , d and 0 <

ηx < 1).

The classes (I)–(VI) accommodate various degrees of persis-
tence in predictive variables varying from a stationary one to a
mildly explosive root. The model specification is completed in
the Appendix (supplementary materials) with some additional
formal assumptions.

2.2. Estimation Procedures

Define y
t
= yt − ȳ, xt−1 = xt−1 − x̄, ut = ut − ū and vt = vt − v̄,

where ȳ = 1
T

∑T
t=1 yt , x̄ = 1

T
∑T

t=1 xt−1, ū = 1
T

∑T
t=1 ut and

v̄ = 1
T

∑T
t=1 vt , then the demeaned version of models (2) and

(3) are reduced to

y
t
= xᵀ

t−1β + ut , 1 ≤ t ≤ T, (6)

ut = φ1ut−1 + φ2ut−2 + · · · + φqut−q + vt . (7)
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By construction, we rewrite Equation (6) as

y
t
−

q∑
j=1

φjyt−j
= (xt−1 −

q∑
j=1

φjxt−j−1)
ᵀβ + vt , (8)

where xt−j−1 = (xt−j−1,1, . . . , xt−j−1,d)
ᵀ for j = 1, . . . , q.

Equation (8) can be regarded as a predictive regression model
with the predicted variable y

t
− ∑q

j=1 φjyt−j
and the predictive

variable xt−1 − ∑q
j=1 φjxt−j−1. A detailed generalization of the

method in Kostakis, Magdalinos, and Stamatogiannis (2015) is
as follows.

For a given vector of coefficients φ, we can construct an
instrumental variable z̃φ,t−1 analog to the predictive variable
xt−1 − ∑q

j=1 φjxt−j−1 as

z̃φ,t−1 = z̃t−1 −
q∑

j=1
φjz̃t−j−1,

where z̃t = 	zz̃t−1 + �xt with z̃0 = 0, �xt = xt − xt−1 =
et + (C/Tηx)xt−1 and 	z = Id + Cz/Tηz for some matrix Cz
and 0 < ηz < 1. As suggested by Kostakis, Magdalinos, and
Stamatogiannis (2015), we use Cz = −Id and ηz = 0.95, which
give quite good performance in the empirical implementation of
the testing procedure. By construction, z̃t is less persistent when
the predictive variable xt−1 is either unit root or near unit root.

To facilitate the estimation procedure, we define

xt−2,q = (xt−2, . . . , xt−q−1), z̃t−2,q = (z̃t−2, . . . , z̃t−q−1), yt−1,q

= (y
t−1

, . . . , y
t−q

)ᵀ,

ut−1,q = (ut−1, . . . , ut−q)
ᵀ, and et−1,q = (et−1, . . . , et−q)

ᵀ.

Then (β̂ᵀ, φ̂ᵀ)ᵀ satisfy

T∑
t=1

(z̃t−1 − z̃t−2,qφ̂)
[

y
t
− yᵀ

t−1,qφ̂ − (xt−1 − xt−2,qφ̂)ᵀβ̂
]

= 0,

(9)

T∑
t=1

(yt−1,q − xᵀ
t−2,qβ̂)

[
y

t
− yᵀ

t−1,qφ̂−(xt−1−xt−2,qφ̂)ᵀβ̂
]
=0.

(10)
When q = 1, we propose a novel three-step algorithm to

calculate (β̂ᵀ, φ̂1)
ᵀ as below.

(i) For a given value φ1, we do IVX-KMS based regression
which regresses y

t
−φ1y

t−1
on xt−1 −φ1xt−2, and obtain resid-

uals v̂t(φ1), that is, v̂t(φ1) = y
t
− φ1y

t−1
− (xt−1 − φ1xt−2)

ᵀβ̂

with β̂ being the estimator from estimating Equation (9).
(ii) Find the estimator φ̂∗

1 by solving

φ̂∗
1 = argminφ1

T∑
t=1

v̂2
t (φ1).

(iii) Obtain the coefficient estimators β̂∗ by doing IVX-KMS
based regression which regresses y

t
− φ̂∗

1 y
t−1

on xt−1 − φ̂∗
1 xt−2,

that is, β̂∗ is the solution of Equation (9) with φ1 replaced by φ̂∗
1 .

When q > 1, it is nontrivial to find a vector of estimators φ̂

in the step (ii) above. Here, we propose to obtain the estimators
β̂ and φ̂ by iteratively implementing the following steps:

(a) For a given vector φ̂(0), we calculate β̂(1) by estimating
Equation (9),

(b) For a given vector β̂(1), we calculate φ̂(1) by estimating
Equation (10) and update φ̂(0) to φ̂(1).

The initial value φ̂(0) can be obtained by regressing ǔt on
ǔt−1, . . . , ǔt−q with ǔt being the OLS residuals from the model
(2). Our simulation results suggest that this iterative procedure
achieves convergence quickly.

2.3. Testing the Predictability of Regressors

The asymptotic mixed normality property of the IVX-AR esti-
mator given in Theorem A of the Appendix (supplementary
materials) suggests that the inference for predictability can be
conducted by a standard Wald test. Specifically, we consider the
multiple joint hypotheses with p constraints

H0 : Rβ = r versus H1 : Rβ �= r,

where R is a p × d matrix, and r is a p × 1 vector. Then, the
IVX-AR based Wald statistic for testing the null hypothesis H0 :
Rβ = r takes the form of

Wβ = (Rβ̂ − r)ᵀQ̂−1
R,φ(Rβ̂ − r), (11)

where

Q̂R,φ = R

[ T∑
t=1

(z̃t−1 − z̃t−2,qφ̂)(xt−1 − xt−2,qφ̂)ᵀ
]−1

M̂φ

[ T∑
t=1

(xt−1 − xt−2,qφ̂)(z̃t−1 − z̃t−2,qφ̂)ᵀ
]−1

Rᵀ,

M̂φ = Tϒ̂T − Tz̄T−1z̄ᵀ
T−1σ̌FM,φ̌ ,

ϒ̂T = 1
T

T∑
t=1

(z̃t−1 − z̃t−2,qφ̂)(z̃t−1 − z̃t−2,qφ̂)ᵀv̌2
t ,

σ̌FM,φ = σ̌ 2
v − �̌ve,φ�̌−1

ee,φ�̌
ᵀ
ve,φ , and z̄T−1 = 1

T

T∑
t=1

z̃t−1

with v̌t , σ̌ 2
v , �̌ve,φ , and �̌ee,φ being defined in the Appendix

(supplementary materials).
Clearly, ϒ̂T = 1

T
∑T

t=1(z̃t−1 − z̃t−2,qφ̂)(z̃t−1 − z̃t−2,qφ̂)ᵀv̌2
t

is a White-type (1980) heteroscedasticity consistent estima-
tor for ϒT = E

[
(z̃t−1 − z̃t−2,qφ)(z̃t−1 − z̃t−2,qφ)ᵀv2

t
]
. When

the residuals vt are homoscedastic, we can use ϒ̂∗
T =

σ̌ 2
v

T
∑T

t=1(z̃t−1 − z̃t−2,qφ̂)(z̃t−1 − z̃t−2,qφ̂)ᵀ as a consistent esti-
mator for ϒ∗

T = σ 2
v E(z̃t−1 − z̃t−2,qφ)(z̃t−1 − z̃t−2,qφ)ᵀ. Fol-

lowing Kostakis, Magdalinos, and Stamatogiannis (2015), we
use Tz̄T−1z̄ᵀ

T−1σ̌FM,φ as a correction that removes the finite-
sample distortion of the IVX-AR based estimators arising from
the estimation for the intercept in the model (2).
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Remark 1. It should be pointed out that Phillips and Magdalinos
(2009) show that IVX is biased and provide a bias-corrected IVX
estimation by directly estimating the asymptotic bias, which
accounts for both series dependence and cross-series depen-
dence, see their Equation (22). In this article, we employ the AR
error structure to directly formulate the IVX estimation without
any ad hoc bias-corrected estimation. Specifically, models (2)
and (3) can be reformulated as a predictive regression model
with the martingale structure in the residuals as

yt−
q∑

j=1
φjyt−j =α

⎛⎝1−
q∑

j=1
φj

⎞⎠+
⎛⎝xt−1−

q∑
j=1

φjxt−j−1

⎞⎠ᵀ

β + vt .

The proposed IVX-AR estimation, which is based on the above
expression with the martingale structure of {vt}, is different from
the bias-corrected IVX estimation by Phillips and Magdalinos
(2009), in which they first derive the IVX estimator β̃ based on
model (2), and then correct its asymptotic bias.

Simulation results, which are available from the authors upon
request, show that the bias-corrected IVX estimation (Phillips
and Magdalinos 2009) slightly improves the size control com-
pared with IVX-KMS. However, it still suffers severe size distor-
tion.

The theorem below follows Theorem A in the Appendix
(supplementary materials):

Theorem 1. Assume that p is the number of constraints in the
null hypothesis H0. Under regularity conditions in Theorem A
of the Appendix (supplementary materials), as T → ∞,

Wβ ⇒ χ2(p),

whenever the regressor xt−1 belongs to any class of (I)–(VI).

Theorem 1 holds regardless of the predictive variable xt−1
being stationary, moderate deviation from a unit root, near unit
root, unit root, local unit root on the explosive side, or mildly
explosive root. When the sample size is large, the estimation in
the error terms as in Equations (3) and (4) does not show any
effect on the asymptotic null distribution of the Wald statistic
defined in (11) for testing the joint multiple hypothesis H0.

2.4. Testing the Serial Correlation in the Error Terms

To see whether there exists autocorrelation in the error terms in
model (2), we consider the multiple joint hypotheses

H(1)
0 : φ1 = · · · = φq = 0 versus H(1)

1 : φj �= 0,
for some j ∈ {1, . . . , q}.

Then, the Wald statistic for testing the null hypothesis H(1)
0 :

φ1 = · · · = φq = 0 takes the form of

Wφ = Tφ̂ᵀ�̌uu,qV̌−1
uu,v�̌uu,qφ̂, (12)

where �̌uu,q = 1
T

∑T
t=1 ǔt−1,qǔᵀ

t−1,q, V̌uu,v =
1
T

∑T
t=1 ǔt−1,qǔᵀ

t−1,qv̌2
t , and ǔt−1,q = (ǔt−1, . . . , ǔt−q)ᵀ with ǔt

defined earlier.
Again the theorem below follows Theorem A in the

Appendix (supplementary materials).

Theorem 2. Assume that q is the dimension of φ in the null
hypothesis H(1)

0 , that is, the order of AR model in Equation (3).
Under the regularity conditions in Theorem A of the Appendix
(supplementary materials), as T → ∞,

Wφ ⇒ χ2(q),

whenever the regressor xt−1 belongs to any class of (I)–(VI).

When the sample size is large, the estimation for α and β in
Equation (2) does not show any effect on the asymptotic null
distribution of the Wald statistic defined in Equation (12) for
testing the multiple joint hypotheses H(1)

0 . Meanwhile, in an
application we can choose the autoregressive order q by using
either the Akaike information criterion (AIC) or the Bayesian
information criterion (BIC).

3. Numerical Studies

3.1. Univariate Case

In this section, we evaluate the finite-sample performance of the
Wald test using simulated datasets. To begin with, we consider
the univariate case and assume that yt is generated by

yt = α + βxt−1 + ut , with ut = φ1ut−1 + vt ,

xt = 	xt−1 + et , with et = ψ1et−1 + εt ,

where 1 ≤ t ≤ T and vt = σtεt follows a GARCH(1,1) process
such that σ 2

t = ω+a1ε
2
t−1+b1σ

2
t−1 with the GARCH parameter

ω = 0.0001, a1 = 0.04, and b1 = 0.95. (εt , εt)ᵀ is a random
sample from a bivariate Gaussian copula C(F1(εt), F2(εt); θ)

with the copula parameter θ bounded between −1 and 1, and
the two marginal distributions F1(·) and F2(·) follow the Stu-
dent’s t distribution.2 Because nonnormality and heavy tails
are common in most financial data, we assume both marginal
distributions’ degrees of freedom equal to 5.

Our target is to check whether the lagged variable xt−1 with
an unknown degree of persistence can be used to predict yt
when ut is serially correlated. For this purpose, we implement
the Wald test under the null hypothesis H0 : β = 0 versus
the alternative H1 : β �= 0 with the 5% nominal level. We
run 10,000 simulations and present the results with the sample
size T ∈ {100, 200, 500}, φ1 ∈ {−0.9, −0.7, 0, 0.7, 0.9}, 	 ∈
{0.2, 0.8, 0.95, 1, 1.005, 1.01} and (ψ1, θ) ∈ {(0, 0), (0.2, 0.4)}.
Here, the last two values of 	 correspond to the scenario that
regressor is mildly explosive, as discussed by Phillips and Lee
(2016).3 The remained four values of 	 correspond to the four
degrees of persistence (stationarity, moderate deviation from a
unit root, nearly unit root, and unit root) exhibited by xt , as
defined in Section 2. θ = 0.4 is an empirically relevant value,
as will be shown in Table 1 in Section 4. Besides, to investigate
the effect of the information criterion on choosing q, the order
of autocorrelation in ut , in each simulation, we document the
performance of the proposed IVX-AR method using both AIC
and BIC.4

2For copula models and their applications, we refer interest readers to the
books by Joe (1997).

3We thank an anonymous reviewer for suggesting this.
4We thank an anonymous reviewer for suggesting this comparison.
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Table 1. Results of univariate predictive regressions.

β̂OLS tOLS β̂IVX-KMS Wβ ,IVX-KMS β̂IVX-AR Wβ ,IVX-AR θ q Wφ

Panel 1: 1975:Q1–2018:Q2

CPI −0.0001 −5.211∗∗∗ −0.0001 36.711∗∗∗ −0.0001 1.803 −0.1685 5 134.042∗∗∗
DEF −0.0002 −5.147∗∗∗ −0.0002 25.153∗∗∗ −0.0002 1.356 0.0872 5 132.551∗∗∗
GDP 0.0012 5.238∗∗∗ 0.0012 29.561∗∗∗ −0.0002 0.816 0.2084 1 17.863∗∗
INC 0.0016 2.898∗∗ 0.0027 18.622∗∗∗ 0.0000 0.016 0.1086 5 116.503∗∗∗
IND −0.0002 −3.427∗∗∗ −0.0001 5.940∗∗ 0.0001 0.294 0.1329 5 146.373∗∗∗
INT 0.0006 2.368∗∗∗ 0.0006 6.121∗∗ −0.0001 0.090 0.1795 5 140.269∗∗∗
INV 0.0070 8.750∗∗∗ 0.0078 92.486∗∗∗ 0.0070 13.785∗∗∗ 0.3888 1 17.556∗∗∗
MOG 0.0006 1.988∗∗∗ 0.0006 4.350∗∗ −0.0002 0.080 −0.0146 5 145.687∗∗∗
RES −0.0012 −2.526∗∗ −0.0015 8.886∗∗∗ 0.0011 0.955 −0.2263 5 131.437∗∗∗
UNE −0.0018 −3.176∗∗∗ −0.0030 20.885∗∗∗ −0.0037 6.934∗∗∗ −0.2659 1 32.737∗∗∗

Panel 2: 2000:Q1–2018:Q2

CPI −0.0002 −2.262∗∗∗ −0.0003 11.304∗∗∗ −0.0002 0.728 −0.1685 1 27.873∗∗∗
DEF −0.0003 −1.802∗ −0.0005 3.459∗ −0.0003 0.361 0.0872 1 29.446∗∗∗
GDP 0.0021 3.737∗∗∗ 0.0018 6.841∗∗∗ 0.0002 0.133 0.2084 1 13.251∗∗∗
INC 0.0026 2.694∗∗∗ 0.0024 5.942∗∗ 0.0001 0.008 0.1086 1 22.537∗∗∗
IND 0.0002 0.628 0.0004 1.322 0.0007 1.028 0.1329 1 33.358∗∗∗
INT 0.0009 1.086 0.0012 0.863 0.0011 0.235 0.1795 1 32.353∗∗∗
INV 0.0059 5.287∗∗∗ 0.0075 38.998∗∗∗ 0.0087 7.897∗∗∗ 0.3888 1 21.725∗∗∗
MOG 0.0013 0.964 0.0018 0.811 0.0088 4.399∗∗ −0.0146 1 32.704∗∗∗
RES −0.0010 −1.480 −0.0016 3.149∗ 0.0007 0.175 −0.2263 1 29.832∗∗∗
UNE −0.0040 −4.725∗∗∗ −0.0043 17.103∗∗∗ −0.0038 2.771∗ −0.2659 1 20.049∗∗∗

NOTE: This table documents the results of univariate predictive regressions for observations from the full sample period (Panel 1: 1975:Q1–2018:Q2) and the subperiod
(Panel 2: 2000:Q1–2018:Q2). For both panels, the dependent variable is the quarterly growth rate of housing prices in the United States. CPI = quarterly consumer price
index for all urban consumers: all items less shelter (Index 1982–1984 = 100). DEF = quarterly implicit price deflator of the gross domestic product (Index 2012 = 100). GDP
= quarterly percent change of the gross domestic product from the preceding period. INC = quarterly percent change of real disposable personal income from quarter one
year ago. IND = quarterly industrial production index (Index 2012 = 100). INT = quarterly effective federal funds rate. INV = quarterly percent of residential fixed investment
in the gross domestic product. MOG = quarterly 30-year mortgage rate. RES = quarterly growth of the total reserve balances maintained with Federal Reserve banks.
UNE = quarterly civilian unemployment rate. β̂OLS refers to the least square estimate of each regression, and tOLS represents the corresponding t-statistic. β̂IVX-KMS
indicates each univariate regression’s slope coefficient estimated by Kostakis, Magdalinos, and Stamatogiannis (2015), and Wβ ,IVX-KMS represents the corresponding

Wald statistic for the null that the slope coefficient equals to zero. β̂IVX-AR indicates each univariate regression’s slope coefficient estimated by IVX-AR discussed in
Section 2, and Wβ ,IVX-AR represents the corresponding Wald statistic for the null that the slope coefficient equals to zero. θ refers to the correlation coefficient between
the residuals of Equations (2) and (4). q denotes the optimal order of AR for the residuals of Equation (2) selected by the Bayesian information criterion (BIC). Wφ denotes
the Wald statistic defined in Equation (12) and tests the null that H0 : φ1 = · · · = φq = 0 versus H1 : φj �= 0 for some j ∈ {1, 2, . . . , q}. ∗ , ∗∗ , and ∗∗∗ , respectively,
indicate rejection of the null at 10%, 5%, and 1%.

Panel 1 in Table 2 displays the empirical sizes in the case
of no correlation (θ = 0) between εt and εt and no auto-
correlation (ψ1 = 0) in et . When ut is indeed serially cor-
related (i.e., φ1 ∈ {−0.9, −0.7, 0.7, 0.9}), it is clear that the
Wald statistics calculated by IVX-AR(1) show excellent size
control over all values of 	 and sample size T. For IVX-KMS
which ignores the serial correlation in ut , its Wald statistics
tend to be severely undersized when φ1 is negative and xt is
highly persistent. On the other hand, the Wald statistics of IVX-
KMS become remarkably oversized when φ1 switches to be
positive. Increasing the sample size T from 100 to 500 does
not mitigate the size distortions. However, if xt deviates from
the mildly explosive and unit root process and becomes sta-
tionary (i.e., when 	 = 0.8 or 0.2), distortions in empirical
sizes by IVX-KMS appear to be smaller. When φ1 = 0 (i.e.,
no serial correlation in ut), the performance of IVX-AR(1)
and IVX-KMS is quite similar, and both empirical sizes are
close to the 5% nominal level, which confirms the robustness
of IVX-KMS to various degrees of conditional heteroscedas-
ticity. This similarity should be expected because the main
difference between IVX-AR and IVX-KMS is that the former
accounts for the serial correlation in ut . When comparing
the performance of IVX-AR(1) using AIC with the counter-
part using BIC, we do not find a statistically meaningful dif-
ference between the two methods, even though the former

exhibits slightly better size control than the latter in most
cases.

We then examine the power of the two methods’ test statistics
and plot their powers in Figure 1. To save space, here we only
present the scenario that φ1 = 0.7 and T = 200. The six panels
in Figure 1 correspond to the cases when 	, respectively, equals
to 0.2, 0.8, 0.95, 1, 1.005, and 1.01. For power comparison, in
each panel, we assume the true values of β , which is represented
by the horizontal axis, equal to 2j

T where j ∈ {0, 1, 2, . . . , 39, 40}.
Therefore, j = 0 refers to the size of the test. Because of the
severe oversizing in the Wald statistics by IVX-KMS, its power
curve (blue-dotted) tends to be higher than that of IVX-AR(1)
using AIC (black-solid) and BIC (red-dashed) when β is small,
and 	 is large, as shown by the last five panels in Figure 1. When
the degree of persistence becomes quite low (	 = 0.2), the
size distortions in the Wald statistic by IVX-KMS become much
smaller, as suggested by Panel 1 in Table 2, and the dominance of
IVX-AR’s power curve becomes more obvious, as displayed by
the first panel in Figure 1. In all six panels, we do not observe an
obvious difference in power by IVX-AR(1) using AIC and BIC.

Next, we alternatively consider the case that (ψ1, θ) =
(0.2, 0.4), while keeping all other settings the same. Panel 2 in
Table 2 documents the comparison of the empirical sizes by
both methods, and Figure 2 plots their Wald statistics’ power. In
Table 2, most results from Panel 2 are similar to those from Panel
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Figure 1. Power plots with θ = 0 and ψ1 = 0. NOTE: This figure displays the rejection rate for tests of the null hypothesis β = 0 versus the alternative β �= 0 in Equation
(2) as the true value of β (horizontal axis) increases under the univariate case. For each panel, β = 2j

T for j ∈ {0, 1, 2, . . . , 39, 40}. The black-solid curve and the red-dashed
curve, respectively, denote the rejection rate of the Wald statistic by the proposed IVX-AR method using AIC and BIC under the 5% nominal size (the horizontal solid line),
while the blue-dotted curve denotes the rejection rate of the Wald statistic by the IVX-KMS method in Kostakis, Magdalinos, and Stamatogiannis (2015). The six panels
correspond to the cases when 	 ∈ {0.2, 0.8, 0.95, 1, 1.005, 1.01}. The autocorrelation coefficient for ut is φ1 = 0.7 and the autocorrelation coefficient for et is ψ1 = 0. The
Gaussian copula parameter θ = 0. vt in Equation (4) follows a GARCH(1,1) process with the GARCH parameters ω = 0.0001, a1 = 0.04, and b1 = 0.95. For each panel, the
rejection rate is calculated with 10,000 repetitions and sample size T = 200.

1: the Wald statistics by IVX-AR display good size control over
all combinations of 	 and T, while the counterparts by IVX-
KMS tend to be undersized when φ1 is negative and oversized
when φ1 becomes positive. Increasing the sample size does not

help to alleviate concerns on size distortions. When ut is not
serially correlated (i.e., φ1 = 0), the empirical sizes by both
methods are close to the 5% nominal level. However, the size
distortions are even larger in Panel 2 than in Panel 1, and we
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Figure 2. Power plots with θ = 0.4 and ψ1 = 0.2. NOTE: This figure displays the rejection rate for tests of the null hypothesis β = 0 versus the alternative β �= 0 in
Equation (2) as the true value of β (horizontal axis) increases under the univariate case. For each panel, β = 2j

T for j ∈ {0, 1, 2, . . . , 39, 40}. The black-solid curve and the
red-dashed curve, respectively, denote the rejection rate of the Wald statistic by the proposed IVX-AR method using AIC and BIC under the 5% nominal size (the horizontal
solid line), while the blue-dotted curve denotes the rejection rate of the Wald statistic by the IVX-KMS method in Kostakis, Magdalinos, and Stamatogiannis (2015). The
six panels correspond to the cases when 	 ∈ {0.2, 0.8, 0.95, 1, 1.005, 1.01}. The autocorrelation coefficient for ut is φ1 = 0.7 and the autocorrelation coefficient for et is
ψ1 = 0.2. The Gaussian copula parameter θ = 0.4. vt in Equation (4) follows a GARCH(1,1) process with the GARCH parameters ω = 0.0001, a1 = 0.04, and b1 = 0.95.
For each panel, the rejection rate is calculated with 10,000 repetitions and sample size T = 200.

could still observe obvious oversizing when φ1 is positive. As
in Panel 1, IVX-AR(1) using AIC and BIC still displays quite
similar size control. Examining the six panels in Figure 2, which
presents the case with φ1 = 0.7 and T = 200, we find consistent

evidence of oversizing exhibited by the power curve of IVX-
KMS. The power of the Wald statistics by IVX-AR(1) increases
quickly as the true value of β increases. When xt becomes
nonstationary (i.e., 	 ≥ 1), as displayed by the last three panels
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in Figure 2, the power of the Wald statistic by IVX-AR(1) using
AIC or BIC exhibits more obvious dominance over that by IVX-
KMS. As in Figure 1, the power displayed by IVX-AR(1) using
AIC and BIC is still quite similar.

For the univariate regression, we finally consider a more
general case by evaluating the performance of IVX-AR(q) when
q, the order of the autocorrelation in ut , is greater than 1.
As the empirical example in the next section will show, for
certain macroeconomic variables such as the consumer price
index and the effective federal funds rate, the optimal choice
of the order is q = 5. To assure that the simulation setup
for a higher order of q is relevant to the empirical results,
we investigate the performance of IVX-AR(5) and compare it
with that by IVX-KMS which completely ignores such high
order of serial correlation in ut . In other words, the simulation
setup here is the same as before except that ut now follows an
AR(5) process and is defined as ut = φ1ut−1 + φ2ut−2 +
φ3ut−3 + φ4ut−4 + φ5ut−5 + vt , where 1 ≤ t ≤ T. For
the five autoregressive coefficients (φ1, φ2, φ3, φ4, φ5), we con-
sider five groups that are close to the results obtained in the
empirical part: (i) (0.55, 0.18, −0.24, 0.30, −0.05); (ii) (0.42,
−0.08, 0.33, 0.25, −0.07); (iii) (0.37, −0.10, 0.31, 0.27, 0.04);
(iv) (0.24, −0.03, 0.45, 0.17, −0.09); (v) (0.16, 0.08, −0.25, 0.48,
−0.05).

Table 3 shows that, by accounting for the serial correlation
up to the 5th lag, the sizes of the Wald statistics by IVX-AR(5)
are still very close to the 5% nominal size for all values of 	

and T. On the other hand, the sizes of the Wald statistics by
IVX-KMS are remarkably larger than the 5% nominal size in
the presence of higher order serial correlation. This extreme
oversizing does not mitigate as the sample size increases but
becomes smaller when φ1 decreases from 0.55 to 0.24. Similar
to the scenario that q = 1, IVX-AR(5) using AIC and BIC
still exhibit similar performance in terms of size control. The
power plots in Figure 3 correspond to the scenario that the five
autoregressive coefficients take the values in the group (i) and
T = 200. As in Figure 2, Figure 3 illustrates that IVX-KMS
is extremely oversized in all six panels, and the power of IVX-
AR(5) using AIC or BIC increases rapidly as β grows, especially
when 	 ≥ 1. In addition, compared with the power curves
of IVX-AR(1) using AIC and BIC when q = 1, the difference
between the two methods becomes slightly more salient when
the order of autocorrelation is higher: the power displayed by
IVX-AR(5) using AIC is relatively larger than BIC when 	 =
0.2, while the power by IVX-AR(5) using BIC tends to be larger
when 	 ≥ 1. However, the distance between the two curves is
not substantial, and the performance between AIC and BIC is
still quite similar.

3.2. Multivariate Case

In this part, we examine the finite-sample performance of the
two methods’ Wald tests for the multivariate regression model.
We assume yt is generated by

yt = α + xᵀ
t−1β + ut , with ut = φ1ut−1 + vt ,

xt = 	xt−1 + et , with et = ψ1et−1 + εt ,

where 1 ≤ t ≤ T, xt−1 is a 4 × 1 vector of four pre-
dictive variables and β = (β1, β2, β3, β4)

ᵀ are their associ-
ated slope coefficients. To render the examined setup empir-
ically relevant, for the simulations of the multivariate case,
we use values for 	’s, ψ ’s, and φ1 estimated from a mul-
tivariate predictive regression with the quarterly growth of
HPI being the predicted variable and the quarterly implicit
price deflator of GDP (DEF), quarterly effective federal funds
rate (INT), quarterly percent change of real disposable per-
sonal income (INC), and quarterly percentage change of GDP
(GDP) being the regressors. As will be shown in the next
section, the four regressors display different degrees of persis-
tence with 	 ∈ {0.534, 0.674, 0.977, 0.998}, (ψ1, ψ2, ψ3, ψ4) =
(−0.116, −0.002, 0.174, 0.628) and φ1 = 0.517. For the corre-
lation structure of the residuals (ε1, ε2, ε3, ε4, ε), for simplicity,
we assume they are generated from a multi-normal distribution
with mean μ = (0, 0, 0, 0, 0) and the empirically relevant
covariance matrix⎛⎜⎜⎜⎜⎝

0.0412 0.0347 −0.0299 0.1088 −0.0001
0.0347 0.7664 0.1072 0.9606 −0.0008

−0.0299 0.1072 1.4576 0.4638 0.0006
0.1088 0.9606 0.4638 11.4784 0.0011

−0.0001 −0.0008 0.0006 0.0011 0.0001

⎞⎟⎟⎟⎟⎠ .

Each simulation is repeated 10,000 times with the sample size
T ∈ {100, 200, 500}. In the multivariate case, besides examining
the performance of the individual Wald test on each slope
coefficient, we additionally investigate the joint Wald test on β

under different combinations of correlation structure (θ) and
autocorrelation strength (φ1) when the sample size T varies.
Similar to the univariate case, we will also compare the perfor-
mance of IVX-AR(1) using both AIC and BIC.

Table 4 documents the empirical sizes of both joint and
individual Wald tests by IVX-AR(1) and IVX-KMS with 5%
nominal level. Wjoint denotes the rejection rate for the joint
Wald test with the null hypothesis that the four regressors’
slope coefficients simultaneously equal to zero (i.e., β =
(0, 0, 0, 0)ᵀ). W0.534, W0.674, W0.977, and W0.998, respectively,
denote the rejection rates for four individual Wald tests with the
null hypothesis that one of the four regressors’ slope coefficients
equals to zero while letting the rest free. For example, W0.534
refers to the rejection rate for the individual Wald test with the
null hypothesis that β1 = 0 while letting β2, β3, and β4 free.
From Table 4, we do not observe severe size distortion in the
empirical sizes of the joint Wald test by IVX-AR(1) and all are
close to the 5% nominal level. For the four individual Wald tests,
we do not observe remarkable size distortions when IVX-AR(1)
is applied. The performance of IVX-AR(1) using AIC and BIC
is similar in terms of size control, even though the estimated
empirical sizes using AIC are slightly closer to the 5% nominal
size than BIC in many cases. However, we could observe similar
patterns of size distortions in the empirical sizes of the Wald tests
by IVX-KMS as in the univariate case, and increasing the sample
size does not help to mitigate the size distortions. In summary,
IVX-AR still outperforms IVX-KMS in multivariate regressions
when ut is indeed serially correlated.

Subsequently, we compare both methods’ empirical power
of the joint Wald test under the null that β = (0, 0, 0, 0)ᵀ
as the true value of one regressor’s slope coefficient increases.
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Figure 3. Power plots with ut follows AR(5). NOTE: This figure displays the rejection rate for tests of the null hypothesis β = 0 versus the alternative β �= 0 in Equation (2)
as the true value of β (horizontal axis) increases under the univariate case. For each panel, β = 2j

T for j ∈ {0, 1, 2, . . . , 39, 40}. The black-solid curve and the red-dashed
curve, respectively, denote the rejection rate of the Wald statistic by the proposed IVX-AR method using AIC and BIC under the 5% nominal size (the horizontal solid line),
while the blue-dotted curve denotes the rejection rate of the Wald statistic by the IVX-KMS method in Kostakis, Magdalinos, and Stamatogiannis (2015). The six panels
correspond to the cases when 	 ∈ {0.2, 0.8, 0.95, 1, 1.005, 1.01}. ut in Equation (2) follows an AR(5) process with (φ1, φ2, φ3, φ4, φ5) = (0.55, 0.18, −0.24, 0.30, −0.05).
The autocorrelation coefficient for et is ψ1 = 0.2. The Gaussian copula parameter θ = 0.4. vt in Equation (4) follows a GARCH(1,1) process with the GARCH parameters
ω = 0.0001, a1 = 0.04, and b1 = 0.95. For each panel, the rejection rate is calculated with 10,000 repetitions and sample size T = 200.

The four panels in Figure 4 refer to the multivariate regression’s
four regressors and their corresponding degrees of persistence
when T = 200 and all parameters are set to be empirically

relevant. For example, the first panel refers to the power of
the joint Wald test by IVX-AR(1) using AIC and BIC and IVX-
KMS under the alternative hypothesis that β =

(
2j
T , 0, 0, 0

)ᵀ
,
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where j ∈ {0, 1, 2, . . . , 39, 40}. In other words, it implies the
case when β1, the slope coefficient associated to the regressor
with a low degree of persistence (	 = 0.534), is nonzero
while β2 = β3 = β4 = 0. In the same manner, the next
three panels correspond to the power of the joint Wald tests
under the alternative hypotheses that β =

(
0, 2j

T , 0, 0
)ᵀ

, β =(
0, 0, 2j

T , 0
)ᵀ

, and β =
(

0, 0, 0, 2j
T

)ᵀ
. Figure 4 illustrates that

the power of the Wald test by IVX-AR(1) increases quickly and
the gap between the curve of IVX-KMS and the curve of IVX-
AR(1) using AIC or BIC becomes narrower when the degree of
persistence increases. For the Wald statistics by IVX-KMS, we
can still observe obvious oversizing in all four panels when the
slope coefficients indeed equal to zero. The power curve of IVX-
AR(1) using AIC tracks the counterpart using BIC closely, and
we do not observe obvious differences between the two curves.

4. Predictability of HPI Growth Rate

In this section, we implement the proposed IVX-AR method to
test the predictive ability of some fundamental macroeconomic
factors on the housing price in the United States. From the Fed-
eral Housing Finance Agency (FHFA), we collect the quarterly
House Price Index (HPI, Index 1980:Q1 = 100) during 1975:Q1–
2018:Q2. This index is based on all-transactions of properties
and calculated through a modified version of the weighted-
repeat sales by Case and Shiller (1989). Compared with the
widely cited Standard and Poor/Case-Shiller Index, HPI covers
more transactions and longer time interval, and thus can well
represent the trend of the national-wide housing price. Based on
HPI, we calculate the quarterly growth rate of the housing price
and use this rate as the dependent variable. Figure 5 plots HPI
and its growth rates during 1975:Q1–2018:Q2. The shaded areas
denote the economic recessions defined by the National Bureau
of Economic Research (NBER). Figure 5 shows that the housing
price has kept a steady upward trend since 1975 and started its
booming cycle after 1998 due to the housing price increase in
large cities such as San Diego, Seattle, and Los Angeles on the
West coast (Shiller 2007). The housing bubble collapsed during
the 2007 subprime mortgage crisis. Thanks to a series of fiscal
and monetary policies, the housing market began to gradually
recover, and the housing price index reached its historical high
in 2017.

The comovment between the housing price and macroeco-
nomic variables has already been widely studied (e.g., Del Negro
and Otrok 2007; Kallberg, Liu, and Pasquariello 2014). In this
analysis, we consider ten macroeconomic variables collected
from the Federal Reserve Economic Data (FRED), and all data
are quarterly between 1975:Q1 and 2018:Q2.

CPI: Consumer price index with all items less shelter for all
urban consumers (Index 1982–1984 = 100).
DEF: The implicit price deflator of the gross domestic prod-
uct (Index 2012 = 100).
GDP: Percent change of the gross domestic product from the
preceding period.
INC: Percent change of the real disposable personal income
from the quarter one year ago. Ta
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Figure 4. Power plots for multivariate regression with empirically relevant parameters. NOTE: This figure displays the rejection rate for tests of the null hypothesis β =
(0, 0, 0, 0)ᵀ , that is, all four coefficients in β equal to zero, as the true value for each regressor’s slope coefficient (horizontal axis) increases. That is, for panel 1, β =(

2j
T , 0, 0, 0

)ᵀ
, for panel 2, β =

(
0, 2j

T , 0, 0
)ᵀ

, for panel 3, β =
(

0, 0, 2j
T , 0

)ᵀ
, and for panel 4, β =

(
0, 0, 0, 2j

T

)ᵀ
, where j ∈ {0, 1, 2, . . . , 39, 40}. The joint Wald

statistics are, respectively, calculated by the proposed IVX-AR(1) using AIC and BIC and IVX-KMS proposed by Kostakis, Magdalinos, and Stamatogiannis (2015). Values for the
autocorrelation coefficients and the correlation structure of the residuals � are empirically relevant and obtained from the predictive regression with the quarterly returns
of the HPI being the regressand and the quarterly implicit price deflator of GDP, quarterly effective federal funds rate, quarterly percent change of real disposable personal
income and quarterly percentage change of GDP being the regressors. Specifically, in this figure, φ1 = 0.517, 	 = diag(0.998, 0.977, 0.674, 0.534), and (ψ1, ψ2, ψ3, ψ4) =
(0.628, 0.174, −0.002, −0.116). The four panels correspond to the four regressors, with the black-solid curve and the red-dashed curve, respectively, denote the rejection
rate of the Wald statistic by the proposed IVX-AR method using AIC and BIC under the 5% nominal size (the horizontal solid line), while the blue-dotted curve denotes the
rejection rate of the Wald statistic by the IVX-KMS method. For each panel, the rejection rate is calculated with 10,000 repetitions and sample size T = 200.

IND: The industrial production index (Index 2012 = 100).
It is an economic indicator that measures real output for all
facilities located in the United States manufacturing, mining,
and electric, and gas utilities (excluding those in U.S. territo-
ries).
INT: The effective federal funds rate. It is the interest rate at
which depository institutions trade federal funds (balances
held at Federal Reserve Banks) with each other overnight.
INV: The shares of the residential fixed investment in the
gross domestic product. Gross private domestic investment is
a critical component of gross domestic product as it provides
an indicator of the future productive capacity of the economy.
Residential investment represents expenditures on residen-
tial structures and residential equipment that is owned by
landlords and rented to tenants.
MOG: 30-year mortgage rate. It represents contract interest
rates on commitments for fixed-rate first mortgages.

RES: The total reserve balances maintained with the Federal
Reserve banks.
UNE: The civilian unemployment rate. It represents the
number of unemployed as a percentage of the labor force.

4.1. Testing the Unit Root

As discussed at the beginning, the IVX-AR method is superior
to the IVX-KMS method in that it corrects the size distortions
of the Wald statistic caused by the serial correlation in the
error terms. Therefore, if our target is to examine the predic-
tive ability of the ten regressors with respect to the growth
rate of HPI, it should be rational to begin with investigating
whether these regressors exhibit high degree of persistence and
whether serial correlation and heteroscedasticity indeed exist in
the error terms of the predictive regression. Following Kostakis,
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Figure 5. Housing price index and its quarterly growth rate. NOTE: This figure plots the quarterly housing price index (HPI, 1980:Q1 = 100) and its quarterly growth rate in
the United States during 1975:Q1–2018:Q2. Recessions defined by the National Bureau of Economic Research (NBER) are shown as the shaded regions.

Table 5. Unit root tests for ten predictive variables.

	̂x ADF DF-GLS PP KPSS

CPI 0.997 5.074 −1.927 −1.701 3.545∗∗∗
DEF 0.998 2.032 −1.469 −2.216 3.523∗∗∗
GDP 0.534 −2.292∗∗ −2.469 −9.592∗∗∗ 1.960∗∗∗
INC 0.674 −1.548 −1.839 −6.429∗∗∗ 0.266
IND 0.996 1.639 −2.241 −1.921 3.475∗∗∗
INT 0.977 −1.151 −2.626 −2.945 2.475∗∗∗
INV 0.984 −0.926 −3.259∗∗ −2.282 0.619∗∗
MOG 0.992 −0.875 −1.914 −2.727 2.770∗∗∗
RES 1.001 0.498 −1.464 −1.280 1.514∗∗∗
UNE 0.984 −0.942 −3.094∗∗ −2.222 0.524∗∗

NOTE: This table documents the results of the unit root tests for 10 fundamental macroeconomic variables. CPI = quarterly consumer price index for all urban consumers:
all items less shelter (Index 1982–1984 = 100). DEF = quarterly implicit price deflator of the gross domestic product (Index 2012 = 100). GDP = quarterly percent change
of the gross domestic product from the preceding period. INC = quarterly percent change of real disposable personal income from quarter one year ago. IND = quarterly
industrial production index (Index 2012 = 100). INT = quarterly effective federal funds rate. INV = quarterly percent of residential fixed investment in the gross domestic
product. MOG = quarterly 30-year mortgage rate. RES = quarterly growth of the total reserve balances maintained with Federal Reserve banks. UNE = quarterly civilian
unemployment rate. All variables span from 1975:Q1 to 2018:Q2. 	̂x indicates the least square estimate of 	x in the AR(1) process: xt = s+	x xt−1 +et . ADF represents
the statistic of the Augmented Dickey-Fuller test by Said and Dickey (1984) for the null that xt has a unit root. DF-GLS represents the statistic from an ADF-type test by
Elliott, Rothenberg, and Stock (1996) for the null that xt has a unit root. PP refers to the statistic from the Phillips–Perron test by Phillips and Perron (1988) for the null
that xt has a unit root. KPSS refers to the statistic from Kwiatkowski, Phillips, Schmidt and Shin’s (1992) unit root test for the null that xt is stationary. For ADF and DF-GLS
test statistics, the optimal length of lag is determined by the Bayesian information criterion (BIC). ∗ , ∗∗ , and ∗∗∗ , respectively, indicate rejection of the null at 10%, 5%,
and 1%.

Magdalinos, and Stamatogiannis (2015), for each regressor, we
first examine the least square estimate of the autoregressive
parameter 	x in xt = s + 	xxt−1 + et . As shown in the
first column of Table 5, except GDP and INC, the least square
estimates of the autoregressive coefficients for the rest regressors
are close to 1, implying strong persistence within these series
at a quarterly frequency. Then, we apply four widely used tests
to formally check the existence of a unit root within these
regressors: the augmented Dickey–Fuller (ADF) test (Said and
Dickey 1984), the DF-GLS test (Elliott, Rothenberg, and Stock
1996), the Phillips–Perron (PP) test (Phillips and Perron 1988),
and the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test
(Kwiatkowski et al. 1992). ADF, DF-GLS, and PP tests have the
null hypothesis that a unit root exists, while the KPSS test has the
null hypothesis of no unit root. For the ADF and DF-GLS test
statistics, we determine the optimal length of lag through BIC.
Table 5 shows that, for CPI, DEF, IND, INT, MOG, and RES,

the four unit root tests exhibit consistent results and confirm
the existence of a unit root. But for DEF, INC, INV, and UNE,
the four tests give contradictory results. In summary, most of
these variables are highly persistent with autoregressive coeffi-
cients very close to unity, which cast doubts on the validity of
the classic t-test, as suggested by Cavanagh, Elliott, and Stock
(1995). Under this circumstance, the IVX method is needed to
check the reliability of these variables’ predictive ability.

4.2. Testing the Serial Correlation and Heteroscedasticity

Next, we need to examine whether the error terms of the predic-
tive regression, ut , are serially correlated and exhibit evidence
of conditional heteroscedasticity. For simplicity, we regress the
growth rate of HPI on four regressors (CPI, DEF, INT, and
RES) which are usually used to evaluate the monetary policy
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Figure 6. ACF plot of ut in Model (2) by regressing the growth rate of HPI on the ten regressors. The two blue dashed lines denote the upper and lower bounds of the 95%
confidence interval.

Table 6. Results of serial correlation tests for ut in Equation (2).

Lag Wald LB BP BG

1 27.678∗∗∗ 61.855∗∗∗ 60.795∗∗∗ 1.299
2 48.649∗∗∗ 91.561∗∗∗ 89.822∗∗∗ 32.884∗∗
3 47.696∗∗∗ 145.191∗∗∗ 141.919∗∗∗ 39.582∗∗∗
4 126.944∗∗∗ 206.823∗∗∗ 201.439∗∗∗ 40.115∗∗∗
5 125.417∗∗∗ 236.423∗∗∗ 229.854∗∗∗ 40.119∗∗∗

NOTE: Tests of serial correlation for the estimates of ut in Equation (2) by regressing
the growth rate of HPI on four regressors: CPI, DEF, INT, and RES. Wald denotes
the test for the null that all autocorrelation coefficients in ut simultaneously
equal zero. LB and BP denote the Ljung–Box test and the Box–Pierce test which
examines the null hypothesis of independence in a given time series. BG denotes
the Breusch–Godfrey test for the null that there is no serial correlation up to a
specific order. For each test, the statistic is calculated for different numbers of lags
(1, 2, 3, 4, and 5). ∗ , ∗∗ , and ∗∗∗ , respectively, indicate rejection of the null at 10%,
5%, and 1%.

and then draw the autocorrelation coefficient (ACF) plot of the
estimated error terms in Figure 6. One can observe that the
autocorrelation coefficients of the error terms are significantly
different from zero until the 8th lag, suggesting the existence of
serial correlation in ut . We take one more step to check whether
the error terms are serially correlated through four tests: the
Wald test proposed in Theorem 3, the Ljung–Box test, the Box–
Pierce test, and the Breusch–Godfrey test. Table 6 documents
the test results and confirms that the error terms are indeed
serially correlated. To eliminate such a serial correlation, we
fit the estimated error terms ût to an AR model and select
the optimal order q by comparing the AIC, AICc, and BIC.
Table 7 shows that the three criteria do not agree on the optimal
order of AR. We ultimately choose q = 4 based on BIC,
which prefers the more parsimonious model specification. By
fitting ût to AR(4), we obtain the error terms vt , which are not
serially correlated by both the serial correlation tests (results
are available from the author upon request) and the ACF plot
in Figure 7(a). However, the ACF plot of v2

t , as displayed in
Figure 7(b), suggests the existence of conditional heteroscedas-
ticity. To capture such persistent volatility, we further fit the

Table 7. AIC, AICc, and BIC for AR(1)–AR(10).

q AIC AICc BIC

1 −1132.690 −1132.619 −1126.383
2 −1132.062 −1131.920 −1122.602
3 −1166.400 −1166.162 −1153.787
4 −1173.298 −1172.939 −1157.532
5 −1171.915 −1171.409 −1152.995
6 −1169.924 −1169.245 −1147.851
7 −1175.435 −1174.557 −1150.209
8 −1173.811 −1172.706 −1145.431
9 −1187.549 −1186.191 −1156.016

10 −1185.559 −1183.92 −1150.873

NOTE: This table displays the values of the Akaike information criterion (AIC),
corrected Akaike information criterion (AICc) and Bayesian information criterion
(BIC) for fitting ût to AR(1)–AR(10). ût is obtained by regressing the growth rate of
HPI on CPI, DEF, INT, and RES. The optimal order is in bold.

estimated ν̂t to a GARCH(1,1) model, as specified in Equation
(4), and then examine the ACF plots of εt and ε2

t . Panel(c) and
Panel(d) in Figure 7 show that, after the AR(4)-GARCH(1,1)
filtering, both εt and ε2

t become uncorrelated. In summary,
the preliminary examinations confirm the existence of serial
correlation and conditional heteroscedasticity, which motivate
us to carry out the proposed IVX-AR method to investigate
the predictive ability of these macroeconomic variables for the
growth rate of HPI.

4.3. Univariate Regressions Based on Full Sample
(1975:Q1–2018:Q2)

We firstly run univariate regressions to estimate the slope coef-
ficients of the ten regressors and examine their respective pre-
dictive ability. In Table 1, β̂IVX-AR represents the estimate
of the univariate regressions using IVX-AR and Wβ ,IVX-AR
denotes the corresponding Wald test statistic for the null that
the slope coefficient in the predictive regression is zero. For
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Figure 7. ACF plots for vt , v2
t , εt , and ε2

t . NOTE: Panel(a) shows the ACF plot for vt in Equation (3) by fitting an AR(4) model. Panel (b) shows the ACF plot for v2
t . Panel (c)

shows the ACF plot for εt in Equation (4) by fitting an GARCH(1,1) model. Panel (d) shows the ACF plot for ε2
t . The two blue dashed lines denote the upper and lower bounds

of the 95% confidence interval.

comparing purposes, in Table 1, we also report the OLS esti-
mate (β̂OLS) and its corresponding t-statistic (tOLS), and the
IVX-KMS estimate (β̂IVX-KMS) and the corresponding Wald
statistic (Wβ ,IVX-KMS). We additionally report the correlation
coefficient θ between vt and εt in Equations (3) and (4), the
optimal choice of q determined by the Bayesian information
criterion (BIC) in Equation (3), and the Wald statistics (Wφ)
proposed in Theorem 3 which tests the null hypothesis that
H(1)

0 : φ1 = · · · = φq = 0 versus H(1)
1 : φj �= 0 for some

j ∈ {1, 2, . . . , q}.
Panel 1 in Table 1 documents the results of the univariate

predictive regressions based on observations between 1975:Q1
and 2018:Q2. Using OLS and IVX-KMS, we find that all ten
macroeconomic variables have the strong predictive ability on
the housing price because the null of zero slope coefficient can
be rejected at the 5% significance level in all 10 univariate regres-
sions. This is expected given the high order serial correlation
exhibited by the residuals of the univariate regressions, as shown
by the optimal choice of q and the significant Wald statistics
(Wφ). On the contrary, the IVX-AR based regressions, which
account for the serial correlation in the residuals, suggest that
only INV and UNE preserve their significant predictive ability
at the 1% level, while the null of zero slope coefficient cannot
be rejected at any conventional significance levels for the rest
regressors. In other words, even though the housing price is sen-
sitive to various economic indicators and the monetary policy,
the testing results by IVX-AR show that most economic factors
alone are hardly useful to predict its growth. These results can
be explained by the complexity in the housing market and the
incomplete information set used by the univariate models, as
suggested by Cochrane (2011). To mitigate the drawbacks of the
univariate analysis, we next implement multivariate regressions
to investigate the joint significance of multiple macroeconomic
variables.

4.4. Multivariate Regressions Based on Full Sample
(1975:Q1–2018:Q2)

In the multivariate analysis, we specifically consider the follow-
ing five combinations:

1. INV + UNE;
2. INV + UNE + IND + GDP + INC;
3. CPI + DEF + INT + RES;
4. CPI + INT + MOG;
5. A “Kitchen Sink” which includes all ten aforementioned vari-

ables.

The first panel in Table 8 demonstrates the results of the multi-
variate predictive regressions for observations between 1975:Q1
and 2018:Q2. The first combination considers the joint signifi-
cance of INV and UNE because Table 1 shows that both exhibit
significant predictive ability by IVX-AR. In the second combi-
nation, besides INV and UNE, we additionally add the GDP
growth (GDP), the real per capita disposable income (INC),
and the industrial product index (IND), which are all main
macroeconomic indicators and closely tracked by investors and
policymakers. Kallberg, Liu, and Pasquariello (2014) catego-
rized these variables as “underlying systematic real and financial
factors” and attribute the comovement among housing markets
to these factors. The third combination mainly concentrates on
the monetary policy, which is measured by the inflation rate,
the price deflator of GDP, the effective federal funds rate, and
the total reserves. Del Negro and Otrok (2007) used similar
variables and a VAR model to investigate how housing price
responds to expansionary monetary policy. The fourth combi-
nation measures the cost of housing investment, which tends
to be affected by low interest rates (Fu 2007 and Shiller 2007).
In the last combination, we follow Welch and Goyal (2008) and
consider a “kitchen sink” which considers the joint significance
of all above variables. We report the results obtained by IVX-AR
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Table 8. Results of predictive regressions with multiple regressors.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
CPI DEF GDP INC IND INT INV MOG RES UNE Joint Wald q Wφ

Panel 1: 1975:Q1–2018:Q2

Combination 1
IVX-AR – – – – – – 0.0061∗∗∗ – – −0.0010 13.561∗∗∗ 1 13.644∗∗∗
IVX-KMS – – – – – – 0.0080∗∗∗ – – 0.0002 93.329∗∗∗ – –
Combination 2
IVX-AR – – −0.0003 −0.0005 −0.0002 – 0.0060∗∗ – – −0.0014 16.537∗∗∗ 1 10.022∗∗∗
IVX-KMS – – 0.0004 0.0000 −0.0001 – 0.0056∗∗∗ – – −0.0009 106.216∗∗∗ – –
Combination 3
IVX-AR −0.0001 −0.0005 – – – −0.0005 – – 0.0017 – 4.093 4 128.583∗∗∗
IVX-KMS −0.0005 0.0009 – – – −0.0009∗ – – 0.0000 – 24.469∗∗∗ – –
Combination 4
IVX-AR −0.0001 – – – – −0.0008 – 0.0003 – – 4.748 1 26.777∗∗
IVX-KMS −0.0002∗∗∗ – – – – 0.0009 – −0.0028∗∗∗ – – 22.105∗∗∗ – –
Combination 5
IVX-AR 0.0002 −0.0014 −0.0003 −0.0005 0.0007 −0.0025∗∗∗ 0.0082∗∗∗ 0.0035∗∗ 0.0056∗∗∗−0.0030∗ 61.612∗∗∗ 1 3.395∗
IVX-KMS 0.0003 −0.0015 −0.0001 0.0001 0.0004 −0.0024∗∗∗ 0.0080∗∗∗ 0.0029∗∗∗ 0.0050∗∗∗−0.0029∗∗∗ 219.138∗∗∗ – –

Panel 2: 2000:Q1–2018:Q2

Combination 1
IVX-AR – – – – – – 0.0069∗ – – −0.0018 8.024∗∗ 1 13.919∗∗∗
IVX-KMS – – – – – – 0.0049∗∗∗ – – −0.0026∗∗ 38.794∗∗∗ –
Combination 2
IVX-AR – – −0.0002 0.0000 0.0005 – 0.0086∗∗ – – −0.0001 8.402 1 9.113∗∗∗
IVX-KMS – – 0.0019 0.0004 −0.0006 – 0.0013 – – −0.0042 47.212∗∗∗ –
Combination 3
IVX-AR −0.0004 −0.0001 – – – 0.0034 – – 0.0050 – 2.646 1 23.650∗∗∗
IVX-KMS −0.0017∗∗∗ 0.0032∗∗∗ – – – 0.0003 – – 0.0014 – 14.334∗∗∗ –
Combination 4
IVX-AR 0.0001 – – – – −0.0007 – 0.0091∗∗ – – 4.496 1 19.298∗∗∗
IVX-KMS −0.0007∗∗∗ – – – – 0.0035∗∗∗ – −0.0130∗∗∗ – – 17.164∗∗∗ –
Combination 5
IVX-AR 0.0006 −0.0041∗∗∗ 0.0003 −0.0007 0.0014∗ −0.0019 0.0124∗∗∗ 0.0036 0.0138∗∗∗−0.0045∗∗ 114.203∗∗∗ 2 8.396∗∗
IVX-KMS 0.0005 −0.0040∗∗∗ 0.0005 −0.0008 0.0011∗ −0.0015 0.0109∗∗∗−0.0002 0.0125∗∗∗−0.0051∗∗∗ 232.981∗∗∗ –

NOTE: This table documents the results of multivariate predictive regressions for observations from the full sample period (Panel 1: 1975:Q1–2018:Q2) and the subperiod
(Panel 2: 2000:Q1–2018:Q2). For both panels, the dependent variable is the quarterly growth rate of housing prices in the United States. CPI = quarterly consumer price
index for all urban consumers: all items less shelter (Index 1982–1984 = 100). DEF = quarterly implicit price deflator of the gross domestic product (Index 2012 = 100).
GDP = quarterly percent change of the gross domestic product from the preceding period. INC = quarterly percent change of real disposable personal income from
quarter one year ago. IND = quarterly industrial production index (Index 2012 = 100). INT = quarterly effective federal funds rate. INV = quarterly percent of residential
fixed investment in the gross domestic product. MOG = quarterly 30-year mortgage rate. RES = quarterly growth of the total reserve balances maintained with Federal
Reserve banks. UNE = quarterly civilian unemployment rate. IVX-AR denotes the proposed IVX-AR method. IVX-KMS denotes the IVX method by Kostakis, Magdalinos,
and Stamatogiannis (2015). For each combination, values in columns (1)–(10) are the slope coefficients, respectively, estimated by IVX-AR and IVX-KMS. The significance
of each estimate is determined by the statistic obtained from the Wald test under the null that the slope coefficient equals to zero. Column (11) contains the joint Wald
statistic obtained by IVX-AR and IVX-KMS for the null that all slope coefficients simultaneously equal to zero. q in column (12) denotes the optimal order of AR for the
residuals of Equation (2) selected by the Bayesian information criterion (BIC). Wφ in column (13) denotes the Wald statistic defined in Equation (12) and tests the null that
H0 : φ1 = · · · = φq = 0 versus H1 : φj �= 0 for some j ∈ {1, 2, . . . , q}. ∗ , ∗∗ , and ∗∗∗ , respectively, indicate rejection of the null at 10%, 5%, and 1%.

and IVX-KMS in Panel 1 of Table 8. For combinations 1 and 2,
both methods give consistent inferences: the two combinations
are jointly significant at the 1% level, and INV is still individually
significant at the 1% level. However, UNE is no longer significant
at any conventional level as it in the univariate analysis. The
IVX-AR and IVX-KMS methods also give similar results in
the “kitchen sink” regression, as displayed by combination 5 in
Panel 1 of Table 8. In this combination, the ten variables are
jointly significant at the 1% level, and the five variables—INT,
INV, MOG, RES, and UNE—become individually significant
at least at the 5% level. However, these two methods display
contradictory results in combinations 3 and 4. In both cases,
neither the joint Wald statistic nor each variable’s individual
Wald statistic is significant at any conventional level by IVX-
AR. On the contrary, using IVX-KMS, we find that not only
are both cases jointly significant at the 1% level but also some
variables are individually significant (INT in combination 3, CPI
and MOG in combination 4). This can be explained by the high
order of autocorrelation (q = 4) in ǔt , as displayed by column

(12). The Wald statistics, Wφ , in column (13) further confirm
the existence of the high order serial correlation in the two
combinations because both Wald statistics are significant at the
1% level. IVX-KMS does not account for such a high order serial
correlation and suffers from extreme oversizing, which is in line
with our simulation results (Table 3) for the size properties of
IVX-KMS. For the other three combinations, because the order
of autocorrelation is relatively lower (q = 1), it is still possible
that these two methods give similar results, even though the
Wald statistics by IVX-KMS are remarkably higher than that of
IVX-AR.

4.5. Predictability of HPI Based on Subsample
(2000:Q1–2018:Q2)

We finally apply the same procedures to examine a subsample
that spans from 2000:Q1 to 2018:Q2. This subperiod is selected
because, as Figure 5 shows, it witnesses the greatest fluctuation
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Figure 8. Percentage of residential investment in GDP. This figure plots the residential investment as a percent of GDP in the United States during 1975:Q1–2018:Q2.
Recessions defined by the NBER are shown as the shaded regions.

in the housing market since 1975. The growth of HPI began
to accelerate after 2000 and achieved its historical high on the
eve of the 2007 subprime mortgage crisis. Shiller (2007) claimed
that the boom in the housing market during this period differs
from the prior ones in that “it is much more of a national,
rather than regional, event” and the magnitude of the increase
is “unprecedented.” After a long time decline during 2008–2011,
the housing price resumed to a positive growth rate, and HPI
reached another historical high in 2018. Therefore, if some
regressors exhibit predictive ability on the housing price, this
subperiod provides an ideal scenario to test their predictive
ability.

The second panel in Table 1 reports the results of the univari-
ate analysis for observations during this subperiod.5 In Panel
2, OLS and IVX-KMS have consensus on the significant pre-
dictive ability demonstrated by CPI, DEF, GDP, INC, INV, and
UNE. However, compared with Panel 1, only the coefficients
associated with CPI, GDP, INV, and UNE remain significant
at the 1% level. IVX-AR agrees with IVX-KMS only on INV
and UNE. Besides these two regressors, the slope coefficient
estimate for MOG by IVX-AR becomes significant at the 5%
level during the subperiod, even though that of OLS and IVX-
KMS are insignificant at any conventional level.

Moreover, we check the joint significance of the same com-
binations and report the results in the second panel of Table 8.
Comparing Panel 2 with Panel 1, we find two main differences.
First, the two methods show contradictory results in combina-
tion 2: during the subperiod (Panel 2), the joint Wald statistic
by IVX-AR is no longer significant at any conventional levels,
while that by IVX-KMS is still significant at the 1% level, even
though none of the five regressors is individually significant.
Considering that the optimal choice of q for ǔt increases to 3 and

5We implement the same procedures to examine the serial correlation in
the residuals for the subsample and confirm that the serial correlation still
exists. The serial correlation test results for the subsample are available
upon request.

the corresponding Wald statistic in column (13) is significant
at the 1% level during the subperiod, we argue that the joint
significance of the five regressors in combination 2 is driven
by the strong serial correlation in ǔt . When the correlation is
appropriately modeled, as IVX-AR does, the significant joint
predictive ability demonstrated by these regressors disappears.
Second, in combination 5, even though both methods agree on
the joint predictive ability of the ten regressors at the 1% level,
during the subperiod, INT and MOG are no longer individually
significant as they are in Panel 1, while DEF and IND become
significant at the 1% and 10% levels, respectively.

Taken together, regardless of the univariate or multivariate
analysis, only INV uniformly displays significant predictive abil-
ity on the growth rate of the housing price during the full sample
period and the subperiod. The residential investment represents
all economic activities related to housing structures and usually
includes three parts: construction of new single-family and
multifamily structures, residential remodeling and production
of manufactured homes, and brokers fees. Therefore, INV serves
as an important channel of housing’s contribution to GDP. From
1980 to 2005, the residential investment increased from 333
billion dollars to 873 billion dollars, but then sharply dropped to
382 billion dollars in 2010 (U.S. Bureau of Economic Analysis).
Figure 8 shows the residential investment as a percent of GDP
during 1975:Q1–2018:Q2. As Leamer (2007) argued, the resi-
dential investment as a percent of GDP has had an obvious peak
before all five recessions since 1975, and the end of a recession
is usually accompanied by a sharp return. However, Shiller
(2007) claimed that “the relation between housing investment
and the business cycle may be changing” because the recession
in 2001 does not show a substantial drop in residential invest-
ment compared with prior cases. The latest recession in 2007
again confirms Leamer’s (2007) findings by showing another
substantial drop in housing investment, and this time it takes a
relatively longer time for housing investment in GDP to bounce
back. Given this evidence, the predictive ability of INV should
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be expected. For the other nine variables, even though some
of them are individually significant in either the univariate or
the multivariate analysis, we do not observe consistent evidence
about their predictive ability. For these regressors, the signifi-
cance of their slope coefficients might be purely driven by the
serial correlation in the residuals of the predictive regression
rather than their predictive ability. Therefore, predictive ability
detected by IVX-KMS, which fails to account for the serial cor-
relation in the residuals, deserves more careful investigations.

5. Conclusion

In this study, we test the predictability of the growth rate of HPI
by proposing an IVX-AR Wald statistic that accounts for the
serial correlation and heteroscedasticity in the error terms of the
linear predictive regression model. We develop two algorithms
to facilitate the estimation and establish two Wald statistics
to, respectively, test the predictability of regressors and the
existence of serial correlation in the error terms. We conduct
exhaustive Monte Carlo simulations to investigate the finite-
sample performance of the testing procedures and find that,
if error terms in the predictive regression are indeed serially
correlated, the proposed IVX-AR method exhibits excellent size
control regardless of the degree of serial correlation in the error
terms and the persistence of the predictive variables, while
the IVX-KMS method proposed by Kostakis, Magdalinos, and
Stamatogiannis (2015) suffers severe size distortions. Using the
quarterly growth rate of housing price in the United States and
ten common macroeconomic variables, we find that both IVX-
AR and IVX-KMS agree that the percentage of residential fixed
investment in GDP is a robust predictor of the growth rate
of housing price. In contrast, no strong or consistent evidence
of predictability is observed by IVX-AR when considering the
other nine macroeconomic variables as predictors. Results from
several serial correlation tests imply that the predictive ability
falsely detected by IVX-KMS is likely to be driven by the highly
correlated error terms in the predictive regressions, and thus
becomes insignificant when IVX-AR is implemented. Because
of its generalizability, IVX-AR could be a useful and reliable tool
for empirical researchers to test for the predictability of returns
of other assets such as stocks and commodities.

Supplementary Materials

The supplementary materials for this article contain an Appendix and the
replication files. The Appendix provides supplemental lemmas and proofs
of the main results in the main text. The replication files provide codes and
datasets used in the simulations and empirical study.
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