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Econometric modeling of risk measures: A selective

review of the recent literature

TIAN Ding-shi !  CAI Zong-wu? FANG Ying *

Abstract. Since the financial crisis in 2008, the risk measures which are the core of risk man-
agement, have received increasing attention among economists and practitioners. In this review,
the concentration is on recent developments in the estimation of the most popular risk measures,
namely, value at risk (VaR), expected shortfall (ES), and expectile. After introducing the con-
cept of risk measures, the focus is on discussion and comparison of their econometric modeling.
Then, parametric and nonparametric estimations of tail dependence are investigated. Finally,

we conclude with insights into future research directions.

81 Introduction

Risk management plays a crucial role in financial institutions, such as banks, insurance
industries, and investment funds, and at the core of risk management are the techniques em-
ployed to measure risk. Risk professionals have long been searching for a “good” risk measure.
After Markowitz (1952), the variance of the profit and loss distributions became the dominating
risk measure in finance. However, one shortcoming of this measure is that it requires the risk
functional to be a random variable with finite variance. More importantly, the corresponding
distributions are implicitly assumed to be approximately symmetric, in the sense that large
gains and losses are equally penalized, which contradicts the fact that investors are usually
more concerned about large losses than gains.

Different types of economic risks exist in the financial market, as has been progressively
realized by financial and regulatory institutions. In 1996, the Basel Committee on Banking
Supervision (BCBS) incorporated systematic risk as a supplement to credit risk and adopted
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a mandatory risk measure called the VaR to be calculated by all banks for each line of their
balance sheets. Given a holding period with probability 1 — 7, VaR is defined as the possible
maximum loss, within a confidence level of 1 — 7. Since then, VaR has become one of the most
widely used measures of market risk in risk management. The pioneering work on VaR was
Morgan (1996), Jorion (1997), Duffie and Pan (1997). Among them, Morgan (1996) introduced
the RiskMetrics methodology, which played an important role in the increasing popularity of
VaR. However, VaR has long been a controversial topic. A first criticism is that when VaR
is used as a risk measure, diversification does not necessarily reduce the risk. Perhaps more
importantly, as criticized by Basak and Shapiro (2001), VaR may induce large losses because
of its insensitivity to extreme loss. These drawbacks of VaR naturally elicit an important
question that has contributed to the development of risk measurement: what properties should

be expected from a good risk measure?

In the seminal work by Artzner et al. (1999), the desirable properties of risk measures were
formalized in a set of axioms. A risk measure with the properties of translation invariance,
subadditivity, positive homogeneity and monotonicity is called a coherent risk measure. To
find such an oracle, Artzner et al. (1999) and Basak and Shapiro (2001) introduced ES, which
is defined as the conditional expectation of the loss given that the loss exceeds the VaR level
in a given time period, as an alternative to VaR. As ES remedies the aforementioned problems
of VaR, it has replaced VaR in many institutions as a risk management tool. Specifically, the
BCBS recommends financial institutions replace VaR with ES in their internal market risk
models.

In addition to the coherent properties introduced above, backtesting and forecast verification
are also important properties to consider. As risk measures are usually estimated using his-
torical data, a risk measure must have the ability to verify and compare competing estimation
procedures. In statistical decision theory, a risk measure where verification and comparison
is possible is called an elicitable risk measure. In Embrechts and Hofert (2014) and Ziegel
(2016), the connection of elicitability with backtesting and coherency, respectively, was consid-
ered. Unfortunately, Gneiting (2011) showed that ES is not elicitable, so an issue with direct
backtesting of ES estimates may exist. With a view on the feasibility of the backtesting, ex-
pectile, first introduced by Newey and Powell (1987), has been suggested as a coherent and
elicitable alternative to ES in recent studies. Expectile regression estimates are the solutions
to the minimization of asymmetrically weighted mean squared errors. Owing to the quadratic
loss function, expectile is sensitive to the extreme losses of a given distribution. Furthermore,
Bellini et al. (2014) characterized generalized quantiles, which have positive homogeneity and
convexity properties, and showed that expectile e, (with 7 > %) is the only generalized quantile

that enjoys all the properties of a coherent risk measure.

The aforementioned risk measures assess the risk in an isolated perspective; however, the
interaction between different individuals is also of great importance. The failure of Fannie Mae
and Freddie Mac harmed the entire financial system and eventually led to the outbreak of the

financial crisis, thereby calling for a study on measuring the financial co-movements between
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the agents in the financial markets. The copula approach is a natural way to measure the tail
dependence between two institutions. More recently, the CoVaR approach was introduced by
Adrian and Brunnermeier (2016) to measure tail dependence. CoVaR is defined as the VaR
of an institution conditioned on another institution (or the whole system) being in distress.
Finally, the financial network which includes quantitative information regarding interactions
and the roles of institutions within the entire financial system, has become particularly popular
for studying the system risk from an overall perspective. Therefore, in this paper, one section
is used to discuss this topic.

The rest of this paper is organized as follows. In Section 2, the properties of some popular
risk measures, namely, VaR, ES and expectile, are discussed and compared. Section 3 and
Section 4 survey the practical evaluation of these risk measures in terms of parametric mod-
els and nonparametric models, respectively. Section 5 is devoted to investigating the recent

developments in measuring tail dependence. Section 6 concludes the paper.

82 Risk Measures and Related Properties

This section introduces the definition of the risk measures discussed in this paper, namely,
VaR, ES and expectile.

2.1 Popular Risk Measures

Since Markowitz (1952) stated the famous mean-variance framework in portfolio optimiza-
tion, variance (standard deviation) had long been the dominant risk measure. The mean-
variance framework was replaced by VaR, the most popular downside risk measure in recent
years. Here, first, some notation is introduced. Let R; be a random variable denoting the

return of a portfolio at time ¢, and let 7 € (0,1) be the probability level.

Definition 2.1. For a probability level T, the value at risk (VaR) of a random variable Ry
is defined as the minus T-quantile of Ry:
VaR,(R;) = —¢-(Ry) = —inf{r|P(R; <r) > 7}. (1)

VaR suffers from some drawbacks: it lacks subadditivity and is insensitive to extreme loss.
To alleviate these problems inherent in VaR, Artzner et al. (1999) and Basak and Shapiro
(2001) proposed ES as an alternative.

Definition 2.2. For a probability level T, the expected shortfall (ES) of a random variable
Ry is defined as
ES-,—(Rt) = —E[Rtht S —VaRT(Rt)] (2)

As ES has been criticized for issues related to backtesting, the coherent and elicitable risk
measure, the expectile, was proposed by Bellini et al. (2014) and Ziegel (2016).
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Definition 2.3. For a probability level T, the T-expectile e, (R:) of a random variable Ry is
defined as

eT:arggéi?rzlEHTfI(Rt <7)|-|R: —r|?], (3)
where I(-) denotes the indicator function.

Remark 1: Most papers use returns to calculate VaR, and the return is defined as Ry =
log(P;) — log(P;—1), where P; denotes the price of a financial asset at time t. However, in
practice, requlators or risk managers may be more concerned about the distribution of the losses,
which is defined as Yy = —R; = log(Pi—1) — log(P;). Moreover, in some cases, the model is
easier to construct using losses rather than returns. For a probability level T, the VaR of the

loss variable Y; is defined as

VaR.(Yt) = ¢, () = inf{y[P(Y; <y) > 7}, (4)
and the related ES is defined as
BS, (V) = BYi|Y; > VaR, (¥))]. (5)

Therefore, in the following sections, the estimation of VaR and ES are discussed using either

returns or losses according to the original paper.

2.2 Coherency and Elicitability

A risk measure can be interpreted as a function that maps a loss distribution or random
variable to a capital amount. Artzner et al. (1999) proposed four axioms that bundle mathe-
matical properties as possible criteria for the choice of such functions. The so-called coherent

risk measures satisfy the following set of conditions.

Definition 2.4. [Artzner et al. (1999)] Let G be a set of real-valued random variables (typically,

the loss variables). The loss function p(-) : G — R is a coherent risk measure if it satisfies
1. Translation invariance: Y € G, ¢y € R, then p(Y +¢co) = p(Y) — co;
2. Subadditivity: Y1,Ys € G, then p(Y1 +Ya) < p(Y1) + p(Y2);
3. Positive homogeneity: A >0,Y € G, then p(AY) = Ap(Y);
4. Monotonicity: Y1,Y2 € G with Y1 <Ys, then p(Y1) < p(Y2).

Translation invariance means that the risk measure decreases by c¢q if a sure amount cgy
is added to the position. Subadditivity is correlated with the concept of diversification and
implies that the risk of a portfolio composed of two sub-portfolios is smaller than the sum of
the risk of these two sub-portfolios. Positive homogeneity means that if the size of the portfolio
is increased by a factor of A while keeping the weights unchanged, the risk would increase by
the same factor \. Monotonicity means that assets with more negative random outcomes are
more risky.

As mentioned above, one coherent risk measure is ES. Additionally, portfolio optimization
is easier to implement with ES objectives than with VaR objectives, and the extreme losses are
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explicitly taken into account in the allocation process when ES is used. For further analysis of
the advantages of using ES, please refer to Jondeau et al. (2007). However, Gneiting (2011)
showed that ES is not elicitable, which is the property connected to comparing the performance
of different forecast methods, so there could be an issue with direct backtesting of ES estimates.
The concept of elicitability was first introduced by Osband (1985) and Lambert et al. (2008)
and then by Gneiting (2011). To introduce elicitability, first, the definition of a consistent

scoring function is recalled here.

Definition 2.5. [Ziegel (2016)] Let P € P be the distribution function of a real-valued random
variable Y, where P is a class of probability measures on R with Borel sigma algebra, and let
p(+) be a real-valued function on P. A scoring function s(-,-) is consistent for the functional
p(+) relative to the class P if and only if for allt € p(P) and all x € R,

Epls(t,Y)] < Ep[s(z,Y)], (6)
where x is a point estimate. Furthermore, s(-,-) is strictly consistent if it is consistent and
Ep[s(t,Y)] = Ep[s(z,Y)] implies that x € p(P).

Then, the definition of elicitability is introcduced.

Definition 2.6. [Ziegel (2016)] A function p(-) is elicitable relative to the class P if there

exists a scoring function s(-,-) that is strictly consistent for p(-) relative to P.

Expectile was shown to be elicitable by Bellini et al. (2014) and Ziegel (2016) and has been
suggested as a coherent and elicitable alternative to ES. Ziegel (2016) also showed that expectile
is indeed the only law-invariant and coherent elicitable risk measures. Expectile appears to be
a perfect substitute for VaR and ES. However, expectile is not comonotonically additive from
the so-called Kusuoka representation, see Emmer et al. (2015) and Ziegel (2016) for more
discussions.

From the discussions above, it is clear that it is not easy to find an all-inclusive risk mea-
sure. Therefore, it turns to the estimation techniques of these risk measures and their further

development is investigated.

83 Models for VaR and ES

Since Morgan (1996), RiskMetrics has been widely used in the estimation of VaR. However,
in this review, conditional estimates of VaR and ES are of interest. Conditional estimators
yield more accurate assessments of risk than their unconditional counterparts by modeling the
stochastic nature of conditional volatility. The reader with interest in RiskMetrics and other
unconditional parametric approach should refer to Morgan (1996), Hull and White (1998) for
RiskMetrics; Butler and Schachter (1998), Gourieroux et al. (2000), and Chen and Tang (2005)
for historical simulation and its variants; and McNeil (1997), Danielsson and de Vries (1997)

for unconditional extreme value theory (EVT).
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3.1 Parametric Models

By using parametric model to capture structure on the tails of the distribution, the follow-
ing semiparametric approaches are free from estimating the complete distribution of returns.
The first model is based on EVT. Second one is the quantile regression technique developed by
Chernozhukov and Umantsev (2001), Engle and Manganelli (2004) and the references there-
in. Finally, a regression approach for ES can be used too. Besides, it is worthy mentioning
that Wang and Zhao (2016) proposed a semiparametric approach to estimate conditional VaR,
which is characterized by a general parametric model with nonparametric noise distribution.
The advantage of this paper is to combine the good merits of parametric and nonparametric
approaches; see the paper by Wang and Zhao (2016) for details.

3.1.1 Extreme Value Theory

EVT was designed to model the tail behavior of random variables. The main idea of EVT
is that, given a sufficiently large threshold u, returns less than u can be approximated by a
generalized Pareto distribution (GPD). The GPD is particularly applicable for the estimation
of VaR and ES, and it is defined as

1—(1+%)_1/§, if ¢ £0,

1—exp<—%>, if ¢ =0,
where w denotes the exceedances over u, ¢ is a tail index representing the shapes of the tails of

GPD(w;s,¢) = (7)

the distribution, and v is a scaling parameter. Considering the temporal evolution of volatility,
McNeil and Frey (2000) generalized McNeil (1997) by proposing the GARCH-EVT model for
the estimation of conditional VaR and ES. Their procedure to model the conditional volatility
and the distribution of the tail separately is as follows. In the first step, they employ a GARCH
model to filter the dependence in the return series, and the resulting residuals are i.i.d. if the
GARCH model is correctly specified. The GARCH model adopted to filter out the first- and
second-order dynamics is of the form

Ry = iy + 0424, s = po+ ¢Ri1, 07 = w+ aef_y + foi_y, (8)
where {R;}}_, is the return series, and some constraints of the parameters, such asw > 0, a > 0,
B8 >0, and a4+ < 1, are set to ensure positive volatility and covariance as a stationary process.
After implementing the quasi-maximum likelihood (QML) for the estimation of the model, the
residuals are standardized by z; = (R; — [it)/0+, where i; and oy are the obtained estimators.
In the second step, the GPD is estimated based on all exceedances, which are defined as the
realizations Z; that are below a given threshold u. Defining N, = " | I(Z; < u) as the number
of exceedances, the standardized residuals are sorted and a sample of exceedances is selected

~

as {Z(1),---»2(Ny)}- Then, (< )T is obtained by estimating the GPD using the exceedances.

With (<, J)T, after inverting the conditional cumulative distribution function (CDF) of the
exceedances, the 7-quantile of random variable {z;}}_; is obtained by
{ u %((%7)—3— 1), if ¢ £0

< | 9)
u+ ¢ log(7-7), if¢=0

E]\'r(zt) =
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Finally, the forecasting of VaR and ES from ¢ to t + 1 is given by

VaRip1, = — (o1 + 001G (20)), (10)
VaRei1r | ¥ —3u

ESiy1r = =+ —, 11

T (1)

where [i;+1 and 0y11 are one-step forecasts of the expected return and variance, respectively,
which can be calculated by fig1 = i+@R; and 67, = O+ae; +/362. Compared to unconditional
EVT, an obvious improvement of the GARCH-EVT approach is the incorporation of expected
return and volatility into the VaR changes.

A further study by Kuester et al. (2006) compared 13 conditional EVT models using
NASDAQ Composite Index data and found that GARCH-EVT always performed better than
other conditional models for probability level 0 < 7 < 0.1, given that the GARCH-filtered
innovations follow a normal or skew t-distribution. For a detailed discussion on EVT, refer to
the survey paper of Rocco (2014).

3.1.2 Quantile Approach

We know that VaR is actually a quantile estimator, so the estimation of VaR is equal to
the modeling of a quantile. The basic idea of the quantile regression approach is to model a
given quantile of the distribution through time, and the technique of quantile regression was
first introduced in Koenker and Bassett (1978) and further summarized in Koenker (2005).
The 7-conditional quantile of R; given F;_1, where F; is the information set at time ¢, can be
obtained by solving the following optimization problem

Qi+ = arg ;1&1& E{[r = I(Re < )](Ry — 7) | Fe—1} (12)
Examples of conditional quantile models include Koenker and Zhao (1996)’s conditional quantile
model, g;.+(8) = Bo,r +> iy Bir Ri—i+er with e, = (Y0, +3°5-, Vj,7ler—;1)d, p,¢ > 1, in which
0 is the T-quantile of an i.i.d. random variable with mean zero and finite variance; and by taking
X to be a proxy of F;_1, Taylor (1999)’s and Chernozhukov and Umantsev (2001)’s linear VaR,
¢i.+(B) = X/ B and quadratic VaR models, ¢; - (8) = X, 8+ X, ©X,, in which © is a coefficient
matrix.

The CAViaR model, proposed by Engle and Manganelli (2004), is the most popular linear
model. CAViaR aims to directly model the evolution of the quantile g; -, and a generic CAViaR
specification has the form:

R, = q.(B,)+er, Qr(e+|1Xy) =0, (13)
p q
0:B,) = Bor+ > Birtimir(Br)+ Y Borirg(Xisy), (14)
i=1 j=1

where ¢ -(8,) is the 7-conditional quantile of the return distribution, Q- (e; .|X;) is the 7-
conditional quantile of € , given regressor X, B8, = (Bo.r, .- ., Bptq,r) is a vector of coefficients,
and g(-) is possibly a nonlinear function. The three suggested specifications in Engle and
Manganelli (2004) are as follows:

Symmetric absolute value model
Qt,T(ﬁq—) = /80,7' + ﬂl,th—l,T(ﬁT) + /82,T|Rt—1|?
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Asymmetric slope model
4t.+(B,) = Bor + Brra-1-(B,) + Bor R{_| + Bs - Ry,
Indirect GARCH(1,1) model
th,q—(ﬁq—) = Bor + 51,76175271,7(,37—) + ﬁZ,'rRthl?
where R = max(R;,0) and R; = —min(R;,0). In the first and third settings, the dynamic
quantile responds symmetrically to past returns. By contrast, the asymmetric slope model
considers asymmetric effects, which means that the responses to positive and negative returns

can be different.
3.1.3 Regression Technique

An analogous approach to EVT was introduced by Cai et al. (2015), which proposed an
easily implemented regression technique based on the proportional mean residual life (PMRL)

regression model to estimate ES. The mean residual life function m(y) is defined as
o
miy) = B~ > ) =570) [ s (19
y
where the loss variable Y; is nonnegative with finite mean u, S(y) = 1—F(y) is the corresponding
survival function, with F(y) denoting the CDF of Y;. The above equation clearly shows that
m(y) is a function of ES;(Y;) if we set y = VaR-(Y%). Thus, to estimate ES;(Y;), we first need

to estimate m(y). The inversion formula to equation (15) gives

() = 0 exp (— [ dv) , (16)

0
and the two survival functions Sp(y) and Si(y) are said to have proportional mean residual life

S1(0) = Solv) ( / " So(0) dv/m) . (17)

if the condition my(y) = kmo(y) for all y > 0, k > 0 is satisfied. The technique in Maguluri

and Zhang (1994) can be used to extend this condition to a regression context with explanatory
variables X, namely,
m(y|X) = exp(—=B ' X)mo(y). (18)
Then, one has
| e exp(B"X)—1
561%) = 500) (5 [ o) , (19)
where Sy(y) is the baseline survival function, and py = Elexp(8'X)Y|X] denotes the corre-
sponding baseline mean. Oakes and Dasu (2003) proposed a class of weighted ratio estimators
to estimate the above PMRL model. Suppose that the time series sample {(Yz, X¢)}7, follows
a population satisfying (18); then, 8 can be estimated by solving

~T
LS XhYs X 1 &
w2 Xowh Xo) Lshy (20)
% Z?:l Yiexp(B Xi) "=
If we set So(y) = exp(y/po) to be the baseline survival function, then (20) is the true maximum

likelihood equation of the exponential regression model. m(y|X) is readily estimated with the
quasi-likelihood estimator given by (20); then, the ES estimates ES, with an estimated VaR.,
can be obtained.
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3.2 Nonparametric Models

The aforementioned approaches assume that the tail of the distribution is well characterized
by certain parametric models; therefore, they all enjoy good interpretation and easy implemen-
tation. However, these methods may also suffer from the model misspecification problem.
Furthermore, as noted by Cai and Wang (2008), nonparametric modeling is appealing in sever-
al aspects. First, little or no prior information of the functionals is needed in the nonparametric
approach; thus, the model misspecification problem is avoided. Besides, nonparametric model-

ing can provide insight for further parametric fitting.
3.2.1 Nonparametric Approach
To estimate the VaR and ES, Cai (2002), Wu et al. (2008), and Cai and Wang (2008)

considered nonparametric modeling based on kernel smoothing to estimate the conditional
distribution function.

Assume that {(Y;, X;)}7, are stationary time series, where Y; is a risk or loss variable, and
X; is a vector of covariates that can include both economic variables and lagged variables of
Y;. The VaR of Y; given X; = x can be formulated as ¢,(x) = S~1(7|x), where the survival
function S(y|x) = 1 — F(y|x) and F(y|x) is the conditional CDF of Y given X = x. Then,
the nonparametric estimator of VaR can be constructed as g,(x) = S~*(r|x); thus, the ES

estimator E/)\ST (x) is easily obtained using the plugging-in method,
o0

—~ 1

B8, = [ uflwx)dy (1)
T Jg-(x)

where f(y|x) is the conditional CDF of Y; given X; = x. Therefore, the key point to estimate

VaR and ES is to estimate the conditional probability distribution function (PDF) and CDF.

In the nonparametric setting, the kernel type of the nonparametric estimation of conditional
quantiles has serious drawbacks: the asymptotic bias cannot be adaptive, and the boundary
effect requires boundary modification. Many different types of local linear estimators have
been proposed to overcome these drawbacks. One approach using a “check” function, such as a
robustified local linear smoother, was proposed by Fan et al. (1994). An alternative procedure
first estimates the CDF using the “double-kernel” local linear technique proposed by Fan et
al. (1996) and then inverts the obtained CDF estimator to estimate the conditional quantile.
This approach is called Yu and Jones’s estimator, see Yu and Jones (1997, 1998) for a detailed
comparison of these two methods.

However, as noted by Hall et al. (1999), although the local linear estimators of the Yu and
Jones’s type have some attractive properties, such as no boundary effects, design adaptation,
and mathematical efficiency, they also have the disadvantage of producing conditional distribu-
tion function estimators that are not constrained to be monotone increasing or to lie between
zero and one; see Cai (2002) for details. Despite their large bias and boundary effects, the
Nadaraya-Watson (NW) methods are superior because they have the properties of positivity
and monotonicity. To combine these two approach, Hall et al. (1999) proposed a weighted NW
(WNW) estimator, which is designed to possess the superior property of the NW estimator that
it is always a distribution function and to preserve the properties of the local linear methods,
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such as bias reduction and no boundary effect. Cai (2002) then established the weak consis-
tency and asymptotic normality of the WNW conditional distribution estimator for a-mixing
time series at both the boundary and interior points. The WNW estimator of the conditional

distribution function of Y; given X; = x is defined as

Fulylx) = 3 W I(Y; < ), (22)
t=1
and the weights W, ,(x, h) are given by
Woa(x, h) = POV x — Xo) (23)

Zt 1 P (X)W (x = Xy)’
where W),(-) = W(-/h)/h with W(-) denoting the kernel function and h being bandwidth, and

{p+(x)}}_, denotes the a series of weighted functions such that p;(x) > 0. The optimal weights
pe(x) can be obtained by solvmg the following optlmlzatlon problem,
maleog (pe(x)) s.t. Zpt =1, and Z Xt —x)pt(x)Wh(x — Xy) = 0. (24)
t=1
Following Cai (2002), Wu et al. (2008) considered using the kernel method to estimate
conditional quantiles for both short-range and long-range dependent process. The Bahadur
representations and central limit theorems for the NW estimators of those processes were es-
tablished via the NW methods. Moreover, conditional on the historical information or a state
process, the asymptotic theory for the kernel estimates of the VaR was also proposed. Cai and
Wang (2008) moved one step further and combined the double kernel local linear technique of
Yu and Jones (1998) and the WNW method of Cai (2002) to propose the “weighted double
kernel local linear” (WDKLL) estimator. In their paper, they started with nonparametric es-
timation of the conditional PDF and CDF. For a given symmetric kernel K(-), as hg — 0, it
is readily seen that E[Kp,(y — Y:)| Xt = x] &~ f(y|x) with Kp,(-) = K(-/ho)/ho, which means
that Y;*(y) = Kp,(y — Y2) can be regarded as an initial estimator of f(y|x) smoothing in the y
direction. Then, the local linear technique is applied to the observed variable Y;*(y) versus X,
which leads to

n

DIV (y) — a = (X = %)W, (X, — %), (25)
t=1
where the bandwidth h; = hj(n) > 0 at this stage satisfies nhy — 0o as n — co. Minimizing

(25) with respect to a and b, a locally weighted least squares estimator of f(y|x) is expressed

as
Fulylx) = ZWllt X, h1)Y{ (y), (26)

where the weights are given by

VV”’t(X7 hl) _ [Sn,2(X) — (X — Xt)Sn,l(X)]Whl (X _ Xt)

Sn,0(%)Sn2(x) — S5 1 (x) ’
with Sy, j(x) = >0 Wi, (x — X¢)(X¢ — x)7. From Fan and Gijbels (1996), it follows that
Wi +(x, h1) satisfies the following discrete moments condition,

- , 1, ifj=0
3" Wi (x, ha) (X, — x)! = S
o 0, otherwise

for 0 < j < 1. Furthermore, by integrating fu(y\x), the double kernel local linear estimator of

(27)

(28)
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F(y|x) is constructed as

Futyp) = [ Fule) dv = 3 Wita )G 4 = Y0 (29)

t=1
where Gp,(-) = G(-/ho) with G(-) denoting the CDF of K(-). Clearly, ﬁll(y|x) satisfies
some basic properties of a distribution function, such as differentiability with respect to ¥,
Fy(—o0|x) = 0, and F(oolx) = 1.
Since both WNW estimators F,,(y|x) and double kernel local linear estimator F};(y|x) have
attractive properties, by combining them under a unified framework, the WDKLL estimator is
obtained as follows

Felylx) = Wi, )Y, (), (30)
t=1
where W, (x, h1) is given in (23), and
~ LN n
Fulob) = [ Fwpdo =Y Wealo )Gy - Y0 (31)
- t=1

Clearly, both fc(y|x) and F,(y|x) satisfy the conditions for the PDF and CDF. Therefore, the
nonparametric estimator of VaR can be constructed as ¢, (y|x) = S'\gl(ﬂx)7 where §c(y\x) =
1 — F,(y|x), and ES estimator is obtained in a similar way as

_— 1 « o~ ~

ES:(x) = = D We (3, 71)[YiGio (@ (%) = ¥2) + hoG1.n (G- — Y2)l, (32)

t=1

where G(z) = 1 — G(2) and G1,,(2) = G1(z/ho) with G1(z) = [°vK(v)dv. The proposed
nonparametric estimators enjoy asymptotic normality and consistency at both the boundary

and interior points.
3.2.2 Extreme Value Theory

Volatility clustering is a typical feature of the return series. More importantly, it is d-
ifficult to distinguish the difference between volatility clustering of a stationary process and
time-varying volatility due to nonstationarity with unit root. Therefore, to accommodate the
potential of violating stationary assumption caused by erratic changes, Chavez-Demoulin et al.
(2014) extended the classical peak over threshold (POT) method to fit time-varying volatility
in the estimation of VaR, which is applicable to both stationary and nonstationary time series.
Specifically, in the first step, on the basis of the conditional probability principle, the conditional
distribution Fyz,_, () of loss variable Y; in the upper tail is decomposed as

P(Y; > y|Fi—1) = P(Ys > u|Fio1) P(Y: —u >y — ulYy > u, Fy_q), (33)
where u is a predetermined threshold with u < y. Then, the weekly counts N, (I) of the losses
above the threshold v during week [ are modeled independently with the excess W; captured by
a negative loss that exceeds u at time ¢. Following POT, N, (1) follows a Poisson distribution
with parameter A" and Wy ~ GPD(wy; ¢, ;). Note that the parameters of the Poisson and
GPD distributions are allowed to vary over time, which is different from the classical POT
approach. They further assumed that these parameters are realizations of independent hidden
processes, which can be modeled by Laplace innovations in addition to maximizing a-posteriori

estimation. Thus, smooth coefficient estimators with occasionally abrupt temporal changes can
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be obtained. Specifically, weekly parameters n;” = log A\}” and ¢; = log 1 are assumed to follow
a temporal first-order Markov process with Laplace innovations 7;% ; |n;” = Laplace(n;", ¢1) and
wi+1]pr = Laplace(epy, ta), respectively. Denote Laplace(n,:) as a Laplace distribution with
location parameter 7 and scale parameter ¢ > 0, where ¢ reflects the degree of the change. A
small ¢ implies abrupt and frequent changes and vice versa for a large . Bayes’ theorem can

be applied to obtain the log-posterior distributions of " and ¢ as

L L
Ly, omfsmu(1),cna(L) =Y (na(On = expmi®) =m0 Y I =i, (34)
1=1 1=2
and
L(p1, e Py W,y W, ) = 300 (= g — (L4 1/¢) log{1 + qwy exp(—1)})
w—1
—v2 iy e — el (35)
given the Poisson count n,(1),...,n,(L). An iterated dual mode (IDM) algorithm is em-
ployed here to compute the smooth maximum a-posteriori estimates of (n}’,...,n¥), ¢ and
(¢1,.-,%n, ), which is easy to implement and has guaranteed convergence in this situation.

In the above model, the Poisson parameters are weekly estimated, and the GPD parameters
are estimated at the times of exceedance using the nonparametric Bayesian smoothing intro-
duced above. To obtain daily parameter estimates, homogeneity is assumed within each week,
so one has Xt = X}” /5, with piecewise constancy between days of exceedances for ¢ of the GPD,
ie.,

a:ai fOTti§t<ti+1,i:1,...,nu. (36)
Clearly, not only the point estimates of {gt = (:\\t, ts 12)\)}?:1 and (1,72) but also a measure of
uncertainty by means of the predictive distributions are provided. Given the estimated Poisson
parameter 77 at week L, one can estimate the distribution of Poisson parameter n{, ; at week
L+1by

Ny 1nf =0y ~ Laplace(n;,71). (37)
Meanwhile, the GPD parameter pr41 at time 7'+ 1 can be estimated by
N 05, with 1 — P(X > u),
eryiler =or~3g 7 &z > u) (38)

Laplace(@r,52), with P(Xp > u),
where 9§, is the Dirac mass at ¢. After smoothing the data up to time 7', we take the best
bias-variance trade-off estimates Ay and Pr and insert them into (37) and (38) to obtain the
approximate distribution of 07|07 = Op = (XT, <ry 1]1\) Finally, one has

VaR,(Yr) = F, ! o (7). (39)

T+1 ‘aT
where

~ ~Y —-u . _1/3
F9T+1|§T (Y) =1- {1 — eXp(—)\T+1|/\T)}(1 + wm) /w
ES within this conditional setup can be obtained by following the same procedure as that in

POT.
By combining a nonparametric method and EVT, Martins-Filho et al. (2018) proposed a

two-stage estimation procedure for VaR and ES. Assume that the loss variable Y; follows a

location-scale process formulated as
Yy = m(Xy) + 23Xy e, (40)
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as in Yao and Tong (1996), where m(X;) and h(X;) are unknown functions of X;, and {e;} is
an i.i.d. innovation process with E(e;) = 0 and Var(e;) = 1. The distribution function F,(-)
of €¢; belongs to the maximum domain of attraction of a Fréchet distribution with parameter
—1/k, denoted by F(-) € D(IF_;/,). Under this setting, one has

VaR,(x) = ¢-(x) = m(x) + hY%3(x)qr(e)),

BS.(x) = E(YilY; > gr(x)) = m(x) + hY2(x)E(erles > a:(e0)), (41)
where ¢, (x) is the conditional T-quantile of Y; given X; = x that is associated with distribution
function Fyx(-), and ¢,(e;) denotes the T-quantile of €;. In the first stage, the local linear
approach is employed for the estimation of m(x), and the obtained estimator is denoted as
m(x). The procedure proposed by Fan and Yao (1998) is followed for the estimation of h(x).
Specifically, the residual sequence is obtained by Y;* = Y; — mi(x); then,

(a(x),g(x)) = arg n;igl Z (V72 —a-— b (X, — x))QKh(Xt - x). (42)
Tot=1
With estimators m(x) and h(x) = d(x), a sequence of standardized nonparametric residuals
{€+} can be generated by

R (Y, — (X)) /hY2(Xy), if h(X,) > 0,
€& = . (43)
0, otherwise,
for t = 1,...,n. In the second stage, to estimate VaR, and ES., these residuals are used

to construct estimators for ¢ (e;) and E(e;le; > ¢-(€;)). To this end, Theorem 7 in Pickands
(1975), i.e., if and only if F(-) € D(IF_,,), for £ < 0 and some function ¢(¢) > 0 with { € R,
is employed to obtain

lim sup |Fe., (w)— Glw;s, ¥(C))] =0, (44)

(=00 ¢ fw<oo

where Fy (w) = [Fe(w 4+ ¢) — F.(Q)]/[1 — F.(¢)] and G(w;s,%) = 1 — (1 — sw/v)Y/s with
0 < w < oo is a GPD. The main idea of this theorem is that when F.(-) € D(F_,/,), the
extreme upper tail of ¢ is uniformly close to a GPD. As in Davis and Resnick (1984) and Smith
(1987), (44) is used to motivate the estimation of ¢, (e;). After some algebra,

0r(e) % gy () + LI (1 (Tg ), (45)
where 7y =1 — N/n with N — oo and N/n — 0. Following Smith (1987), x and (g, (€:))
can be estimated using the approximation provided by G(w;<, ¥ (g (€:))) to obtain g, (e;). For
the estimation of E(e]e; > g, (€:)), the exceedances over the quantile g, (e;) are assumed to be
distributed as g(wy; 1, ¥1) = ¥ H(1—quwy /1)Y= which is the density function associated
with the GPD. Then,

E(eler > g-(er)) = G- (er)/[1 + 31, (46)

where ¢ is the estimator of ¢; obtained in the last step. Finally, VaR.; and ES; can be estimated
by plugging G, (e;) and E(et]e; > - (&) into (41).

3.2.3 Quantile Approach

Nonparametric quantile regression is one of the most popular research areas in econometrics.
Among the vast number of research papers, refer to Honda (2000, 2004), Kim (2007), Cai and
Xu (2008), Cai and Xiao (2012) and the references therein for the varying coefficient quantile
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model; Zou and Yuan (2008), Kai et al. (2010) and Kai et al. (2011) for composite quantile
regression; and Wu et al. (2010), Kong and Xia (2012) and Fan et al. (2017) for the single
index quantile model. Overall, a detailed discussion of these models can be found in Koenker
(2005) and thus the details are omitted.

84 Expectile Models

In this section, we survey the existing literature for the estimation of expectile models.

4.1 Parametric Models

To extend the CAViaR model to accommodate the expectile framework, Kuan et al. (2009)
proposed CARE models, which allow expectiles to be estimated in a dynamic context based on
some special types of autoregressive processes. The 7-conditional expectile of return variable
R; given information set F;_1, can be obtained by solving the following optimization problem

e,y = arg Hél%EﬂT — I(Ry < 7)|(Ry — )| Fo_1}, (47)
and a generic CARE model has the form,
P
Ry =eir+€r,  Expec (7| Fi-1) =0, and err = Bo,r + Z Birgi(Ri—i), (48)

i=1
where Expec, (€ -|Fi—1) denotes the 7-conditional expectile of ¢, » given F;_1, and g;(-) is a

nonlinear function. Two model specifications of the CARE approach exist. The first specifica-
tion considers the asymmetric effects on tail expectiles and includes the magnitudes of positive
and negative lagged returns in the model:

er,r = Bor + BreRi1 4 Bor (RS 1) + B3 (Ry_y)° (49)
Alternatively, |R;_1] is considered to represent the magnitude of R;_; in the second specification
as

etr = Bor + B Ry + o Ry (50)

Kuan et al. (2009) defined the expectile as expectile-based value at risk (EVaR), EVaR(7) = |e|
with 7 < 0.5. EVaR is considered to be a downside risk measure, and further an intuition for 7
is given. If EVaR is taken as a margin (capital requirement), then the probability level 7 can be
understood as the relative cost of the expected margin shortfall. The model estimation employs
the asymmetric least squares proposed by Newey and Powell (1987), and the asymptotic results
are extended to allow for stationary and weekly dependent data.

Another independent work based on a parametric setup is Taylor (2008). As noted by
Kuan et al. (2009), this paper is concerned mainly with the determination of quantile-based
VaR based on expectiles; thus, their models are the same as the CAViaR models of Engle
and Manganelli (2004). More recently, Xu et al. (2018) considered the potential time-varying
parameter property and employed an adaptive method to fit a parametric expectile model for

quantifying tail risk dynamics.
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4.2 Nonparametric and Semiparametric Models

As noted by Cai and Xiao (2012), a linear regression model may not be sufficiently flexible
to capture the underlying complex dependence structure in some practical applications. An
increasing number of researchers is focusing on nonparametric or semiparametric expecitle
models. Xie et al. (2014) proposed a varying coefficient expectile model. Afterwards, Cai
et al. (2018) extended their work to consider a more general case, i.e., a partially varying

coefficient expectile model.
4.2.1 A Varying Coefficient Expectile Model

The general form of the varying coefficient expectile model proposed by Xie et al. (2014) is

e (Xe, Uy) = B (U)X, (51)

where X; = (Xy1,X4,2,. .., Xy,p) are risk factors, U, is a single effect modifying risk factor and

B, (Us) = (B1,(Up), Bar(Us), ..., B, .(Up)) " is a vector of smooth varying-coefficient functions

of U;. The introduction of U; considers current information and can also include exogenous

variables containing economic and market information as risk factors. To estimate 3(-), the

iterative weighted local least squares (IWLLS), similar to that in Newey and Powell (1987) and

Yao and Tong (1996), is employed. Furthermore, the consistency and asymptotic normality of

the proposed estimator are established. Unfortunately, note that the aforementioned models in
(49), (50) and (51) do not include any lagged variable of e; ..

4.2.2 A Partially Varying Coefficient Expectile Model

A purely nonparametric expectile model may suffer from the curse of dimensionality. To

address this problem, Cai et al. (2018) proposed a partially varying coefficient expectile model,

err(Xe,Up) = ] Xp1 + B (U)X 2, (52)
where X; = (XtT 1,X,I ,) | € RPF4 is a vector of risk factors, U, is called the smooth variable,
a, € RP are constant coefficients and 3,.(-) = (B1,-(-),...,B4-(-))" is a vector of smooth

varying-coefficient functions that are twice continuously differentiable. This new model adopts
a partially linear form, in which some coefficients are assumed to be constant while other
coefficients are allowed to depend on smoothing variables selected by economic theories or
stylized facts. The model is quite flexible such that it includes both models in Kuan et al.
(2009) and Xie et al. (2014) as special cases. The new model not only shares all the merits of
a fully varying-coefficient model but also achieves more efficient estimation for the parametric
coefficient part. More importantly, model (52) allows X; to include the lagged variables of e; ;.

The typical method used for estimating parameters in a semiparametric model is to employ
the so-called profile least squares type method for classical regression models. But it might not
be suitable in quantile/expectile setting due to lack of an explicit mathematical expression; see
Cai and Xiao (2012) for details. Therefore, the three-stage semiparametric procedure of Cai
and Xiao (2012) is employed to overcome this problem. In the first stage, c., is treated as a
function of Uy, and the model simplifies to a purely nonparametric expectile model, which can
be estimated via the IWLLS approach. However, in this stage, only local information is used



220 Appl. Math. J. Chinese Univ. Vol. 34, No. 2

in the estimation of a,, which it is actually a global parameter. Thus, in the second stage,
the average method is implemented to take advantage of the full sample information, and a

\/n-consistent estimator for o, is obtained as
o
&= ; a.(Uy). (53)

Finally, the estimated partial expectile residual R} = R; — &: X¢,1 is used to acquire a feasible
local linear functional coefficient estimation of 3._(-). Consistent estimators for o, and 3,.(+)
are obtained through the three-stage procedure, and the asymptotic properties of the proposed
estimator are established.

85 Models for Characterizing Tail Dependence

5.1 Copula Approach

After the financial crisis, people realized that the failure of one institution may endanger
the whole financial system. Tail dependence, which measures financial co-movement, aroused
the interests of many researchers and is widely accepted to be asymmetric, nonlinear and time
varying. Copula models, which allow for flexible modeling of nonlinear dependence structures,
have been advocated as alternatives to correlation-based models to measure tail dependence.
Among the vast number of papers aiming at using copula models to forecast the VaR, Siburg
et al. (2015) considered employing copulas calibrated on the basis of nonparametric sample
estimators of the coefficient of lower tail dependence (LTD). Assume that Ry and Ry are returns
variables with continuous marginal distribution functions F; () and Fy(-). Then, LTD is defined
as the limit of the conditional probability that R; is less than or equal to the 7-th quantile of
Fy given that Rs is less than or equal to the 7-th quantile of F5 as 7 goes to 0. Specifically, one
has

LTD = lim P(Ry < Fy'(1)|Re < Fy (7). (54)
From the definition above, LTbﬁcan be interpreted as the limiting likelihood of two financial
assets to crash simultaneously. As the copula is always an appropriate tool to model the
dependence, according to Sklar’s theorem, there exists a unique copula C(-,-) such that
P(Ry; <711,Ry <13) = C(Fi(r1), Fa(ra)). (55)
Normally, if the copula is known to come from a parametric copula family, the canonical
maximum-likelihood (CML) estimator can be used. However, when the copula family is mis-
specified and the CML estimator is no longer optimal, the choice of the optimal copula para-
metric family remains an open empirical question. A nonparametric estimator of the LTD was
employed in this paper to improve the accuracy of the copula model. To this end, LTD can be
re-written as
LTD = lim C(7,7)/7. (56)

T—01
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Now, let {Ry¢, Rot}i-q be an i.i.d. sample of {R;, R2}. The specific nonparametric estimator
for LTD, introduced by Schmidt and Stadtmiiller (2006), is given by

LTD, = = " I(R(Kyy) < by R(Ka) < ), (57)
k t=1

where I(-,-) is indicator function, é(Ku) and R(Ky;) are the ranks of observations Rj; and
Ry respectively, and k € {1,...,n} is chosen by a plateau-finding algorithm. The procedure
of forecasting the bivariate portfolio VaR is as follows. First, financial data are filtered with a
GARCH(1,1) model to obtain approximately i.i.d. samples of standardized residuals. Consid-
ering that LTD is commonly used to characterize the dependence in the financial market data,
here they opted the easily implemented Clayton copula, which is denoted by Cpy(:,-) with pa-
rameter 6. Then, the parameters of the marginal models are estimated via maximum-likelihood,
and the copula parameter  is obtained by converting the nonparametric estimator of LTD into
the parameter of the Clayton copula. Finally, an out-of-sample version of the simulation pro-
cedures laid out by Nikoloulopoulos et al. (2012) is used to obtain the forecasters for VaR and
ES.

5.2 Network and CoVaR Procedure

Another way to model the tail dependence is the CoVaR approach, which was first intro-
duced by Adrian and Brunnermeier (2016), one of the most popular approaches of modeling
systemic risks. The CoVaR of institution i relative to institution j is defined as the VaR of in-
stitution 7 conditioned on institution j being in distress. A related risk measure is the marginal
expected shortfall (MES) proposed by Acharya et al. (2012) and Acharya et al. (2017), which
tracks the sensitivity of an individual firm’s return to a market-wide extreme event. To develop
a unified framework for conceptualizing and empirically measuring this type of connectedness
between institutions, Diebold and Yimaz (2014) proposed the general framework of network
approach. Connectedness, in their paper, is based on assessing shares of forecast error variation
in various locations (firms, markets, countries, etc.) due to shocks arising everywhere. This
notion is intimately related to the economic explanation of variance decomposition, in which
we decompose the forecast error variance of variable i into parts attributed to other variables
in the system. In particular, connectedness can be modeled by the function C(X, H, A(L)),
where X is the set of objects interested, H is the prediction horizon for the variance decompo-
sitions, and A(L) are the dynamics. This connectedness function refers to a population, so we
need to find estimated approximating models a(X, H, M(&Z)), in which M(é\t)) is a dynamic
model approximating A(L). Meanwhile, the connectedness table D (variance decomposition
matrix), which is very similar to the adjacency matrix except that it is not filled simply with
0-1 entries and it is asymmetric, is introduced to describe the links between individuals in the
system. As the connected table is asymmetric, the links between objects are directed, so we
need to classify them into the From-degrees and To-degrees. From-degrees measure the ex-
posures of individual firms to system shocks from the network, whereas To-degrees measure
the contributions of individual firms to system network events. As CoVaR and MES are all



222 Appl. Math. J. Chinese Univ. Vol. 34, No. 2

aimed at tracking the associations between individual firms and the overall market movement,
and they are weighted and directional similar to the connectedness measurement, Diebold and
Yimaz (2014) unified these two measures and proposed that they are closely related to different

directional aggregations of a certain weighted directed network.

To study the degree of tail dependence among various institutions, namely, financial network
system risk, Hautsch et al. (2014) considered applying a two-stage quantile regression approach
to account for a company’s interconnectedness within the financial sector. In the first step, the
firms’ specific VaRs are modeled by firm characteristics, macro state variables, and tail risk
spillover effects captured by loss exceedances. This model framework rules out the possibility
that the identified risk connections result from common risk factors. A well known least absolute
shrinkage and selection operator technique is used to shrink the high-dimensional covariates to
a feasible number of relevant risk connections. In the second step, to measure a firm’s system
impact, a value-weighted index of the financial sector is constructed and then regressed with
the firm’s VaR estimated in step 1 and other control variables, such as pre-identified company-
specific risk drivers and the macro variables. If the firm’s VaR has a significant and nonnegative
marginal effect on the VaR of the system, the company is said to be systemically relevant. In
this model, even if individual risk remains constant, the systemic impact of a firm can vary over
time due to varying market or balance sheet conditions, which remedies a major drawback of
the typical CoVaR approach that it can change only through the channel of individual VaRs.

Considering the potential nonlinear dependence structure in the study of network risk,
Hiérdle et al. (2016) proposed a single index model (SIM) to estimate system interconnectedness
across financial institutions in a high-dimensional framework. Their estimation procedure can
be illustrated by three steps. In the first step, as in Adrian and Brunnermeier (2016), the VaR
is estimated for each financial institution in the system through linear quantile regression,

Yie = air + v, - M1 + €, (58)
where M;_; is a vector of macro state variables. In this way, the 7-VaR for institution ¢ at
time ¢t can be estimated as \Zxﬁim =0a;r+ ’Aym,Mt_l. In the second step, to construct a risk
interdependence network, the SIM for quantile regression is employed. This model captures
the nonlinear dependence structure because it is based on a SIM quantile variable selection
technique, more precisely,

Yit = 9(Bilg, Zut) + €t (59)
where g(-) is an unknown function, B;z, = {B;_i; Bijm, Bip, } 1s a vector of coefficients, and
Z;, = {Y_;;,M;_1,B;,_1} is a vector of covariates, in which Y_;, includes log returns of
all financial institutions except for institution 7, and B;;_; are the firm’s characteristics. The
minimum average contrast estimation approach with penalization outlined in Fan et al. (2017)
is employed to estimate the shape of the unknown function g(-) and coefficients Bijz,- Then,
the CoVaR of institution ¢ given /OQEL" institutionf _irn Eivistress can be estimated as

CoVaR,, 7., = 9(Biz,Zt), (60)
where g(+) is the estiglgted link function, ,@:‘—zb is the estimator for 3,5, and Zir = {@—i,tm
M,;_1,B;—1} with VaR_; ; - denoting the VaR of all institutions except institution ¢ estimated
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in step 1. An index ﬁz\i was also proposed to measure the marginal effect of covariates

evaluated at Z;; = Zt, which is formulated as follows,
~T
~ 99(Bijz, Zit) ST =
i|Z; 8Z»; 7‘Zvr:2-t = g\/(/@iﬂizit)ﬁﬂii' (61)
7 1t k2
This index can capture spillover effects across financial institutions and further characterize
their evolution as a system represented by a network.

The CAViaR model gained considerable attention during the past few years, and the devel-
opment in both theory and application has occurred mainly in the univariate setup. To study
the degree of tail interdependence among different random variables, White et al. (2015) pro-
posed a multivariate regression quantile model that extends the multi-quantile model CAViaR
model of White et al. (2008) to the multivariate case. Let gj . be the 7-conditional quantile
of the j-th random variable Yj; given F,_; for j = 1,...,m with m > 2. A simple version of
their proposed structure is as follows,

m
qjt,r = X;r/aj + ijqu,tfl,‘r for m Z 27 equivalentlya qt,T = IBXt + Bqtfl,‘m (62)
k=1
where X, are covariates with the coefficients 3" = (B1,..., Bm), thT =(q1 ;7> Gm,t,r), and

B = (bjk)mxm is the matrix of coefficients of the lagged variables q;_1 - to capture the network
system risk. The above model has a VAR structure and is called VAR for VaR. The tail co-
dependence between two random variables Y; and Y; is captured by the off-diagonal coefficients
b;; and bj; in B, and the model reduces to the CAViaR of Engle and Manganelli (2004) if
bi; = 0 for all ¢ # j. Furthermore, this model is particularly applicable in many aspects; see
White et al. (2015) for more discussions. As the seriousness of risk contagion across financial
institutions has been brought to the forefront by the financial crisis, VAR for VaR appears to
be particularly suitable to measure the financial spillover effect. Another potential applications
of this model might include that quantile impulse-response function can be employed to assess
the resilience and persistence of financial institutions to shocks through the overall index and

that model (62) can be extended to capture the dynamic network system risk.

86 Conclusion

After the outbreak of the recent financial crisis, the need of financial institutions for accurate
risk measures has never been greater. Since the pioneering work of Markowitz (1952), which
proposed variance as the measure of risk, VaR, ES and expectile have become the standard
measures of market risk employed by regulators and financial institutions. As the nature of
risks is changing over time (dynamic change), methods for measuring these risks must adapt
to the current environment. To accommodate the demands of special interests, a vast array
of parametric and nonparametric models of these risk measures are proposed. Hopefully, this
selective overview provides a better picture of this important field in finance and econometrics.

However, the whole story of methods for the estimation of risk measures is far from com-
plete. New innovative techniques are needed in the framework of high-dimensional and/or
high-frequency data for estimating the tail risk. Moreover, as risk contagion is becoming the
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main concern in the industry, one should put greater emphasis on network analysis and the

CoVaR of system risk under different types of dependence structures. More importantly, how

to capture the dynamic change in various risks is of great interest in both scientific research

and financial practitioners. Finally, expectile has proved to be superior to VaR and ES in some

aspects; thus, more critical analysis of the relative merits and potential estimation procedures

accustomed to specific regression techniques are required. The measurement of risk developed

to confront and address the challenges in the frontiers of technological innovation and scientific

research and will continue to advance based on emerging societal needs in the future.
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