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a b s t r a c t

This paper proposes an alternative test procedure for testing the conditional unconfoundedness
assumption which is an important identification condition commonly imposed in the literature of
program analysis and policy evaluation. We transform the conditional unconfoundedness test to a
nonparametric conditional moment test using an auxiliary variable which is independent of the
treatment assignment variable conditional on potential outcomes and observable covariates. The
proposed test statistic is shown to have a limiting normal distribution under the null hypothesis
of conditional independence. Monte Carlo simulations are conducted to examine the finite sample
performances of the proposed test statistics. Finally, the proposed test method is applied to test the
conditional unconfoundedness in the real example of the return to college education.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The conditional unconfoundedness refers to the assumption
that conditional on observable confounders, the potential out-
comes are independent of treatment status. In many applications,
a weaker version, the conditional mean independence, is suf-
ficient to identify treatment effects. Although the conditional
unconfoundedness assumption plays a central role in identifying
the average treatment effects, there are only a few test statistics
available in the literature to test the conditional mean indepen-
dence. Using binary instrumental variables (IV), Donald et al.
(2014) proposed a Durbin–Wu–Hausman type test statistic to test
the conditional mean independence by comparing two estima-
tors: the one based on the local average treatment effect on the
treated, which is related to the choice of the IV, and the other one
based on the average treatment effect for the treated, which does
not rely on the choice of the IV. Recently, by assuming the error
terms in both the outcome equation and the selection equation
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to be symmetrically distributed, Chen et al. (2017) proposed a
Kolmogorov–Smirnov type test statistic to test conditional mean
independence by comparing two estimators, the one which is
only valid with conditional mean independence assumption and
the other without it.

This paper proposes an alternative method to test the condi-
tional unconfoundedness complementary to the aforementioned
tests in the literature. Instead of the availability of a binary
instrumental variable in Donald et al. (2014) and the requirement
of symmetrically distributed error terms in Chen et al. (2017),
our method relies on the existence of an auxiliary variable which
is correlated to potential outcomes but is independent of the
treatment status given on potential outcomes and observable
covariates. In other words, this auxiliary variable is possible to
have an effect on the treatment choice. However, the linkage
from the auxiliary variable to the treatment status can be fully
captured by potential outcomes and observable covariates. When
such auxiliary variables are available, the conditional indepen-
dence test can be simply implemented by a conditional moment
test using nonparametric method. Moreover, compared to Donald
et al. (2014) and Chen et al. (2017), our method can be applied
to testing not only the conditional mean independence but also
the conditional independence, the stronger version. The auxiliary
variable assumption has been widely used in the literature of
dealing with missing data problems as in Zhao and Shao (2015)
and Breunig (2019), measurement error problems in Hu and
Schennach (2008), and other scenarios.
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2. Testing conditional unconfoundedness

The model is developed within the conventional framework
of the Rubin causal model, where Y (1) and Y (0) denote the po-
tential outcomes for a unit receiving or not receiving treatment,
respectively. Let D denote whether the treatment of interest is
received, with D = 1 if the unit receives the treatment, otherwise
D = 0. In addition, each unit is also characterized by a vector
of covariates denoted by X ∈ Rd. The fundamental problem in
the treatment effect literature is that exactly one (never both)
of the two potential outcomes Y (1) and Y (0) are observed for
a particular individual. So using the notation above, for each
individual, the observed data are only (Y , D, X) where Y = D ·

Y (1) + (1 − D) · Y (0). A commonly used assumption to identify
the treatment effect parameters of interest is the conditional
unconfoundedness assumption, that is,(
Y (0), Y (1)

)

|= D | X,

where |= indicates statistical independence. However, this as-
sumption may be violated in practice if there exist unobserved
confounders which affect both potential outcomes and the treat-
ment assignment variable. Thus, it is desirable to formally pro-
pose a procedure to test whether the conditional unconfounded-
ness assumption holds or not.

We propose a novel method to test the conditional indepen-
dence assumption by assuming the availability of a vector of
auxiliary variables Z ∈ Rr to satisfy the following assumption.

Assumption 2.1. (i) Assume that there exists a vector of continu-
ously distributed variables Z ∈ Rr which are correlated with both
Y (0) and Y (1) and satisfy the following condition

Z |= D |
(
Y (0), Y (1), X

)
.

(ii) (Bounded completeness) For each bounded function ψm(·),
E[ψm(Y (0), Y (1), X)|X, Z] = 0 implies that ψm(Y (0), Y (1), X) = 0
almost surely (a.e.).

Assumption 2.1(i) requires whether receiving treatment for a
unit is primarily determined by the potential outcomes(
Y (0), Y (1)

)
and the covariates X . The statement is thus that,

given Y (0), Y (1) and X , the treatment assignment variable D
and the auxiliary variable Z are mutually independent and the
information about D from Z can then be completely captured by(
Y (0), Y (1), X

)
. This assumption is appropriate when receiving

treatment is driven by potential outcomes Y (0) and Y (1) and once
given the information of Y (0), Y (1), and X , Z does not include any
additional information on the assignment mechanism. Further-
more, Assumption 2.1(ii) is normally referred to as the bounded
completeness in Z of the conditional distribution of

(
Y (0), Y (1)

)
conditional on (X, Z). There are many families of distributions
that are bounded complete and sufficient conditions for bounded
completeness can be found in Mattner (1993), D’Haultfoeuille
(2011) and among others. Different from Donald et al. (2014)
for requiring the instrumental variable to be binary, our Z in
the above assumption can be continuous. Finally, we remark
that similar to finding an instrumental variable in a model with
endogeneity and/or missing at random as in Breunig (2019), it
might not be an easy task to find an auxiliary variable Z in real
applications, so that there are no general guidelines on how to
find Z .

Similar to Breunig (2019), we can show that under Assump-
tion 2.1(i), the conditional unconfoundedness assumption implies
that E

(
D − E(D|X)|X, Z

)
= 0. If both Assumption 2.1(i) and

(ii) are satisfied, the conditional unconfoundedness assumption
is equivalent to E(D|X, Z) = E(D|X). In other words, the condi-
tional unconfoundedness assumption can be tested by examining

whether the auxiliary variable Z has explanatory power for the
mean of the treatment assignment variable D given covariates
X . Thus, one can test the conditional independence using the
following conditional moment test:

H0 : E(D|X, Z) = E(D|X) a.e. versus H1 : E(D|X, Z) ̸= E(D|X)
(2.1)

on a set with positive measure.
Following Fan and Li (1996) and Li (1999), we adopt the kernel

estimation method to construct the test statistic under the null
hypothesis. To this end, we first introduce some notations. Let
W = (X ′, Z ′)′ ∈ Rp, where X is of dimension d and Z is of
dimension r , d + r = p, and {Yi,Di, Xi, Zi}ni=1 be a set of n
independent and identically distributional (iid) observations on
(Y ,D, X, Z). Define ε = D − m(X), where m(X) = E(D|X). Note
that T = E[εE(ε|W )] = E

{
[E(ε|W )]2

}
≥ 0 and the equality holds

if and only if H0 is true. Hence, T can serve as a proper candidate
for consistent testing H0 and we may use the sample analogue of
T to form a test as

T ∗

n =
1
n

n∑
i=1

εiE(εi|Wi).

However, this test statistic is infeasible because εi and E(εi|Wi)
are not observed directly but they can be estimated by some
standard nonparametric techniques. To be specific, to obtain
a feasible test statistic, we first estimate εi and E(εi|Wi) non-
parametrically and then plug the corresponding estimates into
the test statistic T ∗

n to obtain a feasible version. In order to
avoid the random denominator problem, we follow the stan-
dard procedure to adopt a density weighted version of T , which
is T ∗∗

n =
1
n

∑n
i=1

[
εif (Xi)

]
E
[
εif (Xi)|Wi

]
fW (Wi), where f (·) is the

density function of X and fW (·) is the density function of W .
Define a leave-one-out kernel estimator of E(Di|Xi) as

D̂i =
1

(n − 1)hd
1

n∑
j̸=i,j=1

K1

(Xj − Xi

h1

)
Dj

/̂
f (Xi),

where

f̂ (Xi) =
1

(n − 1)hd
1

n∑
j̸=i,j=1

K1

(Xj − Xi

h1

)
,

is the leave-one-out kernel estimator of f (Xi) with K1(·) being a
kernel function and h1 denoting the bandwidth to estimate m(·).
Then, a kernel-based sample analogue of T ∗∗

n is given by

Tn =
1

n(n − 1)hp

n∑
i=1

n∑
j̸=i,j=1

(̂
εîf (Xi)

)(̂
εĵf (Xj)

)
Kij,

where ε̂i = Di − D̂i is the nonparametric residual estimator and
Kij = K ((Wj − Wi)/h) with K (·) being a kernel function and h
denoting the bandwidth to estimate E(ε|W ).

Before establishing the asymptotic distribution of the test
statistic Tn under H0, the following assumptions are provided,
where the definitions of Robinson (1988), Fan and Li (1996)
and Li (1999) for the class of kernel functions ℑλ and the class
of functions ℘αϑ are used.

Assumption 2.2. (i) f (·) ∈ ℘∞
ν , m(x) = E(D | X = x) ∈ ℘4+ι

ν and
fW (w) ∈ ℘∞

ν for some ν ≥ 2 and ι > 0.
(ii) Let K1(·) be a ν-th order kernel and let K (·) be a nonnegative
second order kernel.
(iii) The conditional variance function σ 2(w) = E(ε2|W = w) and
µ4(w) = E(ε4|W = w) are continuous. In addition, fW (w)σ 2(w)
and fW (w)µ4(w) are bounded on Rp.
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Assumption 2.3. As n → ∞, h1 → 0, h → 0, nhd
1 → ∞,

nhp
→ ∞, nhp/2h2ν

1 → 0 and hp/h2d
1 → 0.

These assumptions are quite standard and can be seen in many
nonparametric test literatures. With Assumptions 2.2 and 2.3, the
asymptotic distribution of the test statistic Tn under H0 can be
derived, which is formally summarized in the following theorem
with its detailed proof available upon request.

Theorem 2.1. Suppose Assumptions 2.2 and 2.3 are satisfied. Then,
we have

(1) Under H0, T̃n :=
nhp/2Tn√

2σ̂T

d
→ N (0, 1), where

σ̂ 2
T =

1
n(n − 1)hp

n∑
i=1

∑
j̸=i

(̂
εîf (Xi)

)2(̂
εĵf (Xj)

)2
Kij ·

(∫
K 2(v)dv

)
,

is a consistent estimator of σ 2
T given by

σ 2
T = E

(
f 4(X)fW (W )σ 4(W )

)(∫
K 2(v)dv

)
.

(2) Under H1, P (̃Tn > Qn) → 1 for any non-stochastic sequence
Qn = o(nhp/2).

Theorem 2.1(2) follows from the fact that under H1, Tn
p

→

E
[
fW (W )f 2(X)

(
E(D|W ) − E(D|X)

)2]
> 0 and σ̂ 2

T = Op(1). The
proofs of these are straightforward and are thus omitted. Based
on Theorem 2.1(1), we can have the following one-sided asymp-
totic test for H0: rejecting H0 at the significance level α0 if T̃n >
c where c is the upper α0-percentile of the standard normal
distribution.

However, Monte Carlo simulations reported in Li (1999) and
Lavergne and Vuong (2000) reveal that the normal approximation
has substantial finite sample bias. Instead, Lavergne and Vuong
(2000) proposed a modified test which is given by

Jn =
1

n(n − 1)(n − 2)(n − 3)

×

[
n(n − 1)3Tn − n(n − 1)(n − 2)An − 2n(n − 1)(n − 2)Bn

]
,

where

An =
1

n(n − 1)(n − 2)hph2d
1

n∑
i=1

∑
j̸=i

∑
k̸=i,k̸=j

(Di − Dk)(Dj − Dk)

× K1

(Xi − Xk

h1

)
K1

(Xj − Xk

h1

)
K
(Wi − Wj

h

)
,

and

Bn =
1

n(n − 1)(n − 2)hph2d
1

n∑
i=1

∑
j̸=i

∑
k̸=i,k̸=j

(Di − Dj)(Dj − Dk)

× K1

(Xi − Xj

h1

)
K1

(Xj − Xk

h1

)
K
(Wi − Wj

h

)
.

Indeed, Jn has the same asymptotic distribution as Tn.

3. Monte Carlo studies

To study the size and power properties of the test statistic Jn,
the following data generating processes (DGP) is used:

Z ∼ N (0, 1), ξ ∼ N (0, 1), X = γ Z +

√
1 − γ 2ξ + η,

Y (1) = ρZ + γ1X + ϵ1, Y (0) = ρZ + γ0X + ϵ0,

and

D = I
{µ
2

(
Y (0) + Y (1)

)
+

√
1 − µ2/2X > U

}
, U ∼ unif (0, 1),

Table 1
Estimated sizes of Jn (nominal size α0 = 5%).

Model Empirical rejection probability of Jn with

a = 0.25

µ γ (= ρ) n = 100 n = 200 n = 400

0
0.0 0.058 0.038 0.051
0.4 0.054 0.044 0.050
0.8 0.061 0.045 0.049

a = 0.5

µ γ (= ρ) n = 100 n = 200 n = 400

0
0.0 0.037 0.041 0.055
0.4 0.035 0.040 0.052
0.8 0.040 0.046 0.055

a = 1.0

µ γ (= ρ) n = 100 n = 200 n = 400

0
0.0 0.031 0.033 0.041
0.4 0.026 0.031 0.043
0.8 0.028 0.037 0.042

a = 2.0

µ γ (= ρ) n = 100 n = 200 n = 400

0
0.0 0.018 0.020 0.038
0.4 0.014 0.032 0.036
0.8 0.018 0.025 0.034

where I{·} denotes an indicator function, Z , ξ , ϵ1, ϵ0, U and η
are mutually independent random variables and ϵ1 ∼ N (0, 0.42),
ϵ0 ∼ N (0, 0.32), and η ∼ N (0, 0.52), respectively. We set γ1 =

2.0 and γ0 = 3.0. The constants, γ ∈ [0, 1], ρ ∈ [0, 1] and
µ ∈ [0, 1] vary in different simulation experiments.

It is easy to see that the DGP above satisfies Assumption 2.1(i)
in Section 2 no matter what values of µ take. The conditional
independence assumption holds only when µ takes value of zero.
We use standard normal kernel functions for both K1(·) and K (·)
with the bandwidth chosen by h1 = σ̂Xn−1/5, hx = a · σ̂Xn−1/4 and
hz = a · σ̂Zn−1/4, where σ̂X and σ̂Z are the sample standard devi-
ations of {Xi}

n
i=1 and {Zi}ni=1, respectively. To check the sensitivity

of the test with respect to different values of the bandwidths, we
set a = 0.25, 0.5, 1.0 and 2.0, respectively. Finally, the number of
replications in each experiment is 2000 for all cases.

The actual sizes of the Jn test based on asymptotic one-sided
normal critical values are reported in Table 1. We report the
empirical rejection probabilities of the test Jn for different choices
of the bandwidth. The test works reasonably well in finite sam-
ples in various situations. The actual sizes converge to their
nominal sizes as the sample sizes n increases. Particularly, when
the sample size increases to 400, the test Jn works very well in
most cases. The choice of γ and ρ, which catch the correlation of
the auxiliary variable with potential outcomes and covariates, has
very little influence on actual sizes. It seems that the bandwidth
a = 0.25 gives the best small sample performance. The test
becomes conservative when a is too large.

Next, we plot the power curves of the Jn test with a nominal
size α0 = 5% and a = 1.0 in Fig. 1 for various cases. Also,
the power curves of the Jn test with different values of a can be
obtained but the patterns are similar. The test Jn is reasonably
powerful in detecting the deviations from the null in all cases
even when µ is small. It is not surprising that the powers increase
quickly when both the sample size and the value of µ increases.
One of interesting facts is that the power performance depends
heavily on γ and ρ, the correlation between the auxiliary vari-
able and potential outcomes and covariates. In all cases, when
the values of the ρ and γ increase, the powers also increase
immensely.
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Fig. 1. Power curves for test statistic Jn with nominal size α0 = 5% and a = 1.0.

Table 2
Descriptive statistics (means and standard deviations).

Entire sample By college education

Receiving college education Not receiving college education

Outcome variables:
Income 15226.400 17923.910 14157.440

(11678.750) (11173.620) (11716.48)

Covariates:
Experience (Years of working) 10.714 8.456 11.609

(7.456) (7.150) (7.394)
Age 29.153 29.396 29.057

(7.331) (7.123) (7.418)
Gender 0.686 0.611 0.715

(0.464) (0.489) (0.452)
Residence 0.518 0.718 0.438

(0.500) (0.451) (0.496)
Mother’s income 10806.760 13561.590 9715.091

(13682.630) (13198.820) (13734.490)
Father’s income 15963.790 20974.080 13978.330

(16157.910) (22606.050) (12214.68)

4. Return to college education

Chen et al. (2017) considered the example of return to college
education and tested the conditional mean independence using
a Kolmogorov–Smirnov test with the assumption of symmetric
distributions in error terms. Their test cannot reject the null hy-
pothesis when some relevant covariates are controlled. We revisit

the same issue using the same data in Chen et al. (2017). The
data come from the China Health and Nutrition Survey (CHNS) of
the year of 2004, 2006, and 2009. The data set includes various
provinces in China and consists of 525 individuals aged between
18 and 65 with individual characteristics information includ-
ing gender, residence type, income, education level and family
background.
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Table 3
Results for the unconfoundedness test.

Auxiliary
variables (Z)

Covariates (X) Test statistic
Jn (p-value)

Age

Experience 0.008
Experience, Gender 0.228
Experience, Gender, Residence 0.282
Experience, Gender, Residence,
Logarithm of mother’s income

0.420

Experience, Gender, Residence,
Logarithm of mother’s income,
Logarithm of father’s income

0.472

In this example, the outcome variable of interest, denoted by
Y , is the logarithm of annual income and the treatment vari-
able D is a binary variable which takes a value of 1 for college
graduates and 0 otherwise. The covariates X include experience,
gender, residence type (urban or rural) and the family background
which is represented by parents’ income. Table 2 shows that
most individual characteristics, except age, are very different for
people receiving college education and not receiving. However,
the average age between the treated and control group is very
similar, 29.39 for the treated group and 29.05 for the control
group, which motivate us to consider using age as the proper
candidate for the auxiliary variable Z . Since the dimension of the
auxiliary variable Z is one in this example, the product normal
kernel function is adopted and the bandwidths are chosen as
h1 = σ̂Xn−1/(2(d+2)) and h = 0.5σ̂Xn−1/(d+2), where σ̂X is the
sample standard deviation and d is the dimension of X .

Table 3 reports the testing results for the conditional indepen-
dence using age as the auxiliary variable, conditional on different
covariates. Our results are basically similar to those in Chen et al.
(2017). The test rejects the null hypothesis of conditional uncon-
foundedness only in the case that a single covariate experience
is controlled, with a p-value 0.008. However, when more con-
ditioning covariates, such as gender, residence type and parents’
income, are added, our test cannot reject the null hypothesis any
more. The results also show that the p-values increases as more
covariates are included in the model, which is in line with the
intuition that the conditional unconfoundedness assumption is
more likely to hold when more relevant variables are included
into the model.

5. Conclusion

This paper proposes an alternative method to test the con-
ditional unconfoundedness assumption, which relies on an auxil-
iary variable whose potential influence on the treatment

decision is fully captured by potential outcomes and observable
covariates. In practice, any covariates which are insignificant
in the balance check for the treated and control groups can
be considered as possible candidates for the auxiliary variable.
We also establish the asymptotic properties of our proposed
test. The simulation experiments show that our test works very
well even in a small sample size. We finally apply our testing
method to the example of the return to college education. We
find the conditional unconfoundedness can basically hold when
the conditioning variables are appropriately chosen.

Finally, we note several possible extensions of the present
study. For example, it may be of interest to apply the proposed
test in testing conditional independence in studying the partially
conditional quantile treatment model as in Cai et al. (2020) with
possible irrelevant covariates as in Chen et al. (2019). We leave
such extensions as possible future research topics.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.econlet.2020.109320.
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