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Preface

This is the advanced level of nonparametric econometrics with theory and applications.
Here, the focus is on both the theory and the skills of analyzing real data using nonparametric
econometric techniques and statistical softwares such as R or Python. This is along the line
with the spirit “STRONG THEORETICAL FOUNDATION and SKILL EXCELLENCE”.
In other words, this course covers the advanced topics in analysis of economic and financial
data using nonparametric techniques, particularly in nonlinear time series models and some
models related to economic and financial applications. The topics covered start from classical
approaches to modern modeling techniques even up to the research frontiers. The difference
between this course and others is that you will learn not only the theory but also step by
step how to build a model based on data (or so-called let data speak themselves) through real
data examples using statistical softwares or how to explore the real data using what you have
learned. Therefore, there is no a single book serviced as a textbook for this course so that
materials from some books and articles will be provided. However, some necessary handouts,
including computer codes like R codes, will be provided with your help (You might be asked
to print out the materials by yourself).

Several projects (two or three), including the heavy computer works, are assigned through-
out the term. The purpose of doing projects is to train students to understand the theoretical
concepts and to know how to apply the methodologies learned in class to real problems. The
group discussion is allowed to do the projects, particularly writing the computer codes. But,
writing the final report to each project must be in your own language. Copying each other
will be regarded as a cheating. If you use the R language, similar to SPLUS, you can down-
load it from the public web site at http://www.r-project.org/ and install it into your own
computer. You are STRONGLY encouraged to use (but not limited to) the package R or
Python since it is a very convenient programming language for doing statistical analysis
and Monte Carol simulations as well as various applications in quantitative economics and
finance. Of course, you are welcome to use any one of other packages such as SAS, Python,
GAUSS, STATA, SPSS and EVIEW. But, I might not be able to give you a help if doing so.

http://www.r-project.org/
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Chapter 1

Density, Distribution & Quantile
Estimations

1.1 Time Series Structure

Since most of economic and financial data are time series, we discuss our methodologies and

theory under the framework of time series. For linear models, the time series structure can

be often assumed to have some well known forms such as an autoregressive moving average

(ARMA) model. However, under nonparametric setting, this assumption might not be valid.

Therefore, we can assume a more general time series dependence, which is commonly used

in the literature, described as follows.

1.1.1 Mixing Conditions

Mixing dependence is commonly used to characterize the dependent structure and it is often

referred to as short range dependence or weak dependence, which means that the distance

between two observations goes farther and farther, the dependence becomes weaker and

weaker very faster. It is well known that α-mixing (strong mixing) includes many time series

models as a special case. In fact, under very mild assumptions, linear processes, including

linear autoregressive models and more generally bilinear time series models are α-mixing

with mixing coefficients decaying exponentially. Many nonlinear time series models, such as

functional coefficient autoregressive processes with/without exogenous variables, nonlinear

additive autoregressive models with/without exogenous variables, ARCH and GARCH type

processes, stochastic volatility models, and many continuous time diffusion models (including

the Black-Scholes type models) are strong mixing under some mild conditions. See Genon-

Caralot, Jeantheau and Laredo (2000), Cai and Masry (2000), Cai (2002), Carrasco and
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Chen (2002), and Chen and Tang (2005) for more details.

To simplify the notation, we only introduce mixing conditions for strictly stationary

processes (in spite of the fact that a mixing process is not necessarily stationary). The idea

is to define mixing coefficients to measure the strength (in different ways) of dependence for

the two segments of a time series which are apart from each other in time. Let {Xt} be a

strictly stationary time series. For n ≥ 1, define

α(n) = sup
A∈F0

−∞;B∈F∞
n

|P (A)P (B)− P (AB)|,

where F j
i denotes the σ-algebra generated by {Xt; i ≤ t ≤ j}. Note that F∞

n ↓. If α(n) →
0 as n → ∞, {Xt} is called α-mixing or strong mixing. There are several other mixing

conditions such as ρ-mixing, β-mixing, φ-mixing, and ψ-mixing; see the books by Hall and

Heyde (1980) and Fan and Yao (2003, page 68) for details. Indeed,

β(n) = E

󰀫
sup

A∈F∞
n

| P (A)− P (A | Xt, t ≤ 0)

󰀬
,

ρ(n) = sup
X∈F0

−∞;Y ∈F∞
n

Corr(X, Y )|,

φ(n) = sup
A∈F0

−∞;B∈F∞
n ,P (A)>0

|P (B)− P (B | A)|,

and

ψ(n) = sup
A∈F0

−∞;B∈F∞
n ,P (A)P (B)>0

|1− P (B | A)/P (B)|.

It is well known that the relationships among the mixing conditions are

α(n) ≤ 1

4
ρ(n) ≤ 1

2
φ(n),

so that ψ-mixing =⇒ φ-mixing =⇒ ρ-mixing =⇒ α-mixing as well as β-mixing =⇒ α-

mixing. Note that all our theoretical results are derived under mixing conditions. The

following inequalities are very useful in applications, which can be found in the book by Hall

and Heyde (1980, pp. 277-280).

Lemma 1.1: (Davydov’s inequality) (i) If E |Xi|p +E |Xj|q < ∞ for some p ≥ 1 and q ≥ 1

and 1/p+ 1/q < 1, it holds that

|Cov (Xi, Xj)| ≤ 8α1/r(|j − i|)||Xi 󰀂p||Xj󰀂q ,
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where r = (1− 1/p− 1/q)−1.

(ii) If P (|Xi| ≤ C1) = 1 and P (|Xj| ≤ C2) = 1 for some constants C1 and C2, it holds that

|Cov (Xi, Xj)| ≤ 4α(|j − i|)C1C2

Note that if we allow Xi and Xj to be complex-valued random variables, (ii) still holds with

the coefficient “4” on the RHS of the inequality replaced by “16”.

(iii) If P (|Xi| ≤ C1) = 1 and E |Xj|p < ∞ for some constants C1 and p > 1, then,

|Cov (Xi, Xj)| ≤ 6C1 󰀂Xj󰀂p α
1−p−1

(|j − i|).

Lemma 1.2: If E |Xi|p+E |Xj|q < ∞ for some p ≥ 1 and q ≥ 1 and 1/p+1/q = 1, it holds

that

|Cov (Xi, Xj)| ≤ 2φ1/p(|j − i|)||Xi 󰀂p||Xj󰀂q .

1.1.2 Martingale and Mixingale

Martingale is very useful in applications. Here is the definition. Let {Xn, n ∈ N} be a

sequence of random variables on a probability space (Ω,F , P ), and let {Fn, n ∈ N} be an

increasing sequence of sub-σ-fields of F . Suppose that the sequence {Xn, n ∈ N} satisfies

(i) Xn is measurable with respect to Fn,

(ii) E |Xn| < ∞,

(iii) E [Xn | Fm] = Xm for all m < n, n ∈ N .

Then, the sequence {Xn, n ∈ N} is said to be a martingale with respect to {Fn, n ∈ N}.
We write that {Xn,Fn, n ∈ N} is a martingale. If (i) and (ii) are retained and (iii) is

replaced by the inequality E [Xn | Fm] ≥ Xm (E [Xn | Fm] ≤ Xm), then {Xn,Fn, n ∈ N} is

called a sub-martingale (super-martingale). Define Yn = Xn −Xn−1. Then {Yn,Fn, n ∈ N}
is called a martingale difference (MD) if {Xn,Fn, n ∈ N} is called a martingale. Clearly,

E [Yn | Fn−1] = 0, which means that a MD is not predicable based on the past information.

In a finance language, a stock market is efficient. Equivalently, it is a MD.

Another type of dependent structure is called mixingale, which is the so-called asymptotic

martingale. The concept of mixingale, introduced by McLeish (1975), is defined as follows.

Let {Xn, n ≥ 1} be a sequence of square-integrable random variables on a probability space

(Ω,F , P ), and let {Fn,−∞ < n < ∞} be an increasing sequence of sub-σ-fields of F . Then,

{Xn,Fn} is called a Lr-mixingale (difference) sequence for r ≥ 1 if, for some sequences of
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nonnegative constants cn and ψm, where ψm → 0 as m → ∞, we have

(i) 󰀂E (Xn | Fn−m)󰀂r ≤ ψmcn, and (ii) 󰀂Xn − E (Xn | Fn−m)󰀂r ≤ ψm+1cn,

for all n ≥ 1 and m ≥ 0. The idea of mixingale is to try to build a bridge between martingale

and mixing. The following examples give the idea of the scope of L2-mixingales.

Examples:

1. A square-integrable martingale is a mixingale with cn = 󰀂Xn󰀂 and ψ0 = 1 and ψm = 0

for m ≥ 1.

2. A linear process is given by Xn =
󰁓∞

i=−∞ αi−nξi with {ξi} iid mean zero and variance σ2

and
󰁓∞

i=−∞ α2
i < ∞. Then, {Xn,Fn} is a mixingale with all cn = σ and ψ2

m =
󰁓

|i|≥m α2
i .

3. If {Xn} is a square-integrable sequence of φ-mixing, then it is a mixingale with cn =

2 󰀂Xn󰀂2 and ψm = φ1/2(m), where φ(m) is the φ-mixing coefficient.

4. If {Xn} is a sequence of α-mixing with 󰀂Xn󰀂p < ∞ for some p > 2, then it is a mixingale

with cn = 2(
√
2 + 1) 󰀂Xn󰀂2 and ψm = α1/2−1/p(m), where α(m) is the α-mixing coefficient.

Note that Examples 3 and 4 can be derived form the following inequality, due to McLeish

(1975).

Lemma 1.3: (McLeish’s inequality) Suppose that X is a random variable measurable with

respect to A, and 󰀂X󰀂r < ∞ for some 1 ≤ p ≤ r ≤ ∞. Then

󰀂E(X | F)− E(X)󰀂p ≤
󰀫
2[φ(F ,A)]1−1/r󰀂X󰀂r, for φ-mixing,

2
󰀃
21/p + 1

󰀄
[α(F ,A)]1/p−1/r󰀂X󰀂r, for α-mixing.

1.2 Nonparametric Density Estimate

Let {Xi} be a random sample with a (unknown) marginal distribution F (·) (CDF) and its

probability density function (PDF) f(·). The question is how to estimate f(·) and F (·).
Since

F (x) = P (Xi ≤ x) = E [I (Xi ≤ x)] =

󰁝 x

−∞
f(u) du,

and

f(x) = lim
h↓0

F (x+ h)− F (x− h)

2h
≈ F (x+ h)− F (x− h)

2h
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if h is very small, by the method of moment estimation (MME), F (x) can be estimated by

Fn(x) =
1

n

n󰁛

i=1

I (Xi ≤ x) ,

which is called the empirical cumulative distribution function (ecdf), so that f(x) can be

estimated by

fn(x) =
Fn(x+ h)− Fn(x− h)

2h
=

1

n

n󰁛

i=1

Kh (Xi − x) ,

where K(u) = I(|u| ≤ 1)/2 and Kh(u) = K(u/h)/h. Indeed, the kernel function K(u) can

be taken to be any symmetric density function. Here, h is called the bandwidth. Initially,

fn(x) was proposed by Rosenblatt (1956) and Parzen (1962) explored its properties in detail.

Therefore, it is called the Rosenblatt-Parzen density estimate.

Remark 1.1: Let R(h) = f(x)− [F (x+h)−F (x−h)/2h so that f(x) = [F (x+h)−F (x−
h)/2h+R(h). Then, R(h) = O (h2) is the second order approximation of f(x) if h is small

and the second derivative of f(x) is continuous. Therefore, fn(x) is not the unbiased estimate

due to the approximation error.

Exercise: Please show that Fn(x) is an unbiased estimate of F (x) but fn(x) is a biased

estimate of f(x). Think about intuitively

(1) why fn(x) is biased

(2) where the bias comes from

(3) why K(·) should be symmetric.

1.2.1 Asymptotic Properties

A. Asymptotic Properties for ECDF

If {Xi} is stationary, then, E [Fn(x)] = F (x) and

nVar (Fn(x)) =Var (I (Xi ≤ x)) + 2
n󰁛

i=2

󰀕
1− i− 1

n

󰀖
Cov (I (X1 ≤ x) , I (Xi ≤ x))

=F (x)[1− F (x)] + 2
n󰁛

i=2

Cov (I (X1 ≤ x) , I (Xi ≤ x))

󰁿 󰁾󰁽 󰂀
→σ2(x) by assuming that σ2(x)<∞
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−2
n󰁛

i=2

i− 1

n
Cov (I (X1 ≤ x) , I (Xi ≤ x))

󰁿 󰁾󰁽 󰂀
→0 by Kronecker Lemma

→ σ2
F (x) ≡ F (x)[1− F (x)] + 2

∞󰁛

i=2

Cov (I (X1 ≤ x) , I (Xi ≤ x))

󰁿 󰁾󰁽 󰂀
This term is called Ad(x)

.

Therefore,

nVar (Fn(x)) → σ2
F (x). (1.1)

One can show based on the mixing theory that

√
n [Fn(x)− F (x)] → N

󰀃
0, σ2

F (x),
󰀄
. (1.2)

which can be derived in the same way as in the proof of Theorem 2.2 in Section 2.4; see

Section 2.4.7 for details. It is clear that Ad(x) = 0 if {Xi} are independent so that σ2
F (x) =

F (x)[1− F (x)]. If Ad(x) ∕= 0, the question is how to estimate it. For each given x, one can

use the HC estimator by White (1980) or the HAC estimator by Newey and West (1987) or

the kernel method by Andrews (1991).

The results in (1.2) can used to construct a test statistic to test the null hypothesis

H0 : F (x) = F0(x) versus Ha : F (x) ∕= (>)(<)F0(x).

This test statistic is the well-known Kolmogorov-Smirnov test, defined as

Dn = sup
−∞<x<∞

|Fn(x)− F0(x)|

for the two-sided test. One can show, see, for example, Serfling (1980, p.62) or Billinsley

(1999, p.103), that under some regularity conditions, which include that the data are iid,

P
󰀃√

nDn ≤ d
󰀄

→ 1− 2
∞󰁛

j=1

(−1)j+1 exp
󰀃
−2j2d2

󰀄

and

P
󰀃√

nD+
n ≤ d

󰀄
= P

󰀃√
nD−

n ≥ −d
󰀄

→ 1− exp
󰀃
−2d2

󰀄
,

where D+
n = sup

−∞<x<∞
[Fn(x)− F0(x)] and D−

n = sup
−∞<x<∞

[F0(x)− Fn(x)] for one-sided tests.

In R, there is a built-in command for the Kolmogorov-Smirnov test, which is ks.test().

Exercise: What are the most important assumptions on the Kolmogorov-Smirnov test?

Please think about the question “Does the Kolmogorov-Smirnov test hold for time series?”

If not, please conduct a simulation to verify your conjecture.
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B. Asymptotic Properties for Density Estimation

Next, we derive the asymptotic variance for fn(x). First, define Zi = Kh (Xi − x). Then,

E [Z1Zi] =

󰁝󰁝
Kh(u− x)Kh(v − x)f1,i(u, v)dudv

=

󰁝󰁝
K(u)K(v)f1,i(x+ uh, x+ vh)dudv

→ f1,i(x, x),

where f1,i(u, v) is the joint density of (X1, Xi), so that

Cov (Z1, Zi) → f1,i(x, x)− f 2(x).

It is easy to show that

hVar (Z1) → ν0(K)f(x),

where νj(K) =
󰁕
ujK2(u)du. Therefore,

nhVar (fn(x)) = hVar (Z1) + 2h
n󰁛

i=2

󰀕
1− i− 1

n

󰀖
Cov (Z1, Zi)

󰁿 󰁾󰁽 󰂀
≡Af → 0 under some assumptions

→ ν0(K)f(x)

To show that Af → 0, let dn → ∞ and dnh → 0. Then,

|Af | ≤ h
dn󰁛

i=2

|Cov (Z1, Zi)|+ h
n󰁛

i=dn+1

|Cov (Z1, Zi)| .

For the first term, if f1,i(u, v) ≤ M1, then, it is bounded by h dn = o(1). For the second

term, we apply the Davydov’s inequality (see Lemma 1.1) to obtain

h

n󰁛

i=dn+1

|Cov (Z1, Zi)| ≤ M2

n󰁛

i=dn+1

α(i)/h = O
󰀃
d−β+1
n h−1

󰀄

if α(n) = O
󰀃
n−β

󰀄
for some β > 2. If dn = O

󰀃
h−2/β

󰀄
, then, the second term is dominated

by O
󰀃
h1−2/β

󰀄
which goes to 0 as n → ∞. Hence,

nhVar (fn(x)) → ν0(K)f(x). (1.3)

By a comparison of (1.1) and (1.3), one can see clearly that there is an infinity term involved

in σ2
F (x) due to the dependence but the asymptotic variance in (1.3) is the same as that for

the iid case (without the infinity term). We can establish the following asymptotic normality

for fn(x) but the proof will be discussed later.
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Theorem 1.1: Under some regularity conditions, we have

√
nh

󰀗
fn(x)− f(x)− h2

2
µ2(K)f ′′(x) + op

󰀃
h2
󰀄󰀘

→ N (0, ν0(K)f(x)) ,

where the term h2

2
µ2(K)f ′′(x) is called the asymptotic bias and µ2(K) =

󰁕
u2K(u)du.

Remark 1.2: Note that Theorem 1.1 can be proved by using the Linderburg-Feller or Lya-

punov central limit theorem (CLT)1 for triangular arrays, if {Xt} are independent. But, for

time series cases, the proof is different and is similar to that for Theorem 2.2 (see Section

2.4 later) so that you can follow the idea in Section 2.4 to establish Theorem 1.1 for time

series cases. Also, according to Theorem 1.1, fn(x) → f(x) for each x as n → ∞ so that

fn(x) = Op(1), when {Xt} is stationary. However, when {Xt} is a nonstationary process

like a random walk (integrated process), then, one can show that fn(x) = Op(1/
√
n); see, for

example, the papers by Phillips and Park (1998) and Cai, Li and Park (2009) for details.

Thus, the order of magnitude of the density estimate fn(x) in the integrated case is smaller

than in the stationary case when n → ∞. This is explained by the fact that an integrated

process like Xt eventually (as t → ∞) has a bigger probability of being away from a given

point x than a stationary process and the kernel function K(·) assigns smaller values to

the more distant points. This has important implications for kernel regression with nonsta-

tionary time series. In effect, this reduces the rate of convergence of the kernel estimate of

the density function. Indeed, the asymptotic distribution of fn(x) for nonstationary {Xt} is

totally different from that in Theorem 1.1 for stationary case, which is given by

√
n fn(x) → ξ

in probability, where ξ is non-normal random variable (a local time of a Brownian mo-

tion), and the rate of convergence of the kernel estimate of the density function is much

slower than
√
nh for the stationary case. See Theorem 3.1 in Phillips and Park (1998) and

Lemma B.1 in Cai, Li and Park (2009) for details. Indeed, from Lemma B.1 in Cai, Li and

Park (2009), one can see that

ξ =

󰀫
L(1, 0)/σu, if x is fixed,

L(1, a)/σu, if x = a
√
n for any fixed a,

1The Lyapunov CLT says that if triangular arrays {Znt}nt=1 are independent, and the Lyapunov condition
󰁓n

t=1 E
󰀓
|Znt|2+δ

󰀔
/s2+δ

n → 0 for some δ > 0 holds, where s2n =
󰁓n

t=1 Var (Xnt) ,
󰁓n

t=1 [Znt − E (Znt)] /sn

converges to the standard normal. See, for example, Serfling (1980, p.32) for details.
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where σ2
u is the variance of ut = Xt − Xt−1, and L(t, x) is the local time t of the standard

Brownian motion at x, given by

L(t, x) = lim
󰂃↓0

1

2 󰂃

󰁝 t

0

I(|Wu(s)− x| ≤ 󰂃)ds (1.4)

with Wu(t) being the standard Brownian motion generated by {ut}. For the definition and

its properties, see, for example, the book by Marcus and Rosen (2006) for details.

Exercise: First, by comparing (1.1) with (1.3), what can you observe? Second, if {Xt} is

a sequence of nonstationary (say, unit root) random variable, what does fn(x) estimate?

Please think about this problem. You will be asked to do a simulation to see what you can

observe in your next homework assignment.

Example 1.1: Let us examine how importance the choice of bandwidth is. The data {Xi}ni=1

are generated from N(0, 1) (iid) and n = 300. The grid points are taken to be [−4, 4]

with an increment ∆ = 0.1. Bandwidth is taken to be 0.25 (red line), 0.5 (green line)

and 1.0 (blue), and hopt (cyan line), respectively, and the kernel can be the Epanechnikov

kernel K(u) = 0.75 (1− u2) I(|u| ≤ 1) or the Gaussian kernel K(u) = 1√
2π

exp (−u2/2).

Comparisons are given in Figure 1.1 (the left panel) for different choices of h. Note that

the comparison between two kernels: Gaussian (black line) and Epanechnikov (red line) is

displaced in the right panel of Figure 1.1. This simulation shows that the choice of bandwidth

h is critical but the choice of K(u) is not so sensitive.

Example 1.2: Next, we apply the kernel density estimation to estimate the density of the

weekly 3-month Treasury bill (Secondary Market Rate, Discount Basis) from January 8, 1954

to September 23, 2022.2 Figure 1.2 displays the ACF and PACF plots for the original data

(top panel), denoted byXt, and the first difference (middle panel), denoted by rt = Xt−Xt−1,

and the estimated density of the differencing series rt together with the true standard normal

density: the bottom left panel is for fn(x) (black solid line) by using the built-in function

density() and the bottom right panel is for the own code, respectively, together with the

with the density curve of the standard normal (red dashed line). From the top penal in

Figure 1.2 first, one can conclude clearly that Xt is nonstationary (possible unit root) so

that the differencing of Xt is is needed. Then, define rt = Xt−Xt−1 and the ACF and PACF

2The dataset can be updated to today and can be downloaded from Federal Bank of St. Louis at
https://fred.stlouisfed.org/series/DTB3.

https://fred.stlouisfed.org/series/DTB3
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Figure 1.1: Left panel: Together with the true density (black line), bandwidth is taken
to be 0.25 (red line), 0.5 (green line), 1.0 (blue line) and the optimal one (cyan line line,
see later) with the Epanechnikov kernel. Right panel: the kernel density estimates for two
different kernel functions: Gaussian (lack line) and Epanechnikov (red line).

plots of {rt} are given in the middle panel of Figure 1.2 from which, one can see that rt is

autocorrelated. Finally, the bottom panel concludes that the distribution of rt is not normal

although its distribution looks symmetric and uni-mod. But, at 0, there is a high peak and

two tails are heavy, which support the stylized factors about the distribution of the return.

Also, one can see that there is no difference between computings based on density() and

the own code.

Example 1.3: In this example, we consider the case that {Xt} is nonstationary and inves-

tigate the asymptotic properties of both fn(x) and
√
nfn(x). The data generating process

is

Xt = (1− δ/n)Xt−1 + ut

with X0 = 0 for some δ ≥ 0. Here, we consider two cases δ = 0 (random walk) and δ = 1

(nearly integrated process or nearly random walk or nearly unit root), where t = 1, · · · , n,
and ut

i.i.d∼ N(0, 1). Bandwidth h = d n−1/10 with d taken to be 0.5, 1 and 2, respectively. The

sample size is taken to be 200, 1000 and 5000, respectively. For each setting, the simulation

is repeated 10,000 times, and fn(x) calculated for x being fixed with −5 (magenta), −2.5
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Figure 1.2: The ACF and PACF plots for the original data (top panel), denoted by Xt, and
the first difference (middle panel), denoted by rt = Xt − Xt−1, which can be regarded as
the simple return. The bottom left panel is for fn(x) (black solid line) by using the built-in
function density() and the bottom right panel is for the own code, respectively, together
with the density curve of the standard normal (red dashed line).

(red), 0 (orange), 2.5 (blue) and 5 (green), respectively. The simulation results are given in

Figure 1.3 for boxplots and Table 1.1 for reporting the median and standard devision of the

10,000 values of fn(x) for each x, each sample size, and each d value, respectively. It is clear

from both Figure 1.3 and Table 1.1, for each setting, fn(x) is closer to 0 as the sample size

gets larger, which verifies the theory in Remark 1.2 that fn(x) converges to 0 as n goes to
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infinity.

Table 1.1: The median and standard deviation in parentheses of 10,000 values of fn(x) for
δ = 0 (random walk case).

The kernel density estimator for a random walk

d = 0.5 d = 1 d = 2

n x = −5 x = −2.5 x = 0 x = 2.5 x = 5 x = −5 x = −2.5 x = 0 x = 2.5 x = 5 x = −5 x = −2.5 x = 0 x = 2.5 x = 5

200 0.017 0.034 0.042 0.034 0.025 0.021 0.034 0.047 0.034 0.025 0.025 0.038 0.045 0.038 0.025

(0.040) (0.043) (0.044) (0.042) (0.041) (0.038) (0.040) (0.041) (0.040) (0.038) (0.036) (0.038) (0.038) (0.038) (0.036)

1000 0.016 0.018 0.020 0.018 0.016 0.016 0.018 0.021 0.018 0.016 0.016 0.019 0.020 0.018 0.016

(0.019) (0.020) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.018) (0.018) (0.018) (0.018) (0.018) (0.018)

5000 0.008 0.009 0.009 0.009 0.008 0.009 0.009 0.010 0.009 0.009 0.009 0.009 0.009 0.009 0.009

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.008) (0.008) (0.009) (0.009) (0.008)

Next, for h = 0.5n−1/10,
√
n fn(x) is calculated for x being fixed with −5 (magenta),

−2.5 (red), 0 (orange), 2.5 (blue) and 5 (green) respectively. For each setting, the simulation

is repeated 10,000 times. The estimated density curves are plotted in Figure 1.4, from which,

one can observe that the estimated curves get closer to each other as the sample size gets

larger. Therefore,
√
n fn(x) can be used to approximate the distribution of the local time

L(1, 0) of a Brownian motion.

Finally, repeat the above procedures with x = a
√
n with a taken to be −0.5 (magenta),

−0.25 (red), 0 (orange), 0.25 (blue) and 0.5 (green), respectively. The estimated density

curves are displayed in Figure 1.5, from which, one can see that the estimated curves ap-

proximate different distributions as the sample size increases, which is dependent on the

value of a. Therefore,
√
n fn(a

√
n) can be used to approximate the distribution of the local

time L(1, a) for any a ∕= 0.

Note that we also consider the case that δ = 1 (nearly integrated case). The simulation

results are presented in Table 1.2 for each setting and the same conclusions to those for a

random walk scenario can be made. The figures similar to Figures 1.3 - 1.5 can re-produced

in the same way, but, to save the space, they are not depicted here.

Note that the computer code inR for the above two examples can be found in Section 1.5.

R has a built-in function density() for computing the nonparametric density estimation.

Also, you can use the command plot(density()) to plot the estimated density. Further, R

has a built-in function ecdf() for computing the empirical cumulative distribution function
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Figure 1.3: The kernel density estimator for the random walk case (δ = 0). Top panel: Box-
plots for fn(x) with bandwidth, d = 0.5; Middle panel: Boxplots for fn(x) with bandwidth,
d = 1; and Bottom panel: Boxplots for fn(x) with bandwidth, d = 2. In all panels, n is
taken to be 200, 1000 and 5000, and x is taken to be −5 (magenta), −2.5 (red), 0 (orange),
2.5 (blue) and 5 (green).
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Figure 1.4: The kernel density estimator for the random walk case (δ = 0). From the left to
the right panel, n = 200, n = 1000, and n = 5000. In all panels, bandwidth h = 0.5n−1/10

and x is taken to be −5 (magenta), −2.5 (red), 0 (orange), 2.5 (blue) and 5 (green).
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Figure 1.5: The kernel density estimator for the random walk case (δ = 0). From the left and
the right panel, n = 200, n = 1000, and n = 5000. In all panels, bandwidth h = 0.5n−1/10

and x = a
√
n with a taken to be −0.5 (magenta), −0.25 (red), 0 (orange), 0.25 (blue) and

0.5 (green).

estimation and plot(ecdf()) for plotting the step function.



1.2. NONPARAMETRIC DENSITY ESTIMATE 15

Table 1.2: The median and standard deviation in parentheses of 10,000 values of fn(x) for
δ = 1 (nearly integrated case).

The kernel density estimator for a nearly random walk

d = 0.5 d = 1 d = 2

n x = −5 x = −2.5 x = 0 x = 2.5 x = 5 x = −5 x = −2.5 x = 0 x = 2.5 x = 5 x = −5 x = −2.5 x = 0 x = 2.5 x = 5

200 0.025 0.042 0.059 0.042 0.025 0.030 0.047 0.055 0.047 0.030 0.032 0.049 0.057 0.049 0.034

(0.042) (0.045) (0.046) (0.045) (0.043) (0.040) (0.042) (0.042) (0.042) (0.040) (0.038) (0.039) (0.039) (0.039) (0.038)

1000 0.020 0.024 0.026 0.024 0.020 0.021 0.024 0.026 0.024 0.021 0.021 0.024 0.026 0.024 0.021

(0.020) (0.020) (0.020) (0.020) (0.020) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019)

5000 0.011 0.012 0.012 0.011 0.011 0.011 0.011 0.012 0.011 0.011 0.011 0.012 0.012 0.011 0.011

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

1.2.2 Optimality

As we already have shown that

E (fn(x)) = f(x) +
h2

2
µ2(K)f ′′(x) + o

󰀃
h2
󰀄
, and Var (fn(x)) =

ν0(K)f(x)

nh
+ o

󰀃
(nh)−1

󰀄
,

so that the asymptotic mean integrated squares error (AMISE) is

AMISE =
h4

4
µ2
2(K)

󰁝
[f ′′(x)]

2
+

ν0(K)

nh
.

Minimizing the AMISE gives the

hopt = C1(K) 󰀂f ′′󰀂−2/5
2 n−1/5 = d n−1/5, (1.5)

where C1(K) = [ν0(K)/µ2
2(K)]

1/5
and d = C1(K) 󰀂f ′′󰀂−2/5

2 depending on K(·) and f(·).
With this asymptotically optimal bandwidth, the optimal AMISE is given by

AMISEopt =
5

4
C2(K) 󰀂f ′′󰀂2/52 n−4/5,

where C2(K) = [ν2
0(K)µ2(K)]

2/5
. To choose the best kernel, it suffices to choose one to

minimize C2(K).

Proposition 1: The nonnegative probability density function K minimizing C2(K) is a

re-scaling of the Epanechnikov kernel:

Kopt (u) =
3

4a

󰀃
1− u2/a2

󰀄
+

for any a > 0.
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Proof: First of all, we note that C2 (Kh) = C2(K) for any h > 0. Let K0 be the Epanech-

nikov kernel. For any other nonnegative K, by re-scaling if necessary, we assume that

µ2(K) = µ2 (K0). Thus, we need only to show that ν0 (K0) ≤ ν0(K). Let G = K − K0.

Then,

󰁝
G(u) du = 0 and

󰁝
u2G(u) du = 0,

which implies that 󰁝 󰀃
1− u2

󰀄
G(u) du = 0.

Using this and the fact that K0(·) has the support [−1, 1], we have

󰁝
G(u)K0(u) du =

3

4

󰁝

|u|≤1

G(u)
󰀃
1− u2

󰀄
du

=− 3

4

󰁝

|u|>1

G(u)
󰀃
1− u2

󰀄
du =

3

4

󰁝

|u|>1

K(u)
󰀃
u2 − 1

󰀄
du.

Since K(·) is nonnegative, so is the last term. Therefore,

󰁝
K2(u) du =

󰁝
K2

0(u) du+ 2

󰁝
K0(u)G(u) du+

󰁝
G2(u) du ≥

󰁝
K2

0(u) du,

which proves that K0(·) is the optimal kernel.

Remark 1.3: This proposition implies that the Epanechnikov kernel with a = 1 should be

used in practice. Clearly, the Epanechnikov kernel is symmetric and has a finite support

as well as is differentiable within its support. The difference between the Epanechnikov and

Gaussian kernels can be evidenced from Figure 1.6. As seen in Figure 1.1b, the difference of

using two kernels to estimate f(x) is not distinguishable.

1.2.3 Data-Driven Bandwidth Selection Methods

A. Simple Bandwidth Selectors

I. Normal Reference

The optimal bandwidth (1.5) is not directly usable since it depends on the unknown param-

eter 󰀂f ′′󰀂2. When f(x) is a Gaussian density with standard deviation σ, it is easy to see

from (1.5) that 󰀂f ′′󰀂22 = 3/[8
√
πσ5] so that

hopt = (8
√
π/3)1/5C1(K)σn−1/5,
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Figure 1.6: The Epanechnikov and Gaussian kernels.

which is called the normal reference bandwidth selector in literature, obtained by replacing

the unknown parameter σ in the above equation by its sample standard deviation s. In

particular, after calculating the constant C1(K) numerically, we have the following normal

reference bandwidth selector

󰁥hopt,n =

󰀫
1.06 s n−1/5 for the Gaussian kernel

2.34 s n−1/5 for the Epanechnikov kernel.

Clearly, if the true density of Xt is close to normal, then, the normal reference bandwidth

selector should work well and it is often used in practice due to its simplicity. Of course,

the true density of Xt is not close to normal, say, having multiple modes, then, the normal

reference bandwidth selector should not be used.

If f(x) has a unique mode, one might use Laplace (saddle-point) approximation to f(x)

as

f(x) ≈ f(xm)
√
2 πσm φ((x− xm)/σm),

where xm is the mode of f(x), φ(x) is the density of the standard normal, and σ2 =

−1/h′′(xm) with h(x) = f ′(x)/f(x). Then, one can use the normal reference bandwidth

selector multiply a constance, which might need an estimate.
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II. Edgeworth Expansion

Hjort and Jones (1996b) proposed an improved rule obtained by using an Edgeworth expan-

sion for f(x) around the Gaussian density. Such a rule is given by

󰁥hopt,e = 󰁥hopt,n

󰀕
1 +

35

48
󰁥γ4 +

35

32
󰁥γ2
3 +

385

1024
󰁥γ2
4

󰀖−1/5

,

where 󰁥γ3 and 󰁥γ4 are respectively the sample skewness and kurtosis. For details about the

Edgeworth expansion, please see the book by Hall (1992).

III. Plug-in Method

Note that the normal reference bandwidth selector is only a simple rule of thumb. It is

a good selector when the data are nearly Gaussian distributed, and is often reasonable in

many applications. However, it can lead to over-smooth when the underlying distribution is

asymmetric or multi-modal. In that case, one can either subjectively tune the bandwidth,

or select the bandwidth by more sophisticated bandwidth selectors. One can also transform

data first to make their distribution closer to normal, then estimate the density using the

normal reference bandwidth selector and apply the inverse transform to obtain an estimated

density for the original data. Such a method is called the transformation method. There

are quite a few important techniques for selecting the bandwidth such as cross-validation

(CV) and plug-in bandwidth selectors. A conceptually simple technique, with theoretical

justification and good empirical performance, is the plug-in technique. This technique relies

on finding an estimate of the functional 󰀂f ′′󰀂2, which can be obtained by using a pilot

bandwidth. An implementation of this approach is proposed by Sheather and Jones (1991)

and an overview on the progress of bandwidth selection can be found in Jones, Marron and

Sheather (1996).

Function dpik() in the package KernSmooth in R selects a bandwidth for estimating

the kernel density estimation using the plug-in method.

B. Cross-Validation Method

The integrated squared error (ISE) of fn(x) is defined by

ISE(h) =

󰁝
[fn(x)− f(x)]2 dx.

A commonly used measure of discrepancy between fn(x) and f(x) is the mean integrated

squared error (MISE) MSE(h) = E[ISE(h)]. It can be shown easily (or see Chiu, 1991) that
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MISE(h) ≈ AMISE(h). The optimal bandwidth minimizing the AMISE is given in (1.5).

The least squares cross-validation (LSCV) method proposed by Rudemo (1982) and Bowman

(1984) is a popular method to estimate the optimal bandwidth hopt . Cross-validation is very

useful for assessing the performance of an estimator via estimating its prediction error. The

basic idea is to set one of the data point aside for validation of a model and use the remaining

data to build the model. The main idea is to choose h to minimize ISE(h). Since

ISE(h) =

󰁝
f 2
n(x)dx− 2

󰁝
f(x)fn(x)dx+

󰁝
f 2(x)dx,

the question is how to estimate the second term on the right hand side. Well, let us consider

the simplest case when {Xt} are iid. Re-express fn(x) as

fn(x) =
n− 1

n
f (−s)
n (x) +

1

n
Kh (Xs − x)

for any 1 ≤ s ≤ n, where

f (−s)
n (x) =

1

n− 1

n󰁛

t ∕=s

Kh (Xt − x) ,

which is the kernel density estimate without the sth observation, commonly called the jack-

knife estimate or leave-one-out estimate. It is easy to see that for any 1 ≤ s ≤ n,

fn(x) ≈ f (−s)
n (x).

Let D−s = {X1, · · · , Xs−1, Xs+1, · · · , Xn}. Then,

E
󰀅
f (−s)
n (Xs) | D−s

󰀆
≡3

󰁝
f (−s)
n (x)f(x)dx ≈

󰁝
fn(x)f(x)dx, (1.6)

if {Xi} are iid, which, by using the method of moment, can be estimated by 1
n

󰁓n
s=1 f

(−s)
n (Xs).

Therefore, the cross-validation is

CV(h) =

󰁝
f 2
n(x)dx− 2

n

n󰁛

s=1

f (−s)
n (Xs) =

1

n2

󰁛

s,t

K∗
h (Xs −Xt)−

2

n(n− 1)

n󰁛

t ∕=s

Kh (Xs −Xt) ,

where K∗
h(·) is the convolution of Kh(·) and Kh(·) as

K∗
h(u) =

󰁝
Kh(v)Kh(u− v)dv.

3This equality holds only for iid data but not for dependent data.
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Let 󰁥hcv be the minimizer of CV(h). Then, it is called the optimal bandwidth based on

the cross-validation. Stone (1984) showed that 󰁥hcv is a consistent estimate of the optimal

bandwidth hopt in the sense that 󰁥hcv/hopt converges to 1 in probability.

Function lscv() in the package locfit in R selects a bandwidth for estimating the kernel

density estimation using the least squares cross-validation method.

Remark 1.4: Note that the above cross-validation method does not work well for time seres

cases since (1.6) holds only for the iid data. Indeed, the leave-one-out cross-validation method

was challenged by Shao (1993), which claimed that the popular leave-one-out cross-validation

method, which is asymptotically equivalent to many other model selection methods such as

the Akaike Information Criterion (AIC), the Cp, and the Bootstrap, is asymptotically incon-

sistent in the sense that the probability of selecting the model with the best predictive ability

does not converge to 1 as the total number of observations n → ∞ and also, Shao (1993)

showed that the inconsistency of the leave-one-out cross-validation can be rectified by using

a leave-nν-out cross-validation with nν (block-wise cross-validation), the number of observa-

tions reserved for validation, satisfying nν/n → 0 and nν → ∞ as n → ∞. The reader is

referred to the paper by Shao (1993) for details.

Finally, to pay attention to the structure of stationary time series data, one can use other

data-driven methods to choose 󰁥h such as the nonparametric AIC4 approach proposed in Cai

and Tiwari (2000); see details in Section 2.3.5 or the modified multi-fold cross-validation

criterion as in Cai, Fan and Yao (2000); see Section 2.4.3 for details.

1.2.4 Boundary Problems

In many applications, the density f(·) has a bounded support. For example, the interest rate

can not be less than zero and the income is always nonnegative. It is reasonable to assume

that the interest rate has support [0, 1]. However, because a kernel density estimator spreads

smoothly point masses around the observed data points, some of those near the boundary

of the support are distributed outside the support of the density. Therefore, the kernel

density estimator under estimates the density in the boundary regions. The problem is more

severe for large bandwidth and for the left boundary where the density is high. Therefore,

some adjustments are needed. To gain some further insights, let us assume without loss

4For the detailed information, please see my lecture notes on “A Summary of Model Selection
Methods”.
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of generality that the density function f(·) has a bounded support [0, 1] and we deal with

the density estimate at the left boundary. For simplicity, suppose that K(·) has a support

[−1, 1]. For the left boundary point x = ch(0 ≤ c < 1), it can easily be seen that as h → 0

E (fn(ch)) =

󰁝 1/h−c

−c

f(ch+ hu)K(u) du = f(0+)µ0,c(K) + hf ′(0+) [cµ0,c(K) + µ1,c(K)]

+ o(h), (1.7)

where f(0+) = limx↓0 f(x),

µj,c =

󰁝 ∞

−c

ujK(u)du, and νj,c(K) =

󰁝 ∞

−c

ujK2(u)du.

Also, we can show that Var (fn(ch)) = O(1/nh). Therefore,

fn(ch) = f(0+)µ0,c(K) + hf ′(0+) [cµ0,c(K) + µ1,c(K)] + op(h).

Particularly, if c = 0 and K(·) is symmetric, then E (fn(0)) = f(0)/2 + o(1).

There are several methods to deal with the density estimation at boundary points. Pos-

sible approaches include the boundary kernel (see Gasser and Müller (1979) and Müller

(1993)), reflection (see Schuster (1985) and Hall and Wehrly (1991)), transformation (see

Wand, Marron and Ruppert (1991) and Marron and Ruppert (1994)) and local polynomial

fitting (see Hjort and Jones (1996a) and Loader (1996)), and others.

A. Boundary Kernel

One way of choosing a boundary kernel is

K(c)(u) =
12

(1 + c)4
(1 + u)

󰀝
(1− 2c)u+

3c2 − 2c+ 1

2

󰀞
I[−1,c].

Note K(1)(t) = K(t), the Epanechnikov kernel as defined above. Moreover, Zhang and

Karunamuni (1998) showed that this kernel is optimal in the sense of minimizing the MSE

in the class of all kernels in order (0, 2) with exactly one change of sign in their support. The

downside to the boundary kernel is that it is not necessarily non-negative, as will be seen

on densities where f(0) = 0. Actually, this boundary kernel is commonly used in applied

research.

B. Reflection

The reflection method is to construct the kernel density estimate based on the synthetic

data {±Xt; 1 ≤ t ≤ n} where “reflected” data are {−Xt; 1 ≤ t ≤ n} and the original data a
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re {Xt; 1 ≤ t ≤ n}. This results in the estimate

fn(x) =
1

n

󰀫
n󰁛

t=1

Kh (Xt − x) +
n󰁛

t=1

Kh (−Xt − x)

󰀬
, for x ≥ 0.

Note that when x is away from the boundary, the second term in the above is practically

negligible. Hence, it only corrects the estimate in the boundary region. This estimator is

twice the kernel density estimate based on the synthetic data {±Xt; 1 ≤ t ≤ n}. See Schuster
(1985) and Hall and Wehrly (1991).

C. Transformation

The transformation method is to first transform the data by Yt = g (Xt), where g(·) is a

given monotone increasing function, ranging from −∞ to ∞. Now apply the kernel density

estimator to this transformed data set to obtain the estimate fn(y) for Y and apply the

inverse transform to obtain the density of X. Therefore,

fn(x) = |g′(x)| 1
n

n󰁛

t=1

Kh (g (Xt)− g(x)) .

The density at x = 0 corresponds to the tail density of the transformed data since log(0) =

−∞, which can not usually be estimated well due to lack of the data at tails. Except at this

point, the transformation method does a fairly good job. If g(·) is unknown in applications,

similar to the Box-Cox transformation, Karunamuni and Alberts (2005) suggested a para-

metric form and then estimated the parameter by the profile likelihood estimation. Also,

Karunamuni and Alberts (2005) considered other types of transformations.

D. Local Likelihood Fitting

The main idea is to consider the approximation log (f (Xt)) ≈ P (Xt − x), where P (u−x) =
󰁓p

j=0 aj(u− x)j with the localized version of log-likelihood

n󰁛

t=1

log (f (Xt))Kh (Xt − x)− n

󰁝
Kh(u− x)f(u)du.

With this approximation, the local likelihood proposed in Tibshirani and Hastie (1987) is

employed here to estimate f(x), as

L (a0, · · · , dp) =
n󰁛

t=1

P (Xt − x)Kh (Xt − x)− n

󰁝
Kh(u− x) exp(P (u− x))du.
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Let {󰁥aj} be the maximizer of the above local likelihood L (a0, · · · , dp). Then, the local

likelihood density estimate is

fn(x) = exp (󰁥a0) .

If the maximizer does not exist, then, fn(x) = 0. See Loader (1996) and Hjort and Jones

(1996a) for more details. If R is used for the local fit for density estimation, please use the

function density.lf() in the package localfit.

Exercise: Please conduct a Monte Carol simulation to see what the boundary effects are

and how the correction methods work. For example, you can consider some distribution

densities with a finite support such as beta-distribution.

Remark 1.5: From Cai (2011), it is very interesting to know that the boundary problem

does not exist for the Rosenblatt-Parzen estimator when Xt is nonstationary since Xt has a

higher probability of taking very large values. Indeed, as argued by Cai (2011), for any fixed

a, one has

P (|Xt| ≥ a
√
n) = P (|Xt|/σu

√
n ≥ a/σu) ≈ P (|Wu(r)| ≥ a/σu) = 2[1− Φ(a/

√
rσu)] > 0,

where t = rn for 0 < r < 1, Wu(·) is the standard Brownian motion generated by {ut}, and
Φ(·) is the CDF for the standard normal.

1.2.5 Curse of Dimensionality

As we discussed earlier, the kernel density or distribution estimation is basically one-dimensional.

For the multivariate case, the kernel density estimate is given by

fn(x) =
1

n

n󰁛

t=1

KH (Xt − x) , (1.8)

where KH(u) = K (H−1u) / det(H), K(u) is a multivariate kernel function, and H is the

bandwidth matrix such as for all 1 ≤ i, j ≤ p, n hij → ∞ and hij → 0 where hij is the (i, j)

th element of H. The bandwidth matrix is introduced to capture the dependent structure in

the independent variables. Particularly, if H is a diagonal matrix and K(u) =
󰁔p

j=1 Kj (uj)

where Kj(·) is a univariate kernel function, then, fn(x) becomes

fn(x) =
1

n

n󰁛

t=1

p󰁜

j=1

Khj
(Xjt − xj) ,
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which is called the product kernel density estimation. This case is commonly used in practice.

Similar to the univariate case, it is easy to derive the theoretical results for the multivariate

case, which is left as an exercise. See Wand and Jones (1995) for details.

For the product kernel estimate with hj = h, we can show easily that

E (fn(x)) = f(x) +
h2

2
tr (µ2(K)f ′′(x)) + o

󰀃
h2
󰀄
,

where µ2(K) =
󰁕
uuTK(u)du, and

Var (fn(x)) =
ν0(K)f(x)

nhp
+ o

󰀃
(nhp)−1

󰀄
,

so that the AMSE is given by

AMSE =
ν0(K)f(x)

nhp
+

h4

4
B(x),

where B(x) = (tr (µ2(K)f ′′(x)))2. By minimizing the AMSE, we obtain the optimal band-

width

hopt =

󰀕
pν0(K)f(x)

B(x)

󰀖1/(p+4)

n−1/(p+4),

which leads to the optimal rate of convergence for MSE which is O
󰀃
n−4/(4+p)

󰀄
by trading off

the rates between the bias and variance. When p is large, the so called curse of dimensionality

exists. To understand this problem quantitatively, let us look at the rate of convergence.

To have a comparable performance with one-dimensional nonparametric regression with n1

data points, for p-dimensional nonparametric regression, we need the number of data points

np,

O
󰀃
n−4/(4+p)
p

󰀄
= O

󰀓
n
−4/5
1

󰀔
,

or np = O
󰀓
n
(p+4)/5
1

󰀔
. Note that here we only emphasize on the rate of convergence for MSE

by ignoring the constant part. Table 1.3 shows the result with n1 = 100. The increase of

required sample sizes for higher dimension is exponentially fast.

Table 1.3: Sample sizes required for p-dimensional nonparametric estimate to have compa-
rable performance with that of 1-dimensional nonparametric estimate using size n1 = 100.

dimension (p) 2 3 4 5 6 7 8 9 10
sample size (np) 252 631 1,585 3,982 10,000 25,119 63,096 158,490 398,108
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Exercise: Please derive the asymptotic results given in (1.8) for the general multivariate

case.

In R, the built-in function density() is only for univariate case. For multivariate situ-

ations, there are two packages ks and KernSmooth. Function kde() in ks can compute

the multivariate density estimate for 2 to 6 dimensional data and Function bkde2D() in

KernSmooth computes the 2D kernel density estimate. Also, ks provides some functions

for some bandwidth matrix selection such as Hbcv() and Hscv() for 2D case and Hlscv()

and Hpi().

1.2.6 Reading Materials

Applications in Finance: Please read the papers by Aı̈t-Sahalia and Lo (1998, 2000),

Pritsker (1998) and Hong and Li (2005) on how to apply the kernel density estimation to

the nonparametric estimation of the state-price densities (SPD) or risk neutral densities and

nonparametric risk estimation based on the state-price density. Please download the data

from http://finance.yahoo.com/ (say, S&P500 index) to estimate the SPD.

1.3 Distribution Estimation

1.3.1 Smoothed Distribution Estimation

The question is how to obtain a smoothed estimate of CDF F (x). Well, one way of doing

so is to integrate the estimated PDF fn(x), given by

󰁥Fn(x) =

󰁝 x

−∞
fn(u)du =

1

n

n󰁛

i=1

K
󰀕
x−Xi

h

󰀖
,

whereK(x) =
󰁕 x

−∞ K(u)du; the distribution ofK(·). Why do we need this smoothed estimate

of CDF? To answer this question, we need to consider the mean squares error.

First, we derive the asymptotic bias. By the integration by parts, we have

E
󰁫
󰁥Fn(x)

󰁬
= E

󰀗
K
󰀕
x−Xi

h

󰀖󰀘
=

󰁝
F (x− hu)K(u)du

= F (x) +
h2

2
µ2(K)f ′(x) + o

󰀃
h2
󰀄

Next, we derive the asymptotic variance.

E

󰀗
K2

󰀕
x−Xi

h

󰀖󰀘
=

󰁝
F (x− hu)b(u)du = F (x)− hf(x)θ + o(h),

http://finance.yahoo.com/
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where b(u) = 2K(u)K(u) and θ =
󰁕
ub(u)du. Then,

Var

󰀗
K
󰀕
x−Xi

h

󰀖󰀘
= F (x)[1− F (x)]− hf(x)θ + o(h).

Define Ij(x) = Cov (I (X1 ≤ x) , I (Xj+1 ≤ t)) = Fj(x, x)− F 2(x) and

Inj(x) = Cov

󰀕
K
󰀕
x−X1

h

󰀖
,K

󰀕
x−Xj+1

h

󰀖󰀖
.

By means of Lemma 2 in Lehmann (1966), the covariance Inj(x) may be written as follows

Inj(t) =

󰁝 󰀝
P

󰀗
K
󰀕
x−X1

h

󰀖
> u,K

󰀕
x−Xj+1

h

󰀖
> v

󰀘

−P

󰀗
K
󰀕
x−X1

h

󰀖
> u

󰀘
P

󰀗
K
󰀕
x−Xj+1

h

󰀖
> v

󰀘󰀞
dudv.

Inverting the CDF, K(·) and making two changes of variables, the above relation becomes

Inj(x) =

󰁝
[Fj(x− hu, x− hv)− F (x− hu)F (x− hv)]K(u)K(v)dudv.

Expanding the right-hand side of the above equation according to Taylor’s formula, we obtain

|Inj(x)− Ij(x)| ≤ C h2.

By the Davydov’s inequality (see Lemma1.1), we have

|Inj(x)− Ij(x)| ≤ C α(j),

so that for any 1/2 < τ < 1,

|Inj(x)− Ij(x)| ≤ C h2τ α1−τ (j).

Therefore,

1

n

n−1󰁛

j=1

(n− j) |Inj(x)− Ij(x)| ≤
n−1󰁛

j=1

|Inj(x)− Ij(x)| ≤ C h2τ

∞󰁛

j=1

α1−τ (j) = O
󰀃
h2τ

󰀄

provided that
󰁓∞

j=1 α
1−τ (j) < ∞ for some 1/2 < τ < 1. Indeed, this assumption is satisfied

if α(n) = O
󰀃
n−β

󰀄
for some β > 2. By the stationarity, it is clear that

nVar
󰀓
󰁥Fn(x)

󰀔
= Var

󰀕
K
󰀕
x−X1

h

󰀖󰀖
+

2

n

n−1󰁛

j=1

(n− j)Inj(x).
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Therefore,

nVar
󰀓
󰁥Fn(x)

󰀔
= F (x)[1− F (x)]− hf(x)θ + o(h) + 2

∞󰁛

j=1

Ij(x) +O
󰀃
h2τ

󰀄

= σ2
F (x)− hf(x)θ + o(h).

We can establish the following asymptotic normality for 󰁥Fn(x) but the proof will be discussed

later.

Theorem 1.2: Under some regularity conditions, we have

√
n

󰀗
󰁥Fn(x)− F (x)− h2

2
µ2(K)f ′(x) + op

󰀃
h2
󰀄󰀘

→ N
󰀃
0, σ2

F (x)
󰀄
.

Similarly, we have

nAMSE
󰀓
󰁥Fn(x)

󰀔
=

nh4

4
µ2
2(K) [f ′(x)]

2
+ σ2

F (x)− hf(x)θ.

If θ > 0, minimizing the AMSE gives the

hopt =

󰀕
θf(x)

µ2
2(K) [f ′(x)]2

󰀖1/3

n−1/3,

and with this asymptotically optimal bandwidth, the optimal AMSE is given by

nAMSEopt

󰀓
󰁥Fn(x)

󰀔
= σ2

F (x)−
3

4

󰀕
θ2f 2(x)

µ2(K)f ′(x)

󰀖2/3

n−1/3.

Remark 1.6: From the aforementioned equation, we can see that if θ > 0, the AMSE of

󰁥Fn(x) can be smaller than that for Fn(x) in the second order. Also, it is easy to that if K(·)
is the Epanechnikov kernel, θ > 0.

1.3.2 Relative Efficiency and Deficiency

To measure the relative efficiency and deficiency of 󰁥Fn(x) over Fn(x), we define

i(n) = min
󰁱
k ∈ {1, 2, . . .};MSE (Fk(x)) ≤ MSE

󰀓
󰁥Fn(x)

󰀔󰁲

We have the following results without the detailed proofs which can be found in Cai and

Roussas (1998).
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Proposition 2: (i) Under some regularity conditions,

i(n)

n
→ 1, if and only if nh4

n → 0.

(ii) Under some regularity conditions,

i(n)− n

nh
→ θ(x), if and only if h3

n → 0,

where θ(x) = f(x)θ/σ2
F (x).

Remark 1.7: It is clear that the quantity θ(x) may be looked upon as a way of measuring

the performance of the estimate 󰁥Fn(x). Suppose that the kernel K(·) is chosen, so that θ > 0,

which is equivalent to θ(x) > 0. Then, for sufficiently large n, i(n) > n+nhn(θ(x)−ε). Thus,

i(n) is substantially larger than n, and, indeed, i(n)− n tends to ∞. Actually, Reiss (1981)

and Falk (1983) posed the question of determining the exact value of the superiority of θ over

a certain class of kernels. More specifically, let Km be the class of kernels K : [−1, 1] → ℜ
which are absolutely continuous and satisfy the requirements: K(−1) = 0,K(1) = 1, and
󰁕 1

−1
uµK(u)du = 0, µ = 1, · · · ,m, for some m = 0, 1, · · · (where the moment condition is

vacuous for m = 0). Set Ψm = sup {θ;K ∈ Km}. Then, Mammitzsch (1984) answered the

question posed by showing in an elegant manner. See Cai and Roussas (1998) for more

details and simulation results.

Exercise: Please conduct a Monte Carol simulation to see what the differences are for

smoothed and non-smoothed distribution estimations.

1.4 Quantile Estimation

Let X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the order statistics of {Xt}nt=1. Define the inverse of

F (x) as F−1(p) = inf{x ∈ ℜ;F (x) ≥ p}, where ℜ is the real line. The traditional estimate

of F (x) has been the empirical distribution function Fn(x) based on X1, . . . , Xn, while the

estimate of the p-th quantile ξp = F−1(p), 0 < p < 1, is the sample quantile function

ξpn = F−1
n (p) = X([np]), where [x] denotes the integer part of x. It is a consistent estimator

of ξp for α-mixing data (Yoshihara, 1995). However, as stated in Falk (1983), Fn(x) does not

take into account the smoothness of F (x); i.e., the existence of a probability density function

f(x). In order to incorporate this characteristic, investigators proposed several smoothed

quantile estimates, one of which is based on 󰁥Fn(x) obtained as a convolution between Fn(x)
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and a properly scaled kernel function; see the previous section. Finally, note that R has a

command quantile() which can be used for computing ξpn, the nonparametric estimate of

quantile.

1.4.1 Value-at-Risk and Expected Shortfall

Value at Risk (VaR) is a popular measure of market risk associated with an asset or a

portfolio of assets. It has been chosen by the Basel Committee on Banking Supervision as a

benchmark risk measure and has been used by financial institutions for asset management

and minimization of risk. Let {Xt}nt=1 be the market value of an asset over n periods of

t = 1 a time unit, and let Yt = − log (Xt/Xt−1) be the negative log-returns (loss). Suppose

{Yt}nj=1 is a strictly stationary dependent process with marginal distribution function F (y).

Given a positive value p close to zero, the 1− p level VaR is

νp = inf{u : F (u) ≥ 1− p} = F−1(1− p),

which specifies the smallest amount of loss such that the probability of the loss in market

value being larger than νp is less than p. Comprehensive discussions on VaR are available

in Duffie and Pan (1997) and Jorion (2001), and references therein. Therefore, VaR can

be regarded as a special case of quantile. R has a built-in package called VaR for a set of

methods for calculation of VaR, particularly, for some parametric models such as the General

Pareto Distribution (GPD). But the restrict parametric specifications might be misspecified.

A more general form for the generalized Pareto distribution with shape parameter k ∕= 0,

scale parameter σ, and threshold parameter θ, is

f(x) =
1

σ

󰀕
1 + k

x− θ

σ

󰀖−1/k−1

, and F (x) = 1−
󰀕
1 + k

x− θ

σ

󰀖−1/k

for θ < x, when k > 0. In the limit for k = 0, the density is f(x) = 1
σ
exp(−(x − θ)/σ) for

θ < x. If k = 0 and θ = 0, the generalized Pareto distribution is equivalent to the exponential

distribution. If k > 0 and θ = σ, the generalized Pareto distribution is equivalent to the

Pareto distribution.

Another popular risk measure is the expected shortfall (ES) which is the expected loss,

given that the loss is at least as large as some given quantile of the loss distribution (e.g.,

VaR), defined as

µp = E (Yt | Yt > νp) =

󰁝 ∞

νp

yf(y)dy/p.
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It is well known from Artzner, Delbaen, Eber and Heath (1999) that ES is a coherent risk

measure such as it satisfies the four axioms: homogeneity (increasing the size of a portfolio

by a factor should scale its risk measure by the same factor), monotonicity (a portfolio must

have greater risk if it has systematically lower values than another), risk-free condition or

translation invariance (adding some amount of cash to a portfolio should reduce its risk by

the same amount), and subadditivity (the risk of a portfolio must be less than the sum

of separate risks or merging portfolios cannot increase risk). VaR satisfies homogeneity,

monotonicity, and risk-free condition but is not sub-additive. See Artzner, et al. (1999) for

details.

1.4.2 Smoothed Quantile Estimation

The smoothed sample quantile estimate of ξp, 󰁥ξp, based on 󰁥Fn(x), is defined by:

󰁥ξp = 󰁥F−1
n (1− p) = inf

󰁱
x ∈ ℜ; 󰁥Fn(x) ≥ 1− p

󰁲
.

󰁥ξp is referred to in literature as the perturbed (smoothed) sample quantile. Asymptotic

properties of 󰁥ξp, both under independence as well as under certain modes of dependence,

have been investigated extensively in literature; see Cai and Roussas (1997) and Chen and

Tang (2005).

By the differentiability of 󰁥Fn(x), we use the Taylor expansion and ignore the higher terms

to obtain

󰁥Fn

󰀓
󰁥ξp
󰀔
= 1− p ≈ 󰁥Fn (ξp)− fn (ξp)

󰀓
󰁥ξp − ξp

󰀔
, (1.9)

then,

󰁥ξp − ξp ≈
󰁫
󰁥Fn (ξp)− (1− p)

󰁬
/fn (ξp) ≈

󰁫
󰁥Fn (ξp)− (1− p)

󰁬
/f (ξp) ,

since fn(x) is a consistent estimator of f(x). As an application of Theorem 1.2, we can

establish the following theorem for the asymptotic normality of 󰁥ξp but the proof is omitted

since it is similar to that for Theorem 1.2.

Theorem 1.3: Under some regularity conditions, we have

√
n

󰀗
󰁥ξp − ξp −

h2

2
µ2(K)f ′ (ξp) /f (ξp) + op

󰀃
h2
󰀄󰀘

→ N
󰀃
0, σ2

F (ξp) /f
2 (ξp)

󰀄
.
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Next, let us examine the AMSE. To this effect, from Theorem 1.3, it is easy to derive

the asymptotic bias and variance, which are h2µ2(K)f ′(ξp)/[2 f(ξp)] and σ2
F (ξp) /f

2(ξp) −
hθ/f(ξp), respectively, so that the AMSE is given by

nAMSE
󰀓
󰁥ξp
󰀔
=

nh4

4
µ2
2(K) [f ′ (ξp) /f (ξp)]

2
+ σ2

F (ξp) /f
2 (ξp)− hθ/f (ξp) .

If θ > 0, minimizing the AMSE gives the

hopt =

󰀣
θf (ξp)

µ2
2(K) [f ′ (ξp)]

2

󰀤1/3

n−1/3,

and with this asymptotically optimal bandwidth, the optimal AMSE is given by

nAMSEopt

󰀓
󰁥ξp
󰀔
= σ2

F (ξp) /f
2 (ξp)−

3

4

󰀕
θ2

µ2(K)f ′ (ξp) f (ξp)

󰀖2/3

n−1/3,

which indicates a reduction to the AMSE of the second order. Chen and Tang (2005)

conducted an intensive study on simulations to demonstrate the advantages of nonparametric

estimation 󰁥ξp over the sample quantile ξpn under the VaR setting. We refer to the paper by

Chen and Tang (2005) for simulation results and empirical examples.

Exercise: Please use the above procedures to estimate nonparametrically the ES and discuss

its properties as well as conduct simulation studies and empirical applications.

1.5 Computer Code

###############

# Example 1.1

##############

###############################################

# Define the Epanechnikov kernel function

kernel<-function(x){0.75*(1-x^2)*(abs(x)<=1)}

# Define the kernel density estimator

kernden=function(x,z,h,ker){

# parameters: x=variable; h=bandwidth; z=grid point; ker=kernel
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nz<-length(z)

nx<-length(x)

x0=rep(1,nx*nz)

dim(x0)=c(nx,nz)

x1=t(x0)

x0=x*x0

x1=z*x1

x0=x0-t(x1)

if(ker==1){x1=kernel(x0/h)} # Epanechnikov kernel

if(ker==0){x1=dnorm(x0/h)} # normal kernel

f1=apply(x1,2,mean)/h

return(f1)

}

# Simulation for different bandwidths and different kernels

n=300 # n=300

ker=1 # ker=1 => Epan; ker=0 => Gaussian

h0=c(0.25,0.5,1) # set initial bandwidths

z=seq(-4,4,by=0.1) # grid points

nz=length(z) # number of grid points

x=rnorm(n) # simulate x ~ N(0, 1)

if(ker==1){h_o=2.34*n^{-0.2}} # bandwidth for Epanechnikov kernel

if(ker==0){h_o=1.06*n^{-0.2}} # bandwidth for normal kernel

f1=kernden(x,z,h0[1],ker)

f2=kernden(x,z,h0[2],ker)

f3=kernden(x,z,h0[3],ker)

f4=kernden(x,z,h_o,ker)

text1=c("True","h=0.25","h=0.5","h=1","h=h_o")

data=cbind(dnorm(z),f1,f2,f3,f4) # combine them as a matrix

quartz()
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matplot(z,data,type="l",lty=1:5,col=1:5,xlab="",ylab="")

legend(-1,0.2,text1,lty=1:5,col=1:5)

f5=density(x, kernel=c("gaussian"))$y

z1=density(x, kernel=c("gaussian"))$x

f6=density(x, kernel=c("epanechnikov"))$y

data1=cbind(f5,f6)

text2=c("Gaussian","Epanechnikov")

quartz()

matplot(z1,data1,type="l",lty=1:2,col=1:2,xlab="",ylab="")

legend(-1,0.2,text2,lty=1:2,col=1:2)

quartz()

par(mfrow=c(1,2),mex=0.4,bg="light grey")

matplot(z,data,type="l",lty=1:5,col=1:5,xlab="",ylab="")

legend(-1,0.2,text1,lty=1:5,col=1:5)

text1=c("Gauassian","Epanechnikov")

matplot(z1,data1,type="l",lty=1:2,col=1:2,xlab="",ylab="")

legend(-3,0.2,text2,lty=1:2,col=1:2)

###################################################

##################

# Example 1.2

##################

##################################################

z1=read.table(file="/NP_lecture_note/data/ex3-2.txt", header=F)

# dada: weekly 3-month Treasury bill from 1954 to 2022

x=z1[,4]/100 # decimal

n=length(x)

y=diff(x) # Delta x_t=x_t-x_{t-1}=change rate



1.5. COMPUTER CODE 34

x=x[1:(n-1)]

n=n-1

x_star=(x-mean(x))/sqrt(var(x)) # standardized

den_3mtb=density(x_star,bw=0.30,kernel=c("epanechnikov"),

from=-3,to=3,n=61)

den_est=den_3mtb$y # estimated density values

z_star=seq(-3,3,by=0.1)

text1=c("Estimated Density","Standard Norm")

win.graph() # for Windows

# quartz() # for macOS

par(bg="light green")

plot(den_3mtb,main="Density of 3mtb (Buind-in)",ylab="",xlab="",

col.main="red")

points(z_star,dnorm(z_star),type="l",lty=2,col=2,ylab="",xlab="")

legend(0,0.45,text1,lty=c(1,2),col=c(1,2),cex=0.7)

h_den=0.5

f_hat=kernden(x_star,z_star,h_den,1)

ff=cbind(f_hat,dnorm(z_star))

win.graph()

par(bg="light blue")

matplot(z_star,ff,type="l",lty=c(1,2),col=c(1,2),ylab="",xlab="")

title(main="Density of 3mtb",col.main="red")

legend(0,0.55,text1,lty=c(1,2),col=c(1,2),cex=0.7)

###################################################

#############################

# Example 1.3 (delta=0)

#############################
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###############################################################

# Load needed packages

library(ggplot2)

library(tidyverse)

library(ggpubr)

set.seed(1) # to create reproducible results

cols <- c("magenta", "red", "orange","blue","green")

####################################################################

###############################################################

# Define the Rosenblatt-Parzen density estimator

RP_dens_est<-function(x,h,z){

# parameters: x=observed variable; h=bandwidth; z=grid point;

nz<-length(z)

nx<-length(x)

x0=rep(1,nx*nz)

dim(x0)=c(nx,nz)

x1=t(x0)

x0=x*x0

x1=z*x1

x0=x0-t(x1)

x1=0.5*(abs(x0/h)<=1) # the uniform kernel

f1=apply(x1,2,mean)/h

return(f1) # return fn(z)

}

####################################################################

############################################################################

# The Kernel Density Estimator for a Random Walk

# Simulation for different bandiwidths, sample sizes and values of fixed x.

rm(list = c()) # clean the previous variables
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x<-seq(-5,5,length.out=5) # take 5 values of fixed x

nrep=1e4 # repeat the simulation nrep times

ns= c(200,1000,5000) # sample size

delta=1

ds=c(0.5,1,2)

quest1<-list(NULL,NULL,NULL) # fn(x)

for (n in ns) { # sample size

for (i in 1:nrep) {

Xt<-cumsum(rnorm(n)) # generate data from a random walk

for (h in 1:length(ds)) {

d<-ds[h] # bandwidth= d*n^(-1/10)

quest1[[h]]<-c(quest1[[h]], #compute fn(x)

RP_dens_est(Xt,h=d*n^(-1/10),x))

}

}

}

tabmed<-list() # save median of fn(x)

tabsd<-list() # save sd of fn(x)

fig1<-list() # save box-plots

for (h in 1:length(ds)) {

d<-ds[h]

Quest1<-data.frame(quest=quest1[[h]], # rearrange simulated data

Grid.Points=factor(rep(paste("x=",x),nrep*length(ns)),

levels = paste("x=",x)),

n=factor(rep(paste("n=",ns),each=nrep*length(x)),

levels = paste("n=",ns)))

tabmed[[h]]<-(with(Quest1,

tapply(quest, list( n=n,Grid.Points=Grid.Points),median))

%>%as.data.frame())

tabsd[[h]]<-(with(Quest1,

tapply(quest, list( n=n,Grid.Points=Grid.Points),sd))

%>%as.data.frame())
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fig1[[h]]<-Quest1%>%

ggplot(aes(y=quest,x=n,fill=Grid.Points))+

geom_boxplot()+

scale_fill_manual(values = cols)+

xlab("")+

ylab(expression(paste(f[n],’(x)’)))+

labs(title=bquote(paste(’Bandwidth=’,.(d[1])%*%n^{-1/10})))+

theme(axis.title = element_text(size=19),

plot.title = element_text(size=21),

axis.text= element_text(size=17),

legend.text= element_text(size=17),

legend.title= element_text(size=17))

}

write.csv(tabmed,"median_of_densityest_rw.csv")

write.csv(tabsd,"sd_of_densityest_rw.csv")

ggsave("rwbarplots.pdf", plot = do.call(ggarrange, c(fig1,ncol=1,nrow=3)),

width = 24, height = 25, dpi =1500, bg = "white",units = "cm")

##################################################################

#######################

# Example 1.3 (delta=1)

#######################

############################################################################

# The Kernel Density Estimator for a Nearly Random Walk

# Simulation for different bandiwidths, sample sizes and values of fixed x.

rm(list = c())

x<-seq(-5,5,length.out=5) # take 5 values of fixed x

nrep=1e4 # repeat the simulation nrep times

ns= c(200,1000,5000) # sample size

delta=1

ds=c(0.5,1,2)

quest1<-list(NULL,NULL,NULL) # fn(x)
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for (n in ns) { # sample size

phi<-1-delta/n # coefficient for AR(1)

Phi<-diag(1,ncol=n,nrow=n)

for (j in 1:n) {

Phi[j,-(1:j)]<-phi^(1:(n-j))

}

for (i in 1:nrep) {

u<-matrix(rnorm(n),ncol=1) # error term

Xt<-as.numeric(Phi%*%u) # generate data from a nearly random walk

for (h in 1:length(ds)) {

d<-ds[h] # bandwidth= d*n^(-1/10)

quest1[[h]]<-c(quest1[[h]], #compute fn(x)

RP_dens_est(Xt,h=d*n^(-1/10),x))

}

}

}

tabmed<-list() # save median of fn(x)

tabsd<-list() # save sd of fn(x)

fig1<-list() # save box-plots

for (h in 1:length(ds)) {

d<-ds[h]

Quest1<-data.frame(quest=quest1[[h]], # rearrange simulated data

Grid.Points=factor(rep(paste("x=",x),nrep*length(ns)),

levels = paste("x=",x)),

n=factor(rep(paste("n=",ns),each=nrep*length(x)),

levels = paste("n=",ns)))

tabmed[[h]]<-(with(Quest1,

tapply(quest, list( n=n,Grid.Points=Grid.Points),median))

%>%as.data.frame())

tabsd[[h]]<-(with(Quest1,

tapply(quest, list( n=n,Grid.Points=Grid.Points),sd))

%>%as.data.frame())
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fig1[[h]]<-Quest1%>%

ggplot(aes(y=quest,x=n,fill=Grid.Points))+

geom_boxplot()+

scale_fill_manual(values = cols)+

xlab("")+

ylab(expression(paste(f[n],’(x)’)))+

labs(title=bquote(paste(’Bandwidth=’,.(d[1])%*%n^{-1/10})))+

theme(axis.title = element_text(size=19),

plot.title = element_text(size=21),

axis.text= element_text(size=17),

legend.text= element_text(size=17),

legend.title= element_text(size=17))

}

write.csv(tabmed,"median_of_densityest_nearrw.csv")

write.csv(tabsd,"sd_of_densityest_nearrw.csv")

ggsave("nearrwbarplots.pdf", plot = do.call(ggarrange, c(fig1,ncol=1,nrow=3)),

width = 24, height = 25, dpi =1500, bg = "white",units = "cm")

##################################################################
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Chapter 2

Nonparametric Regression Models

2.1 Prediction and Regression Functions

Suppose that we have the information set It at time t and we want to forecast the future

value, say Yt+1 (one step-ahead forecast, or Yt+s, s-step ahead). There are several forecasting

criteria available in the literature. The general form is

m (It) = min
a

E [ρ (Yt+1 − a) | It] ,

where ρ(·) is an objective (loss) function. Here are three major directions.

(1) If ρ(z) = z2 is the quadratic function, then, m (It) = E (Yt+1 | It), called the mean

regression function. Implicitly, it requires that the distribution of Yt should be sym-

metric. If the distribution of Yt is skewed, then this is not a good criterion.

(2) If ρτ (y) = y
󰀃
τ − I{y<0}

󰀄
called the check function, where τ ∈ (0, 1) and IA is the

indicator function of any set A, then, m (It) satisfies

󰁝 m(It)

−∞
f (y | It) du = F (m (It) | It) = τ,

where f(y | It) and F (m(It) | It) are the conditional PDF and CDF of Yt+1 given

It, respectively. This m (It) becomes the conditional quantile or quantile regression,

dented by qτ (It), proposed by Koenker and Bassett (1978,1982). Particularly, if τ =

1/2, then, m (It) is the well known least absolute deviation (LAD) regression which is

robust. If qτ (It) is a linear function of regressors like βT
τ Xt as in Koenker and Bassett

(1978,1982), Koenker (2005) developed the R module quantreg to make statistical

inferences on the linear quantile regression model.
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To fit a linear quantile regression using R, one can use the command rq() in the

package quantreg. For a nonlinear parametric model, the command is nlrq(). For

a nonparametric quantile model for univariate case, one can use the command lprq()

for implementing the local polynomial estimation. For an additive quantile regression,

one can use the commands rqss() and qss().

(3) If ρ(x) = 1
2
x2I|x|≤M +M(|x|−M/2)I|x|>M , the so called Huber function in literature,

then it is the Huber robust regression. We will not discuss this topic. If you have an

interest, please read the paper by Huber (1964) and the book by Rousseeuw and Leroy

(1987). In R, the library MASS has the function rlm() for robust linear model. Also,

the library lqs contains functions for bounded-influence regression.

To see differences among above three cases for the loss function ρ(·), please look at the

plot of loss functions given in Figure 2.1.
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Figure 2.1: The plot of three loss functions: quadratic loss (black solid line), Huber loss (red
dashed line) with M = 6, the check function ( τ = 0.05, green dotted line), and the check
function ( τ = 0.90, blue dashed-dotted line).

Note that for the second and third cases, the regression functions usually do not have
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a close form of expression. Since the information set It contains too many variables (high

dimension), it is often to approximate It by some finite numbers of variables, say Xt =

(Xt1, . . . , Xtp)
T (p ≥ 1), including the lagged variables and exogenous variables. First, our

focus is on the mean regression m (Xt). Of course, by the same token, we can consider the

nonparametric estimation of the conditional variance σ2(x) = Var (Yt | Xt = x). Why do

we need to consider nonlinear (nonparametric) models in economic practice? To find the

answer, please read the paper by Engle, Granger, Rice and Weiss (1986) and some examples

in economics and finance in the book by Granger and Teräsvirta (1993).

2.2 Kernel Estimation

How to estimate m(x) nonparametrically? Let us look at the Nadaraya-Watson estimate of

the mean regression m(x). The main idea is as follows:

m(x) =

󰁝
yf(y | x)dy =

󰁕
yf(x, y)dy󰁕
f(x, y)dy

,

where f(x, y) is the joint PDF of Xt and Yt. To estimate m(x), we can apply the plug-in

method. That is, plug the nonparametric kernel density estimate fn(x, y) (product kernel

method) into the right hand side of the above equation to obtain

󰁥mnw(x) =

󰁕
yfn(x, y)dy󰁕
fn(x, y)dy

= · · · = 1

n

n󰁛

t=1

YtKh (Xt − x) /fn(x) =
n󰁛

t=1

WtYt,

where fn(x) is the kernel density estimation of f(x), defined in Chapter 1 , and

Wt = Kh (Xt − x) /
n󰁛

t=1

Kh (Xt − x) .

󰁥mnw(x) is the well known Nadaraya-Watson (NW) estimator, proposed by Nadaraya (1964)

and Watson (1964). Note that the weights {Wt} do not depend on {Yt}. Therefore, 󰁥mnw(x)

is called a linear estimator, similar to the least squares estimate (LSE).

Let us look at the NW estimator from a different angle. 󰁥mnw(x) can be re-expressed as

the minimizer of the locally weighted least squares; that is,

󰁥mnw(x) = min
a

n󰁛

t=1

(Yt − a)2 Kh (Xt − x) .
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This means that when Xt is in a neighborhood of x,m (Xt) is approximated by a constant

a (local approximation). Indeed, we consider the following working model

Yt = m (Xt) + εt ≈ a+ εt

with the weights {Kh (Xt − x)}, where εt = Yt−E (Yt | Xt). Therefore, the Nadaraya-Watson

estimator is also called the local constant estimator.

In the implementation, for each grid point x, we can fit the following transformed linear

model

Y ∗
t = β1X

∗
t + εt,

where Y ∗
t =

󰁳
Kh (Xt − x)Yt and X∗

t =
󰁳

Kh (Xt − x). In R, we can use functions lm() or

glm() with weights {Kh (Xt − x)} to fit a weighted least squares or generalized linear model.

Or, you can use the weighted least squares theory (matrix multiplication); see Section 2.7.

2.2.1 Asymptotic Properties

We derive the asymptotic properties of the nonparametric estimator for the time series

situations. Note that the mathematical derivations are different for the iid case and time

series situations since the key equality E [Yt | X1, · · · , Xn] = E [Yt | Xt] = m (Xt) holds only

for the iid case. To ease notation, we consider only the simple case when p = 1. A simple

algebra leads to

󰁥mnw(x)fn(x) =
1

n

n󰁛

t=1

m (Xt)Kh (Xt − x)

󰁿 󰁾󰁽 󰂀
I1

+
1

n

n󰁛

t=1

Kh (Xt − x) εt

󰁿 󰁾󰁽 󰂀
I2

,

where fn(x) =
󰁓n

t=1 Kh (Xt − x) /n. We will show that I1 contributes only the asymptotic

bias and I2 gives the asymptotic normality. First, we derive the asymptotic bias for the

interior boundary points. By the Taylor’s expansion, when Xt is in (x− h, x+ h), we have

m (Xt) = m(x) +m′(x) (Xt − x) +
1

2
m′′ (xt) (Xt − x)2 ,
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where xt = x+ θ (Xt − x) with −1 < θ < 1. Then,

I11 ≡
1

n

n󰁛

t=1

m (Xt)Kh (Xt − x) = m(x)fn(x) +m′(x)
1

n

n󰁛

t=1

(Xt − x)Kh (Xt − x)

󰁿 󰁾󰁽 󰂀
J1(x)

+
1

2

1

n

n󰁛

t=1

m′′ (xt) (Xt − x)2 Kh (Xt − x)

󰁿 󰁾󰁽 󰂀
J2(x)

.

Then,

E [J1(x)] = E [(Xt − x)Kh (Xt − x)] =

󰁝
(u− x)Kh(u− x)f(u)du

= h

󰁝
uK(u)f(x+ hu)du = h2f ′(x)µ2(K) + o

󰀃
h2
󰀄
.

Similar to the derivation of the variance of fn(x) in (1.3), we can show that under some

conditions,

nhVar (J1(x)) = O(1).

Therefore, J1(x) = h2f ′(x)µ2(K) + op (h
2). By the same token, we have

E [J2(x)] = E
󰀅
m′′ (xt) (Xt − x)2 Kh (Xt − x)

󰀆

= h2

󰁝
m′′(x+ θhu)u2K(u)f(x+ hu)du = h2m′′(x)µ2(K)f(x) + o

󰀃
h2
󰀄
,

and Var (J2(x)) = O(1/nh). Therefore, J2(x) = h2m′′(x)µ2(K)f(x) + op (h
2). Hence,

I1 = m(x)f(x) +m′(x)J1(x) +
1

2
J2(x)

= m(x)f(x) +
h2

2
µ2(K) [m′′(x) + 2m′(x)f ′(x)/f(x)] f(x) + op

󰀃
h2
󰀄

by the fact that fn(x) = f(x) + op(1). The term I1 ≈ f(x) [m(x) +Bnw(x)], where

Bnw(x) =
h2

2
µ2(K) [m′′(x) + 2m′(x)f ′(x)/f(x)] (2.1)

is regarded as the asymptotic bias. The bias term involves not only curvatures of m(x)

(m′′(x)) but also the unknown density function f(x) and its derivative f ′(x) so that the

design can not be adaptive.

Under some regularity conditions, similar to (1.3), we can show that for the given grid

point x, an interior grid point,

nhVar(I2) → ν0(K)σ2
ε(x)f(x) ≡ σ2

m(x)f
2(x),
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where σ2
ε(x) = Var (εt | Xt = x) and σ2

m(x) = ν0(K)σ2
ε(x)/f(x). Further, by the fact that

fn(x) = f(x) + op(1) and the Slutsky theorem, we can establish the asymptotic normality

(the proof is provided later)

√
nh

󰀅
󰁥mnw(x)−m(x)− Bnw(x) + op

󰀃
h2
󰀄󰀆

→ N
󰀋
0, σ2

m(x)
󰀌
,

where Bnw(x) is given in (2.1).

2.2.2 Boundary Behavior

For expositional purpose, in what follows, we only consider the case when p = 1. As for the

boundary behavior for the NW estimator, we can follow Fan and Gijbels (1996). Without

loss of generality, we consider the left boundary point x = ch, 0 < c < 1. From Fan and

Gijbels (1996), we take K(·) to have support [−1, 1] and m(·) to have support [0, 1]. Similar

to (1.7), it is easy to see that if x = ch,

E [J1(ch)] = E [(Xt − ch)Kh (Xt − ch)] =

󰁝 1

0

(u− ch)Kh(u− ch)f(u)du

= h

󰁝 1/h−c

−c

uK(u)f(h(u+ c))du

= hf(0+)µ1,c(K) + h2f ′(0+) [µ2,c(K) + cµ1,c(K)] + o
󰀃
h2
󰀄
,

and

E [J2(ch)] = E
󰀅
m′′ (xt) (Xt − ch)2 Kh (Xt − ch)

󰀆

= h2

󰁝 1/h−c

−c

m′′(h(c+ θu))u2K(u)f(h(u+ c))du

= h2m′′(0+)µ2,c(K)f(0+) + o
󰀃
h2
󰀄
.

Also, we can see that

Var (J1(ch)) = O(1/nh) and Var (J2(ch)) = O(1/nh),

which imply that

J1(ch) = hf(0+)µ1,c(K) + op(h) and J2(ch) = h2m′′(0+)µ2,c(K)f(0+) + o
󰀃
h2
󰀄
.

This, in conjunction with (1.7), gives

I1 −m(ch) = m′(ch)J1(ch)/fn(ch) +
1

2
J2(ch)/fn(ch) = a(c,K)h+ b(c,K)h2 + op

󰀃
h2
󰀄
,
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where

a(c,K) =
m′(0+)µ1,c(K)

µ0,c(K)
,

and

b(c,K) =
µ2,c(K)m′′(0+)

2µ0,c(K)
+

f ′(0+)m′(0+)
󰀅
µ2,c(K)µ0,c(K)− µ2

1,c(K)
󰀆

f(0+)µ2
0,c(K)

.

Here, a(c,K)h + b(c,K)h2 serves as the asymptotic bias term, which has the order O(h).

Also, we can show that at the boundary point, the asymptotic variance has the following

form

nhVar (󰁥mnw(x)) → ν0,c(K)σ2
m(0+)/ [µ0,c(K)f(0+)] ,

which has the same order as that for the interior point although the scaling constant is

different.

2.3 Local Polynomial Estimate

To overcome the above shortcomings of local constant estimate, we can use the local poly-

nomial fitting scheme; see Fan and Gijbels (1996) for details. The main idea is described as

follows.

2.3.1 Formulation

Assume that the regression function m(x) has (q + 1) th order continuous derivative. For

ease notation, assume that p = 1. When Xt ∈ (x− h, x+ h), then,

m (Xt) ≈
q󰁛

j=0

m(j)(x)

j!
(Xt − x)j =

q󰁛

j=0

βj (Xt − x)j ,

where βj = m(j)(x)/j !. Therefore, when Xt ∈ (x− h, x+ h), the model becomes

Yt ≈
q󰁛

j=0

βj (Xt − x)j + εt.

Hence, we can apply the weighted least squares method. The locally weighted least squares

becomes
n󰁛

t=1

󰀣
Yt −

q󰁛

j=0

βj (Xt − x)j
󰀤2

Kh (Xt − x) . (2.2)
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Minimizing the above with respect to β = (β0, . . . , βq)
T to obtain the local polynomial

estimate 󰁥β;
󰁥β =

󰀃
XTWX

󰀄−1
XTWY, (2.3)

where W = diag {Kh (X1 − x) , · · · , Kh (Xn − x)},

X =

󰀳

󰁅󰁅󰁅󰁃

1 (X1 − x) · · · (X1 − x)q

1 (X2 − x) · · · (X2 − x)q

...
...

. . .
...

1 (Xn − x) · · · (Xn − x)q

󰀴

󰁆󰁆󰁆󰁄
, and Y =

󰀳

󰁅󰁅󰁅󰁃

Y1

Y2
...
Yn

󰀴

󰁆󰁆󰁆󰁄

Therefore, for 1 ≤ j ≤ q,

󰁥m(j)(x) = j!󰁥βj.

This means that the local polynomial method estimates not only the regression function

itself but also derivatives of regression.

2.3.2 Implementation in R and A Real Example

There are several ways of implementing the local polynomial estimator. One way you can

do so is to write your own code by using matrix multiplication as in 2.3 or employing func-

tion lm() or glm() with weights {Kh (Xt − x)}. Recently, in R, there are some build-in

packages for implementing the local polynomial estimate. For example, the package KernS-

mooth contains several functions. Function bkde() computes the kernel density estimate

and Function bkde2D() computes the 2D kernel density estimate as well as Function bkfe()

computes the kernel functional (derivative) density estimate. Function dpik() selects a band-

width for estimating the kernel density estimation using the plug-in method and Function

dpill() chooses a bandwidth for the local linear (q = 1) regression estimation using the

plug-in approach. Finally, Function locpoly() is for the local polynomial fitting including

a local polynomial estimate of the density of X (or its derivative) if the dependent variable

is omitted.

Example 2.1: We apply the kernel regression estimation and local polynomial fitting meth-

ods to estimate the drift and diffusion of the weekly 3-month Treasury bill from January 2,

1970 to December 26, 19971. Let xt denote the weekly 3-month Treasury bill. It is often to

1Similar to Example 1.2, the data set can be updated to today and it covers a longer period.
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model Xt by assuming that it satisfies the continuous-time stochastic differential equation

(Black-Scholes model)

dXt = µ (Xt) dt+ σ (Xt) dWt,

where Wt is a Wiener process, µ (Xt) is called the drift function and σ (Xt) is called the dif-

fusion function. Our interest is to identify µ (Xt) and σ (Xt). Assume a time series sequence

{Xt∆, 1 ≤ t ≤ n} is observed at equally spaced time points. Using the infinitesimal gen-

erator, see, for example, Øksendal (1985), the first-order approximations of moments of Xt,

a discretized version of the Ito’s process, are given by Stanton (1997) (see Fan and Zhang

(2003) for the higher orders)

y(t) = ∆Xt = µ (Xt)∆+ σ (Xt) ε
√
∆,

where ∆Xt = Xt+∆ −Xt, ε ∼ N(0, 1), and xt and εt are independent. Therefore,
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Figure 2.2: Scatterplots of ∆Xt, |∆Xt|, and (∆Xt)
2 versus x(t) = Xt with the smoothed

curves computed using scatter.smooth() and the local constant estimation.
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µ (Xt) = lim
∆→0

E [∆Xt | Xt] /∆ and σ2 (Xt) = lim
∆→0

E
󰀅
(∆Xt)

2 | Xt

󰀆
/∆.

Hence, estimating µ(x) and σ2(x) becomes a nonparametric regression problem. We can use

both local constant and local polynomial method to estimate µ(x) and σ2(x). As a result,

the local constant estimators (red line) together with the lowess() smoothers (black line)

and the scatterplots of ∆xt in (a), |∆xt| in (b), and (∆xt)
2 in (c) versus xt are presented in

Figure 2.2 and the local linear estimators (red line) together with the lowess() smoothers

(black line) and the scatterplots of ∆Xt in (a), |∆Xt| in (b), and (∆Xt)
2 in (c) versus Xt

are displaced in Figure 2.3. An alternative approach can be found in Aı̈t-Sahalia (1996)
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Figure 2.3: Scatterplots of ∆Xt, |∆Xt|, and (∆Xt)
2 versus x(t) with the smoothed curves

computed using scatter.smooth() and the local linear estimation.

to estimate µ(x) due to the domination of σ (Xt) ε
√
∆ over µ (Xt)∆; see, for example, the

paper by Cai and Hong (2009) for details on this regard.
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2.3.3 Complexity of Local Polynomial Estimator

To implement the local polynomial estimator, we have to choose the order of the polynomial

q, the bandwidth h and the kernel function K(·). These parameters are of course confounded

each other. Clearly, when h = ∞, the local polynomial fitting becomes a global polynomial

fitting and the order q determines the model complexity. Unlike in the parametric models,

the complexity of local polynomial fitting is primarily controlled by the bandwidth, as shown

in Fan and Gijbels (1996) and Fan and Yao (2003). Hence q is usually small and the issue

of choosing q becomes less critical. We discuss those issues in detail as follows.

(1) If the objective is to estimate m(j)(·)(j ≥ 0), the local polynomial fitting corrects

automatically the boundary bias when q− j is is odd. Further, when q− j is odd, comparing

with the order q−1 fit (so that q−j−1 is even), the order q fit contains one extra parameter

without increasing the variance for estimating m(j)(·). But this extra parameter creates

opportunities for bias reduction, particularly in the boundary regions; see the next section

and the books by Fan and Gijbels (1996) and Ruppert and Wand(1994). For these reasons,

the odd order fits (the order q is chosen so that q− j is odd) outperforms the even order fits

[the order (q − 1) fit so that q is even]. Based on theoretical and practical considerations,

the order q = j + 1 is recommended in Fan and Gijbels (1996). If the primary objective is

to estimate the regression function, one uses local linear fit and if the target function is the

first order derivative, one uses the local quadratic fit and so on.

(2) It is well known that the choice of the bandwidth h plays an important role in any

kernel smoothing, including the local polynomial fitting. A too large bandwidth causes over-

smoothing (reducing variance), creating excessive modeling bias, while a too small band-

width results in under-smoothing (reducing bias but increasing variance), obtaining wiggly

estimates. The bandwidth can be subjectively chosen by users via visually inspecting re-

sulting estimates, or automatically chosen by data via minimizing an estimated theoretical

risk (discussed later). Since the choice of bandwidth is not easy task, it is often attacked by

people who do not know well nonparametric techniques.

(3) Since the estimate is based on the local regression (2.2), it is reasonable to require a

non-negative weight function K(·). It can be shown (see Fan and Gijbels (1996)) that for all

choices of q and j, the optimal weight function is K(z) = 3/4 (1− z2)+, the Epanechnikov

kernel, based on minimizing the asymptotic variance of the local polynomial estimator.
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Thus, it is a universal weighting scheme and provides a useful benchmark for other kernels

to compare with. As shown in Fan and Gijbels (1996) and Fan and Yao (2003), other kernels

have nearly the same efficiency for practical use of q and j. Hence, the choice of the kernel

function is not critical.

The local polynomial estimator compares favorably with other estimators, including the

Nadaraya-Watson (local constant) estimator and other linear estimators such as the Gasser

and Müller estimator as in Gasser and Müller (1979) and the Priestley and Chao estimator

as in Priestley and Chao (1972). Indeed, it was shown by Fan (1993) that the local linear

fitting is asymptotically minimax based on the quadratic loss function among all linear esti-

mators and is nearly minimax among all possible linear estimators. This minimax property

is extended by Fan, Gasser, Gijbels, Brockmann and Engel (1995) to more general local

polynomial fitting. For the detailed comparisons of the above four estimators, see Fan and

Gijbels (1996).

Note that the Gasser and Müller estimator and the Priestley and Chao estimator are

particularly for the fixed design. That is, Xt = t. Let st = (2t+ 1)/2(t = 1, · · · , n− 1) with

s0 = −∞ and sn = ∞. The Gasser and Müller estimator is

󰁥mgm (t0) =
n󰁛

t=1

󰁝 st

st−1

Kh (u− t0) duYt.

Unlike the local constant estimator, no denominator is needed since the total weight

n󰁛

t=1

󰁝 st

st−1

Kh (u− t0) du = 1.

Indeed, the Gasser and Müller estimator is an improved version of the Priestley and Chao

estimator, which is defined as

󰁥mpc (t0) =
n󰁛

t=1

Kh (t− t0)Yt.

Note that the Priestley and Chao estimator is only applicable for the equi-space setting.

2.3.4 Properties of Local Polynomial Estimator

Define, for 0 ≤ j ≤ q,

sn,j(x) =
n󰁛

t=1

(Xt − x)j Kh (Xt − x) ,
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and Sn(x) = XTWX. Then, the (i + 1, j + 1) th element of Sn(x) is sn,i+j(x). Similar to

the evaluation of I11, we can show easily that

sn,j(x) = nhjµj(K)f(x) {1 + op(1)} .

Define, H = diag {1, h, · · · , hq} and S = (µi+j(K))0≤i,j≤q. Then, it is not difficult to show

that Sn(x) = nf(x)HSH {1 + op(1)}.
First of all, for 0 ≤ j ≤ q, let ej be a (q+1)× 1 vector with (j+1) th element being one

and zero otherwise. Then, 󰁥βj can be re-expressed as

󰁥βj = eTj
󰁥β =

n󰁛

t=1

Wj,n,h (Xt − x)Yt,

where Wj,n,h (Xt − x) is called the effective kernel in Fan and Gijbels (1996) and Fan and

Yao (2003), given by

Wj,n,h (Xt − x) = eTj Sn(x)
−1 (1, (Xt − x) , · · · , (Xt − x)q)

T
Kh (Xt − x) .

It is not difficult to show (based on the least square theory) that Wj,n,h (Xt − x) satisfies the

following the so-called discrete moment conditions

n󰁛

t=1

(Xt − x)l Wj,n,h (Xt − x) =

󰀫
1 if l = j

0 otherwise
(2.4)

Note that the local constant estimator does not have this property; see J1(x) in Section

2.2.1. This property implies that the local polynomial estimator is unbiased for estimating

βj, when the true regression function m(x) is a polynomial of order q.

To gain more insights about the local polynomial estimator, define the equivalent kernel

as in Fan and Gijbels (1996))

Wj(u) = eTj S
−1 (1, u, · · · , uq)T K(u).

Then, it can be shown, see, for example, Fan and Gijbels (1996), that

Wj,n,h (Xt − x) =
1

nhj+1f(x)
Wj ((Xt − x) /h) {1 + op(1)}

and

󰁝
ulWj(u)du =

󰀫
1 if l = j

0 otherwise.
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The implications of these results are summarized as follows.

As pointed out by Fan and Yao (2003), the local polynomial estimator works like a

kernel regression estimation with a known design density f(x). This explains why the local

polynomial fit adapts to various design densities. In contrast, the kernel regression estimator

has large bias at the region where the derivative of f(x) is large, namely it can not adapt

to highly-skewed designs. To see that, imagine the true regression function has large slope

in this region. Since the derivative of design density is large, for a given x, there are more

points on one side of x than the other. When the local average is taken, the Nadaraya-

Watson estimate is biased towards the side with more local data points because the local

data are asymmetrically distributed. This issue is more pronounced at the boundary regions,

since the local data are even more asymmetric. On the other hand, the local polynomial fit

creates asymmetric weights, if needed, to compensate for this kind of design bias. Hence, it

is adaptive to various design densities and to the boundary regions.

We next derive the asymptotic bias and variance expression for local polynomial estima-

tors. For independent data, we can obtain the bias and variance expression via conditioning

on the design matrix X. However, for time series data, conditioning on X would mean condi-

tioning on nearly the entire series. Hence, we derive the asymptotic bias and variance using

the asymptotic normality rather than conditional expectation. As explained in Chapter 1

localizing in the state domain weakens the dependent structure for the local data. Hence, one

would expect that the result for the independent data continues to hold for the stationary

process with certain mixing conditions. The mixing condition and the bandwidth should be

related, which can be seen later.

Set Bn(x) = (b1(x), · · · , bn(x))T , where, for 0 ≤ j ≤ q,

bj+1(x) =
n󰁛

t=1

󰀥
m (Xt)−

q󰁛

j=0

m(j)(x)

j!
(Xt − x)j

󰀦
(Xt − x)j Kh (Xt − x) .

Then,

󰁥β − β =
󰀃
XTWX

󰀄−1
Bn(x) +

󰀃
XTWX

󰀄−1
XTWε,

where ε = (ε1, · · · , εn)T . It is easy to show that if q is odd,

Bn(x) = nhq+1Hf(x)
m(q+1)(x)

(q + 1)!
c1,q {1 + op(1)} ,
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where, for 1 ≤ k ≤ 3, ck,q = (µq+k(K), · · · , µ2q+k(K))T . If q is even,

Bn(x) = nhq+2Hf(x)

󰀗
c2,q

m(q+1)(x)f ′(x)

f(x)(q + 1)!
+ c3,q

m(q+2)(x)

(q + 2)!

󰀘
{1 + op(1)} .

Note that f ′(x)/f(x) does not appear in the right hand side of Bn(x) when q is odd. In

either case, we can show that

nhVar[H(󰁥β − β)] → σ2(x)S−1S∗S−1/f(x) = Σ(x),

where S∗ is a (q + 1)× (q + 1) matrix with the (i, j) th element being νi+j−2(K).

This shows that the leading conditional bias term depends on whether q is odd or even.

By a Taylor series expansion argument, we know that when considering |Xt − x| < h, the

remainder term from a q th order polynomial expansion should be of order O (hq+1), so the

result for odd q is quite easy to understand. When q is even, (q + 1) is odd hence the term

hq+1 is associated with
󰁕
ulK(u)du for l odd, and this term is zero because K(u) is a even

function. Therefore, the hq+1 term disappears, while the remainder term becomes O (hq+2).

Since q is either odd or even, then we see that the bias term is an even power of h. This

is similar to the case where one uses higher order kernel functions based upon a symmetric

kernel function (an even function), where the bias is always an even power of h.

Finally, we can show that when q is odd,

√
nh[H(󰁥β − β)− B(x)] → N(0,Σ(x)),

the asymptotic bias term for the local polynomial estimator is

B(x) =
hq+1

(q + 1)!
m(q+1)(x)S−1c1,q {1 + op(1)} .

Or

√
nh2j+1

󰀅
󰁥m(j)(x)−m(j)(x)− Bj(x)

󰀆
→ N (0, σjj(x)) ,

where the asymptotic bias and variance for the local polynomial estimator of m(j)(x) are

Bj(x) =
j!hq+1−j

(q + 1)!
m(q+1)(x)

󰁝
uq+1Wj(u)du {1 + op(1)}

and

σjj(x) =
(j!)2σ2(x)

f(x)

󰁝
W 2

j (u)du.
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Similarly, we can derive the asymptotic bias and variance at boundary points if the regression

function has a finite support. For details, see the books by Fan and Gijbels (1996), Fan

and Yao (2003), and Ruppert and Wand (1994) for details. Indeed, define Sc, S
∗
c , and ck,q,c

similarly to S, S∗ and ck,q with µj(K) and νj(K) replaced by µj,c(K) and νj,c(K) respectively.

We can show that

√
nh

󰁫
H(󰁥β(ch)− β(ch))− Bc(0)

󰁬
→ N (0,Σc(0)) , (2.5)

where the asymptotic bias term for the local polynomial estimator at the left boundary point

is

Bc(0) =
hq+1

(q + 1)!
m(q+1)(0)S−1

c c1,q,c {1 + op(1)} ,

and the asymptotic variance is Σc(0) = σ2(0)S−1
c S∗

cS
−1
c /f(0). Or,

√
nh2j+1

󰀅
󰁥m(j)(ch)−m(j)(ch)− Bj,c(0)

󰀆
→ N (0, σjj,c(0)) ,

where with Wj,c(u) = eTj S
−1
c (1, u, · · · , uq)T K(u),

Bj,c(0) =
j!hq+1−j

(q + 1)!
m(q+1)(0)

󰁝 ∞

−c

uq+1Wj,c(u)du {1 + op(1)}

and

σjj,c(0) =
(j!)2σ2(0)

f(0)

󰁝 ∞

−c

W 2
j,c(u)du.

Exercise: Please derive the asymptotic properties for the local polynomial estimator. That

is to prove (2.5).

The above conclusions show that when q − j is odd, the bias at the boundary is of the

same order as that for points on the interior. Hence, the local polynomial fit does not create

excessive boundary bias when q− j is odd. Thus, the appealing boundary behavior for local

polynomial mean estimation extends to derivative estimation. However, when q − j is even,

the bias at the boundary is larger than in the interior, and the bias can also be large at

points where f(x) is discontinuous. This is referred to as boundary effect. For these reasons

(and the minimax efficiency arguments), it is recommended that one strictly set q − j to be

odd when estimating m(j)(x). It is indeed an odd world!
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2.3.5 Bandwidth Selection

As seen in previous sections, for stationary sequences of data under certain mixing conditions,

the local polynomial estimator performs very much like that for independent data, because

windowing reduces dependency among local data. Partially because of this, there are not

many studies on bandwidth selection for these problems. However, it is reasonable to expect

the bandwidth selectors for independent data continue to work for dependent data with

certain mixing conditions. Below, we summarize a few of useful approaches. When data do

not have strong enough mixing, the general strategy is to increase bandwidth in order to

reduce the variance.

A. Cross-Validation Type Approaches

As what we had already seen for the nonparametric density estimation, the cross-validation

method is very useful for assessing the performance of an estimator via estimating its pre-

diction error. The basic idea is to set one of the data point aside for validation of a model

and use the remaining data to build the model. It is defined as

CV(h) =
n󰁛

s=1

[Ys − 󰁥m−s (Xs)]
2 ,

where 󰁥m−s (Xs) is the local polynomial estimator with j = 0 and bandwidth h, but with-

out using the sth observation. The above summand is indeed a squared-prediction error

of the sth data point using the training set {(Xt, Yt) : t ∕= s}. This idea of the cross-

validation method is simple but is computationally intensive. An improved version, in terms

of computation, is the generalized cross-validation (GCV), proposed by Wahba (1977) and

Craven and Wahba (1979). This criterion can be described as follows. The fitted values

󰁥Y = (󰁥m (X1) , · · · , 󰁥m (Xn))
T can be expressed as 󰁥Y = H(h)Y , where H(h) is an n × n hat

matrix, depending on the X-variate and bandwidth h, and it is also called a smoothing

matrix. Then the GCV approach selects the bandwidth h that minimizes

GCV(h) =
󰀅
n−1tr(I −H(h))

󰀆−2
MASE(h),

where MASE(h) =
󰁓n

t=1 (Yt − 󰁥m (Xt))
2 /n is the average of squared residuals.

A drawback of the cross-validation type method is its inherited variability, see, for exam-

ple, Hall and Johnstone (1992). Further, it can not be directly applied to select bandwidths

for estimating derivative curves. As pointed out by Fan, Heckman and Wand (1995), the
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cross-validation type method performs poorly due to its large sample variation, even worse

for dependent data; see, for example, Shao (1993). Plug-in methods avoid these problems.

The basic idea is to find a bandwidth h minimizing estimated mean integrated square error

(MISE). See Ruppert, Sheather and Wand (1995) and Fan and Gijbels (1995) for details.

B. Nonparametric AIC Selector

Inspired by the nonparametric version of the Akaike final prediction error criterion proposed

by Tjøstheim and Auestad (1994b) for the lag selection in nonparametric setting, Cai and

Tiwari (2000) proposed a simple and quick method to select bandwidth for the foregoing

estimation procedures, which can be regarded as a nonparametric version of the AIC to be

attentive to the structure of time series data and the overfitting or under-fitting tendency.

Note that the idea is also motivated by its analogue of Cai and Tiwari (2000). The basic

idea is described as follows.

By recalling the classical AIC for linear models under the likelihood setting

−2( maximized log likelihood) + 2 (number of estimated parameters),

Cai and Tiwari (2000) proposed the following nonparametric AIC to select h minimizing

AIC(h) = log{MASE}+ ψ(tr(H(h)), n), (2.6)

where ψ(tr(H(h)), n) is chosen particularly to be the form of the bias-corrected version of

the AIC, due to Hurvich and Tsai (1989),

ψ(tr(H(h)), n) = 2{tr(H(h)) + 1}/[n− {tr(H(h)) + 2}], (2.7)

and tr(H(h)) is the trace of the smoothing matrix H(h), regarded as the nonparametric

version of degrees of freedom, called the effective number of parameters, denoted by df.

See the book by Hastie and Tibshirani (1990, Section 3.5) for the detailed discussion on

this aspect for nonparametric models.2 Note that actually, (2.6) is a generalization of the

AIC for the parametric regression and autoregressive time series contexts, in which tr(H(h))

is the number of regression (autoregressive) parameters in the fitting model. In view of

(2.7), when ψ(tr(H(h)), n) = −2 log(1 − tr(H(h))/n), then, (2.6) becomes the generalized

2Indeed, the df can be fined as either df = tr
󰀃
H(h)H(h)T

󰀄
or tr

󰀃
2H(h)−H(h)H(h)T

󰀄
or the average

of the aforementioned two since tr(H(h)) ≤ tr
󰀃
H(h)H(h)T

󰀄
≤ tr

󰀃
2H(h)−H(h)H(h)T

󰀄
. See Hastie and

Tibshirani (1990, p. 54).
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cross-validation (GCV) criterion, commonly used to select the bandwidth in the time series

literature even in the iid setting, when ψ(tr(H(h)), n) = 2tr(H(h))/n, then, (2.6) is the

classical AIC discussed in Engle, Granger, Rice, and Weiss (1986) for time series data,

and when ψ(tr(H(h)), n) = − log(1 − 2tr(H(h))/n), (2.6) is the T-criterion, proposed and

studied by Rice (1984) for iid samples. It is clear that when tr(H(h))/n → 0, then the

nonparametric AIC, the GCV and the T-criterion are asymptotically equivalent. However,

the T-criterion requires tr(H(h))/n < 1/2, and, when tr(H(h))/n is large, the GCV has

relatively weak penalty. This is especially true for the nonparametric setting. Therefore,

the criterion proposed here counteracts the over-fitting tendency of the GCV. Note that

Hurvich, Simonoff, and Tsai (1998) gave the detailed derivation of the nonparametric AIC

for the nonparametric regression problems under the iid Gaussian error setting and they

argued that the nonparametric AIC performs reasonably well and better than some existing

methods in the literature.

2.4 Functional Coefficient Model

2.4.1 Model and Its Properties

As mentioned earlier, when p is large, there exists the so called curse of dimensionality. To

overcome this shortcoming, one way to do so is to consider the functional coefficient model

as studied in Cai, Fan and Yao (2000) and the additive model discussed in Section 2.5. First,

we study the functional coefficient model. To use the notation from Cai, Fan and Yao (2000),

we change the notation from the previous sections.

Let {Ui,Xi, Yi}∞i=−∞ be jointly strictly stationary processes with Ui taking values in

ℜk and Xi taking values in ℜp. Typically, k is small. Let E (Y 2
1 ) < ∞. We define the

multivariate regression function

m(u,x) = E(Y | U = u,X = x), (2.8)

where (U,X, Y ) has the same distribution as (Ui,Xi, Yi). In a pure time series context,

both Ui and Xi consist of some lagged values of Yi. The functional-coefficient regression

model has the form

m(u,x) =

p󰁛

j=1

aj(u)xj, (2.9)
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where the functions {aj(·)} are measurable from ℜk to ℜ1 and x = (x1, . . . , xp)
T . This model

has been studied extensively in the literature; see Cai, Fan and Yao (2000) for the detailed

discussions.

For simplicity, in what follows, we consider only the case k = 1 in (2.9). Extension to the

case k > 1 involves no fundamentally new ideas. Note that models with large k are often

not practically useful due to the “curse of dimensionality”. If k is large, to overcome the

problem, one way to do so is to consider an index functional coefficient model proposed by

Fan, Yao and Cai (2003)

m(u,x) =

p󰁛

j=1

aj
󰀃
βTu

󰀄
xj, (2.10)

where β1 = 1, and Fan, Yao and Cai (2003) studied the estimation procedures, bandwidth

selection and applications. Furthermore, Cai, Juhl and Yang (2015) considered the model

in (2.10) on how to select β and {aj(u)} by using the least absolute shrinkage and selection

operator (LASSO) type method.

As elaborated by Cai et al. (2006) and Cai (2010), functional coefficient models are ap-

propriate and flexible enough for many applications, in particular when additive separability

of covariates is unsuitable for the problem at hand. For ease of notation, we assume here

that p = 1 and k = 1. Indeed, by assuming that m(x, u) has a higher order partial derivative

with respect to x and applying Taylor expansion to m(x, u), one obtains

m(x, u) =
∞󰁛

j=1

∂jm(0, u)

∂xj

xj

j!
≈

p󰁛

j=0

aj(u)xj (2.11)

for some p (large), where aj(u) = (j!)−1∂jm(0, u)/∂xj and xj = xj. Equation (2.11) implies

that a functional coefficient model in (2.9) might be a good approximation to a general

nonparametric model in (2.8).

More importantly, as argued in Cai (2010), the functional coefficient model in (2.9) has

an ability to capture heteroscedasticity. To get insights about this, it is easy to see that

Var (Yi | Ut) = a (Ui)
⊤ Var (Xi | Ui) a (Ui) + σ2

ε (Ui) ,

where σ2
ε (Ui) = Var (εi | Ui). Therefore, the first term in the above expression behaves as

an ARCH type model. Furthermore, the functional coefficient approach allows appreciable

flexibility on the structure of fitted models without suffering from the curse of dimensionality

since the nonparametric estimation is conducted in ℜk instead of ℜp+k.
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Finally, functional coefficient model can be used as a tool to study covariate adjusted

regression for situations where both predictors and response in a regression model are not

directly observable, but are contaminated with a multiplicative factor that is determined

by the value of an unknown function of an observable covariate (confounding variable); see

Sentürk and Müller (2005) and Cai and Xu (2008) for more details. For more advantages

for the model in (2.9), the reader is referred to the paper by Cai (2010), in particular, about

applying functional coefficient model to analyze economic and financial data. Actually,

Hong and Lee (2003) considered the applications of model (2.10) to the exchange rates, Juhl

(2005) studied the unit root behavior of nonlinear time series models, Li, Huang, Li and Fu

(2002) modeled the production frontier using China’s manufactural industry data, Sentürk

and Müller (2006) modeled the nonparametric correlation between two variables using a

functional coefficient model as in (2.10), and Cai et al. (2006) considered the nonparametric

two-stage instrumental variable estimators for returns to education.

2.4.2 Local Linear Estimation

As recommended by Fan and Gijbels (1996), we estimate the coefficient functions {aj(·)}
using the local linear regression method from observations {Ui,Xi, Yi}ni=1, where Xi =

(Xi1, . . . , Xip)
T . We assume throughout that aj(·) has a continuous second derivative. Note

that we may approximate aj(·) locally at u0 by a linear function aj(u) ≈ aj + bj (u− u0).

The local linear estimator is defined as 󰁥aj (u0) = 󰁥aj, where
󰁱󰀓

󰁥aj,󰁥bj
󰀔󰁲

minimize the sum of

weighted squares

n󰁛

i=1

󰀥
Yi −

p󰁛

j=1

{aj + bj (Ui − u0)}Xij

󰀦2

Kh (Ui − u0) , (2.12)

where Kh(·) = h−1K(·/h), K(·) is a kernel function on ℜ1 and h > 0 is a bandwidth. It

follows from the least squares theory that

󰁥aj (u0) =
n󰁛

k=1

Kn,j (Uk − u0,Xk)Yk, (2.13)

where

Kn,j(u,x) = eTj,2p

󰀓
󰁨X

T
W󰁨X

󰀔−1
󰀕

x
ux

󰀖
Kh(u), (2.14)

ej,2p is the 2p× 1 unit vector with 1 at the j th position, 󰁨X denotes an n× 2p matrix with
󰀃
XT

i ,X
T
i (Ui − u0)

󰀄
as its i th row, and W = diag {Kh (U1 − u0) , . . . , Kh (Un − u0)}.
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2.4.3 Bandwidth Selection: Multi-Fold Cross-Validation Criterion

Various existing bandwidth selection techniques for nonparametric regression can be adapted

for the foregoing estimation; see, e.g., Fan, Yao, and Cai (2003) and the nonparametric

AIC as discussed in Section 2.3.5. Also, Fan and Gijbels (1996) and Ruppert, Sheather,

and Wand (1995) developed data-driven bandwidth selection schemes based on asymptotic

formulas for the optimal bandwidths, which are less variable and more effective than the

conventional data-driven bandwidth selectors such as the cross-validation bandwidth rule.

Similar algorithms can be developed for the estimation of functional-coefficient models based

on (2.24); however, this will be a future research topic.

Indeed, Cai, Fan and Yao (2000) proposed a simple and quick method for selecting

bandwidth h. It can be regarded as a modified multi-fold cross-validation criterion that is

attentive to the structure of stationary time series data. Let m and Q be two given positive

integers and n > mQ. The basic idea is first to use Q sub-series of lengths n − qm(q =

1, , · · · , Q) to estimate the unknown coefficient functions and then compute the one-step

forecasting errors of the next section of the time series of length m based on the estimated

models. More precisely, we choose h that minimizes the average mean squared (AMS) error

AMS(h) =

Q󰁛

q=1

AMSq(h), (2.15)

where for q = 1, · · · , Q,

AMSq(h) =
1

m

n−qm+m󰁛

i=n−qm+1

󰀫
Yi −

p󰁛

j=1

󰁥aj,q (Ui)Xi,j

󰀬2

,

and {󰁥aj,q(·)} are computed from the sample {(Ui,Xi, Yi) , 1 ≤ i ≤ n− qm} with bandwidth

equal h[n/(n−qm)]1/5. Note that we re-scale bandwidth h for different sample sizes according

to its optimal rate, i.e. h ∝ n−1/5. In practical implementations, we may use m = [0.1n] and

Q = 4. The selected bandwidth does not depend critically on the choice of m and Q, as long

as mQ is reasonably large so that the evaluation of prediction errors is stable. A weighted

version of AMS(h) can be used, if one wishes to down-weight the prediction errors at an

earlier time. We believe that this bandwidth should be good for modeling and forecasting

for time series.
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2.4.4 Smoothing Variable Selection

Of importance is to choose an appropriate smoothing variable U in applying functional

coefficient regression models if U is a lagged variable. Knowledge on physical background of

the data may be very helpful, as Cai, Fan and Yao (2000) discussed in modeling the lynx

data. Without any prior information, it is pertinent to choose U in terms of some data-

driven methods such as the Akaike information criterion and its variants, cross-validation,

and other criteria. Ideally, we would choose U as a linear function of given explanatory

variables according to some optimal criterion, which can be fully explored in the work by

Fan, Yao and Cai (2003). Nevertheless, we propose here a simple and practical approach:

let U be one of the given explanatory variables such that AMS defined in (2.15) obtains its

minimum value. Obviously, this idea can be also extended to select p (number of lags) as

well.

2.4.5 Goodness-of-Fit Test

To test whether model (2.9) holds with a specified parametric form which is popular in

economic and financial applications, such as the threshold autoregressive (TAR) models

aj(u) =

󰀫
aj1, if u ≤ η

aj2, if u > η,

or generalized exponential autoregressive (EXPAR) models3

aj(u) = αj + (βj + γju) exp
󰀃
−θju

2
󰀄
,

or smooth transition autoregressive (STAR) models

aj(u) = [1− exp (−θju)]
−1 ( logistic),

or

aj(u) = 1− exp
󰀃
−θju

2
󰀄

(exponential),

or

aj(u) = [1− exp (−θj|u|)]−1 (absolute),

we propose a goodness-of-fit test based on the comparison of the residual sum of squares

(RSS) from both parametric and nonparametric fittings. This method is closely related

3For more discussions on those models, please see the survey paper by van Dijk, Teräsvirta and Franses
(2002).
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to the sieve likelihood method proposed by Fan, Zhang and Zhang (2001). Those authors

demonstrated the optimality of this kind of procedures for independent samples.

Consider the null hypothesis

H0 : aj(u) = αj(u,θ), 1 ≤ j ≤ p, (2.16)

where αj(·,θ) is a given family of functions indexed by unknown parameter vector θ. Let 󰁥θ
be an estimator of θ. The RSS under the null hypothesis is

RSS0 = n−1

n󰁛

i=1

󰁱
Yi − α1

󰀓
Ui, 󰁥θ

󰀔
Xi1 − · · ·− αp

󰀓
Ui, 󰁥θ

󰀔
Xip

󰁲2

.

Analogously, the RSS corresponding to model (2.9) is

RSS1 = n−1

n󰁛

i=1

{Yi − 󰁥a1 (Ui)Xi1 − · · ·− 󰁥ap (Ui)Xip}2 .

The test statistic is defined as

Tn = (RSS0 − RSS1) /RSS1 = RSS0/RSS1 − 1,

and we reject the null hypothesis (2.16) for large value of Tn. Clearly, Tn can be re-expressed

as

n (Tn + 1) ≈ n ln (RSS0/RSS1) = −2 log likelihood ratio

if εi ∼ N (0, σ2). Therefore, Tn is termed as a generalized likelihood ratio (GLR) test in Cai,

Fan and Yao (2000) and a generalized F -test in Cai and Tiwari (2000), which can be used

to do testing when regressors are even persistent; see the paper by Zhu, Liu, Ling and Cai

(2020)

Since there is no asymptotic theory for the proposed test statistic Tn, we suggest using

the following nonparametric Bootstrap approach to evaluate the p value of the test:

1. Generate the Bootstrap residuals {ε∗i }
n
i=1 from the empirical distribution of the centered

residuals {󰁥εi − ε̄}ni=1, where

󰁥εi = Yi − 󰁥a1 (Ui)Xi1 − · · ·− 󰁥ap (Ui)Xip, 󰁥ε = 1

n

n󰁛

i=1

󰁥εi,

and define

Y ∗
i = α1

󰀓
Ui, 󰁥θ

󰀔
Xi1 + · · ·+ αp

󰀓
Ui, 󰁥θ

󰀔
Xip + ε∗i
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2. Calculate the Bootstrap test statistic T ∗
n based on the sample {Ui,Xi, Y

∗
i }

n
i=1.

3. Reject the null hypothesis H0 when Tn is greater than the upper-α point of the condi-

tional distribution of T ∗
n given {Ui,Xi, Yi}ni=1.

The p-value of the test is simply the relative frequency of the event {T ∗
n ≥ Tn} in the repli-

cations of the Bootstrap sampling. For the sake of simplicity, we use the same bandwidth

in calculating T ∗
n as that in Tn. Note that we Bootstrap the centralized residuals from

the nonparametric fit instead of the parametric fit, because the nonparametric estimate of

residuals is always consistent, no matter whether the null or the alternative hypothesis is

correct. The method should provide a consistent estimator of the null distribution even when

the null hypothesis does not hold. Actually, Kreiss, Neumann and Yao (2009) considered

nonparametric Bootstrap tests in a general nonparametric regression setting. They proved

that, asymptotically, the conditional distribution of the Bootstrap test statistic is indeed

the distribution of the test statistic under the null hypothesis. It may be proven that the

similar result holds here as long as 󰁥θ converges to θ at the rate n−1/2. Note that the above

nonparametric Bootstrap does not work when the heterogeneity exists. If so, Cai (2007)

suggested using the wild Bootstrap instead of the aforementioned nonparametric Bootstrap,

see the paper by Cai (2007) for details.

Finally, note that it is a great challenge to derive the asymptotic property of the testing

statistic Tn under time series context and some necessary assumptions. That is to show that

bn [Tn − λn] → N
󰀃
0, σ2

󰀄

for some normalization constants bn and λn, which is a great project for future research.

Note that Fan, Zhang and Zhang (2001) derived the above result for the iid sample.

2.4.6 Asymptotic Results

We first present a result on mean squared convergence that serves as a building block for

our main result and is also of independent interest. We now introduce some notation. Let

Sn = Sn (u0) =

󰀕
Sn,0 Sn,1

Sn,1 Sn,2

󰀖

and

Tn = Tn (u0) =

󰀕
Tn,0 (u0)
Tn,1 (u0)

󰀖
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with

Sn,j = Sn,j (u0) =
1

n

n󰁛

i=1

XiX
T
i

󰀕
Ui − u0

h

󰀖j

Kh (Ui − u0)

and

Tn,j (u0) =
1

n

n󰁛

i=1

Xi

󰀕
Ui − u0

h

󰀖j

Kh (Ui − u0)Yi. (2.17)

Then, the solution to (2.12) can be expressed as

󰁥β = H−1S−1
n Tn, (2.18)

where H = diag(1, . . . , 1, h, . . . , h) with p-diagonal elements 1’s and p diagonal elements h

’s. To facilitate the notation, we denote

Ω = (ωl,m)p×p = E
󰀃
XXT | U = u0

󰀄
(2.19)

Also, let f(u,x) denote the joint density of (U,X) and fu(u) be the marginal density of U .

We use the following convention: if U = Xj0 for some 1 ≤ j0 ≤ p, then f(u,x) becomes f(x)

the joint density of X.

Theorem 2.1: Let Condition A.1 hold and f(u,x) be continuous at the point u0. Let hn → 0

and nhn → ∞, as n → ∞. Then it holds that

E (Sn,j (u0)) → fu (u0)Ω (u0)µj,

and

nhnVar
󰀓
Sn,j (u0)l,m

󰀔
→ fu (u0) ν2jωl,m

for each 0 ≤ j ≤ 3 and 1 ≤ l,m ≤ p.

As a consequence of Theorem 2.1, we have

Sn
P−→ fu (u0)S, and Sn,3

P−→ µ3fu (u0)Ω

in the sense that each element converges in probability, where

S =

󰀕
Ω µ1Ω
µ1Ω µ2Ω

󰀖

Put

σ2(u,x) = Var(Y | U = u,X = x) (2.20)
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and

Ω∗ (u0) = E
󰀅
XXTσ2(U,X) | U = u0

󰀆
. (2.21)

Let c0 = µ2/ (µ2 − µ2
1) and c1 = −µ1/ (µ2 − µ2

1).

Theorem 2.2: Let σ2(u,x) and f(u,x) be continuous at the point u0. Then under Condi-

tions A.1 and A.2,

󰁳
nhn

󰀗
󰁥a (u0)− a (u0)−

h2

2

µ2
2 − µ1µ3

µ2 − µ2
1

a′′ (u0)

󰀘
→ N

󰀃
0,Θ2 (u0)

󰀄
, (2.22)

provided that fu (u0) ∕= 0, where

Θ2 (u0) =
c20ν0 + 2c0c1ν1 + c21ν2

fu (u0)
Ω−1 (u0)Ω

∗ (u0)Ω
−1 (u0) . (2.23)

Theorem 2.2 indicates that the asymptotic bias of 󰁥aj (u0) is

h2

2

µ2
2 − µ1µ3

µ2 − µ2
1

a′′j (u0)

and the asymptotic variance is (nhn)
−1 θ2j (u0), where

θ2j (u0) =
c20ν0 + 2c0c1ν1 + c21ν2

fu (u0)
eTj,pΩ

−1 (u0)Ω
∗ (u0)Ω

−1 (u0) ej,p.

When µ1 = 0, the bias and variance expressions can be simplified as h2µ2a
′′
j (u0) /2 and

θ2j (u0) =
ν0

fu (u0)
eTj,pΩ

−1 (u0)Ω
∗ (u0)Ω

−1 (u0) ej,p.

The optimal bandwidth for estimating aj(·) can be defined to be the one that minimizes the

squared bias plus variance. The optimal bandwidth is given by

hj, opt =

󰀥
µ2
2ν0 − 2µ1µ2ν1 + µ2

1ν2

fu (u0) (µ2
2 − µ1µ3)

2

eTj,pΩ
−1 (u0)Ω

∗ (u0)Ω
−1 (u0) ej,p

󰀋
a′′j (u0)

󰀌2

󰀦1/5

n−1/5. (2.24)

2.4.7 Conditions and Proofs

We first impose some conditions on the regression model but they might not be the weakest

possible.
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Condition A.1

a. The kernel function K(·) is a bounded density with a bounded support [−1, 1].

b. |f (u, v | x0,x1; l)| ≤ M < ∞, for all l ≥ 1, where f (u, v, | x0,x1; l) is the conditional

density of (U0, Ul)) given (X0,Xl), and f(u | x) ≤ M < ∞, where f(u | x) is the

conditional density of U given X = x.

c. The process {Ui,Xi, Yi} is α-mixing with
󰁓

kc[α(k)]1−2/δ < ∞ for some δ > 2 and

c > 1− 2/δ.

d. E|X|2δ < ∞, where δ is given in Condition A.1c.

Condition A.2

a. Assume that

E
󰀋
Y 2
0 + Y 2

l | U0 = u,X0 = x0;Ul = v,Xl = x1

󰀌
≤ M < ∞ (2.25)

for all l ≥ 1,x0,x1 ∈ ℜp, u, and v in a neighborhood of u0.

b. Assume that hn → and nhn → ∞. Further, assume that there exists a sequence of

positive integers sn such that sn → ∞, sn = o
󰀓
(nhn)

1/2
󰀔
, and (n/hn)

1/2 α (sn) → 0,

as n → ∞

c. There exists δ∗ > δ, where δ is given in Condition A.1c, such that

E
󰀋
|Y |δ∗ | U = u,X = x

󰀌
≤ M4 < ∞ (2.26)

for all x ∈ ℜp and u in a neighborhood of u0, and

α(n) = O
󰀃
n−θ∗

󰀄
, (2.27)

where θ∗ ≥ δ δ∗/ {2 (δ∗ − δ)}

d. E|X|2δ∗ < ∞, and n1/2−δ/4hδ/δ∗−1/2−δ/4 = O(1)

Remark 2.1: We provide a sufficient condition for the mixing coefficient α(n) to satisfy

Conditions A.1c and A.2b. Suppose that hn = An−ρ(0 < ρ < 1, A > 0), sn = (nhn/ log n)
1/2

and α(n) = O
󰀃
n−d

󰀄
for some d > 0. Then Condition A.1c is satisfied for d > 2(1−1/δ)/(1−
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2/δ) and Condition A.2b is satisfied if d > (1+ρ)/(1−ρ). Hence both conditions are satisfied

if

α(n) = O
󰀃
n−d

󰀄
, d > max

󰀝
1 + ρ

1− ρ
,
2(1− 1/δ)

1− 2/δ

󰀞
.

Note that this is a trade-off between the order δ of the moment of Y and the rate of decay of

the mixing coefficient; the larger the order δ, the weaker the decay rate of α(n).

To study the joint asymptotic normality of 󰁥a (u0), we need to center the vector Tn (u0)

by replacing Yi with Yi −m (Ui,Xi) in the expression (2.17) of Tn,j (u0). Let

T∗
n,j (u0) =

1

n

n󰁛

i=1

Xi

󰀕
Ui − u0

h

󰀖j

Kh (Ui − u0) [Yi −m (Ui,Xi)] ,

and

T∗
n =

󰀕
T∗

n,0

T∗
n,1

󰀖
.

Because the coefficient functions aj(u) are conducted in the neighborhood of |Ui − u0| < h,

by Taylor’s expansion,

m (Ui,Xi) = XT
i a (u0) + (Ui − u0)X

T
i a

′ (u0) +
h2

2

󰀕
Ui − u0

h

󰀖2

XT
i a

′′ (u0) + op
󰀃
h2
󰀄
,

where a′ (u0) and a′′ (u0) are the vectors consisting of the first and second derivatives of the

functions aj(·). Then,

Tn,0 −T∗
n,0 = Sn,0a (u0) + hSn,1a

′ (u0) +
h2

2
Sn,2a

′′ (u0) + op
󰀃
h2
󰀄

and

Tn,1 −T∗
n,1 = Sn,1a (u0) + hSn,2a

′ (u0) +
h2

2
Sn,3a

′′ (u0) + op
󰀃
h2
󰀄

so that

Tn −T∗
n = SnHβ +

h2

2

󰀕
Sn,2

Sn,3

󰀖
a′′ (u0) + op

󰀃
h2
󰀄

(2.28)

where β =
󰀓
a (u0)

T , a′ (u0)
T
󰀔T

. Thus it follows from (2.18), (2.28), and Theorem 2.1. that

H(󰁥β − β) = f−1
u (u0)S

−1T∗
n +

h2

2
S−1

󰀕
µ2Ω
µ3Ω

󰀖
a′′ (u0) + op

󰀃
h2
󰀄

(2.29)

from which the bias term of 󰁥β (u0) is evident. Clearly,

󰁥a (u0)−a (u0) =
Ω−1

fu (u0) (µ2 − µ2
1)

󰀅
µ2T

∗
n,0 − µ1T

∗
n,1

󰀆
+
h2

2

µ2
2 − µ1µ3

µ2 − µ2
1

a′′ (u0)+op
󰀃
h2
󰀄
. (2.30)



2.4. FUNCTIONAL COEFFICIENT MODEL 72

Thus, (2.30) indicates that the asymptotic bias of 󰁥a (u0) is

h2

2

µ2
2 − µ1µ3

µ2 − µ2
1

a′′ (u0)

Let

Qn =
1

n

n󰁛

i=1

Zi, (2.31)

where

Zi = Xi

󰀗
c0 + c1

󰀕
Ui − u0

h

󰀖󰀘
Kh (Ui − u0) [Yi −m (Ui,Xi)] (2.32)

with c0 = µ2/ (µ2 − µ2
1) and c1 = −µ1/ (µ2 − µ2

1). It follows from (2.30) and (2.31) that

󰁳
nhn

󰀗
󰁥a (u0)− a (u0)−

h2

2

µ2
2 − µ1µ3

µ2 − µ2
1

a′′ (u0)

󰀘
=

Ω−1

fu (u0)

󰁳
nhnQn + op(1). (2.33)

To finish the proof, one needs the following lemma, whose proof is more involved than that

for Theorem 2.1. Therefore, we prove only this lemma. Throughout this section, we let C

denote a generic constant, which may take different values at different places.

Lemma 2.1: Under Conditions A.1 and A.2 and the assumption that hn → 0 and nhn →
∞, as n → ∞, if σ2(u,x) and f(u,x) are continuous at the point u0, then we have

(a) hnVar (Z1) → fu (u0)Ω
∗ (u0) [c

2
0ν0 + 2c0c1ν1 + c21ν2]

(b) hn

󰁓n−1|
l=1 |Cov (Z1,Zl+1)| = o(1); and

(c) nhnVar (Qn) → fu (u0)Ω
∗ (u0) [c

2
0ν0 + 2c0c1ν1 + c21ν2]

Proof: First, by conditioning on (U1,X1) and using Theorem 1 of Sun (1984), we have

Var (Z1) = E

󰀥
X1X

T
1 σ

2 (U1,X1)

󰀝
c0 + c1

󰀕
U1 − u0

h

󰀖󰀞2

K2
h (U1 − u0)

󰀦

=
1

h

󰀅
fu (u0)Ω

∗ (u0)
󰀋
c20ν0 + 2c0c1ν1 + c21ν2

󰀌
+ o(1)

󰀆
(2.34)

The result (c) follows in an obvious manner from (a) and (b) along with

Var (Qn) =
1

n
Var (Z1) +

2

n

n−1󰁛

l=1

󰀕
1− l

n

󰀖
Cov (Z1,Zl+1) . (2.35)
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It thus remains to prove part (b). To this end, let dn → ∞ be a sequence of positive integers

such that dn hn → 0. Define

J1 =
dn−1󰁛

l=1

|Cov (Z1,Zl+1)| and J2 =
n−1󰁛

l=dn

|Cov (Z1,Zl+1)|

It remains to show that J1 = o (h−1) and J2 = o (h−1).

We remark that because K(·) has a bounded support [−1, 1], aj(u) is bounded in

the neighborhood of u ∈ [u0 − h, u0 + h]. Let B = max1≤j≤p sup|u−u0|<h |aj(u)| and

g(x) =
󰁓p

j=1 |xj|. Then sup|u−u0|<h |m(u,x)| ≤ B g(x). By conditioning on (U1,X1) and

(Ul+1,Xl+1), and using (2.25) and Condition A.1b, we have, for all l ≥ 1,

|Cov (Z1,Zl+1) |

≤ CE
󰀅󰀏󰀏X1X

T
l+1

󰀏󰀏 {|Y1|+Bg (X1)} {|Yl+1|+Bg (Xl+1)}Kh (U1 − u0)Kh (Ul+1 − u0)
󰀆

≤ CE
󰁫󰀏󰀏X1X

T
l+1

󰀏󰀏 󰀋M2 +B2g2 (X1)
󰀌1/2 󰀋

M2 +B2g2 (Xl+1)
󰀌1/2

Kh (U1 − u0)Kh (Ul+1 − u0)
󰁬

≤ CE
󰀅󰀏󰀏X1X

T
l+1

󰀏󰀏 {1 + g (X1)} {1 + g (Xl+1)}
󰀆
≤ C. (2.36)

It follows that

J1 ≤ Cdn = o
󰀃
h−1

󰀄

by the choice of dn. We next consider the upper bound of J2. To this end, using the

Davydov’s inequality (see Lemma 1.1), we obtain, for all 1 ≤ j,m ≤ p and l ≥ 1,

|Cov (Z1j, Zl+1,m)| ≤ C[α(l)]1−2/δ
󰁫
E |Zj|δ

󰁬1/δ 󰁫
E |Zm|δ

󰁬1/δ
. (2.37)

By conditioning on (U,X) and using Conditions A.1b and A.2c, one has

E
󰁫
|Zj|δ

󰁬
≤ CE

󰁫
|Xj|δ Kδ

h (U − u0)
󰀋
|Y |δ +Bδgδ(X)

󰀌󰁬

≤ CE
󰁫
|Xj|δ Kδ

h (U − u0)
󰀋
M3 +Bδgδ(X)

󰀌󰁬

≤ Ch1−δE
󰁫
|Xj|δ

󰀋
M3 +Bδgδ(X)

󰀌󰁬
≤ Ch1−δ. (2.38)

A combination of (2.37) and (2.38) leads to

J2 ≤ C h2/δ−2

∞󰁛

l=dn

[α(l)]1−2/δ ≤ C h2/δ−2d−c
n

∞󰁛

l=dn

lc[α(l)]1−2/δ = o
󰀃
h−1

󰀄
(2.39)

by choosing dn such that h1−2/δdcn = C, so the requirement that dn hn → 0 is satisfied.
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Proof of Theorem 2.2

We use the small-block and large-block technique-namely, partition {1, . . . , n} into 2qn + 1

subsets with large block of size r = rn and small block of size s = sn. Set

q = qn =

󰀙
n

rn + sn

󰀚
. (2.40)

We now use the Cramr-Wold device to derive the asymptotic normality of Qn. For any unit

vector d ∈ ℜp, let Zn,i =
√
hdTZi+1, i = 0, . . . , n− 1. Then,

√
nhdTQn =

1√
n

n−1󰁛

i=0

Zn,i,

and, by Lemma 2.1,

Var (Zn,0) ≈ fu (u0)d
TΩ∗ (u0)d

󰀅
c20ν0 + 2c0c1ν1 + c21ν2

󰀆

≡ θ2 (u0) (2.41)

and
n−1󰁛

l=0

|Cov (Zn,0, Zn,l)| = o(1). (2.42)

Define the random variables, for 0 ≤ j ≤ q − 1,

ηj =

j(r+s)+r−1󰁛

i=j(r+s)

Zn,i, ξj =

(j+1)(r+s)󰁛

i=j(r+s)+r

Zn,i, and ζq =
n−1󰁛

i=q(r+s)

Zn,i.

Then,

√
nhdTQn =

1√
n

󰀫
q−1󰁛

j=0

ηj +

q−1󰁛

j=0

ξj + ζq

󰀬
≡ 1√

n
{Qn,1 +Qn,2 +Qn,3} . (2.43)

We show that as n → ∞

1

n
E [Qn,2]

2 → 0,
1

n
E [Qn,3]

2 → 0, (2.44)

󰀏󰀏󰀏󰀏󰀏E [exp (itQn,1)]−
q−1󰁜

j=0

E [exp (itηj)]

󰀏󰀏󰀏󰀏󰀏 → 0, (2.45)

1

n

q−1󰁛

j=0

E
󰀃
η2j
󰀄

→ θ2 (u0, ) , (2.46)
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and
1

n

q−1󰁛

j=0

E
󰀅
η2j I

󰀋
|ηj| ≥ εθ (u0)

√
n
󰀌󰀆

→ 0 (2.47)

for every ε > 0. (2.44) implies that Qn,2 and Qn,3 are asymptotically negligible in probability,

(2.45) shows that the summands ηj in Qn,1 are asymptotically independent and (2.46) and

(2.47) are the standard Lindeberg-Feller conditions for asymptotic normality of Qn,1 for the

independent setup.

First, we establish (2.44). For this purpose, we choose the large block size. Condition

A.2b implies that there is a sequence of positive constants γn → ∞ such that γnsn =

o
󰀃√

nhn

󰀄
and

γn (n/hn)
1/2 α (sn) → 0. (2.48)

Define the large block size rn by rn =
󰁭
(nhn)

1/2 /γn

󰁮
and the small block size sn. Then it

can easily be shown from (2.48) that as n → ∞,

sn/rn → 0, rn/n → 0, rn (nhn)
−1/2 → 0, (2.49)

and

(n/rn)α (sn) → 0. (2.50)

Observe that

E [Qn,2]
2 =

q−1󰁛

j=0

Var (ξj) + 2
󰁛

0≤i<j≤q−1

Cov (ξi, ξj) ≡ I1 + I2. (2.51)

It follows from stationarity and Lemma 2.1 that

I1 = qnVar (ξ1) = qnVar

󰀣
sn󰁛

j=1

Zn,j

󰀤
= qnsn

󰀅
θ2 (u0) + o(1)

󰀆
. (2.52)

Next, consider the second term I2 in the right side of (2.51). Let r∗j = j (rn + sn), then

r∗j − r∗i ≥ rn for all j > i. Thus, we have

|I2| ≤ 2
󰁛

0≤i<j≤q−1

sn󰁛

j1=1

sn󰁛

j2=1

󰀏󰀏󰀏Cov
󰀓
Zn,r∗i +rn+j1 , Zn,r∗j+rn+j2

󰀔󰀏󰀏󰀏

≤ 2
n−rn󰁛

j1=1

n󰁛

j2=j1+rn

|Cov (Zn,j1 , Zn,j2)| .
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By stationarity and Lemma 2.1, one obtains

|I2| ≤ 2n
n󰁛

j=rn+1

|Cov (Zn,1, Zn,j)| = o(n). (2.53)

Hence, by (2.49) - (2.53), we have

1

n
E [Qn,2]

2 = O
󰀃
qnsnn

−1
󰀄
+ o(1) = o(1). (2.54)

It follows from stationarity, (2.49), and Lemma 2.1 that

Var [Qn,3] = Var

󰀳

󰁃
n−qn(rn+sn)󰁛

j=1

Zn,j

󰀴

󰁄 = O (n− qn (rn + sn)) = o(n). (2.55)

Combining (2.49), (2.54), and (2.55), we establish (2.44). As for (2.46) by stationarity,

(2.49), (2.50), and Lemma 2.1, it is easily seen that

1

n

qn−1󰁛

j=0

E
󰀃
η2j
󰀄
=

qn
n
E
󰀃
η21
󰀄
=

qnrn
n

· 1

rn
Var

󰀣
rn󰁛

j=1

Zn,j

󰀤
→ θ2 (u0) .

To establish (2.45), we use Lemma 1.1 of Volkonskii and Rozanov (1959) (see also Ibragimov

and Linnik 1971, p. 338) to obtain
󰀏󰀏󰀏󰀏󰀏E [exp (itQn,1)]−

qn−1󰁜

j=0

E [exp (itηj)]

󰀏󰀏󰀏󰀏󰀏 ≤ 16 (n/rn)α (sn)

tending to 0 by (2.50).

It remains to establish (2.47). For this purpose, we use Theorem 4.1 in Shao and Yu

(1996) and Condition A.2 to obtain

E
󰀅
η21I

󰀋
|η1| ≥ εθ (u0)

√
n
󰀌󰀆

≤ Cn1−δ/2E
󰀓
|η1|δ

󰀔
≤ Cn1−δ/2rδ/2n

󰁱
E
󰀓
|Zn,0|δ

∗
󰀔󰁲δ/δ∗

(2.56)

As in (2.38),

E
󰀓
|Zn,0|δ

∗
󰀔
≤ Ch1−δ∗/2. (2.57)

Therefore, by (2.56) and (2.57),

E
󰀅
η21I

󰀋
|η1| ≥ εθ (u0)

√
n
󰀌󰀆

≤ Cn1−δ/2rδ/2n h(2−δ∗)δ/(2δ∗). (2.58)

Thus, by (2.40) and the definition of rn, and using Conditions A.2c and A.2d, we obtain

1

n

q−1󰁛

j=0

E
󰀅
η2j I

󰀋
|ηj| ≥ εθ (u0)

√
n
󰀌󰀆

≤ Cγ1−δ/2
n n1/2−δ/4hδ/δ∗−1/2−δ/4

n → 0, (2.59)

because γn → ∞. This completes the proof of the theorem.
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2.4.8 Monte Carlo Simulations and Applications

1. Applications to Time Series

See Cai, Fan and Yao (2000) for the detailed Monte Carlo simulation results and applications.

2. Analysis Of Boston Housing Data

1. Description of Data

The well known Boston house price data set4 consists of 14 variables, collected on

each of 506 different houses from a variety of locations. The Boston house-price data set

was used originally by Harrison and Rubinfeld (1978) and it was re-analyzed in Belsley, Kuh

and Welsch (1980) by various transformations in the table on pages 244-261. Variables are,

denoted by X1, · · · , X13 and Y , in order: The dependent variable is Y , the median value of

CRIM per capita crime rate by town

ZN proportion of residential land zoned for lots over 25,000 sq.ft.

INDUS proportion of non-retail business acres per town

CHAS Charles River dummy variable (= 1 if tract bounds river; 0

otherwise)

NOX nitric oxides concentration (parts per 10 million)

RM average number of rooms per dwelling

AGE proportion of owner-occupied units built prior to 1940

DIS weighted distances to five Boston employment centers

RAD index of accessibility to radial highways

TAX full-value property-tax rate per 10,000USD

PTRATIO pupil-teacher ratio by town

B 1000(Bk− 0.63)∧2 where Bk is the proportion of blacks by town

LSTAT lower status of the population

MEDV Median value of owner-occupied homes in $1000s

owner-occupied homes in $1, 000 ’s (house price). The major factors possibly affecting the

house prices used in the literature are: X13 = proportion of population of lower educational

status X6 = the average number of rooms per house, X1 = the per capita crime rate, X10 =

4This dataset can be downloaded from the web site at http://lib.stat.cmu.edu/datasets/boston.

http://lib.stat.cmu.edu/datasets/boston
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the full property tax rate, and X11 = the pupil/teacher ratio. For the complete description of

all 14 variables, see Harrison and Rubinfeld (1978) and Gilley and Pace (1996) for corrections.

2. Linear Models

Harrison and Rubinfeld (1978) was the first to analyze this data set using a standard

regression model Y versus all 13 variables including some higher order terms or transfor-

mations on Y and Xj ’s. The purpose of this study is to see whether there are the effects

of pollution on housing prices via hedonic pricing methodology. Belsley, Kuh and Welsch

(1980) used this data set to illustrate the effects of using robust regression and outlier detec-

tion strategies. From these results, we might conclude that the model might not be linear

and there might exist outliers. Also, Pace and Gilley (1997) added a geo-referencing idea

(spatial statistics) and used a spatial estimation method to consider this data set.

Exercise: Please use all possible methods to explore this dataset to see what is the best

linear model you can obtain.

3. Fit a Varying-Coefficient Model

Sentürk and Müller (2006) studied the correlation between the house price Y and the

crime rate X1 adjusted by the confounding variable X13 through a varying coefficient model

and they concluded that the expected effect of increasing crime rate on declining house prices

seems to be only observed for lower educational status neighborhoods in Boston. Finally,

it is surprising that all the existing nonparametric models aforementioned above did not

include the crime rate X1, which may be an important factor affecting the housing price,

and did not consider the interaction terms such as X13 and X1. See the paper by Fan and

Huang (2005) for fitting a varying coefficient model to the Boston housing data.

Exercise: Please fit a a varying coefficient model to the Boston housing data.

2.5 Additive Model

2.5.1 Model

In this section, we use the notation from Cai (2002). Let {Xt,Yt, Zt}∞t=−∞ be jointly sta-

tionary processes, where Xt and Yt take values in ℜp and ℜq with p, q ≥ 0, respectively.

The regression surface is defined by

m(x,y) = E {Zt | Xt = x,Yt = y} . (2.60)
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Here, it is assumed that E |Zt| < ∞. Note that the regression function m(·, ·) defined in

(2.60) can identify only the sum

m(x,y) = µ+ g1(x) + g2(y). (2.61)

Such a decomposition holds, for example, for the following nonlinear additive autoregressive

model with exogenous variables (ARX)

Yt = µ+ g1
󰀃
Xt−j1 , . . . , Xt−jp

󰀄
+ g2

󰀃
Yt−i1 , . . . , Yt−iq

󰀄
+ ηt,

and

Xt−j1 = g3
󰀃
Xt−j2 , . . . , Xt−jp

󰀄
+ εt.

For detailed discussions on the ARX model, the reader is referred to the papers by Masry

and Tjøstheim (1997) and Cai and Masry (2000). For identifiability, it is assumed that

E {g1 (Xt)} = 0 and E {g2 (Yt)} = 0. Then, the projection of m(x,y) on the g1(x)-direction

is defined by

E {m (x,Yt)} = µ+ g1(x) + E {g2 (Yt)} = µ+ g1(x). (2.62)

Clearly, g1(·) can be identified up to an additive constant and g2(·) can be retrieved likewise.

A thorough discussion of additive time series models defined in (2.61) can be found

in Chen and Tsay (1993). Additive components can be estimated with a one-dimensional

nonparametric rate. In most papers, to estimate additive components, several methods have

been proposed. For example, Chen and Tsay (1993) used the iterative backfitting procedures,

such as the ACE algorithm and the BRUTO approach; see Hastie and Tibshirani (1990)

for details. But, their asymptotic properties are not well understood due to the implicit

definition of the resulting estimators. To attenuate the drawbacks of iterative procedures,

Auestad and Tjøstheim (1991) and Tjøstheim and Auestad (1994a) proposed a direct method

based on an average regression surface idea, referred to as projection method in Tjøstheim

and Auestad (1994a) for time series data. As pointed out by Cai and Fan (2000), a direct

method has some advantages, such as it does not rely on iterations, it can make computation

fast, and more importantly, it allows an asymptotic analysis. Finally, the projection method

was extended to nonlinear ARX models by Masry and Tjøstheim (1997) using the kernel

method and Cai and Masry (2000) coupled with the local polynomial approach. It should be

remarked that the projection method, under the name of marginal integration, was proposed
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independently by Newey (1994) and Linton and Nielsen (1995) for iid samples, and since then,

some important progresses have been made by some authors. For example, by combining

the marginal integration with one-step backfitting, Linton (1997,2000) presents an efficient

estimator, Mammen, Linton, and Nielsen (1999) established rigorously the asymptotic theory

of the backfitting, Cai and Fan (2000) considered estimating each component using the

weighted projection method coupled with the local linear fitting in an efficient way, and

Sperlich, Tjøstheim, and Yang (2002) extended the efficient method to models with simple

interactions.

The projection method has some disadvantages although it has the aforementioned mer-

its. The projection method may not be efficient if covariates (endogenous or exogenous

variables) are strongly correlated, which is particularly relevant for autoregressive models.

The intuitive interpretation is that additive components are not orthogonal. To overcome

this shortcoming, two efficient estimation methods have been proposed in the literature. The

first one is called weight function procedure, proposed by Fan, Härdle, and Mammen (1998)

for iid samples and extended to time series situations by Cai and Fan (2000). With an ap-

propriate choice of the weight function, additive components can be efficiently estimated in

the sense that an additive component can be estimated with the same asymptotic bias and

variance as if the rest of components were known. The second one is to combine the marginal

integration with one-step backfitting, introduced by Linton (1997,2000) for iid samples and

extended by Sperlish, Tjøstheim, and Yang (2002) to additive models with single interac-

tions, but this method has not been advocated for time series situations. However, there

has not been any attempt to discuss the bandwidth selection for the projection method and

its variations in the literature due to their complexity. In practice, one bandwidth is usu-

ally used for all components although Cai and Fan (2000) argued that different bandwidths

might be used theoretically to deal with the situation that additive components posses the

different smoothness. Therefore, the projection method may not be optimal in practice in

the sense that one bandwidth is used.

To estimate unknown additive components in (2.61 efficiently, following the spirit of the

marginal integration with one-step backfitting proposed by Linton (1997) for iid samples, I

use a two-stage method, due to Linton (2000), coupled with the local linear (polynomial)

method, which has some attractive properties, such as mathematical efficiency, bias reduction

and adaptation of edge effect (see Fan and Gijbels, 1996). The basic idea of the two-stage
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approach is described as follows. At the first stage, one obtains the initial estimated values

for all components. More precisely, the idea for estimating any additive component is first to

estimate directly high-dimensional regression surface by the local linear method and then to

average the regression surface over the rest of variables to stabilize variance. Such an initial

estimate, in general, is under-smoothed so that the bias should be asymptotically negligible.

At the second stage, the local linear (polynomial) technique is used again to estimate any

additive component by using the initial estimated values of the rest of components. In such

a way, it is shown that the estimate at the second stage is not only efficient in the sense of

being equivalent to a procedure based on knowing other components, but also making the

bandwidth selection much easier. Note that this technique is not novel to this chapter since

the two-stage method is first used by Linton (1997,2000) for iid samples, but many details

and insights are.

2.5.2 Backfitting Algorithm

The building block of the generalized additive model algorithm is the scatterplot smoother.

We will first describe scatterplot smoothing in a simple setting, and then indicate how it is

used in generalized additive modeling. Here y is a response or outcome variable, and x is

a prognostic factor. We wish to fit a smooth curve f(x) that summarizes the dependence

of y on x. If we were to find the curve that simply minimizes
󰁓n

i=1 [yi − f (xi)]
2, the result

would be an interpolating curve that would not be smooth at all. The cubic spline smoother

imposes smoothness on f(x). We seek the function f(x) that minimizes

n󰁛

i=1

[yi − f (xi)]
2 + λ

󰁝
[f ′′(x)]

2
dx. (2.63)

Notice that
󰁕
[f ′′(x)]2 dx measures the “wiggliness” of the function f(x) : linear f(x) s have

󰁕
[f ′′(x)]2 dx = 0, while non-linear fs produce values bigger than zero. λ is a non-negative

smoothing parameter that must be chosen by the data analyst. It governs the tradeoff

between the goodness of fit to the data and (as measured by and wiggleness of the function.

Larger values of λ force f(x) to be smoother.

For any value of λ, the solution to (2.63) is a cubic spline, i.e., a piecewise cubic polynomial

with pieces joined at the unique observed values of x in the dataset. Fast and stable numerical

procedures are available for computation of the fitted curve. What value of did we use in

practice? In fact it is not a convenient to express the desired smoothness of f(x) in terms of
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λ, as the meaning of λ depends on the units of the prognostic factor x. Instead, it is possible

to define an effective number of parameters or degrees of freedom of a cubic spline smoother,

and then use a numerical search to determine the value of λ to yield this number. In practice,

if we chose the effective number of parameters to be 5 , roughly speaking, this means that the

complexity of the curve is about the same as a polynomial regression of degrees 4. However,

the cubic spline smoother “spreads out” its parameters in a more even manner, and hence

is much more flexible than a polynomial regression. Note that the degrees of freedom of a

smoother need not be an integer.

The above discussion tells how to fit a curve to a single prognostic factor. With multiple

prognostic factors, if xij denotes the value of the j th prognostic factor for the i th observation,

we fit the additive model

yi =
d󰁛

j=1

fj (xij) + εi.

A criterion like (2.63) can be specified for this problem, and a simple iterative procedure exists

for estimating the fj s. We apply a cubic spline smoother to the outcome yi −
󰁓d

j ∕=k
󰁥fj (xij)

as a function of xik, for each prognostic factor in turn. The process is continues until the

estimates 󰁥fj(x) stabilize. These procedure is known as “back-fitting” and the resulting fit is

analogous to a multiple regression for linear models.

To fit an additive model or a partially additive model in R, the function is gam() in the

package gam. For details, please look at the help command help(gam) after loading the

package gam “library(gam)” . Note that the function gam() allows to fit a semiparametric

additive model as

Y = βTX+

p󰁛

j=1

gj (Zj) + ε,

which can be done by specifying some components without smooth.

2.5.3 Projection Method

This section is devoted to a brief review of the projection method and discusses its merits

and disadvantages.

It is assumed that all additive components have continuous second partial derivatives,

so that m(u,v) can be locally approximated by a linear term in a neighborhood of (x,y),

namely, m(u,v) ≈ β0 +βT
1 (u− x) +βT

2 (v− y) with
󰀋
βj

󰀌
depending on x and y, where βT

1

denotes the transpose of β1.
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Let K(·) and L(·) be symmetric kernel functions in ℜp and ℜq, respectively, and h11 =

h11(n) > 0 and h12 = h12(n) > 0 be bandwidths in the step of estimating the regression

surface. Here, to handle various degrees of smoothness, Cai and Fan (2000) propose using h11

and h12 differently although the implementation may not be easy in practice. The reader is

referred to the paper by Cai and Fan (2000) for details. Given observations {Xt,Yt, Zt}nt=1,

let 󰁥βj be the minimizer of the following locally weighted least squares

n󰁛

t=1

󰀋
Zt − β0 − βT

1 (Xt − x)− βT
2 (Yt − y)

󰀌2
Kh11 (Xt − x)Lh12 (Yt − y) ,

where Kh(·) = K(·/h)/hp and Lh(·) = L(·/h)/hq. Then, the local linear estimator of the

regression surface m(x,y) is 󰁥m(x,y) = 󰁥β0. By computing the sample average of 󰁥m(·, ·) based
on (2.62), the projection estimators of g1(·) and g2(·) are defined as, respectively,

󰁥g1(x) =
1

n

n󰁛

t=1

󰁥m (x,Yt)− 󰁥µ, and 󰁥g2(y) =
1

n

n󰁛

t=1

󰁥m (Xt,y)− 󰁥µ,

where 󰁥µ = n−1
󰁓n

t=1 Zt. Under some regularity conditions, by using the same arguments

as those employed in the proof of Theorem 3 in Cai and Masry (2000), it can be shown

(although not easy and tedious) that the asymptotic bias and asymptotic variance of 󰁥g1(x)
are, respectively, h2

11tr {µ2(K)g′′1(x)} /2 and v1(x) = ν0(K)A(x), where

A(x) =

󰁝
p22(y)σ

2(x,y)p−1(x,y)dy and σ2(x,y) = Var (Zt | Xt = x,Yt = y) .

Here, p(x,y) stands for the joint density of Xt and Yt, p1(x) denotes the marginal density

of Xt, p2(y) is the marginal density of Yt, ν0(K) =
󰁕
K2(u)du, and µ2(K) =

󰁕
uuTK(u)du.

The foregoing method has some advantages, such as it is easy to understand, it can make

computation fast, and it allows an asymptotic analysis. However, it can be quite inefficient in

an asymptotic sense. To demonstrate this idea, let us consider the ideal situation that g2(·)
and µ are known. In such a case, one can estimate g1(·) by directly regressing the partial

error 󰁨Zt = Zt − µ − g2 (Yt) on Xt and such an ideal estimator is optimal in an asymptotic

minimax sense (see, e.g., Fan and Gijbels, 1996). The asymptotic bias for the ideal estimator

is h2
11tr {µ2(K)g′′1(x)} /2 and the asymptotic variance is

v0(x) = ν0(K)B(x) with B(x) = p−1
1 (x)E

󰀋
σ2 (Xt,Yt) | Xt = x

󰀌
(2.64)

(see, e.g., Masry and Fan, 1997). It is clear that v1(x) = v0(x) if Xt and Yt are inde-

pendent. If Xt and Yt are correlated and when σ2(x,y) is a constant, it follows from the
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CauchySchwarz inequality that

B(x) =
σ2

p1(x)

󰁝
p1/2(y | x) p2(y)

p1/2(y | x)dy ≤ σ2

p1(x)

󰁝
p22(y)

p(y | x)dy = A(x)

which implies that the ideal estimator has always smaller asymptotic variance than the pro-

jection method although both have the same bias. This suggests that the projection method

could lead to an inefficient estimation of g1(·) and g2(·) when Xt and Yt are serially corre-

lated, which is particularly relevant for autoregressive models. To alleviate this shortcoming,

I propose the two-stage approach described next.

2.5.4 Two-Stage Procedure

The two-stage method due to Linton (1997,2000) is introduced. The basic idea is to get an

initial estimate for 󰁥g2(·) using a small bandwidth h12. The initial estimate can be obtained

by the projection method and h12 can be chosen so small that the bias of estimating 󰁥g2(·)
can be asymptotically negligible. Then, using the partial residuals Z∗

t = Zt − 󰁥µ − 󰁥g2 (Yt),

we apply the local linear regression technique to the pseudo regression model

Z∗
t = g1 (Xt) + ε∗t

to estimate g1(·). This leads naturally to the weighted least-squares problem
n󰁛

t=1

󰀋
Z∗

t − β1 − βT
2 (Xt − x)

󰀌2
Jh2 (Xt − x) , (2.65)

where J(·) is the kernel function in ℜp and h2 = h2(n) > 0 is the bandwidth at the second

stage. The advantage of this is twofold: the bandwidth h2 can now be selected purposely for

estimating g1(·) only and any bandwidth selection technique for nonparametric regression can

be applied here. Maximizing (2.65) with respect to β1 and β2 gives the two-stage estimate

of g1(x), denoted by 󰁨g1(x) = 󰁥β1, where 󰁥β1 and 󰁥β2 are the minimizer of (2.65).

It is shown in Theorem 2.3, in which follows, that under some regularity conditions, the

asymptotic bias and variance of the two-stage estimate 󰁨g1(x) are the same as those for the

ideal estimator, provided that the initial bandwidth h12 satisfies h12 = o (h2).

Sampling Properties

To establish the asymptotic normality of the two-stage estimator, it is assumed that the

initial estimator satisfies a linear approximation; namely,

󰁥g2 (Yt)− g2 (Yt) ≈
1

n

n󰁛

i=1

Lh12 (Yi −Yt)Γ (Xi,Yt) δi +
1

2
h2
12tr {µ2(L)g

′′
2 (Yt)} , (2.66)
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where δt = Zt − m (Xt,Yt) and Γ(x,y) = p1(x)/p(x,y). Note that under some regularity

conditions, by following the same arguments as in Masry (1996), one might show (although

the proof is not easy, quite lengthy, and tedious) that (2.66) holds. Note that this assumption

is also imposed in Linton (2000) for iid samples to simplify the proof of the asymptotic results

of the two-stage estimator. Now, the asymptotic normality for the two-stage estimator is

stated here and its proof can be found in Cai (2002).

Theorem 2.3: Under (2.66) and Assumptions A1-A9 stated in Cai (2002), if bandwidths

h12 and h2 are chosen such that h12 → 0, nhq
12 → ∞, h2 → 0, and nhp

2 → ∞ as n → ∞, then

󰁳
nhp

2

󰀅
󰁨g1(x)− g1(x)− bias(x) + op

󰀃
h2
12 + h2

2

󰀄󰀆
→ N {0, v0(x)} ,

where the asymptotic bias is

bias(x) =
h2
2

2
tr {µ2(J)g

′′
1(x)}−

h2
12

2
tr {µ2(L)E (g′′2 (Yt) | Xt = x)}

and the asymptotic variance is v0(x) = ν0(J)B(x).

We remark that by Theorem 2.3, the asymptotic variance of the two-stage estimator is

independent of the initial bandwidths. Thus, the initial bandwidths should be chosen as

small as possible. This is another benefit of using the two-stage procedure: the bandwidth

selection problem becomes relatively easy. In particular, when h12 = o (h2), the bias from

the initial estimation can be asymptotically negligible. For the ideal situation that g2(·)
is known, Masry and Fan (1997) show that under some regularity conditions, the optimal

estimate of g1(x), denoted by 󰁥g∗1(x), by using (2.66) in which the partial residual Z∗
t is

replaced by the partial error 󰁨Zt = Yt − µ− g2 (Yt), is asymptotically normally distributed,

󰁳
nhp

2

󰀗
󰁥g∗1(x)− g1(x)−

h2
2

2
tr {µ2(J)g

′′
1(x)}+ op

󰀃
h2
2

󰀄󰀘
→ N {0, v0(x)} .

This, in conjunction with Theorem 2.3, shows that the two-stage estimator and the ideal

estimator share the same asymptotic bias and variance if h12 = o (h2).

Finally, note that the reader is referred to the paper by Cai (2002) for the detailed Monte

Carlo simulation results and applications. Also, one can see the paper by Mammen, Linton

and Nielsen (1999) for some more approaches on additive modeling.

2.5.5 Analysis of the Boston House Price Data via Additive Model

There have been several papers devoted to the analysis of this dataset using some non-

parametric methods. For example, Breiman and Friedman (1985), Pace (1993), Chaudhuri,
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Doksum and Samarov (1997), and Opsomer and Ruppert (1998) used four covariates: X6,

X10, X11 and X13 or their transformations (including the transformation on Y ) to fit the

data through a mean additive regression model such as

log(Y ) = µ+ g1 (X6) + g2 (X10) + g3 (X11) + g4 (X13) + ε, (2.67)

where the additive components {gj(·)} are unspecified smooth functions. Pace (1993) and

Chaudhuri, Doksum and Samarov (1997) also considered the nonparametric estimation of the

first derivative of each additive component which measures how much the response changes as

one covariate is perturbed while the other covariates are held fixed; see Chaudhuri, Doksum

and Samarov (1997). Let us use model (2.67) to fit the Boston house price data. The results

are summarized in Figure 2.4 (the R code can be found in Section 2.7.2). Also, we fit a

4 5 6 7 8
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Figure 2.4: The results from model (2.67).

semi-parametric additive model as

log(Y ) = µ+ g1 (X6) + β2X10 + β3X11 + β4X13 + ε. (2.68)

The results are summarized in Figure 2.5 (the R code can be found in Section 2.7.2).
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Figure 2.5: (a) Residual plot for model (2.67). (b) Plot of g1 (x6) versus x6. (c) Residual
plot for model (2.68). (d) Density estimate of Y .

2.6 Semiparametric Single Index Models

2.6.1 Index Models

An object of interest such as the conditional density f(y | x) or conditional distribution

F (y | x) or conditional mean E (Yt | Xt = x) is a single index model when it only depends

on the vector x through a single linear combination of x as β⊤x. Indeed, most parametric

models are single index, including, for example, normal regression, logit, probit, Tobit, and

Poisson regression. In a semiparametric single index model, the object of interest depends

on x through the function g
󰀃
β⊤x

󰀄
, where β ∈ Rk and g : R → R are unknown. g(·)

is sometimes called a link function in generalized line model (GLM) literature. In single

index models, there is only one nonparametric dimension. These methods fall in the class of

dimension reduction techniques. The semiparametric single index regression model is

E (Yt | Xt = x) = g
󰀃
β⊤x

󰀄
, (2.69)
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where g(·) is an unknown link function. The semiparametric single index binary choice model

is

P (Yt = 1 | Xt = x) = E (Yt | Xt = x) = g
󰀃
β⊤x

󰀄
, (2.70)

where g(·) is an unknown distribution function.5 We use g(·) (rather than, say, F (·)) to

emphasize the connection with the regression model.

In both contexts, the function g(·) includes any location and level shift, so the vector Xt

cannot include an intercept. The level of β is not identified, so some normalization criterion

for is needed. It is typically easier to impose this on β than on g(·). One approach is to

set β⊤β = 1. A second approach is to set one component of β to equal one. (This second

approach requires that this variable correctly has a non-zero coefficient.) The vector Xt must

be dimension 2 or larger. If Xt is one-dimensional, then β is simply normalized to one, and

the model is the one-dimensional nonparametric regression E (Yt | Xt = x) = g(x) with no

semiparametric component. Identification of β and g(·) also requires that Xt contains at

least one continuously distributed variable, and that this variable has a non-zero coefficient.

If not, β⊤x only takes a discrete set of values, and it would be impossible to identify a

continuous function g(·) on this discrete support. Therefore, in what follows, it is assumed

that the model in (2.69) is identified without a further mention.

2.6.2 Single Index Regression and Ichumura’s Estimator

The semiparametric single index regression model is

Yt = g
󰀃
β⊤Xt

󰀄
+ et

with E (et | Xt) = 0, and it generalizes the linear regression model (which sets g(·) to be

linear), and is a restriction of the nonparametric regression model. The gain over full non-

parametric setting is that there is only one nonparametric dimension, so the curse of di-

mensionality is avoided. Suppose that g(·) were known. Then, you could estimate β by a

(nonlinear) least-squares (LS) with the LS criterion

Sn(β, g) =
n󰁛

t=1

󰀃
Yt − g

󰀃
β⊤Xt

󰀄󰀄2
. (2.71)

5If g(·) is a known link function, the model in (2.70) is either logist or probit model, popularly in many
applications in economics and finance’ see, the books by Hastie and TibShibrani (1990) and Cameron and
Trivedi (2005) for details.
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You could think about to replacing g(·) by 󰁥g(·). But, since g(·) is unknown conditional mean

of Yt given β⊤Xt = z, g(·) depends on β, so that Ichimura (1993) suggested a two-step (2LS)

estimation procedure as follows. First, a leave-one out Nadaraya-Waston estimation of g(·)
is used

󰁥g−t

󰀃
β⊤Xt

󰀄
=

n󰁛

st/

YsK
󰀃
β⊤ (Xs −Xt) /h

󰀄
/

n󰁛

s ∕=t

K
󰀃
β⊤ (Xs −Xt) /h

󰀄
, (2.72)

and then, Ichimura (1993) suggested replacing g(·) in Sn(β, g) by 󰁥g−t (β
topXt),

Sn(β) =
n󰁛

t=1

󰀃
Yt − 󰁥g−t

󰀃
β⊤Xt

󰀄󰀄2
It(b),

where It(b) is a trimming function to make the computation easy. The Ichimura’s estimator

is 󰁥β2LS = argmin ln(β). However, Ichimura (1993) did not discuss on how to choose It(b) in

Sn(β). As pointed out by by Härdle, Hall, and Ichimura (1993), the criterion in the Ichimura’s

estimator is somewhat similar to cross-validation so that the Ichimura’s estimator may not be

efficient (optimal). To obtain the efficient estimation of β, Härdle, Hall, and Ichimura (1993)

suggested picking β and the bandwidth h simultaneously by minimizing Sn(β), denoted by

󰁥βhhi.

Finally, for the asymptotic theory for 󰁥β2LS or 󰁥βhhi, the reader is referred to the papers by

Ichimura (1993) and Härdle, Hall, and Ichimura (1993), respectively.

2.6.3 Klein and Spady’s Binary Choice Estimator

Klein and Spady (1993) proposed an estimator of the semiparametric single index binary

choice model which has strong similarities with Ichimura’s estimator. The model is given in

(2.70) and can be re-expressed as follows

Yt = I
󰀃
β⊤Xt > et

󰀄
,

where et is an error, which is a special case of (2.69). If et is independent of Xt, and has

distribution function g(·), then, the data satisfy the single-index regression as

E (Yt | Xt) = g
󰀃
β⊤Xt

󰀄
,

and it follows that Ichimura’s estimator can be directly applied to this model. However,

different from the Ichimura’s estimator, Klein and Spady (1993) suggested a semiparametric
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likelihood approach. Given g(·), the log likelihood is

ln(β, g) =
n󰁛

t=1

󰀅
Yt ln

󰀃
g
󰀃
β⊤Xt

󰀄󰀄
+ (1− Yt) ln

󰀃
1− g

󰀃
β⊤Xt

󰀄󰀆
.

Since g(·) is unknown, making this substitution of g(·) by 󰁥g−t

󰀃
β⊤Xt

󰀄
in (2.72), and adding

trimming function, this leads to the feasible likelihood criterion

ln(β) =
n󰁛

t=1

󰀅
Yt ln

󰀃
󰁥g−t

󰀃
β⊤Xt

󰀄󰀄
+ (1− Yt) ln

󰀃
1− 󰁥g−t

󰀃
β⊤Xt

󰀄󰀆
It(b),

where, as suggested by Klein and Spady (1993), the trimming indicator can be taken to be

It(b) = I
󰀓
󰁥fβ̃⊤Xt

󰀓
β̃⊤Xt

󰀔
> b

󰀔
,

where β̃ is a preliminary estimator of β and 󰁥f(·) is an estimation of the density function of

β̃⊤Xt. It can be seen from Klein and Spady (1993) that trimming does not seem to matter

in their simulations. Finally, the Klein and Spady estimator for β is the value 󰁥β which

maximizes ln(η) and in many respects, the Ichimura and Klein-Spady estimators are quite

similar.

2.6.4 Average Derivative Estimator

Letm (Xt) = E (Yt | Xt) andm′(x) denote the first order derive ofm(x). Define the weighted

derivative as follows

δ = E [m′ (Xt)w (Xt)] ,

where w(x) is a weight function, which is particularly convenient to set w(x) = fx(x) with

fx(x) being the marginal density of Xt, suggested by Powell, Stock and Stoker (1989). A

simple algebra leads to the following expression

δ =

󰁝
m′(x)f 2

x(x) = −2E [Ytf
′
x (Xt)] ,

where f ′
x(x) is the first order derivative of fx(x), which, clearly, leads to a consistent estimate

of δ, given by

󰁥δ = − 2

n− 1

n󰁛

t=1

Yt
󰁥f ′
x,−t (Xt)

where 󰁥f ′
x,−t(x) is the first derivative of the leave-one-out density estimator of fx(x). One can

see that this is a convenient estimator. There is no denominator messing with uniform con-

vergence. There is only a density estimator, no conditional mean needed. Powell, Stock and
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Stoker (1989) showed that 󰁥δ is n1/2-consistent and asymptotically normal, with a convenient

covariance matrix.

Now, for the single-index model, it is easy to see m′(x) = βg′
󰀃
β⊤x

󰀄
so that

δ = cβ,

where c = E
󰀅
g′
󰀃
β⊤Xt

󰀄
fx (Xt)

󰀆
, from which, one can obtain the average derivative estimator

for β by

󰁥β = 󰁥δ/󰁥c,

where 󰁥c is a consistent estimate of c. However, the problem goes back to estimating a density

function with a possible a high dimension.

2.6.5 MAVE Estimator

Due to the fact that the single index model shares a close connection with the central mean

subspace in the sufficient dimension reduction, Xia et al. (2002) proposed the (conditional)

minimum average variance estimation (MAVE) method for the dimension reduction problem

and later, Xia (2006) showed that this method can be applied to the single index model.

Therefore, the MAVE method proposed in Xia (2006) is employed in our setting to estimate

β and also the penalized MAVE considered in Wang et al. (2013) is utilized for selecting X,

described as follows.

Notice that under the least squares loss,

β = arg min
β̃∈Rk

E
󰁫
Y − E(Y |β̃⊤X)

󰁬2
. (2.73)

In our setting, the index is estimated by the observed data for the control units, {Yj, Xj}nj=1.

Motivated by the local linear smoothing technique, the sample analogue of (2.73) can be

written as

β = arg min
β̃∈Rk:β̃⊤β̃=1

n󰁛

j=1

󰀫
min
aj ,bj

n󰁛

i=1

󰁫
Yi − aj − bjβ̃

⊤(Xi −Xj)
󰁬2

wij

󰀬

= arg min
β̃∈Rk:β̃⊤β̃=1

aj ,bj

n󰁛

j=1

n󰁛

i=1

󰁫
Yi − aj − bjβ̃

⊤(Xi −Xj)
󰁬2

wij, (2.74)

where aj = g(β⊤Xj), bj = ∂g(u)/∂u|u=β⊤Xj
, and wij = Kh(β

⊤(Xi − Xj)) with Kh(v) =

K(v/h)/h and K(·) being a kernel function as well as h being the bandwidth. Xia (2006)
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proposed the following algorithm for estimating β:

Step 1. Set an initial value β(0).

Step 2. For ℓ ≥ 1, calculate

󰀣
󰁥aβ

(ℓ−1)

j

󰁥dβ
(ℓ−1)

j h

󰀤
=

󰀫
n󰁛

j=1

Kh

󰀓
β(ℓ−1)⊤Xij

󰀔
Z

(k−1)
ij Z

(ℓ−1)⊤

ij

󰀬−1 n󰁛

j=1

Kh

󰀓
β(ℓ−1)⊤Xij

󰀔
Z

(ℓ−1)
ij Yj,

where Z
(ℓ−1)
ij =

󰀓
1, β(ℓ−1)⊤Xij/h

󰀔⊤
with Xij = Xi −Xj, and also, obtain

󰁥fβ(ℓ−1)(β(ℓ−1)⊤Xj) =
1

n

n󰁛

i=1

Kh(β
(ℓ−1)⊤Xij), and 󰁥ρβ

(ℓ−1)⊤

j = ρn( 󰁥fβ(ℓ−1)(β(ℓ−1)⊤Xj)),

where ρn(·) is a trimming function for the boundary points. Following the suggestion from

Xia (2006), ρn(v) is chosen as a bounded function with bounded derivative on R such that

ρn(v) = I(v > 2c0n
−ε), where I(A) is the indicator function of set A.

Step 3. Calculate

β(ℓ) =

󰀫
n󰁛

i=1

n󰁛

j=1

Kh

󰀓
β(ℓ−1)⊤Xij

󰀔
󰁥ρβ

(k−1)

j

󰀓
󰁥dβ

(ℓ−1)

j

󰀔2

XijX
⊤
ij/

󰁥fβ(ℓ−1)

󰀓
β(ℓ−1)⊤Xj

󰀔󰀬−1

×
n󰁛

i=1

n󰁛

j=1

Kh

󰀓
β(ℓ−1)⊤Xij

󰀔
󰁥ρβ

(ℓ−1)

j
󰁥dβ

(ℓ−1)

j Xij

󰀓
Yi − 󰁥aβ

(ℓ−1)

j

󰀔
/ 󰁥fβ(ℓ−1)

󰀓
β(ℓ−1)⊤Xj

󰀔
.

Step 4. Set β(ℓ) = sign(β(ℓ))β(ℓ)/󰀂β(ℓ)󰀂. Then, repeat Steps 2 and 3 until convergence

reaches.

Denote the ultimate estimator for β as 󰁥βMAVE. Theoretically, Xia (2006) derived the

asymptotic normality for 󰁥βMAVE and showed that the asymptotic covariance matrix of 󰁥βMAVE

can achieve the information lower bound in the semiparametric sense. From Xia (2006), one

can see that under some regularity conditions, 󰁥βMAVE has the following asymptotic bahevior

√
n
󰁫
󰁥β − β

󰁬
=

1√
n

n󰁛

j=1

φ(Xj, Yj) + op(1) → N(0,Σβ), (2.75)

where φ(Xj, Yj) = W+
g g′(β⊤Xj)vβ(Xj) ej, Wg = E

󰀋
g′(β⊤X)2vβ(X)v⊤β (X)

󰀌
, W+

m0
is the

Moore-Penrose inverse of Wg, and vβ(x) = E(X|β⊤X = β⊤x) − x, while the asymptotic

variance is given by

Σβ =
󰀅
E{g′(β⊤X)2W (X)}

󰀆+
E
󰀋
g′(β⊤X)2W0(X)e2

󰀌 󰀅
E{g′(β⊤X)2W (X)}

󰀆+
,
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where W (x) = E(XX⊤|β⊤X = β⊤x)−E(X|β⊤X = β⊤x)E⊤(X|β⊤X = β⊤x) and W0(x) =

vβ(x)v
⊤
β (x).

From the above discussion, we know that the MAVE estimate of β is obtained by solving

the minimization problem (2.74). Generally, to select the relevant variables, we can add a

penalty term to the least-squares-form loss function in (2.74):

n󰁛

j=1

n󰁛

i=1

[Yi − aj − bjβ̃
⊤(Xi −Xj)]

2wij + n

k󰁛

l=1

pλn(|β̃l|),

where pλ(·) denotes a penalty function and λn denotes the penalty parameter. Different

choices of pλ(·) can lead to different variable selection methods.

The simplest choice is to set pλn(|β̃l|) = λn|β̃l|, which corresponds to the well-known

least absolute shrinkage and selection operator (LASSO) proposed by Tibshirani (1996).

Indeed, Wang and Yin (2008) adopted this L1 norm penalty and proposed the sparse MAVE

method and Zeng et al. (2012) further explored the idea of combining MAVE and LASSO,

and proposed the sim-LASSO method. The sim-LASSO method not only penalizes the

L1 norm of the index parameter β, but also penalizes the terms {bj}nj=1 in (2.74). Since

bj = ∂g(u)/∂u|u=β⊤Xj
, adding this penalty contributes to excluding the data points with

less information on estimating β, which stabilizes and improves the estimation of β. Finally,

Wang et al. (2013) proposed the penalized MAVE method, combining the bridge regression

with MAVE. In the case of the single-index-model, the penalized MAVE estimator has the

oracle property.

It is widely accepted that a good penalty function should lead to an unbiased, sparse

and continuous estimator. However, the LASSO estimator is biased for large parameters.

Alternatively, Fan and Li (2001) proposed the smoothly clipped absolute deviation (SCAD)

penalty. The SCAD penalty is defined via its first derivative as

p′λ(βl) = λ{I(βl ≤ λ) +
(aλ− βl)+
(a− 1)λ

I(β̃l > λ)}.

Due to the oracle property of the SCAD penalty justified by Fan and Li (2001), Peng and

Huang (2011) explored the idea of introducing the SCAD penalty into the single index

model. Given that the dimension of β is a fixed constant, the SCAD estimator has the

oracle property. Hence, we can also combine the SCAD penalty with MAVE, and modify



2.7. COMPUTER CODE 94

the objective function in (2.74) as:

β = arg min
β̃∈Rk:β̃⊤β̃=1

aj ,bj

󰀫
n󰁛

j=1

n󰁛

i=1

󰁫
Yi − aj − bjβ̃

⊤(Xi −Xj)
󰁬2

wij + n
k󰁛

l=1

pSCAD
λn

(|β̃l|)
󰀬

(2.76)

Similarly, the optimization problem in (2.76) can be solved alternatively and iteratively and

the SCAD-MAVE algorithm can be summarized as follows:

Step 1. Given data {Yj, Xj}nj=1, calculate the initial estimator 󰁥β(0) by the MAVE method.

Set ℓ = 1.

Step 2. Given 󰁥β(ℓ−1), calculate the refined weights as

w
(ℓ−1)
ij = Kh1

󰁫
󰁥β⊤
(ℓ−1)(Xi −Xj)

󰁬󰀱 n󰁛

l=1

Kh1

󰁫
󰁥β⊤
(ℓ−1)(Xl −Xj)

󰁬
.

Then, solve the inner optimization problem for j = 1, . . . , n:

min
aj ,bj

n󰁛

i=1

󰁫
Yi − aj − bj 󰁥β⊤

(ℓ−1)(Xi −Xj)
󰁬2

w
(ℓ−1)
ij

Clearly, this problem is analogous to the weighted least squares problem. We can easily

derive the analytical solutions and denote them as 󰁥a(ℓ−1)
j and 󰁥b(ℓ−1)

j .

Step 3. Given 󰁥a(ℓ−1)
j and 󰁥b(ℓ−1)

j , we solve the outer optimization problem:

min
β̃∈Rk:β̃⊤β̃=1

󰀫
n󰁛

j=1

n󰁛

i=1

󰁫
Yi − 󰁥a(ℓ−1)

j −󰁥b(ℓ−1)
j β̃⊤(Xi −Xj)

󰁬2
w

(ℓ−1)
ij + n

k󰁛

l=1

pSCAD
λn

(|β̃l|)
󰀬

Obviously, regardless of the constraint β̃⊤β̃ = 1, we can rewrite the first part in least squares

form, then we can use the ncvreg package in R to optimize it and obtain the estimator 󰁥β(ℓ).

Let 󰁥β(ℓ) = sign(󰁥β(ℓ))󰁥β(ℓ)

󰀑
󰀂󰁥β(ℓ)󰀂.

Step 4. Check whether 󰀂󰁥β(ℓ)− 󰁥β(ℓ−1)󰀂2 < c, where c is an arbitrarily small positive constant,

if not, set ℓ = ℓ+ 1 and go to Step 2. Denote the final estimator as 󰁥βscad-MAVE.

Based on the above discussion, we can use the SCAD-MAVE method to select relevant

variables or control units at first, then, construct the index 󰁥Zj = 󰁥β⊤
scad-MAVEXj for j =

1, . . . , n. Finally, from Peng and Huang (2011), one can show that under some regularity

conditions, 󰁥βscad-MAVE satisfies (2.75) under some regularity conditions.

2.7 Computer Code

2.7.1 Example 2.1
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# 09-30-2022

graphics.off() # clean the previous graphs on the screen

###############

# Example 2.1

##############

##########################################################################

z1=read.table(file="/NP_lecture_note/data/ex4-1.txt")

# dada: weekly 3-month Treasury bill from 1970 to 1997

x=z1[,4]/100

n=length(x)

y=diff(x) # Delta x_t=x_t-x_{t-1}

x=x[1:(n-1)]

n=n-1

x_star=(x-mean(x))/sqrt(var(x))

z=seq(min(x),max(x),length=50)

win.graph()

#postscript(file="/NP_lecture_note/figs/fig-4.1.eps",

# horizontal=F,width=6,height=6)

par(mfrow=c(2,2),mex=0.4,bg="light blue")

scatter.smooth(x,y,span=1/10,ylab="",xlab="x(t-1)",evaluation=60)

title(main="(a) y(t) vs x(t)",col.main="red")

scatter.smooth(x,abs(y),span=1/10,ylab="",xlab="x(t-1)",evaluation=60)

title(main="(b) |y(t)| vs x(t)",col.main="red")

scatter.smooth(x,y^2,span=1/10,ylab="",xlab="x(t-1)",evaluation=60)

title(main="(c) y(t)^2 vs x(t)",col.main="red")

#dev.off()

#######################################################################

#########################
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# Nonparametric Fitting #

#########################

#########################################################

# Define the Epanechnikov kernel function

kernel<-function(x){0.75*(1-x^2)*(abs(x)<=1)}

###############################################################

# Define the kernel density estimator

kernden=function(x,z,h,ker){

# parameters: x=variable; h=bandwidth; z=grid point; ker=kernel

nz<-length(z)

nx<-length(x)

x0=rep(1,nx*nz)

dim(x0)=c(nx,nz)

x1=t(x0)

x0=x*x0

x1=z*x1

x0=x0-t(x1)

if(ker==1){x1=kernel(x0/h)} # Epanechnikov kernel

if(ker==0){x1=dnorm(x0/h)} # normal kernel

f1=apply(x1,2,mean)/h

return(f1)

}

###############################################################

# Define the local constant estimator

local.constant=function(y,x,z,h,ker){

# parameters: x=variable; h=bandwidth; z=grid point; ker=kernel

nz<-length(z)

nx<-length(x)

x0=rep(1,nx*nz)

dim(x0)=c(nx,nz)
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x1=t(x0)

x0=x*x0

x1=z*x1

x0=x0-t(x1)

if(ker==1){x1=kernel(x0/h)} # Epanechnikov kernel

if(ker==0){x1=dnorm(x0/h)} # normal kernel

x2=y*x1

f1=apply(x1,2,mean)

f2=apply(x2,2,mean)

f3=f2/f1

return(f3)

}

####################################################################

# Define the local linear estimator

local.linear<-function(y,x,z,h){

# parameters: y=response, x=design matrix; h=bandwidth; z=grid point

nz<-length(z)

ny<-length(y)

beta<-rep(0,nz*2)

dim(beta)<-c(nz,2)

for(k in 1:nz){

x0=x-z[k]

w0<-kernel(x0/h)

beta[k,]<-glm(y~x0,weight=w0)$coeff

}

return(beta)

}

##############################################################

h=0.02
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# Local constant estimate

mu_hat=local.constant(y,x,z,h,1)

sigma_hat=local.constant(abs(y),x,z,h,1)

sigma2_hat=local.constant(y^2,x,z,h,1)

#win.graph()

postscript(file="/NP_lecture_note/figs/fig-2.1.eps",

horizontal=F,width=6,height=6)

par(mfrow=c(2,2),mex=0.4,bg="light yellow")

scatter.smooth(x,y,span=1/10,ylab="",xlab="x(t-1)")

points(z,mu_hat,type="l",lty=1,lwd=3,col=2)

title(main="(a) y(t) vs x(t)",col.main="red")

legend(0.04,0.0175,"Local Constant Estimate")

scatter.smooth(x,abs(y),span=1/10,ylab="",xlab="x(t-1)")

points(z,sigma_hat,type="l",lty=1,lwd=3,col=2)

title(main="(b) |y(t)| vs x(t)",col.main="red")

scatter.smooth(x,y^2,span=1/10,ylab="",xlab="x(t-1)")

title(main="(c) y(t)^2 vs x(t)",col.main="red")

points(z,sigma2_hat,type="l",lty=1,lwd=3,col=2)

dev.off()

# Local Linear Estimate

fit2=local.linear(y,x,z,h)

mu_hat=fit2[,1]

fit2=local.linear(abs(y),x,z,h)

sigma_hat=fit2[,1]

fit2=local.linear(y^2,x,z,h)

sigma2_hat=fit2[,1]

#win.graph()



2.7. COMPUTER CODE 99

postscript(file="/NP_lecture_note/figs/fig-2.2.eps",

horizontal=F,width=6,height=6)

par(mfrow=c(2,2),mex=0.4,bg="light green")

scatter.smooth(x,y,span=1/10,ylab="",xlab="x(t-1)")

points(z,mu_hat,type="l",lty=1,lwd=3,col=2)

title(main="(a) y(t) vs x(t)",col.main="red")

legend(0.04,0.0175,"Local Linear Estimate")

scatter.smooth(x,abs(y),span=1/10,ylab="",xlab="x(t-1)")

points(z,sigma_hat,type="l",lty=1,lwd=3,col=2)

title(main="(b) |y(t)| vs x(t)",col.main="red")

scatter.smooth(x,y^2,span=1/10,ylab="",xlab="x(t-1)")

title(main="(c) y(t)^2 vs x(t)",col.main="red")

points(z,sigma2_hat,type="l",lty=1,lwd=3,col=2)

dev.off()

#####################################################################

2.7.2 Codes for Additive Modeling Analysis of Boston Data

The following is the R code for making Figures 2.4 and 2.5.

data=read.table("file="/NP_lecture_note/data/ex4-2.txt")

y=data[,14]

x1=data[,1]

x6=data[,6]

x10=data[,10]

x11=data[,11]

x13=data[,13]

y_log=log(y)

library(gam)

fit_gam=gam(y_log~lo(x6)+lo(x10)+lo(x11)+lo(x13))

resid=fit_gam$residuals

y_hat=fit_gam$fitted
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postscript(file="/NP_lecture_note/figs/fig-2.3.eps",

horizontal=F,width=6,height=6,bg="light grey")

par(mfrow=c(2,2),mex=0.4)

plot(fit_gam)

title(main="Component of X_13",col.main="red",cex=0.6)

dev.off()

fit_gam1=gam(y_log~lo(x6)+x10+x11+x13)

s1=fit_gam1$smooth[,1] # obtain the smoothed component

resid1=fit_gam1$residuals

y_hat1=fit_gam1$fitted

print(summary(fit_gam1))

postscript(file="/NP_lecture_note/figs/fig-2.4.eps",

horizontal=F,width=6,height=6,bg="light green")

par(mfrow=c(2,2),mex=0.4)

plot(y_hat,resid,type="p",pch="o",ylab="",xlab="y_hat")

title(main="Residual Plot of Additive Model",col.main="red",cex=0.6)

abline(0,0)

plot(x6,s1,type="p",pch="o",ylab="s1(x6)",xlab="x6")

title(main="Component of X_6",col.main="red",cex=0.6)

plot(y_hat1,resid1,type="p",pch="o",ylab="",xlab="y_hat")

title(main="Residual Plot of Model II",col.main="red",cex=0.5)

abline(0,0)

plot(density(y),ylab="",xlab="",main="Density of Y")

dev.off()
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Chapter 3

Nonparametric Quantile Models

For details, see the papers by Cai and Xu (2008) and Cai and Xiao (2012). Next we present

only a part of the whole paper of Cai and Xu (2008).

3.1 Introduction

Over the last three decades, quantile regression, also called conditional quantile or regression

quantile, introduced by Koenker and Bassett (1978), has been used widely in various dis-

ciplines, such as finance, economics, medicine, and biology. It is well-known that when the

distribution of data is typically skewed or data contains some outliers, the median regression,

a special case of quantile regression, is more explicable and robust than the mean regres-

sion. Also, regression quantiles can be used to test heteroscedasticity formally or graphically

(Koenker and Bassett, 1982; Efron, 1991; Koenker and Zhao, 1996; Koenker and Xiao, 2002).

Although some individual quantiles, such as the conditional median, are sometimes of inter-

est in practice, more often one wishes to obtain a collection of conditional quantiles which

can characterize the entire conditional distribution. More importantly, another application

of conditional quantiles is the construction of prediction intervals for the next value given

a small section of the recent past values in a stationary time series (Granger, White, and

Kamstra, 1989; Koenker, 1994; Zhou and Portnoy, 1996; Koenker and Zhao, 1996; Taylor

and Bunn, 1999). Also, Granger, White, and Kamstra (1989), Koenker and Zhao (1996),

and Taylor and Bunn (1999) considered an interval forecasting for parametric autoregres-

sive conditional heteroscedastic (ARCH) type models. For more details about the historical

and recent developments of quantile regression with applications for time series data, par-

ticularly in finance, see, for example, the papers and books by J.P. Morgan (1995), Duffie
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and Pan (1997), Jorin (2000), Koenker (2000), Koenker and Hallock (2001), Tsay (2000,

2002), Khindanova and Rachev (2000), and Bao, Lee and Saltoglu (2006), and the references

therein.

Recently, the quantile regression technique has been successfully applied to politics. For

example, in the 1992 presidential selection, the Democrats used the yearly Current Popula-

tion Survey data to show that between 1980 and 1992 there was an increase in the number

of people in the high-salary category as well as an increase in the number of people in the

low-salary category. This phenomena could be illustrated by using the quantile regression

method as follows: computing 90% and 10% quantile regression functions of salary as a func-

tion of time. An increasing 90% quantile regression function and a decreasing 10% quantile

regression function corresponded to the Democrats’ claim that ”the rich got richer and the

poor got poorer” during the Republican administrations; see Figure 6.4 in Fan and Gijbels

(1996, p. 229).

More importantly, by following the regulations of the Bank for International Settlements,

many of financial institutions have begun to use a uniform measure of risk to measure the

market risks called Value-at-Risk (VaR), which can be defined as the maximum potential

loss of a specific portfolio for a given horizon in finance. In essence, the interest is to

compute an estimate of the lower tail quantile (with a small probability) of future portfolio

returns, conditional on current information. Therefore, the VaR can be regarded as a special

application of the quantile regression. There is a vast amount of literature in this area;

see, to name just a few, J.P. Morgan (1995), Duffie and Pan (1997), Engle and Manganelli

(2004), Jorion (2000), Tsay (2000, 2002), Khindanova and Rachev (2000), and Bao, Lee and

Saltoglu (2006), and references therein.

In this chapter, we assume that {Xt, Yt}∞t=−∞ is a stationary sequence. Denote F (y | x)
the conditional distribution of Y given X = x, where Xt = (Xt1, . . . , Xtd)

′ with ′ denoting

the transpose of a matrix or vector, is the associated covariate vector in ℜd with d ≥ 1,

which might be a function of exogenous (covariate) variables or some lagged (endogenous)

variables or time t. The regression (conditional) quantile function qτ (x) is defined as, for

any 0 < τ < 1,

qτ (x) = inf
󰀋
y ∈ ℜ1 : F (y | x) ≥ τ

󰀌
, or qτ (x) = argmina∈ℜ1E {ρτ (Yt − a) | Xt = x} ,

(3.1)

where ρτ (y) = y
󰀃
τ − I{y<0}

󰀄
with y ∈ ℜ1 is called the loss ( “check”) function, and IA is the
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indicator function of any set A. There are several advantages of using a quantile regression:

• A quantile regression does not require knowing the distribution of the dependent vari-

able.

• It does not require the symmetry of the measurement error.

• It can characterize the heterogeneity.

• It can estimate the mean and variance simultaneously.

• It is a robust procedure.

• There are a lot more.

Having conditioned on the observed characteristics Xt = x, based on the Skorohod repre-

sentation1, Yt and the quantile function qτ (x) have a following relationship as

Yt = q (Xt, Ut) , (3.2)

where Ut | Xt ∼ U(0, 1). We will refer to Ut as the rank variable, and note that representation

(3.2) is essential to what follows. The rank variable Ut is responsible for heterogeneity of

outcomes among individuals with the same observed characteristics Xt. It also determines

their relative ranking in terms of potential outcomes; hence one may think of rank Ut as

representing some unobserved characteristic. This interpretation makes quantile analysis

an interesting tool for describing and learning the structure of heterogeneous effects and

controlling for unobserved heterogeneity.

Clearly, the simplest form of model (3.1) is qτ (x) = β′
τx, which is called the linear quantile

regression model well studied by many authors. For details, see the papers by Duffie and Pan

(1997), Koenker (2000), Tsay (2002), Koenker and Hallock (2001), Khindanova and Rachev

(2000), and Bao, Lee and Saltoglu (2006), Engle and Manganelli (2004), and references

therein.

In many practical applications, however, the linear quantile regression model might not

be “rich” enough to capture the underlying relationship between the quantile of response

variable and its covariates. Indeed, some components may be highly nonlinear or some

covariates may be interactive. To make the quantile regression model more flexible, there

1For the definition, please see the book by Durret (2019).
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is a swiftly growing literature on nonparametric quantile regression. Various smoothing

techniques, such as kernel methods, splines, and their variants, have been used to estimate

the nonparametric quantile regression for both the independent and time series data. For the

recent developments and the detailed discussions on theory, methodologies, and applications,

see, for example, the papers by He, Ng, and Portony (1998), Yu and Jones (1998), He and

Ng (1999), He and Portony (2000), Honda (2000, 2004), Tsay (2000, 2002), Lu, Hui and

Zhao (2000), Khindanova and Rachev (2000), Bao, Lee and Saltoglu (2006), Cai (2002a),

De Gooijer, and Gannoun (2003), Horowitz and Lee (2005), Yu and Lu (2004), and Li

and Racine (2008), and references therein. In particular, for the univariate case, recently,

Honda (2000) and Lu, Hui and Zhao (2000) derived the asymptotic properties of the local

linear estimator of the quantile regression function under α-mixing condition. For the high

dimensional case, however, the aforementioned methods encounter some difficulties such as

the so-called “curse of dimensionality” and their implementation in practice is not easy as

well as the visual display is not so useful for the exploratory purposes.

To attenuate the above problems, De Gooijer and Zerom (2003), Horowitz and Lee

(2005), and Yu and Lu (2004) considered an additive quantile regression model qτ (Xt) =
󰁓d

k=1 gk (Xtk). To estimate each component, for the time series case, De Gooijer and Zerom

(2003) first estimated a high dimensional quantile function by inverting the conditional dis-

tribution function estimated by using a weighted Nadaraya-Watson approach, proposed by

Cai (2002a), and then used a projection method to estimate each component, as discussed

in Cai and Masry (2000), while Yu and Lu (2004) focused on the independent data and

used a back-fitting algorithm method to estimate each component. On the other hand, to

estimate each additive component for the independent data, Horowitz and Lee (2005) used a

two-stage approach consisting of the series estimation at the first step and a local polynomial

fitting at the second step. For the independent data, the above model was extended by He,

Ng and Portony (1998), He and Ng (1999), and He and Portony (2000) to include interaction

terms by using spline methods.

In this chapter, we adapt another dimension reduction modeling method to analyze

dynamic time series data, termed as the smooth (functional or varying) coefficient modeling

approach. This approach allows appreciable flexibility on the structure of fitted models. It

allows for linearity in some continuous or discrete variables which can be exogenous or lagged

and nonlinear in other variables in the coefficients. In such a way, the model has the ability
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of capturing the individual variations. More importantly, it can ease the so-called “curse

of dimensionality” and combines both additivity and interactivity. A smooth coefficient

quantile regression model for time series data takes the following form

qτ (Ut,Xt) =
d󰁛

k=0

ak (Ut)Xtk = X′
taτ (Ut) , (3.3)

where Ut is called the smoothing variable, which might be one part of Xt1, . . . , Xtd or just

time or other exogenous variables or the lagged variables, Xt = (Xt0, Xt1, . . . , Xtd)
′ with

Xt0 ≡ 1, {ak(·)} are smooth coefficient functions, and aτ (·) = (a0,τ (·), . . . , ad,τ (·))′. Here,

some of {ak,τ (·)} are allowed to depend on τ . For simplicity, we drop τ from {ak,τ (·)} in

what follows. It is our interest here to estimate the coefficient functions a(·) rather than the

quantile regression surface qτ (·, ·) itself. Note that model (3.3) was studied by Honda (2004)

for the independent sample, but our focus here is on the dynamic model for nonlinear time

series, which is more appropriate for economic and financial applications.

The general setting in (3.3) covers many familiar quantile regression models, including

the quantile autoregressive model (QAR) proposed by Koenker and Xiao (2004) who applied

the QAR model for the unit root inference. In particular, it includes a specific class of ARCH

models, such as heteroscedastic linear models considered by Koenker and Zhao (1996). Also,

if there is no Xt in the model (d = 0), qτ (Ut,Xt) becomes qτ (Ut) so that model (3.3) reduces

to the ordinary nonparametric quantile regression model which has been studied extensively.

For the recent developments, refer to the papers by He, Ng and Portony (1998), Yu and

Jones (1998), He and Ng (1999), He and Portony (2000), Honda (2000), Lu, Hui and Zhao

(2000), Cai (2002a), De Gooijer and Zerom (2003), Horowitz and Lee (2005), Yu and Lu

(2004), and Li and Racine (2008). If Ut is just time, then the model is called the timevarying

coefficient quantile regression model, which is potentially useful to see whether the quantile

regression changes over time and in a case with a practical interest is, for example, the

aforementioned illustrative example for the 1992 presidential election and the analysis of the

reference growth data by Cole (1994), Wei, Pere, Koenker and He (2006), and Wei and He

(2006), and the references therein. However, if Ut is time, the observed time series might

not be stationary. Therefore, the treatment for non-stationary case would require a different

approach so that it is beyond the scope of this chapter and deserves a further investigation.

For more applications, see the work in Xu (2005). Finally, note that the smooth coefficient

mean regression model is one of the most popular nonlinear time series models in mean
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regression and has various applications. For more discussions, refer to the papers by Chen

and Tsay (1993), Cai, Fan, and Yao (2000), Cai and Tiwari (2000), Cai (2007), Hong and

Lee (2003), and Wang (2003), and the book by Tsay (2002), and references therein.

The motivation of this study comes from an analysis of the well known Boston housing

price data, consisting of several variables collected on each of 506 different houses from a

variety of locations. The interest is to identify the factors affecting the house price in Boston

area. As argued by Sentürk and Müller (2006), the correlation between the house price

and the crime rate can be adjusted by the confounding variable which is the proportion of

population of lower educational status through a varying coefficient model and the expected

effect of increasing crime rate on declining house prices seems to be only observed for lower

educational status neighborhoods in Boston. The interesting features of this dataset are that

the response variable is the median price of a home in a given area and the distributions

of the price and the major covariate (the confounding variable) are left skewed. Therefore,

quantile methods are suitable for the analysis of this dataset. Therefore, such a problem

can be tackled by using model (3.3). In another example, one is interested in exploring

the possible nonlinearity feature, heteroscedasticity, and predictability of the exchange rates

such as the Japanese Yen per US dollar. The detailed analysis of these data sets is reported

in Section 3.3.

3.2 Modeling Procedures

3.2.1 Local Linear Quantile Estimate

Now, we apply the local polynomial method to the smooth coefficient quantile regression

model as follows. For the sake of brevity, we only consider the case where Ut in (3.3)

is one-dimensional, denoted by Ut in what follows. Extension to multivariate Ut involves

fundamentally no new ideas although the theory and procedure continue to hold. Note

that the models with high dimension might not be practically useful due to the curse of

dimensionality. A local polynomial fitting has several nice properties such as high statistical

efficiency in an asymptotic minimax sense, design-adaptation, and automatic edge correction

(see, e.g., Fan and Gijbels, 1996).

We estimate the functions {ak(·)} using the local polynomial regression method from

observations {(Ut,Xt, Yt)}nt=1. We assume throughout the chapter that the coefficient func-
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tions a(·)} have the (q + 1)th derivative, so that for any given gird point u0, ak(·) can be

approximated by a polynomial function in a neighborhood of the given grid point u0 as

a (Ut) ≈ a (u0) + a′ (u0) (Ut − u0) + · · ·+ a(q) (u0) (Ut − u0)
q /q! and

qτ (Ut,Xt) ≈
q󰁛

j=0

X′
tβj (Ut − u0)

j ,

where βj = a(j) (u0) /j !. Then, the locally weighted loss function is

n󰁛

t=1

ρτ

󰀣
Yt −

q󰁛

j=0

X′
tβj (Ut − u0)

j

󰀤
Kh (Ut − u0) , (3.4)

where K(·) is a kernel function, Kh(x) = K(x/h)/h, and h = hn is a sequence of positive

numbers tending to zero, which controls the amount of smoothing used in estimation. Solving

the minimization problem in (3.4) gives 󰁥a (u0) = 󰁥β0, the local polynomial estimate of a (u0),

and 󰁥a(j) (u0) = j!󰁥βj(j ≥ 1), the local polynomial estimate of the jth derivative a(j) (u0)

of a (u0). By moving u0 along with the real line, one obtains the estimate for the entire

curve. For various practical applications, Fan and Gijbels (1996) recommended using the

local linear fit (q = 1). Therefore, for the expositional purpose, in what follows, we only

consider the case q = 1 (local linear fitting).

The programming involved in the local (polynomial) linear quantile estimation is rela-

tively simple and can be modified with few efforts from the existing programs for a linear

quantile model. For example, for each grid point u0, the local linear quantile estimation can

be implemented in the R package quantreg, of Koenker (2004) by setting covariates as Xt

and Xt (Ut − u0) and the weight as Kh (Ut − u0).

Although some modifications are needed, the method developed here for the local lin-

ear quantile estimation is applicable to a general local polynomial quantile estimation. In

particular, we note that the local constant (Nadaraya-Watson type) quantile estimation of

a (u0), denoted by 󰁨a (u0), is 󰁨β minimizing the following subjective function

n󰁛

t=1

ρτ (Yt −X′
tβ)Kh (Ut − u0) , (3.5)

which is a special case of (3.4) with q = 0. We compare 󰁥a (u0) and 󰁨a (u0) theoretically at the

end of Section ?? and empirically in Section 3.1 and the comparison leads to suggest that

one should use the local linear approach in practice.
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3.2.2 Asymptotic Results

We first give some regularity conditions that are sufficient for the consistency and asymptotic

normality of the proposed estimators, although they might not be the weakest possible. We

introduce the following notations. Denote

Ω (u0) ≡ E [XtX
′
t | Ut = u0] and Ω∗ (u0) ≡ E

󰀅
XtX

′
tfy|u,x (qτ (u0,Xt)) | Ut = u0

󰀆
,

where fy|u,x(y) is the conditional density of Y given U and X. Let fu(u) present the marginal

density of U .

Assumptions:

(C1) a(u) is twice continuously differentiable in a neighborhood of u0 for any u0.

(C2) fu(u) is continuous and fu (u0) > 0.

(C3) fy|u,x(y) is bounded and satisfies the Lipschitz condition.

(C4) The kernel function K(·) is symmetric and has a compact support, say [−1, 1].

(C5) {(Xt, Yt,Ut)} is a strictly α-mixing stationary process with mixing coefficient α(t)

satisfies
󰁓∞

t≥1 t
lα(δ−2)/δ(t) < ∞ for some positive real number δ > 2 and l > (δ− 2)/δ.

(C6) E 󰀂Xt󰀂2δ
∗
< ∞ with δ∗ > δ.

(C7) Ω (u0) is positive-definite and continuous in a neighborhood of u0

(C8) Ω∗ (u0) is continuous and positive-definite in a neighborhood of u0.

(C9) The bandwidth h satisfies h → 0 and nh → ∞.

(C10) f (u, v | x0,xs; s) ≤ M < ∞ for s ≥ 1, where f (u, v | x0,xs; s) is the conditional

density of (U0, Us) given (X0 = x0,Xs = xs).

(C11) n1/2−δ/4hδ/δ∗−1/2−δ/4 = O(1).

Remark 3.1: (Discussion of Conditions) Assumptions (C1)-(C3) include some smooth-

ness conditions on functionals involved. The requirement in (C4) that K(·) be compactly

supported is imposed for the sake of brevity of proofs, and can be removed at the cost of
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lengthier arguments. In particular, the Gaussian kernel is allowed. The α-mixing is one

of the weakest mixing conditions for weakly dependent stochastic processes. Stationary time

series or Markov chains fulfilling certain (mild) conditions are α-mixing with exponentially

decaying coefficients; see the discussions in Section 1.1 and Cai (2002a) for more examples.

On the other hand, the assumption on the convergence rate of α(·) in (C5) might not be

the weakest possible and is imposed to simplify the proof. Further, (C10) is just a techni-

cal assumption, which is also imposed by Cai (2002a). (C6) - (C8) require some standard

moments. Clearly, (C11) allows the choice of a wide range of smoothing parameter values

and is slightly stronger than the usual condition of nh → ∞. However, for the bandwidths

of optimal size (i.e., h = O
󰀃
n−1/5

󰀄
), (C11) is automatically satisfied for δ ≥ 3 and it is

still fulfilled for 2 < δ < 3 if δ∗ satisfies δ < δ∗ ≤ 1 + 1/(3 − δ), so that we do not concern

ourselves with such refinements. Indeed, this assumption is also imposed by Cai, Fan and

Yao (2000) for the mean regression. Finally, if there is no Xt in model (3.3), (C5) can be

replaced by (C5)′ : α(t) = O
󰀃
t−δ

󰀄
for some δ > 2 and (C11) can be substituted by (C11)′ :

nhδ/(δ−2) → ∞; see Cai (2002a) for details.

Remark 3.2: (Identification) It is clear from (3.3) that

Ω (u0) a (u0) = E [qτ (u0,Xt)Xt | Ut = u0] .

Then, a (u0) is identified (uniquely determined) if and only if Ω (u0) is positive definite for

any u0. Therefore, Assumption (C7) is the necessary and sufficient condition for the model

identification.

To establish the asymptotic normality of the proposed estimator, similar to Chaudhuri

(1991), we first derive the local Bahadur representation for the local linear estimator. To

this end, our analysis follows the approach of Koenker and Zhao (1996), which can simplify

the theoretical proofs. Define, µj =
󰁕
ujK(u)du and νj =

󰁕
ujK2(u)du. Also, set ψτ (x) =

τ − I{x<0}, Uth = (Ut − u0) /h,X
∗
t =

󰀕
Xt

UthXt

󰀖
, Y ∗

t = Yt − X′
t [a (u0) + a′ (u0) (Ut − u0)],

and θ =
√
nhH

󰀕
β0 − a (u0)
β1 − a′ (u0)

󰀖
with H = diag{I, hI}.

Theorem 3.1: (Local Bahadur Representation) Under Assumptions (C1)- (C9), we have

󰁥θ =
[Ω∗

1 (u0)]
−1

√
nhfu (u0)

n󰁛

t=1

ψτ (Y
∗
t )X

∗
tK (Uth) + op(1), (3.6)

where Ω∗
1 (u0) = diag {Ω∗ (u0) , µ2Ω

∗ (u0)}.
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Remark 3.3: From Theorem 3.1 and Lemma 3.1 (in Section 3.4), it is easy to see that the

local linear estimator 󰁥a (u0) is consistent with the optimal nonparametric convergence rate
√
nh

Theorem 3.2: (Asymptotic Normality) Under Assumptions (C1)- (C11), we have the fol-

lowing asymptotic normality

√
nh

󰀗
H

󰀕
󰁥a (u0)− a (u0)
󰁥a′ (u0)− a′ (u0)

󰀖
− h2

2

󰀕
a′′ (u0)µ2

0

󰀖
+ op

󰀃
h2
󰀄󰀘

→ N {0,Σ (u0)}

where Σ (u0) = diag {τ(1− τ)ν0Σa (u0) , τ(1− τ)ν2Σa (u0)} with

Σa (u0) = [Ω∗ (u0)]
−1 Ω (u0) [Ω

∗ (u0)]
−1 /fu (u0) (3.7)

In particular,

√
nh

󰀗
󰁥a (u0)− a (u0)−

h2µ2

2
a′′ (u0) + op

󰀃
h2
󰀄󰀘

→ N {0, τ(1− τ)ν0Σa (u0)}

Remark 3.4: From Theorem 3.2, the asymptotic mean squares error (AMSE) of 󰁥a (u0) is

given by

AMSE =
h4µ2

2

4
󰀂a′′ (u0)󰀂2 +

τ(1− τ)ν0
nhfu (u0)

tr (Σa (u0)) ,

which gives the optimal bandwidth hopt by minimizing the AMSE

hopt =

󰀕
τ(1− τ)ν0tr (Σa (u0))

fu (u0) 󰀂a′′ (u0)󰀂2
󰀖1/5

n−1/5,

and the optimal AMSE is

AMSEopt =
5

4

󰀕
τ(1− τ)ν0tr (Σa (u0))

fu (u0)

󰀖4/5

󰀂a′′ (u0)󰀂2/5 n−4/5.

Further, notice that the similar results in Theorem 3.2 were obtained by Honda (2004) for

the independent data. Finally, it is interesting to note that the asymptotic bias in Theorem

3.2 is the same as that for the mean regression case but the two asymptotic variances are

different; see, for example, Cai, Fan and Yao (2000).

If model (3.3) does not have X(d = 0), it becomes the nonparametric quantile regression

model qτ (·). Then, we have the following asymptotic normality for the local linear estima-

tor of the nonparametric quantile regression function qτ (·), which covers the results in Yu

and Jones (1998), Honda (2000), Lu, Hui and Zhao (2000), and Cai (2002a) for both the

independent and time series data.
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Corollary 3.2.1: If there is no Xt in (3.3), then,

√
nh

󰀗
󰁥qτ (u0)− qτ (u0)−

h2µ2

2
q′′τ (u0) + op

󰀃
h2
󰀄󰀘

→ N
󰀋
0, σ2

τ (u0)
󰀌
,

where σ2
τ (u0) = τ(1− τ)ν0f

−1
u (u0) f

−2
y|u (qτ (u0)).

Now we consider the comparison of the performance of the local linear estimation 󰁥a (u0)

obtained in (3.4) with that of the local constant estimation 󰁨a (u0) given in (3.5). To this

effect, first, we derive the asymptotic results for the local constant estimator but the proof

is omitted since it is along the same line with the proof of Theorems 3.1 and 3.2; see Xu

(2005) for details. Under some regularity conditions, it can be shown that

√
nh

󰁫
󰁨a (u0)− a (u0)− 󰁨b+ op

󰀃
h2
󰀄󰁬

→ N {0, τ(1− τ)ν0Σa (u0)} ,

where

󰁨b =
h2µ2

2

󰀅
a′′ (u0) + 2a′ (u0) f

′
u (u0) /fu (u0) + 2 {Ω∗ (u0)}−1 Ω∗′ (u0) a

′ (u0)
󰀆
,

which implies that the asymptotic bias for 󰁨a (u0) is different from that for 󰁥a (u0) but both

have the same asymptotic variance. Therefore, the local constant quantile estimator does not

adapt to nonuniform designs: the bias can be large when f ′
u (u0) /fu (u0) or {Ω∗ (u0)}−1 Ω∗′ (u0)

is large even when the true coefficient functions are linear. It is surprising that to the best

of our knowledge, this finding seems to be new for the nonparametric quantile regression

setting although it is well documented in literature for the ordinary regression case; see Fan

and Gijbels (1996) for details.

Finally, to examine the asymptotic behaviors of the local linear and local constant quan-

tile estimators at the boundaries, we offer Theorem 3.3 below but its proofs are omitted due

to their similarity to those for Theorem 3.2 with some modifications and for the ordinary

regression setting (Fan and Gijbels, 1996); see Xu (2005) for the detailed proofs. Without

loss of generality, we consider only the left boundary point u0 = ch, 0 < c < 1, if Ut takes

values only from [0, 1]. A similar result in Theorem 3.3 holds for the right boundary point

u0 = 1− ch. Define µj,c =
󰁕 1

−c
ujK(u)du and νj,c =

󰁕 1

−c
ujK2(u)du.

Theorem 3.3: (Asymptotic Normality) Under the assumptions in Theorem 3.2 , we have

the following asymptotic normality of the local linear quantile estimator at the left boundary

point,

√
nh

󰀗
󰁥a(ch)− a(ch)− h2bc

2
a′′(0+) + op

󰀃
h2
󰀄󰀘

→ N {0, τ(1− τ)vcΣa(0+)} ,
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where

bc =
µ2
2,c − µ1,cµ3,c

µ2,cµ0,c − µ2
1,c

and vc =
µ2
2,cν0,c − 2µ1,cµ2,cν1,c + µ2

1,cν2,c󰀅
µ2,cµ0,c − µ2

1,c

󰀆2 .

Further, we have the following asymptotic normality of the local constant quantile estimator

at the left boundary point u0 = ch for 0 < c < 1,

√
nh

󰁫
󰁨a(ch)− a(ch)− 󰁨bc + op

󰀃
h2
󰀄󰁬

→ N
󰀋
0, τ(1− τ)ν0,cΣa(0+)/µ2

0,c

󰀌
.

where

󰁨bc =

󰀗
hµ1,ca

′(0+) +
h2µ2,c

2

󰀝
a′′(0+) +

2a′(0+)f ′
u(0+)

fu(0+)
+ 2Ω∗−1(0+)Ω∗′(0+)a′(0+)

󰀞󰀘
/µ0,c.

Similar results hold for the right boundary point u0 = 1− ch.

Remark 3.5: We remark that if the point 0 were an interior point, then, Theorem 3.3 would

hold with c = 1, which becomes Theorem 3.2. Also, as c → 1, bc → µ2, and vc → ν0 and these

limits are exactly the constant factors appearing respectively in the asymptotic bias and vari-

ance for an interior point. Therefore, Theorem 3.3 shows that the local linear estimation has

the automatic good behavior at boundaries without the need of boundary correction. Further,

one can see from Theorem 3.3 that at the boundaries, the asymptotic bias term for the local

constant quantile estimate is of the order h by comparing to the order h2 for the local linear

quantile estimate. This shows that the local linear quantile estimate does not suffer from

boundary effects but the local constant quantile estimate does, which is another advantage of

the local linear quantile estimator over the local constant quantile estimator. This suggests

that one should use the local linear approach in practice.

As a special case, Theorem 3.3 includes the asymptotic properties for the local constant

quantile estimator of the nonparametric quantile function qτ (·) at both the interior and

boundary points, stated as follows.

Corollary 3.3.1: If there is no Xt in (3.3), then, the asymptotic normality of the local

constant quantile estimator is given by

√
nh

󰀗
󰁨qτ (u0)− qτ (u0)−

h2µ2

2
{q′′τ (u0) + 2q′τ (u0) f

′
u (u0) /fu (u0)}+ op

󰀃
h2
󰀄󰀘

→ N
󰀋
0, σ2

τ (u0)
󰀌
.

Further, at the left boundary point, we have

√
nh

󰁫
󰁨qτ (c h)− qτ (ch)−󰁨b∗c + op

󰀃
h2
󰀄󰁬

→ N
󰀋
0, σ2

c

󰀌
,
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where

󰁨b∗c =
󰀗
hµ1,cq

′
τ (0+) +

h2µ2,c

2
{q′′τ (0+) + 2q′τ (0+)f ′

u(0+)/fu(0+)}
󰀘
/µ0,c

and σ2
c = τ(1− τ)ν0,cf

−1
u (0+)f−2

y|u (qτ (0+)) /µ2
0,c.

3.2.3 Bandwidth Selection

It is well known that the bandwidth plays an essential role in the trade-off between reducing

bias and variance. To the best of our knowledge, there has been almost nothing done

about selecting the bandwidth in the context of estimating the coefficient functions in the

quantile regression even though there is a rich amount of literature on this issue in the mean

regression setting; see, for example, Cai, Fan and Yao (2000). In practice, it is desirable to

have a quick and easily implemented data-driven fashioned method. Based on this spirit,

Yu and Jones (1998) or Yu and Lu (2004) proposed a simple and convenient method for the

nonparametric quantile estimation. Their approach assumes that the second derivatives of

the quantile function are parallel. However, this assumption might not be valid for many

applications in economics and finance due to (nonlinear) heteroscedasticity. Further, the

mean regression approach can not directly estimate the variance function. To attenuate

these problems, we propose a method of selecting bandwidth for the foregoing estimation

procedure, based on the nonparametric version of the Akaike information criterion, which

can attend to the structure of time series data and the over-fitting or under-fitting tendency.

This idea is motivated by its analogue of Cai and Tiwari (2000) and Cai (2002b) for nonlinear

time series models. The basic idea is described below.

By recalling the classical AIC for linear models under the likelihood setting

−2(maximized log quasi-likelihood) + 2(number of estimated parameters),

we propose the following nonparametric version of the bias-corrected AIC, due to Hurvich and

Tsai (1989) for parametric models and Hurvich, Simonoff and Tsai (1998) for nonparametric

regression models, to select h by minimizing

AIC(h) = log
󰀋
󰁥σ2
τ

󰀌
+ 2 (ph + 1) / [n− (ph + 2)] , (3.8)

where 󰁥σ2
τ and ph are defined later. This criterion may be interpreted as the AIC for the

local quantile smoothing problem and seems to perform well in some limited applications.
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Note that similar to (3.8), Koenker, Ng and Portnoy (1994) considered the Schwarz infor-

mation criterion (SIC) of Schwarz (1978) with the second term on the right-hand side of

(3.8) replayed by 2n−1ph log n, where ph is the number of “active knots” for the smoothing

spline quantile setting, and Machado (1993) studied similar criteria for parametric quantile

regression models and more general M-estimators of regression.

Now the question is how to define 󰁥σ2
τ and ph in this setting. In the mean regression

setting, 󰁥σ2
τ is just the estimate of the variance σ2. In the quantile regression, we define 󰁥σ2

τ as

n−1
󰁓t

t=1 ρτ (Yt −X′
t󰁥a (Ut)), which may be interpreted as the mean square error in the least

square setting and was also used by Koenker, Ng and Portnoy (1994). In nonparametric

models, ph is the nonparametric version of degrees of freedom, called the effective number of

parameters, and it is usually based on the trace of various quasi-projection (hat) matrices in

the least square theory (linear estimators); see, for example, Hastie and Tibshirani (1990),

Cai and Tiwari (2000), and Cai (2002b) for a cogent discussion for nonparametric regression

models and nonlinear time series models. For the quantile smoothing setting, the explicit

expression for the quasi-projection matrix does not exist due to its nonlinearity. However,

we can use the first order approximation (the local Bahadur representation) given in (3.6)

to derive an explicit expression, which may be interpreted as the quasi-projection matrix in

this setting. To this end, define

Sn = Sn (u0) = an

n󰁛

t=1

ξtX
∗
tX

∗′
t K (Uth) ,

where ξt = I (Yt ≤ X′
ta (u0) + an) − I (Yt ≤ X′

ta (u0)) and an = (nh)−1/2. It is shown in

Section 3.5 that

Sn (u0) = fu (u0)Ω
∗
1 (u0) + op(1). (3.9)

From (3.6), it is easy to verify that 󰁥θ ≈ anS
−1
n

󰁓n
t=1 ψτ (Y

∗
t )X

∗
tK (Uth). Then, we have

󰁥qτ (Ut,Xt)− qτ (Ut,Xt) ≈
1

n

n󰁛

s=1

ψτ (Y
∗
s (Ut))Kh ((Us − Ut) /h)X

0′

t S
−1
n (Ut)X

∗
s

where X0
t =

󰀕
Xt

0

󰀖
. The coefficient of ψτ (Y

∗
s (Us)) on the right-hand side of the above

expression is γs = a2nK(0)X0′

s S
−1
n (Us)X

0
s. Now, we have that ph =

󰁓n
s=1 γs, which can be

regarded as an approximation to the trace of the quasi-projection (hat) matrix for linear

estimators. In the practical implementation, we need to estimate a (u0) first since Sn (u0)
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involves a (u0). We recommend using a pilot bandwidth which can be chosen as the one pro-

posed by Yu and Jones (1998). Similar to the least square theory, as expected, the criterion

proposed in (3.6) counteracts the over-fitting tendency of the generalized crossvalidation due

to its relatively weak penalty and the under-fitting of the SIC of Schwarz (1978) studied by

Koenker, Ng and Portnoy (1994) because of the heavy penalty.

3.2.4 Covariance Estimate

For the purpose of statistical inference, we next consider the estimation of the asymptotic

covariance matrix to construct the pointwise confidence intervals. In practice, a quick and

simple way to estimate the asymptotic covariance matrix is desirable. In view of (3.7), the

explicit expression of the asymptotic covariance provides a direct estimator. Therefore, we

can use the so-called “sandwich” method. In other words, we need to obtain a consistent

estimate for both Ω (u0) and Ω∗ (u0). To this effect, define,

󰁥Ωn,0 =
1

n

n󰁛

t=1

XtX
′
tKh (Ut − u0) and 󰁥Ωn,1 =

1

n

n󰁛

t=1

wtXtX
′
tKh (Ut − u0)

where wt = I (X′
t󰁥a (u0)− δn < Yt ≤ X′

t󰁥a (u0) + δn) / (2δn) for any δn → 0 as n → ∞. It is

shown in Section 3.5 that

󰁥Ωn,0 = fu (u0)Ω (u0) + op(1) and 󰁥Ωn,1 = fu (u0)Ω
∗ (u0) + op(1). (3.10)

Therefore, the consistent estimate of Σa (u0) is given by

󰁥Σa (u0) =
󰁫
󰁥Ωn,1 (u0)

󰁬−1 󰁥Ωn,0 (u0)
󰁫
󰁥Ωn,1 (u0)

󰁬−1

.

Note that 󰁥Ωn,1 (u0) might be close to singular for some sparse regions. To avoid this com-

putational difficulty, there are two alternative ways to construct a consistent estimate of

fu (u0)Ω
∗ (u0) through estimating the conditional density of Y, fy|u,x (qτ (u,x)). The first

method is the Nadaraya-Watson type (or local linear) double kernel method of Fan, Yao and

Tong (1996) defined as,

󰁥fy|u,x (qτ (u,x)) =
n󰁛

t=1

Kh2 (Ut − u,Xt − x)Lh1 (Yt − qτ (u,x)) /
n󰁛

t=1

Kh2 (Ut − u,Xt − x) ,

where L(·) is a kernel function, and the second one is the difference quotients method of

Koenker and Xiao (2004) such as

󰁥fy|u,x (qτ (u,x)) = (τj − τj−1) /
󰀅
qτj(u,x)− qτj−1

(u,x)
󰀆
,
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for some appropriately chosen sequence of {τj}; see Koenker and Xiao (2004) for more

discussions. Then, in view of the definition of fu (u0)Ω
∗ (u0), the estimator 󰁨Ωn,1 can be

constructed as,

󰁨Ωn,1 =
1

n

n󰁛

t=1

󰁥fy|u,x (󰁥qτ (Ut,Xt))XtX
′
tKh (Ut − u0) .

By an analogue of (3.10), one can show that under some regularity conditions, both estima-

tors are consistent.

3.3 Empirical Examples

In this section we report a Monte Carlo simulation to examine the finite sample property of

the proposed estimator and to further explore the possible nonlinearity feature, heteroscedas-

ticity, and predictability of the exchange rate of the Japanese Yen per US dollar and to

identify the factors affecting the house price in Boston. In our computation, we use the

Epanechnikov kernel K(u) = 0.75 (1− u2) I(|u| ≤ 1) and construct the pointwise confidence

intervals based on the consistent estimate of the asymptotic covariance described in Section

?? without the bias correction. For a predetermined sequence of h ’s from a wide range,

say from ha to hb with an increment hδ, based on the AIC bandwidth selector described in

Section ??, we compute AIC(h) for each h and choose hopt to minimize AIC(h).

3.3.1 A Simulated Example

Example 3.1: We consider the following data generating process

Yt = a1 (Ut)Yt−1 + a2 (Ut)Yt−2 + σ (Ut) et, t = 1, . . . , n, (3.11)

where a1 (Ut) = sin
󰀃√

2πUt

󰀄
, a2 (Ut) = cos

󰀃√
2πUt

󰀄
, and σ (Ut) = 3 exp

󰀃
−4 (Ut − 1)2

󰀄
+

2 exp
󰀃
−5 (Ut − 2)2

󰀄
. Ut is generated from uniform (0, 3) independently and et ∼ N(0, 1).

The quantile regression is

qτ (Ut, Yt−1, Yt−2) = a0 (Ut) + a1 (Ut)Yt−1 + a2 (Ut)Yt−2,

where a0 (Ut) = Φ−1(τ)σ (Ut) and Φ−1(τ) is the τ -th quantile of the standard normal. There-

fore, only a0(·) is a function of τ . Note that a0(·) = 0 when τ = 0.5. To assess the perfor-

mance of finite samples, we compute the mean absolute deviation errors (MADE) for 󰁥aj(·),
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which is defined as

MADEj = n−1
0

n0󰁛

k=1

|󰁥aj (uk)− aj (uk)| ,

where 󰁥aj(·) is either the local linear or local constant quantile estimate of aj(·) and {zk =
0.1(k − 1) + 0.2 : 1 ≤ k ≤ n0 = 27} are the grid points. The Monte Carlo simulation is re-

peated 500 times for each sample size n = 200, 500, and 1000 and for each τ = 0.05, 0.50

and 0.95. We compute the optimal bandwidth for each replication, sample size, and τ . We

compute the median and standard deviation (in parentheses) of 500MADE values for each

scenario and summarize the results in Table 3.1.

Table 3.1: The Median and Standard Deviation of 500 MADE Values

The Local Linear Estimator

τ = 0.05 τ = 0.5 τ = 0.95

n MADE0 MADE1 MADE2 MADE 0 MADE1 MADE2 MADE 0 MADE1 MADE2

200 0.911 0.186 0.177 0.401 0.092 0.089 0.920 0.187 0.175

(0.520) (0.041) (0.041) (0.091) (0.032) (0.032) (0.517) (0.042) (0.039)

500 0.510 0.085 0.083 0.311 0.055 0.055 0.517 0.085 0.083

(0.414) (0.023) (0.02) (0.056) (0.019) (0.018) (0.390) (0.023) (0.023)

1000 0.419 0.060 0.059 0.311 0.050 0.049 0.416 0.060 0.059

(0.071) (0.018) (0.017) (0.051) (0.014) (0.014) (0.072) (0.017) (0.017)

The Local Linear Estimator

τ = 0.05 τ = 0.5 τ = 0.95

n MADE0 MADE1 MADE2 MADE 0 MADE1 MADE2 MADE 0 MADE1 MADE2

200 3.753 0.285 0.290 0.501 0.144 0.147 3.763 0.287 0.287

(2.937) (0.050) (0.051) (0.115) (0.027) (0.028) (3.188) (0.052) (0.051)

500 2.201 0.147 0.146 0.355 0.084 0.085 2.223 0.147 0.147

(3.025) (0.024) (0.025) (0.062) (0.016) (0.015) (3.320) (0.025) (0.025)

1000 0.883 0.086 0.086 0.322 0.060 0.061 0.882 0.086 0.087

(0.462) (0.015) (0.014) (0.054) (0.012) (0.011) (0.427) (0.015) (0.015)

From Table 3.1, we can observe that the MADE values for both the local linear and local

constant quantile estimates decrease when n increases for all three values of τ and the local
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linear estimate outperforms the local constant estimate. This is another example to show

that the local linear method is superior over the local constant even in the quantile setting.

Also, the performance for the median quantile estimate is slightly better than that for two

tails (τ = 0.05 and 0.95). This observation is not surprising because of the sparsity of data

in the tailed regions. Moreover, another benefit of using the quantile method is that we

can obtain the estimate of a0(·) (conditional standard deviation) simultaneously with the

estimation of a1(·) and a2(·) (functions in the conditional mean), which, in contrast, avoids a

two-stage approach needed to estimate the variance function in the mean regression; see Fan

and Yao (1998) for details. However, it is interesting to see that due to the larger variation,

the performance for a0(·), although it is reasonably good, is not as good as that of a1(·)
and a2(·). This can be further evidenced from Figure 3.1. The results in this simulated
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Figure 3.1: Simulated Example: The plots of the estimated coefficient functions for three
quantiles τ = 0.05 (dashed line), τ = 0.50 (dotted line), and τ = 0.95 (dot-dashed line)
with their true functions (solid line): σ(u) versus u in (a), a1(u) versus u in (b), and a2(u)
versus u in (c), together with the 95% point-wise confidence interval (thick line) with the
bias ignored for the τ = 0.5 quantile estimate.
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experiment show that the proposed procedure is reliable and they are along the line of our

asymptotic theory.

Finally, Figure 3.1 plots the local linear estimates for all three coefficient functions with

their true values (solid line): σ(·) in Figure 3.1 (a), a1(·) in Figure 3.1(b), and a2(·) in Figure

3.1(c), for three quantiles τ = 0.05 (dashed line), 0.50 (dotted line) and 0.95 (dotted-dashed

line), for n = 500 based on a typical sample which is chosen based on its MADE value equal

to the median of the 500 MADE values. The selected optimal bandwidths are hopt = 0.10

for τ = 0.05, 0.075 for τ = 0.50, and 0.10 for τ = 0.95. Note that the estimate of σ(·)
for τ = 0.50 can not be recovered from the estimate of a0(·) = 0 and it is not presented

in Figure 3.1(a). The 95% point-wise confidence intervals without the bias correction are

depicted in Figure 3.1 in thick lines for the τ = 0.05 quantile estimate. By the same token,

we can compute the point-wise confidence intervals (not shown here) for the rest. Basically,

all confidence intervals cover the true values. Also, we can see that the confidence interval

for 󰁥a0(·) is wider than that for 󰁥a1(·) and 󰁥a2(·) due to the larger variation. Similar plots

are obtained (not shown here) for the local constant estimates due to the space limitations.

Overall, the proposed modeling procedure performs fairly well.

3.3.2 Real Data Examples

Example 3.2: (Boston House Price Data) We analyze a subset of the Boston house price

data (available at http://lib.stat.cmu.edu/datasets/boston) of Harrison and Rubinfeld (1978).

This dataset consists of 14 variables collected on each of 506 different houses from a variety of

locations. The dependent variable is Y , the median value of owner-occupied homes in $1, 000

’s (house price); some major factors affecting the house prices used are: proportion of popu-

lation of lower educational status (i.e. proportion of adults with high school education and

proportion of male workers classified as labors), denoted by U , the average number of rooms

per house in the area, denoted by X1, the per capita crime rate by town, denoted by X2,

the full property tax rate per $10, 000, denoted by X3, and the pupil/teacher ratio by town

school district, denoted by X4. For the complete description of all 14 variables, see Harrison

and Rubinfeld (1978). Gilley and Pace (1996) provided corrections and examined censoring.

Recently, there have been several papers devoted to the analysis of this dataset. For exam-

ple, Breiman and Friedman (1985), Chaudhuri, Doksum and Samarov (1997), and Opsomer

and Ruppert (1998) used four covariates: X1, X3, X4 and U or their transformations to fit

http://lib.stat.cmu.edu/datasets/boston
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the data through a mean additive regression model whereas Yu and Lu (2004) employed

the additive quantile technique to analyze the data. Further, Pace and Gilley (1997) added

the geo-referencing factor to improve estimation by a spatial approach. Recently, Sentürk

and Müller (2006) studied the correlation between the house price Y and the crime rate X2

adjusted by the confounding variable U through a varying coefficient model and they con-

cluded that the expected effect of increasing crime rate on declining house prices seems to be

only observed for lower educational status neighborhoods in Boston. Some existing analyses

(e.g., Breiman and Friedman, 1985; Yu and Lu, 2004) in both mean and quantile regressions

concluded that most of the variation seen in housing prices in the restricted data set can be

explained by two major variables: X1 and U . Indeed, the correlation coefficients between

Y and U and X1 are −0.7377 and 0.6954 respectively. The scatter plots of Y versus U and

X1 are displayed in Figures 3.2(a) and 3.2(b), respectively. The interesting features of this
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Figure 3.2: Boston Housing Price Data: Displayed in (a)-(d) are the scatter plots of the
house price versus the covariates U,X1, X2 and log (X2), respectively.

data set are that the response variable is the median price of a home in a given area and the
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distributions of Y and the major covariate U are left skewed (the density estimates are not

presented). Therefore, quantile methods are particularly well suited to the analysis of this

dataset. Finally, it is surprising that all the existing nonparametric models aforementioned

above did not include the crime rate X2, which may be an important factor affecting the

housing price, and did not consider the interaction terms such as U and X2.

Based on the above discussions, it concludes that the model studied in this chapter might

be well suitable to the analysis of this dataset. Therefore, we analyze this dataset by the

following quantile smooth coefficient mode2

qτ (Ut,Xt) = a0,τ (Ut) + a1,τ (Ut)Xt1 + a2,τ (Ut)X
∗
t2, 1 ≤ t ≤ n = 506, (3.12)

where X∗
t2 = log (Xt2). The reason for using the logarithm of Xt2 in (3.12), instead of Xt2

itself, is that the correlation between Yt and X∗
t2 (the correlation coefficient is −0.4543) is

slightly stronger than that for Yt and Xt2(−0.3883), which can be witnessed as well from

Figures 3.2(c) and 3.2(d). In the model fitting, covariates X1 and X2 are centralized. For

the purpose of comparison, we also consider the following functional coefficient model in the

mean regression

Yt = a0 (Ut) + a1 (Ut)Xt1 + a2 (Ut)X
∗
t2 + et, (3.13)

and we employ the local linear fitting technique to estimate the coefficient functions {aj(·)},
denoted by {󰁥aj(·)}; see Cai, Fan and Yao (2000) for details.

The coefficient functions are estimated through the local linear quantile approach by

using the bandwidth selector described in Section ??. The selected optimal bandwidths are

hopt = 2.0 for τ = 0.05, 1.5 for τ = 0.50, and 3.5 for τ = 0.95. Figures 3.3(e), 3.3(f) and 3.3(g)

present the estimated coefficient functions 󰁥a0,τ (·),󰁥a1,τ (·), and 󰁥a2,τ (·) respectively, for three

quantiles τ = 0.05 (solid line), 0.50 (dashed line) and 0.95 (dotted line), together with the

estimates {󰁥aj(·)} from the mean regression model (dot-dashed line). Also, the 95% point-wise

confidence intervals for the median estimate are displayed by the thick dashed lines without

the bias correction. First, from these three figures, one can see that the median estimates

are quite close to the mean estimates and the estimates based on the mean regression are

always within the 95% confidence interval of the median estimates. It can be concluded that

the distribution of the measurement error et in (3.13) might be symmetric and 󰁥aj,0.5(·) in

2We do not include the other variables such as X3 and X4 in model (3.12), since we found that the
coefficient functions for these variables seem to be constant. Therefore, a semiparametric model would be
appropriate if the model includes these variables. It of course deserves a further investigation.
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Figure 3.3: Boston Housing Price Data: The plots of the estimated coefficient functions for
three quantiles τ = 0.05 (solid line), τ = 0.50 (dashed line), and τ = 0.95 (dotted line), and
the mean regression (dot-dashed line): 󰁥a0,τ (u) and 󰁥a0(u) versus u in (e), 󰁥a1,τ (u) and 󰁥a1(u)
versus u in (f), and 󰁥a2,τ (u) and 󰁥a2(u) versus u in (g). The thick dashed lines indicate the
95% point-wise confidence interval for the median estimate with the bias ignored.

(3.12) is almost same as 󰁥aj(·) in (3.13). Also, one can observe from Figure 3.3(e) that three

quantile curves are parallel, which implies that the intercept in 󰁥a0,τ (·) depends on τ , and

they decrease exponentially, which can support that the logarithm transformation may be

needed as argued in Yu and Lu (2004). More importantly, one can observe from Figures

3.3(f) and 3.3(g) that three quantile estimated coefficient curves are intersect. This reveals

that the structure of quantiles is complex and the lower and upper quantiles have different

behaviors and the heteroscedasticity might exist. But unfortunately, this phenomenon was

not observed in any previous analyses in the aforementioned papers.

From Figure 3.3(f), first, we can observe that 󰁥a1,0.50(·) and 󰁥a1,0.95(·) are almost same

but 󰁥a1,0.05(·) is different. Secondly, we can see that the correlation between the house price

and the number of rooms per house is almost positive except for houses with the median
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price and/or higher than (τ = 0.50 and 0.95) in very low educational status neighborhoods

(U > 23). Thirdly, for the low price houses (τ = 0.05), the correlation is always positive and

it deceases when U is between 0 and 14 and then keeps almost constant afterwards. This

implies that the expected effect of increasing the number of rooms can make the house price

slightly higher in any low educational status neighborhoods but much higher in relatively

high educational status neighborhoods. Finally, for the median and/or higher price houses,

the correlation deceases when U is between 0 and 14 and then keeps almost constant until U

up to 20 and finally deceases again afterwards, and it becomes negative for U larger than 23 .

This means that the number of room has a positive effect on the median and/or higher price

houses in relatively high and low educational status neighborhoods but increasing the number

of rooms might not increase the house price in very low educational status neighborhoods.

In other words, it is very difficult to sell high price houses with high number of rooms at a

reasonable price in very low educational status neighborhoods.

Finally, from Figure 3.3(g), first, one can conclude that the overall trend for all curves

is decreasing with 󰁥a3,0.95(·) deceasing faster than the others, and that 󰁥a3,0.05(·) and 󰁥a3,0.50(·)
tend to be constant for U larger than 16. Secondly, the correlation between the housing

prices (τ = 0.50 and 0.95) and the crime rate seems to be positive for smaller U values

(about U ≤ 13 ) and becomes negative afterwards. This positive correlation between the

housing prices (τ = 0.50 and 0.95) and the crime rate for relatively high educational status

neighborhoods seems against intuitive. However, the reason for this positive correlation is

the existence of high educational status neighborhoods close to central Boston where high

house prices and crime rate occur simultaneously. Therefore, the expected effect of increasing

crime rate on declining house prices for τ = 0.50 and 0.95 seems to be observed only for

lower educational status neighborhoods in Boston. Finally, it can be seen that the correlation

between the housing prices for τ = 0.05 and the crime rate is almost negative although the

degree depends on the value of U . This implies that increasing crime rate slightly decreases

relatively the house prices for the cheap houses (τ = 0.05).

In summary, it concludes that there is a nonlinear relationship between the conditional

quantiles of the housing price and the affecting factors. It seems that the factors U,X1 and

X2 do have different effects on the different quantiles of the conditional distribution of the

housing price. Overall, the housing price and the proportion of population of lower edu-

cational status have a strong negative correlation, and the number of rooms has a mostly
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positive effect on the housing price whereas the crime rate has the most negative effect on

the housing price. In particular, by using the proportion of population of lower educational

status U as the confounding variable, we demonstrate the substantial benefits obtained by

characterizing the affecting factors X1 and X2 on the housing price based on the neighbor-

hoods.

Example 3.3: (Exchange Rate Data) This example concerns the closing bid prices of the

Japanese Yen (JPY) in terms of US dollar. There is a vast amount of literature devoted to

the study of the exchange rate time series; see Sercu and Uppal (2000) and the references

therein for details. Here we use the proposed model and its modeling approaches to explore

the possible nonlinearity feature, heteroscedasticity, and predictability of the exchange rate

series. The data is a weekly series from January 1, 1974 to December 31, 2003. The daily

noon buying rates in New York City certified by the Federal Reserve Bank of New York for

customs and cable transfers purposes were obtained from the Chicago Federal Reserve Board

(http://www.chicagofed.org). The weekly series is generated by selecting the Wednesdays

series (if a Wednesday is a holiday then the following Thursday is used), which has 1566

observations. The use of weekly data avoids the so-called weekend effect as well as other

biases associated with non-trading, bid-ask spread, asynchronous rates and so on, which are

often present in higher frequency data. The previous analysis of this “particularly difficult”

data set can be found in Gallant, Hsieh and Tauchen (1991), Fan, Yao and Cai (2003),

and Hong and Lee (2003), and the references within. We model the return series Yt =

100 log (ξt/ξt−1), plotted in Figure 3.4(a), using the techniques developed in this chapter,

where ξt is an exchange rate level on the t-th week. Typically the classical financial theory

would treat {Yt} as a martingale difference process. Therefore, Yt would be unpredictable.

But this assumption was strongly rejected by Hong and Lee (2003) by examining five major

currencies and applying several testing procedures. Note that the return series {Yt} has 1565

observations. Figure 3.4(b) shows that there exists almost no significant autocorrelation in

{Yt}, which also was confirmed by Tsay (2002) and Hong and Lee (2003) by using several

statistical testing procedures.

Based on the evidence from Fan, Yao and Cai (2003) and Hong and Lee (2003), the

exchange rate series is predictable by using the functional coefficient autoregressive model

Yt = a0 (Ut) +
d󰁛

j=1

aj (Ut)Yt−j + σtet, (3.14)

http://www.chicagofed.org
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Figure 3.4: Exchange Rate Series: (a) Japanese-dollar exchange rate return series {Yt}; (b)
autocorrelation function of {Yt}; (c) moving average trading technique rule.

where Ut is the smooth variable defined later and σt is a function of Ut and the lagged

variables. If {Ut} is observable, aj(·) can be estimated by a local linear fitting; see Cai,

Fan and Yao (2000) for details, denoted by 󰁥aj(·). Here, σt is the stochastic volatility which

may depend on Ut and the lagged variables {Yt−j}. Now the question is how to choose Ut.

Usually, Ut can be chosen based on the knowledge of data or economic theory. However, if no

prior information is available, Ut may be chosen as a function of explanatory vector {ξt−j} or

through the use of data-driven methods such as AIC or cross-validation. Recently, Fan, Yao

and Cai (2003) proposed a data-driven method to the choice of Ut by a linear combination

of {ξt−j} and the lagged variables {Yt−j}. By following the analysis of Fan, Yao and Cai

(2003) and Hong and Lee (2003), we choose the smooth variable Ut as a moving average

technical trading rule (MATTR) in finance so that the autoregressive coefficients vary with

investment positions. Ut is defined as Ut = ξt−1/Mt − 1, where Mt =
󰁓L

j=1 ξt−j/L, which is



3.3. EMPIRICAL EXAMPLES 132

the moving average and can be regarded as a proxy for the trend at the time t− 1. Similar

to Hong and Lee (2003), We choose L = 26 (half a year). Ut +1 is the ratio of the exchange

rate at the time t− 1 to the average rate of the most recent L periods of exchange rates at

time t − 1. The time series plot of {Ut} is given in Figure 3.4(c). As pointed out by Hong

and Lee (2003), Ut is expected to reveal some useful information on the direction of changes.

The MATTR signals 1 (the position to buy JPY) when Ut > 0 and −1 (the position to sell

JPY) when Ut < 0. For the detailed discussions of the MATTR, see (for example) the papers

by LeBaron (1997, 1999), Hong and Lee (2003), Fan, Yao and Cai (2003), and the reference

therein. Note that model (3.12) was studied by Fan, Yao and Cai (2003) for the daily data

and Hong and Lee (2003) for the weekly data under the homogenous assumption (assume

that σt = σ ) based on the least square theory. In particular, Hong and Lee (2003) provided

some empirical evidences to conclude that model (3.14) outperforms the martingale model

and autoregressive models.

We analyze this exchange rate series by using the smooth coefficient model under the

quantile regression framework with only two lagged variables3 as follows

qτ (Ut, Yt−1, Yt−2) = a0,τ (Ut) + a1,τ (Ut)Yt−1 + a2,τ (Ut)Yt−2. (3.15)

The first 1540 observations of {Yt} are used for estimation and the last 25 observations

are left for prediction. The coefficient functions {aj,τ (·)} are estimated through the local

linear quantile approach, denoted by {󰁥aj,τ (·)}. The previous analysis of this “particularly

difficult” data set can be found in optimal bandwidths are hopt = 0.03 for τ = 0.05, 0.025

for τ = 0.50, and 0.03 for τ = 0.95. Figures 3.5(d) - 3.5(g) depict the estimated coefficient

functions 󰁥a0,τ (·),󰁥a1,τ (·), and 󰁥a2,τ (·) respectively, for three quantiles τ = 0.05 (solid line), 0.50

(dashed line) and 0.95 (dotted line), together with the estimates {󰁥aj(·)} (dot-dashed line)

from the mean regression model in (3.14). Also, the 95% point-wise confidence intervals for

the median estimate are displayed by the thick dashed lines without the bias correction.

First, from Figures 3.5(d), 3.5(f) and 3.5(g), we see clearly that the median estimates

󰁥aj,0.50(·) in (3.15) are almost parallel with or close to the mean estimates 󰁥aj(·) in (3.14) and

the mean estimates are almost within the 95% confidence interval of the median estimates.

Secondly, 󰁥a0,0.50(·) in Figure 3.5(d) shows a nonlinear pattern (increasing and then decreas-

ing) and 󰁥a0,0.05(·) and 󰁥a0,0.95(·) in Figure 3.5(e) exhibit nonlinearly (slightly U -shape) and

3We also considered the models with more than two lagged variables and we found that the conclusions
are similar and not reported here.
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Figure 3.5: Exchange Rate Series: The plots of the estimated coefficient functions for three
quantiles τ = 0.05 (solid line), τ = 0.50 (dashed line), and τ = 0.95 (dotted line), and the
mean regression (dot-dashed line): 󰁥a0,0.50(u) and 󰁥a0(u) versus u in (d),󰁥a0,0.05(u) and 󰁥a0,0.95(u)
versus u in (e), 󰁥a1,τ (u) and 󰁥a1(u) versus u in (f), and 󰁥a2,τ (u) and 󰁥a2(u) versus u in (g). The
thick dashed lines indicate the 95% point-wise confidence interval for the median estimate
with the bias ignored.

symmetrically. More importantly, one can observe from Figures 3.5(f) and 3.5(g) that the

lower and upper quantile estimated coefficient curves are intersect and they behave slightly

differently. Particularly, from Figure 3.5(g), we observe that 󰁥a2,0.05 (Ut) seems to be nonlin-

ear but 󰁥a2,0.95 (Ut) looks like constant when Ut < 0.06, and both 󰁥a2,0.05 (Ut) and 󰁥a2,0.95 (Ut)

decrease when Ut > 0.06. One might conclude that the distribution of the measurement

error et in (3.14) might not be symmetric about 0 and there exists a nonlinearity in aj,τ (·).
This supports the nonlinearity test of Hong and Lee (2003). Also, our findings lead to
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the conclusions that the quantile has a complex structure and the heteroscedasticity exists.

This observation supports the existing conclusion in literature that the GARCH (generalized

ARCH) effects occur in the exchange rate time series; see Engle, Ito and Lin (1990) and Tsay

(2002).

Finally, we consider the post-sample forecasting for the last 25 observations based on

the local linear quantile estimators which are computed by using the same bandwidths as

those used in the model fitting. The 95% nonparametric prediction interval is constructed as

(󰁥q0.025(·), 󰁥q0.975(·)) and the prediction results are reported in Table 3.2, which shows that 24

out of 25 (96%) predictive intervals contain the corresponding true values. The average length

of the intervals is 5.77, which is about 35.5% of the range of the data. Therefore, we can

conclude that under the dynamic smooth coefficient quantile regression model assumption,

the prediction intervals based on the proposed method work reasonably well.

3.4 Derivations

In this section, we give the derivations of the theorems and present certain lemmas with

their detailed proofs relegated to Section 3.5. First, we need the following two lemmas.

Lemma 3.1: Let Vn(∆) be a vector function that satisfies

(i) −∆′Vn(λ∆) ≥ −∆′Vn(∆) for λ ≥ 1

and

(ii) sup󰀂∆󰀂≤M 󰀂Vn(∆) +D∆−An󰀂 = op(1), where 󰀂An󰀂 = Op(1), 0 < M < ∞, and D is a

positive-definite matrix. Suppose that ∆n is a vector such that 󰀂Vn (∆n)󰀂 = op(1), then, we

have

(1) 󰀂∆n󰀂 = Op(1) and (2)∆n = D−1An + op(1).

Proof : The proof follows from Jurekova (1977) and Koenker and Zhao (1996).

Lemma 3.2: Let 󰁥β be the minimizer of the function

n󰁛

t=1

wtρτ (yt −X′
tβ) ,

where wt > 0. Then,

󰀐󰀐󰀐Σn
t=1wtXtψτ

󰀓
yt −X′

t
󰁥β
󰀔󰀐󰀐󰀐 ≤ dim(X)max

t≤n
󰀂wtXt󰀂 .
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Table 3.2: The Post-Sample Predictive Intervals For Exchange Rate Data

Observation True Value Prediction Interval

Y1541 0.3920 (−2.891, 2.412)

Y1542 0.5090 (−3.099, 2.405)

Y1543 1.5490 (−2.943, 2.446)

Y1544 −0.121 (−2.684, 2.525)

Y1545 −0.991 (−2.677, 2.530)

Y1546 −0.646 (−3.110, 2.401)

Y1547 −0.354 (−3.178, 2.365)

Y1548 −1.393 (−3.083, 2.372)

Y1549 0.9970 (−3.110, 2.230)

Y1550 −0.916 (−3.033, 2.431)

Y1551 −3.707 (−3.021,2.286)

Y1552 −0.919 (−3.841, 2.094)

Y1553 −0.901 (−3.603, 2.770)

Y1554 0.0710 (−3.583, 2.821)

Y1555 −0.497 (−3.351, 2.899)

Y1556 −0.648 (−3.436, 2.783)

Y1557 1.6480 (−3.524, 2.866)

Y1558 −1.184 (−3.121, 2.810)

Y1559 0.5300 (−3.529, 2.531)

Y1560 0.1070 (−3.222, 2.648)

Y1561 −0.804 (−3.294, 2.651)

Y1562 0.2740 (−3.419, 2.534)

Y1563 −0.847 (−3.242, 2.640)

Y1564 −0.060 (−3.426, 2.532)

Y1565 −0.088 (−3.300, 2.576)

Proof : The proof follows from Ruppert and Carroll (1980). From the definition of θ, we

have

β =

󰀕
a (u0)
a′ (u0)

󰀖
+ anH

−1θ,

where an is defined in (3.10). Then, Yt −
󰁓q

j=0 X
′
tβj (Ut − u0)

j = Y ∗
t − anθ

′X∗
t . Therefore,

󰁥θ = argmin
n󰁛

t=1

ρτ [Y
∗
t − anθ

′X∗
t ]K (Uth) ≡ argminG(θ).
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Now, define Vn(θ) as

Vn(θ) = an

n󰁛

t=1

ψτ [Y
∗
t − anθ

′X∗
t ]X

∗
tK (Uth) . (3.16)

To establish the asymptotic properties of 󰁥θ, in the next three lemmas, we show that Vn(θ)

satisfies Lemma 3.1 so that we can derive the local Bahadur representation for 󰁥θ. The

results are stated here and their detailed proofs are given in Section 3.5 For the notational

convenience define Am = {θ : 󰀂θ󰀂 ≤ M} for some 0 < M < ∞.

Lemma 3.3: Under the assumptions in Theorem 3.1, we have

sup
θ∈Am

󰀂Vn(θ)− Vn(0)− E [Vn(θ)− Vn(0)]󰀂 = op(1).

Lemma 3.4: Under then assumptions in Theorem 3.1, we have

sup
θ∈Am

󰀂E [Vn(θ)− Vn(0)] + f (u0)Ω
∗
1 (u0)θ󰀂 = o(1).

Lemma 3.5: Let Zt = ψτ (Y
∗
t )X

∗
tK (Uth). Under the assumptions in Theorem 3.1, we have

E [Z1] =
h3f (u0)

2

󰀕
µ2Ω

∗ (u0) a
′′ (u0)

0

󰀖
{1 + o(1)}

and

Var [Z1] = hτ(1− τ)f (u0)Ω1 (u0) {1 + o(1)},

where

Ω1 (u0) =

󰀕
ν0Ω (u0) 0

0 ν2Ω (u0)

󰀖
.

Further,

Var [Vn(0)] → τ(1− τ)f (u0)Ω1 (u0) .

Therefore, 󰀂Vn(0)󰀂 = Op(1).

Now we can embrace the proofs of the theorems.

Proof of Theorem 3.1. By Lemmas 3.5, 3.3, and 3.4, Vn(θ) satisfies the condition (ii) of

Lemma 3.1; that is, 󰀂An󰀂 = Op(1) and supθ∈Am
󰀂Vn(θ) +Dθ −An󰀂 = op(1) with D =
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fu (u0)Ω
∗
1 (u0) and An = Vn(0). It follows Lemma 3.2 that

󰀐󰀐󰀐Vn(󰁥θ)
󰀐󰀐󰀐 = op(1), where 󰁥θ is the

minimizer of G(θ). Finally, since ψτ (x) is an increasing function of x, then,

−θ′Vn(λθ) = an

n󰁛

t=1

(−θ′) (ψτ (Y
∗
t − λanθ

′X∗
t )X

∗
tK (Uth)

= an

n󰁛

t=1

ψτ [Y
∗
t + λan (−θ′X∗

t )] (−θ′X∗
t )K (Uth)

is an increasing function of λ. Thus, the condition (i) of Lemma 3.1 is satisfied. Therefore,

it follows that

󰁥θ = D−1An + op(1) =
(Ω∗

1)
−1

√
nhfu (u0)

n󰁛

t=1

ψτ (Y
∗
t )X

∗
tK (Uth) + op(1). (3.17)

This proves (3.6).

Proof of Theorem 3.2. Let εt = ψτ (Yt −X′
ta (Ut)). Then, E (εt) = 0 and Var (εt) =

τ(1− τ). From (3.17),

󰁥θ ≈ (Ω∗
1)

−1

√
nhfu (u0)

n󰁛

t=1

[ψτ (Y
∗
t )− εt]X

∗
tK (Uth) +

(Ω∗
1)

−1

√
nhfu (u0)

n󰁛

t=1

εtX
∗
tK (Uth) ≡ Bn + ξn

Similar to the proof of Theorem 2 in Cai, Fan and Yao (2000), by using the small-block and

large-block technique and the Cramr-Wold device, one can show that

ξn → N (0,Σ (u0)) . (3.18)

By the stationarity and Lemma 3.5,

E [Bn] =
(Ω∗

1)
−1

√
nhfu (u0)

nE [Z1] {1 + o(1)} = a−1
n

h2

2

󰀕
a′′ (u0)µ2

0

󰀖
{1 + o(1)}. (3.19)

Since ψτ (Y
∗
t )− εt = I (Yt ≤ X′

ta (Ut))− I (Yt ≤ X′
t (a (u0) + a′ (u0) (Ut − u0))), then,

[ψτ (Y
∗
t )− εt]

2 = I (d1t < Yt ≤ d2t) (3.20)

where d1t = min (c1t, c2t) and d2t = max (c1t, c2t) with c1t = X′
ta (Ut) and c2t = X′

t [a (u0)+

a′ (u0) (Ut − u0)]. Further,

E
󰀅
{ψτ (Y

∗
t )− εt}2 K2 (Uth)X

∗
tX

∗′
t

󰀆
= E

󰀅󰀋
Fy|u,x (d2t)− Fy|u,x (d1t)

󰀌
K2 (Uth)X

∗
tX

∗′
t

󰀆
= O

󰀃
h3
󰀄
.

Thus, Var (Bn) = o(1). This, in conjunction with (3.18) and (3.19) and the Slutsky Theorem,

proves the theorem.
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3.5 Proofs of Lemmas

Note that the same notations in Sections 3.2 and 3.4 are used here. Throughout this section,

we denote a generic constant by C, which may take different values at different appearances.

Let Fy|u,x(y) denote the conditional distribution of Y given U and X.

Proof of Lemma 3.3. First, for any θ ∈ Am, we consider the following term

Vn(θ)− Vn(0) = an

n󰁛

t=1

[ψτ (Y
∗
nt)− ψτ (Y

∗
t )]X

∗
tK (Uth) ≡ an

n󰁛

i=1

Vnt(θ),

where Y ∗
nt = Y ∗

t − anθ
′X∗

t and Vnt(θ) = Vnt = [ψτ (Y
∗
nt)− ψτ (Y

∗
t )]X

∗
tK (Uth) = (V ′

nt1, V
′
nt2)

′

with

Vnt1 = [ψτ (Y
∗
nt)− ψτ (Y

∗
t )]XtK (Uth) and Vnt2 = [ψτ (Y

∗
nt)− ψτ (Y

∗
t )]XtUthK (Uth) .

Thus,

󰀂Vn(θ)− Vn(0)− E [Vn(θ)− Vn(0)]󰀂

≤an

󰀐󰀐󰀐󰀐󰀐

n󰁛

t=1

(Vnt1 − EVnt1)

󰀐󰀐󰀐󰀐󰀐+ an

󰀐󰀐󰀐󰀐󰀐

n󰁛

t=1

(Vnt2 − EVnt2)

󰀐󰀐󰀐󰀐󰀐 ≡ V (1)
n + V (2)

n .

Clearly,

V (1)
n ≡ an

󰀐󰀐󰀐󰀐󰀐

n󰁛

t=1

(Vnt1 − EVnt1)

󰀐󰀐󰀐󰀐󰀐 ≤
d󰁛

i=0

󰀐󰀐V (1i)
n

󰀐󰀐 ,

where V
(1i)
n = an

󰁓n
t=1

󰀓
V

(i)
nt1 − EV

(i)
nt1

󰀔
and V

(i)
nt1 = [ψτ (Y

∗
nt)− ψτ (Y

∗
t )]XtiK (Uth), which is

the i-th component of Vnt1. Then,

Var
󰀃
V (1i)
n

󰀄
= a2nE

󰀫
n󰁛

t=1

󰀓
V

(i)
nt1 − EV

(i)
nt1

󰀔󰀬2

= a2n

󰀥
n󰁛

t=1

Var
󰀓
V

(i)
nt1

󰀔
+ 2

n−1󰁛

s=1

󰀓
1− s

n

󰀔
Cov

󰀓
V

(i)
n11, V

(i)
n(s+1)1

󰀔󰀦

≤ 1

h

󰀥
Var

󰀓
V

(i)
n11

󰀔
+ 2

dn−1󰁛

s=1

󰀏󰀏󰀏Cov
󰀓
V

(i)
n11, V

(i)
n(s+1)1

󰀔󰀏󰀏󰀏+ 2
∞󰁛

s=dn

󰀏󰀏󰀏Cov
󰀓
V

(i)
n11, V

(i)
n(s+1)1

󰀔󰀏󰀏󰀏

󰀦

≡ J1 + J2 + J3
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for some dn → ∞ specified later. For J3, use the Davydov’s inequality (see Lemma 1.1) to

obtain
󰀏󰀏󰀏Cov

󰀓
V

(i)
n11, V

(i)
n(s+1)1

󰀔󰀏󰀏󰀏 ≤ Cα1−2/δ(s)

󰀗
E
󰀏󰀏󰀏V (i)

n11

󰀏󰀏󰀏
δ
󰀘2/δ

.

Similar to (3.20), for any k > 0,

|ψτ (Y
∗
nt)− ψτ (Y

∗
t )|

k = I (d3t < Yt ≤ d4t) ,

where d3t = min (c2t, c2t + c3t) and d4t = max (c2t, c2t + c3t) with c3t = anθ
′X∗

t . Therefore,

by Assumption (C3), there exists a C > 0 independent of θ such that

E
󰁱
|ψτ (Y

∗
nt)− ψτ (Y

∗
t )|

k | Ut,Xt

󰁲
= Fy|u,x (c4t)− Fy|u,x (c3t) ≤ Can |θ′X∗

t | ,

which implies that

E
󰀏󰀏󰀏V (i)

n11

󰀏󰀏󰀏
δ

= E
󰁫
|ψτ (Y

∗
n1)− ψτ (Y

∗
1 )|

δ |X1i|δ Kδ (U1h)
󰁬

≤ CanE
󰁫
|θ′X∗

t | |X1i|δ Kδ (U1h)
󰁬
≤ Canh

uniformly in θ over Am by Assumption (C6). Then,

J3 ≤ Ca2/δn h2/δ−1

∞󰁛

s=dn

[α(s)]1−2/δ ≤ Ca2/δn h2/δ−1d−l
n

∞󰁛

s=dn

sl[α(s)]1−2/δ = o
󰀃
a2/δn h2/δ−1d−l

n

󰀄

uniformly in θ over Am. As for J2, we use Assumption (C10) to get
󰀏󰀏󰀏Cov

󰀓
V

(i)
n11, V

(i)
n(s+1)1

󰀔󰀏󰀏󰀏 ≤ C
󰀅
E
󰀋󰀏󰀏X1iX(s+1)i

󰀏󰀏K (U1h)K
󰀃
U(s+1)h

󰀄󰀌
+ a2nh

2
󰀆
= O

󰀃
h2
󰀄

uniformly in θ over Am. It follows that J2 = O (dnh) uniformly in θ over Am. Analogously,

J1 = h−1Var
󰀓
V

(i)
n11

󰀔
≤ h−1E

󰀓
V

(i)
n11

󰀔2

= O (an)

uniformly in θ over Am. By choosing dn such that dlnh
1−2/δ = c, then, dnh → 0 and

Var
󰀓
V

(1i)
n

󰀔
= o(1). Therefore, V

(1i)
n = op(1) so that V

(1)
n = op(1) uniformly in θ over Am.

By the same token, we can show that V
(2)
n = op(1) uniformly in θ over Am. This completes

the proof of the lemma.

Proof of Lemma 3.4. It is easy to justify that

E [Vn(θ)− Vn(0)] = nanE [(ψτ (Y
∗
t − anθ

′X∗
t )− ψτ (Y

∗
t ))]X

∗
tK (Uth)]

= nanE
󰀅󰀋

Fy|u,x (c2t)− Fy|u,x (c2t + anθ
′X∗

t )
󰀌
X∗

tK (Uth)
󰀆

≈ −1

h
E
󰀅
fy|u,x (c2t)X

∗
tX

∗′
t K (Uth)

󰀆
θ

≈ −fu (u0)Ω
∗
1 (u0)θ

uniformly in θ over Am by Assumption (C3). The proof of the lemma is complete.
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Proof of Lemma 3.5. Observe by Taylor expansions and Assumption (C3) that

E [Zt] = E
󰀅󰀋

τ − Fy|u,x (c2t)
󰀌
X∗

tK (Uth)
󰀆

≈ E
󰀅󰀋

Fy|u,x
󰀃
c2t +X′

ta
′′ (u0)h

2U2
th/2

󰀄
− Fy|u,x (c2t)

󰀌
X∗

tK (Uth)
󰀆

≈ h2

2
E
󰀅
fy|u,x (c2t)X

∗
tX

′
ta

′′ (u0)U
2
thK (Uth)

󰀆

≈ h2

2
E
󰀅
fy|u,x (qτ (u0,Xt))X

∗
tX

′
ta

′′ (u0)U
2
thK (Uth)

󰀆

≈ h3fu (u0)

2

󰀕
µ2Ω

∗ (u0) a
′′ (u0)

0

󰀖
. (3.21)

Also, we have

Var [Zt] = E
󰀅
{τ − I (Yt < c2t)}2 X∗

tX
∗′
t K

2 (Uth)
󰀆

≈ E
󰀅󰀋

τ 2 − 2τFy|u,x (c2t) + Fy|u,x (c2t)
󰀌
X∗

tX
∗′
t K

2 (Uth)
󰀆

≈ τ(1− τ)E
󰀅
X∗

tX
∗′
t K

2 (Uth)
󰀆

≈ τ(1− τ)hfu (u0)Ω1 (u0) . (3.22)

Next, we show that the last part of lemma holds true. Clearly, Vn(0) = an
󰁓n

t=1 Zt. Similar

to the proof of Lemma 3.3, we have

Var [Vn(0)] =
1

h
Var (Z1) +

2

h

dn−1󰁛

s=1

󰀓
1− s

n

󰀔
Cov (Z1,Zs+l) +

2

h

n󰁛

s=dn

󰀓
1− s

n

󰀔
Cov (Z1,Zs+l)

≡ J4 + J5 + J6

for some dn → ∞ specified later. By (3.22),

J4 → τ(1− τ)fu (u0)Ω1 (u0) .

Therefore, it suffices to show that |J5| = o(1) and |J6| = o(1). For J6, using the Davydov’s

inequality (see, e.g., Lemma 1.1) and the boundedness of ψτ (·) to obtain

|Cov (Z1,Zs+1)| ≤ Cα1−2/δ(s)
󰁫
E |Z1|δ

󰁬2/δ
≤ Ch2/δα1−2/δ(s),

which gives

J6 ≤ Ch2/δ−1

∞󰁛

s=dn

[α(s)]1−2/δ ≤ Ch2/δ−1d−l
n

∞󰁛

s=dn

sl[α(s)]1−2/δ = o
󰀃
h2/δ−1d−l

n

󰀄
= o(1)
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by choosing dn to satisfy dlnh
1−2/δ = c. As for J5, we use Assumption (C10) and (3.21) to

get

|Cov (Z1,Zs+1)| ≤ C
󰀅
E
󰀋󰀏󰀏X∗

1X
∗
s+1

󰀏󰀏K (U1h)K
󰀃
U(s+1)h

󰀄󰀌
+ h6

󰀆
= O

󰀃
h2
󰀄

so that J5 = O (dnh) = o(1) by the choice of dn. We finish the proof of this lemma.

Proof of (3.9) and (3.10). By the Taylor expansion,

E [ξt | Ut,Xt] = Fy|u,x (X
′
ta (u0) + an)− Fy|u,x (X

′
ta (u0)) ≈ fy|u,x (X

′
ta (u0)) an.

Therefore,

E [Sn] ≈ h−1E
󰀅
fy|u,x (X

′
ta (u0))X

∗
tX

∗′
t K (Uth)

󰀆
≈ fu (u0)Ω

∗
1 (u0) .

Similar to the proof of Var [Vn(0)] in Lemma 3.5, one can show that Var (Sn) → 0. Therefore,

Sn → fu (u0)Ω
∗
1 (u0) in probability. This proves (3.9). Clearly,

E
󰁫
󰁥Ωn,0

󰁬
= E [XtX

′
tKh (Ut − u0)] =

󰁝
Ω (u0 + hv) fu (u0 + hv)K(v)dv ≈ fu (u0)Ω (u0) .

Similarly, one can show that Var
󰀓
󰁥Ωn,0

󰀔
→ 0. This proves the first part of (3.10). By

the same token, one can show that E
󰁫
󰁥Ωn,1

󰁬
≈ fu (u0)Ω

∗ (u0) and Var
󰀓
󰁥Ωn,1

󰀔
→ 0. Thus,

󰁥Ωn,1 = fu (u0)Ω
∗ (u0) + op(1). We prove (3.10).

3.6 Computer Codes

Please see the files chapter3-1.r, chapter3-2.r, and chapter3-3.r for making figures. If you

want to learn the codes for computation, they are available upon request.
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Chapter 4

Conditional VaR and Expected
Shortfall

For details, see the paper by Cai and Wang (2008). If you like to read the whole paper, you

can download it from the web site Journal of Econometrics.

4.1 Introduction

The value-at-risk (VaR) and expected shortfall (ES) have become two popular measures

on market risk associated with an asset or a portfolio of assets during the last decade. In

particular, VaR has been chosen by the Basle Committee on Banking Supervision as the

benchmark of risk measures for capital requirements and both of them have been used by

financial institutions for asset managements and minimization of risk as well as have been

developed rapidly as analytic tools to assess riskiness of trading activities. See, to name just

a few, Morgan (1996), Duffie and Pan (1997), Jorion (2001, 2003), and Duffie and Singleton

(2003) for the financial background, statistical inferences, and various applications. In terms

of the formal definition, VaR is simply a quantile of the loss distribution (future portfolio

values) over a prescribed holding period (e.g., 2 weeks) at a given confidence level, while ES

is the expected loss, given that the loss is at least as large as some given quantile of the loss

distribution (e.g., VaR). It is well known from Artzner, Delbaen, Eber and Heath (1999)

that ES is a coherent risk measure such as it satisfies the following four axioms:

• homogeneity: increasing the size of a portfolio by a factor should scale its risk measure

by the same factor,

• monotonicity: a portfolio must have greater risk if it has systematically lower values
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than another,

• risk-free condition or translation invariance: adding some amount of cash to a port-

folio should reduce its risk by the same amount, and

• subadditivity: the risk of a portfolio must be less than the sum of separate risks or

merging portfolios cannot increase risk.

VaR satisfies homogeneity, monotonicity, and risk-free condition but is not sub-additive. See

Artzner, et al. (1999) for details. As advocated by Artzner, et al. (1999), ES is preferred

due to its better properties although VaR is widely used in applications.

Measures of risk might depend on the state of the economy since economic and market

conditions vary from time to time. This requires risk managers should focus on the condi-

tional distributions of profit and loss, which take full account of current information about

the investment environment (macroeconomic and financial as well as political) in forecasting

future market values, volatilities, and correlations. As pointed out by Duffie and Singleton

(2003), not only are the prices of the underlying market indices changing randomly over

time, the portfolio itself is changing, as are the volatilities of prices, the credit qualities of

counter-parties, and so on. On the other hand, one would expect the VaR to increase as the

past returns become very negative, because one bad day makes the probability of the next

somewhat greater. Similarly, very good days also increase the VaR, as would be the case for

volatility models. Therefore, VaR could depend on the past returns in someway. Hence, an

appropriate risk analytical tool or methodology should be allowed to adapt to varying mar-

ket conditions and to reflect the latest available information in a time series setting rather

than the iid framework. Most of the existing risk management literature has concentrated on

unconditional distributions and the iid setting although there have been some studies on the

conditional distributions and time series data. For more background, see Chernozhukov and

Umanstev (2001), Cai (2002), Fan and Gu (2003), Engle and Manganelli (2004), Cai and

Xu (2008), Scaillet (2005), and Cosma, Scaillet and von Sachs (2007), and references therein

for conditional models, and Duffie and Pan (1997), Artzner, et al. (1999), Rockafellar and

Uryasev (2000), Acerbi and Tasche (2002), Frey and McNeil (2002), Scaillet (2004), Chen

and Tang (2005), Chen (2008), and among others for unconditional models. Also, most of

studies in the literature and applications are limited to parametric models, such as all stan-

dard industry models like CreditRisk+, CreditMetrics, CreditPortfolio View and the model



4.1. INTRODUCTION 149

proposed by the KMV corporation. See Chernozhukov and Umanstev (2001), Frey and Mc-

Neil (2002), Engle and Manganelli (2004), and references therein on parametric models in

practice and Fan and Gu (2003) and references therein for semiparametric models.

The main focus of this chapter is on studying the conditional value-at-risk (CVaR) and

conditional expected shortfall (CES) and proposing a new nonparametric estimation proce-

dure to estimate CVaR and CES functions where the conditional information is allowed to

contain economic and market (exogenous) variables and the past observed returns. Paramet-

ric models for CVaR and CES can be most efficient if the underlying functions are correctly

specified. See Chernozhukov and Umanstev (2001) for a polynomial type regression model

and Engle and Manganelli (2004) for a GARCH type parametric model for CVaR based

on regression quantile. However, a misspecification may cause serious bias and model con-

straints may distort the underlying distributions. A nonparametric modeling is appealing

in several aspects. One of the advantages for nonparametric modeling is that little or no re-

strictive prior information on functionals is needed. Further, it may provide a useful insight

for further parametric fitting.

The approach proposed by Cai and Wang (2008) has several advantages. The first one

is to propose a new nonparametric approach to estimate CVaR and CES. In essence, our

estimator for CVaR is based on inverting a newly proposed estimator of the conditional

distribution function for time series data and the estimator for CES is by a plugging-in

method based on plugging in the estimated conditional probability density function and the

estimated CVaR function. Note that they are analogous to the estimators studied by Scaillet

(2005) by using the Nadaraya-Watson (NW) type double kernel (smoothing in both the y and

x directions) estimation, and Cai (2002) by utilizing the weighted NadarayaWatson (WNW)

kernel type technique to avoid the so-called boundary effects as well as Yu and Jones (1998)

by employing the double kernel local linear method. More precisely, our newly proposed

estimator combines the WNW method of Cai (2002) and the double kernel local linear

technique of Yu and Jones (1998), termed as weighted double kernel local linear (WDKLL)

estimator.

The second merit is to establish the asymptotic properties for the WDKLL estimators

of the conditional probability density function and cumulative distribution function for the

α-mixing time series at both boundary and interior points. It is therefore shown that the

WDKLL method enjoys the same convergence rates as those of the double kernel local
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linear estimator of Yu and Jones (1998) and the WNW estimator of Cai (2002). It is also

shown that the WDKLL estimators have desired sampling properties at both boundary and

interior points of the support of the design density, which seems to be seminal. Finally, we

derive the WDKLL estimator of CVaR by inverting the WDKLL conditional distribution

estimator and the WDKLL estimator of CES by plugging in the WDKLL estimators of PDF

and CVaR. We show that the WDKLL estimator of CVaR exists always due to the WDKLL

estimator of CDF being a distribution function itself, and that it inherits all better properties

from the WDKLL estimator of CDF; that is, the WDKLL estimator of CDF is a CDF and

differentiable, and it possess the asymptotic properties such as design adaption, avoiding

boundary effects, and mathematical efficiency. Note that to preserve shape constraints,

recently, Cosma, Scaillet and von Sachs (2007) used a wavelet method to estimate conditional

probability density and cumulative distribution functions and then to estimate conditional

quantiles.

Note that CVaR defined here is essentially the conditional quantile or quantile regression

of Koenker and Bassett (1978), based on the conditional distribution, rather than CVaR

defined in some risk management literature (see, e.g., Rockafellar and Uryasev, 2000; Jorion,

2001, 2003), which is what we call ES here. Also, note that the ES here is called TailVaR in

Artzner, et al. (1999). Moreover, as aforementioned, CVaR can be regarded as a special case

of quantile regression. See Cai and Xu (2008) for the state-of-the-art about current research

on nonparametric quantile regression, including CVaR. Further, note that both ES and CES

have been known for decades among actuary sciences and they are very popular in insurance

industry. Indeed, they have been used to assess risk on a portfolio of potential claims, and to

design reinsurance treaties. See the book by Embrechts, Kluppelberg, and Mikosch (1997)

for the excellent review on this subject and the papers by McNeil (1997), Hürlimann (2003),

Scaillet (2005), and Chen (2008). Finally, ES or CES is also closely related to other applied

fields such as the mean residual life function in reliability and the biometric function in

biostatistics. See Oakes and Dasu (1990) and Cai and Qian (2000) and references therein.

4.2 Setup

Assume that the observed data {(Xt, Yt) ; 1 ≤ t ≤ n} , Xt ∈ ℜd, are available and they are

observed from a stationary time series model. Here Yt is the risk or loss variable which can

be the negative logarithm of return (log loss) and Xt is allowed to include both economic and
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market (exogenous) variables and the lagged variables of Yt and also it can be a vector. But,

for the expositional purpose, we consider only the case when Xt is a scalar (d = 1). Note that

the proposed methodologies and their theory for the univariate case (d = 1) continue to hold

for multivariate situations (d > 1). Extension to the case d > 1 involves no fundamentally

new ideas. Note that models with large d are often not practically useful due to “curse of

dimensionality”.

We now turn to considering the nonparametric estimation of the conditional expected

shortfall µp(x), which is defined as

µp(x) = E [Yt | Yt ≥ νp(x), Xt = x] ,

where νp(x) is the conditional value-at-risk, which is defined as the solution of

P (Yt ≥ νp(x) | Xt = x) = S (νp(x) | x) = p

or expressed as νp(x) = S−1(p | x), where S(y | x) is the conditional survival function of Yt

given Xt = x;S(y | x) = 1−F (y | x), and F (y | x) is the conditional cumulative distribution

function. It is easy to see that

µp(x) =

󰁝 ∞

νp(x)

yf(y | x)dy/p,

where f(y | x) is the conditional probability density function of Yt given Xt = x. To estimate

µp(x), one can use the plugging-in method as

󰁥µp(x) =

󰁝 ∞

󰁥νp(x)
y 󰁥f(y | x)dy/p, (4.1)

where 󰁥νp(x) is a nonparametric estimation of νp(x) and 󰁥f(y | x) is a nonparametric estimation

of f(y | x). But the bandwidths for 󰁥νp(x) and 󰁥f(y | x) are not necessary to be same.

Note that Scaillet (2005) used the NW type double kernel method to estimate f(y | x)
first, due to Roussas (1969), denoted by 󰁨f(y | x), and then estimated νp(x) by inverting

the estimated conditional survival function, denoted by 󰁨νp(x), and finally estimated µp(x)

by plugging 󰁨f(y | x) and 󰁨νp(x) into (4.1), denoted by 󰁨µp(x), where 󰁨νp(x) = 󰁨S−1(y | x)

and 󰁨S(y | x) =
󰁕∞
y

󰁨f(u | x)du. But, it is well documented (see, e.g., Fan and Gijbels,

1996) that the NW kernel type procedures have serious drawbacks: the asymptotic bias

involves the design density so that they can not be adaptive, and boundary effects exist

so that they require boundary modifications. In particular, boundary effects might cause a
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serious problem for estimating νp(x) since it is only concerned with the tail probability. The

question is now how to provide a better estimate for f(y | x) and νp(x) so that we have a

good estimate for µp(x). Therefore, we address this issue in the next section.

4.3 Nonparametric Estimating Procedures

We start with the nonparametric estimators for the conditional density function and its

distribution function first and then turn to discussing the nonparametric estimators for the

conditional VaR and ES functions.

There are several methods available for estimating νp(x), f(y | x), and F (y | x) in the

literature, such as kernel and nearest-neighbor1. To attenuate these drawbacks of the kernel

type estimators mentioned in Section 4.2 recently, some new methods have been proposed to

estimate conditional quantiles. The first one, a more direct approach, by using the “check”

function such as the robustified local linear smoother, was provided by Fan, Hu, and Troung

(1994) and further extended by Yu and Jones (1997,1998) for iid data. A more general

nonparametric setting was explored by Cai and Xu (2008) for time series data. This modeling

idea was initialed by Koenker and Bassett (1978) for linear regression quantiles and Fan, Hu,

and Troung (1994) for nonparametric models. See Cai and Xu (2008) and references therein

for more discussions on models and applications. An alternative procedure is first to estimate

the conditional distribution function by using double kernel local linear technique of Fan,

Yao, and Tong (1996) and then to invert the conditional distribution estimator to produce

an estimator of a conditional quantile or CVaR. Yu and Jones (1997, 1998) compared these

two methods theoretically and empirically and suggested that the double kernel local linear

would be better.

4.3.1 Estimation of Conditional PDF and CDF

To make a connection between the conditional density (distribution) function and nonpara-

metric regression problem, it is noted by the standard kernel estimation theory (see, e.g.,

1To name just a few, see Lejeune and Sarda (1988), Troung (1989), Samanta (1989), and Chaudhuri
(1991) for iid errors, Roussas (1969) and Roussas (1991) for Markovian processes, and Troung and Stone
(1992) and Boente and Fraiman (1995) for mixing sequences.
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Fan and Gijbles, 1996) that for a given symmetric density function K(·),

E {Kh0 (y − Yt) | Xt = x} = f(y | x) + h2
0

2
µ2(K)f 2,0(y | x) + o

󰀃
h2
0

󰀄
≈ f(y | x), as h0 → 0,

(4.2)

where Kh0(u) = K (u/h0) /h0, µ2(K) =
󰁕∞
−∞ u2K(u)du, f 2,0(y | x) = ∂2/∂y2f(y | x), and ≈

denotes an approximation by ignoring the higher terms. Note that Y ∗
t (y) = Kh0 (y − Yt) can

be regarded as an initial estimate of f(y | x) smoothing in the y direction. Also, note that

this approximation ignores the higher order terms O
󰀃
hj
0

󰀄
for j ≥ 2, since they are negligible

if h0 = o(h), where h is the bandwidth used in smoothing in the x direction (see (4.3) below).

Therefore, the smoothing in the y direction is not important in the context of this subject

so that intuitively, it should be under-smoothed. Thus, the left hand side of (4.2) can be

regraded as a nonparametric regression of the observed variable Y ∗
t (y) versus Xt and the

local linear (or polynomial) fitting scheme of Fan and Gijbles (1996) can be applied to here.

This leads us to consider the following locally weighted least squares regression problem:

n󰁛

t=1

{Y ∗
t (y)− a− b (Xt − x)}2 Wh (x−Xt) , (4.3)

where W (·) is a kernel function and h = h(n) > 0 is the bandwidth satisfying h → 0 and

nh → ∞ as n → ∞, which controls the amount of smoothing used in the estimation. Note

that (4.3) involves two kernels K(·) and W (·). This is the reason of calling “double kernel”.

Minimizing the above locally weighted least squares in (4.3) with respect to a and b, we

obtain the locally weighted least squares estimator of f(y | x), denoted by 󰁥f(y | x), which is

󰁥a. From Fan and Gijbels (1996) or Fan, Yao and Tong (1996), 󰁥f(y | x) can be re-expressed

as a linear estimator form as

󰁥fll(y | x) =
n󰁛

t=1

Wll,t(x, h)Y
∗
t (y),

where with Sn,j(x) =
󰁓n

t=1 Wh (x−Xt) (Xt − x)j, the weights {Wll,t(x, h)} are given by

Wll,t(x, h) =
[Sn,2(x)− (x−Xt)Sn,1(x)]Wh (x−Xt)

Sn,0(x)Sn,2(x)− S2
n,1(x)

.

Clearly, {Wll,t(x, h)} satisfy the so-called discrete moments conditions as follows: for 0 ≤
j ≤ 1,

n󰁛

t=1

Wll,t(x, h) (Xt − x)j = δ0,j =

󰀫
1 if j = 0

0 otherwsie
(4.4)
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based on the least squares theory; see (3.12) of Fan and Gijbels (1996, p.63). Note that the

estimator 󰁥fll(y | x) can range outside [0,∞). The double kernel local linear estimator of

F (y | x) is constructed (see (8) of Yu and Jones (1998)) by integrating 󰁥fll(y | x)

󰁥Fll(y | x) =
󰁝 y

−∞

󰁥fll(y | x)dy =
n󰁛

t=1

Wll,t(x, h)Gh0 (y − Yt) ,

where G(·) is the distribution function of K(·) and Gh0(u) = G (u/h0). Clearly, 󰁥Fll(y | x) is
continuous and differentiable with respect to y with 󰁥Fll(−∞ | x) = 0 and 󰁥Fll(∞ | x) = 1.

Note that the differentiability of the estimated distribution function can make the asymptotic

analysis much easier for the nonparametric estimators of CVaR and CES (see later).

Although Yu and Jones (1998) showed that the double kernel local linear estimator has

some attractive properties such as no boundary effects, design adaptation, and mathematical

efficiency (see, e.g., Fan and Gijbels, 1996), it has the disadvantage of producing conditional

distribution function estimators that are not constrained either to lie between zero and one

or to be monotone increasing, which is not good for estimating CVaR if the inverting method

is used. In both these respects, the NW method is superior, despite its rather large bias

and boundary effects. The properties of positivity and monotonicity are particularly advan-

tageous if the method of inverting conditional distribution estimator is applied to produce

the estimator of a conditional quantile or CVaR. To overcome these difficulties, Hall, Wolff,

and Yao (1999) and Cai (2002) proposed the WNW estimator based on an empirical likeli-

hood principle, which is designed to possess the superior properties of local linear methods

such as bias reduction and no boundary effects, and to preserve the property that the NW

estimator is always a distribution function, although it might require more computational

efforts since it requires estimating and optimizing additional weights aimed at the bias cor-

rection. Cai (2002) discussed the asymptotic properties of the WNW estimator at both

interior and boundary points for the mixing time series under some regularity assumptions

and showed that the WNW estimator has a better performance than other competitors. See

Cai (2002) for details. Recently, Cosma, Scaillet and von Sachs (2007) proposed a shape

preserving estimation method to estimate cumulative distribution functions and probability

density functions using the wavelet methodology for multivariate dependent data and then

to estimate a conditional quantile or CVaR.

The WNW estimator of the conditional distribution F (y | x) of Yt given Xt = x is defined
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by

󰁥Fc1(y | x) =
n󰁛

t=1

Wc,t(x, h)I (Yt ≤ y) , (4.5)

where the weights {Wc,t(x, h)} are given by

Wc,t(x, h) =
pt(x)Wh (x−Xt)󰁓n
t=1 pt(x)Wh (x−Xt)

, (4.6)

and {pt(x)} is chosen to be pt(x) = n−1 {1 + λ (Xt − x)Wh (x−Xt)}−1 ≥ 0 with λ, a

function of data and x, uniquely defined by maximizing the logarithm of the empirical

likelihood

Ln(λ) = −
n󰁛

t=1

log {1 + λ (Xt − x)Wh (x−Xt)}

subject to the constraints
󰁓n

t=1 pt(x) = 1 and the discrete moments conditions in (4.4); that

is,
n󰁛

t=1

Wc,t(x, h) (Xt − x)j = δ0,j (4.7)

for 0 ≤ j ≤ 1. Also, see Cai (2002) for details on this aspect. In implementation, Cai (2002)

recommended using the Newton-Raphson scheme to find the root of equation L′
n(λ) = 0.

Note that 0 ≤ 󰁥Fc1(y | x) ≤ 1 and it is monotone in y. But 󰁥Fc1(y | x) is not continuous in y

and of course, not differentiable in y either. Note that under regression setting, Cai (2001)

provided a comparison of the local linear estimator and the WNW estimator and discussed

the asymptotic minimax efficiency of the WNW estimator.

To accommodate all nice properties (monotonicity, continuity, differentiability, and lying

between zero and one) and the attractive asymptotic properties (design adaption, avoiding

boundary effects, and mathematical efficiency, see Cai (2002) for detailed discussions) of

both estimators 󰁥Fll(y | x) and 󰁥Fc1(y | x) under a unified framework, we propose the following

nonparametric estimators for the conditional density function f(y | x) and its conditional

distribution function F (y | x), termed as weighted double kernel local linear estimation,

󰁥fc(y | x) =
n󰁛

t=1

Wc,t(x, h)Y
∗
t (y),

where Wc,t(x, h) is given in (4.6), and

󰁥Fc(y | x) =
󰁝 y

−∞

󰁥fc(y | x)dy =
n󰁛

t=1

Wc,t(x, h)Gh0 (y − Yt) . (4.8)
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Note that if pt(x) in (4.6) is a constant for all t, or λ = 0, then 󰁥fc(y | x) becomes the classical

NW type double kernel estimator used by Scaillet (2005). However, Scaillet (2005) adopted

a single bandwidth for smoothing in both the y and x directions. Clearly, 󰁥fc(y | x) is a

probability density function so that 󰁥Fc(y | x) is a cumulative distribution function (monotone,

0 ≤ 󰁥Fc(y | x) ≤ 1, 󰁥Fc(−∞ | x) = 0, and 󰁥Fc(∞ | x) = 1
󰀔
. Also, 󰁥Fc(y | x) is continuous and

differentiable in y. Further, as expected, it will be shown that like 󰁥Fc1(y | x), 󰁥Fc(y | x) has
the attractive properties such as no boundary effects, design adaptation, and mathematical

efficiency.

4.3.2 Estimation of Conditional VaR and ES

We now are ready to formulate the nonparametric estimators for νp(x) and µp(x). To this

end, from (4.8), νp(x) is estimated by inverting the estimated conditional survival distribution

󰁥Sc(y | x) = 1 − 󰁥Fc(y | x), denoted by 󰁥νp(x) and defined as 󰁥νp(x) = 󰁥S−1
c (p | x). Note that

󰁥νp(x) always exists since 󰁥Sc(p | x) is a survival function itself. Plugging-in 󰁥νp(x) and 󰁥fc(y | x)
into (4.1), we obtain the nonparametric estimation of µp(x),

󰁥µp(x) = p−1

󰁝 ∞

󰁥νp(x)
y 󰁥fc(y | x)dy = p−1

n󰁛

t=1

Wc,t(x, h)

󰁝 ∞

󰁥νp(x)
yKh0 (y − Yt) dy

= p−1

n󰁛

t=1

Wc,t(x, h)
󰀅
YtḠh0 (󰁥νp(x)− Yt) + h0G1,h0 (󰁥νp(x)− Yt)

󰀆
, (4.9)

where Ḡ(u) = 1 − G(u), G1,h0(u) = G1 (u/h0), and G1(u) =
󰁕∞
u

vK(v)dv. Note that as

mentioned earlier, 󰁥νp(x) in (4.9) can be an any consistent estimator.

4.4 Distribution Theory

4.4.1 Assumptions

Before we proceed with the asymptotic properties of the proposed nonparametric estimators,

we first list all assumptions needed for the asymptotic theory, although some of them might

not be the weakest possible. Note that proofs of the asymptotic results presented in this

section may be found in Section 4.6 with some lemmas and their detailed proofs relegated

to Section 4.6.2. First, we introduce some notation. Let α(K) =
󰁕∞
−∞ uK(u)Ḡ(u)du and
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µj(W ) =
󰁕∞
−∞ ujW (u)du. Also, for any j ≥ 0, write

lj(u | v) = E
󰀅
Y j
t I (Yt ≥ u) | Xt = v

󰀆
=

󰁝 ∞

u

yjf(y | v)dy, la,bj (u | v) = ∂ab

∂ua∂vb
lj(u | v),

and la,bj (νp(x) | x) = la,bj (u | v)
󰀏󰀏󰀏
u=νp(x),v=x

. Clearly, l0(u | v) = S(u | v) and l1 (νp(x) | x) =

pµp(x). Finally, l1,0j (u | v) = −ujf(u | v) and l2,0j (u | v) = − [ujf 1,0(u | v) + juj−1f(u | v)].
We now list the following regularity conditions.

Assumption A:

A1. For fixed y and x, 0 < F (y | x) < 1, g(x) > 0, the marginal density of Xt, and is

continuous at x, and F (y | x) has continuous second order derivative with respect to

both x and y.

A2. The kernels K(·) and W (·) are symmetric, bounded, and compactly supported density.

A3. h → 0 and nh → ∞, and h0 → 0 and nh0 → ∞, as n → ∞.

A4. Let g1,t(·, ·) be the joint density of X1 and Xt for t ≥ 2. Assume that | g1,t(u, v)−
g(u)g(v) |≤ M < ∞ for all u and v.

A5. The process {(Xt, Yt)} is a stationary α-mixing with the mixing coefficient satisfying

α(t) = O
󰀃
t−(2+δ)

󰀄
for some δ > 0.

A6. nh1+2/δ → ∞

A7. h0 = o(h).

Assumption B:

B1. Assume that E
󰀓
|Yt|δ | Xt = u

󰀔
≤ M3 < ∞ for some δ > 2, in a neighborhood of x.

B2. Assume that |g1,t (y1, y2 | x1, x2)| ≤ M1 < ∞ for all t ≥ 2, where g1,t (y1, y2 | x1, x2) be

the conditional density of Y1 and Yt given X1 = x1 and Xt = x2.

B3. The mixing coefficient of the α-mixing process {(Xt, Yt)}∞t=−∞ satisfies
󰁓

t≥1 t
aα1−2/δ(t)

< ∞ for some a > 1− 2/δ, where δ is given in Assumption B1.

B4. Assume that there exists a sequence of integers sn > 0 such that sn → ∞, sn =

o
󰀃
(nh)1/2

󰀄
, and (n/h)1/2α (sn) → 0, as n → ∞.
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B5. There exists δ∗ > δ such that E
󰀓
|Yt|δ

∗
| Xt = u

󰀔
≤ M4 < ∞ in a neighborhood of

x,α(t) = O
󰀃
t−θ∗

󰀄
, where δ is given in Assumption B1, θ∗ ≥ δ∗δ/ {2 (δ∗ − δ)}, and

n1/2−δ/4hδ/δ∗−1/2−δ/4 = O(1).

Remark 4.1: Note that Assumptions A1 - A5 and B1 - B5 are used commonly in the

literature of time series data (see, e.g., Masry and Fan, 1997, Cai, 2001). Note that α-

mixing imposed in Assumption A5 is weaker than β-mixing in Hall, Wolff, and Yao (1999)

and ρ-mixing in Fan, Yao, and Tong (1996). Because A6 is satisfied by the bandwidths of

optimal size (i.e., h ≈ n−1/5 ) if δ > 1/2, we do not concern ourselves with such refinements.

Indeed, Assumptions A1 - A6 are also required in Cai (2002). Assumption A7 means that the

initial step bandwidth should be chosen as small as possible so that the bias from the initial

step can be ignored. Since the common technique - truncation approach for time series data

is not applicable to our setting (see, e.g., Masry and Fan, 1997), the purpose of Assumption

B5 is to use the moment inequality. If α(t) decays geometrically, then Assumptions B4 and

B5 are satisfied automatically. Note that Assumptions B3, B4, and B5 are stronger than

Assumptions A5 and A6. This is not surprising because the higher moments involved, the

faster decaying rate of α(·) is required. Finally, Assumptions B1 - B5 are also imposed in

Cai (2001).

4.4.2 Asymptotic Properties for Conditional PDF and CDF

First, we investigate the asymptotic behaviors of 󰁥fc(y | x), including the asymptotic normal-

ity stated in the following theorem.

Theorem 4.1: Under Assumptions A1 - A6 with h in A3 and A6 replaced by h0h, we have

󰁳
nh0h

󰁫
󰁥fc(y | x)− f(y | x)− Bf (y | x)

󰁬
→ N

󰀋
0, σ2

f (y | x)
󰀌
,

where the asymptotic bias is

Bf (y | x) = h2

2
µ2(W )f 0,2(y | x) + h2

0

2
µ2(K)f 2,0(y | x),

and the asymptotic variance is σ2
f (y | x) = µ0 (K

2)µ0 (W
2) f(y | x)/g(x).

Remark 4.2: The asymptotic results for 󰁥fc(y | x) in Theorem 4.1 are similar to those for

󰁥fll(y | x) in Fan, Yao, and Tong (1996) for the ρ-mixing sequence, which is stronger than
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α-mixing, but as mentioned earlier, 󰁥fll(y | x) is not always a probability density function.

The asymptotic bias and variance are intuitively expected. The bias comes from the approx-

imations in both x and y directions and the variance is from the local conditional variance

in the density estimation setting, which is f(y | x).

Next, we study the asymptotic behaviors for 󰁥Sc(y | x) at both interior and boundary

points. Similar to Theorem 4.1 for 󰁥fc(y | x), we have the following asymptotic normality for

󰁥Sc(y | x)

Theorem 4.2: Under Assumptions A1 - A6, we have

√
nh

󰁫
󰁥Sc(y | x)− S(y | x)− BS(y | x)

󰁬
→ N

󰀋
0, σ2

S(y | x)
󰀌
,

where the asymptotic bias is given by

BS(y | x) = h2

2
µ2(W )S0,2(y | x)− h2

0

2
µ2(K)f 1,0(y | x),

and the asymptotic variance is σ2
S(y | x) = µ0 (W

2)S(y | x)[1−S(y | x)]/g(x). In particular,

if Assumption A7 holds true, then,

√
nh

󰀗
󰁥Sc(y | x)− S(y | x)− h2

2
µ2(W )S0,2(y | x)

󰀘
→ N

󰀋
0, σ2

S(y | x)
󰀌
.

Remark 4.3: Note that the asymptotic results for 󰁥Sc(y | x) in Theorem 4.2 are analogous

to those for 󰁥Sll(y | x) = 1− 󰁥Fll(y | x) in Yu and Jones (1998) for iid data, but as mentioned

previously, 󰁥Fll(y | x) is not always a distribution function. A comparison of Bs(y | x) with

the asymptotic bias for 󰁥Sc1(y | x) (see Theorem 1 in Cai (2002)), it reveals that there is an

extra term
h2
0

2
f 1,0(y | x)µ2(K) in the asymptotic bias expression Bs(y | x) due to the vertical

smoothing in the y direction. Also, there is an extra term in the asymptotic variance (see

(4.20)). These extra terms are carried over from the initial estimate but they can be ignored

if the bandwidth at the initial step is taken to be a higher order than the bandwidth at the

smoothing step.

Remark 4.4: It is important to examine the performance of 󰁥Sc(y | x) by considering the

asymptotic mean squared error (AMSE). Theorem 4.2 concludes that the AMSE of 󰁥Sc(y | x)
is

AMSE
󰀓
󰁥Sc(y | x)

󰀔
=
{h2µ2(W )S0,2(y | x)− h2

0µ2(K)f 1,0(y | x)}2

4

+
1

nh

µ0 (W
2)S(y | x)[1− S(y | x)]

g(x)
. (4.10)
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By minimizing AMSE in (4.10) and taking h0 = o(h), therefore, we obtain the optimal

bandwidth given by

hopt ,S(y | x) =
󰀗
µ0 (W

2)S(y | x)[1− S(y | x)]
{µ2(W )S0,2(y | x)}2 g(x)

󰀘1/5
n−1/5.

Therefore, the optimal rate of the AMSE of 󰁥Sc(y | x) is n−4/5.

As for the boundary behavior of the WDKLL estimator, we can follow Cai (2002) to

establish a similar result for 󰁥Sc(y | x) like Theorem 2 in Cai (2002). Without loss of generality,

we consider the left boundary point x = ch, 0 < c < 1. From Fan, Hu, and Troung (1994), we

take W (·) to have support [−1, 1] and g(·) to have support [0, 1]. Then, under Assumptions

A1 - A7, by following the same proof as that for Theorem 4.2 and using the second assertion

in Lemma 4.1, although not straightforward, we can show that

√
nh

󰁫
󰁥Sc(y | ch)− Sc(y | ch)− BS,c(y)

󰁬
→ N

󰀃
0, σ2

S,c(y)
󰀄
, (4.11)

where the asymptotic bias term is given by BS,c(y) = h2β0(c)S
0,2(y | 0+)/ [2β1(c)] and the

asymptotic variance is σ2
S,c(y) = β2(0)S(y | 0+)[1 − S(y | 0+)]/ [β2

1(c)g(0+)] with g(0+) =

limz↓0 g(z)

β0(c) =

󰁝 c

−1

u2W (u)

1− λcuW (u)
du, βj(c) =

󰁝 c

−1

W j(u)

{1− λcuW (u)}j
du, 1 ≤ j ≤ 2,

and λc being the root of equation Lc(λ) = 0

Lc(λ) =

󰁝 c

−1

uW (u)

1− λuW (u)
du.

Note that the proof of (4.11) is similar to that for Theorem 2 in Cai (2002) and omitted.

Theorem 4.2 and (4.11) reflect two of the major advantages of the WKDLL estimator: (a)

the asymptotic bias does not depend on the design density g(x), and indeed it is dependent

only on the simple conditional distribution curvature S0,2(y | x) and conditional density

curvature f 1,0(y | x); and (b) it has an automatic good behavior at boundaries. See Cai

(2002) for the detailed discussions.

Finally, we remark that if the point 0 were an interior point, then, (4.11) would hold

with c = 1, which becomes Theorem 4.2. Therefore, Theorem 4.2 shows that the WKDLL

estimation has the automatic good behavior at boundaries without the need of the boundary

correction.



4.4. DISTRIBUTION THEORY 161

4.4.3 Asymptotic Theory for CVaR and CES

By the differentiability of 󰁥Sc (󰁥νp(x) | x), we use the Taylor expansion and ignore the higher

terms to obtain

󰁥Sc (󰁥νp(x) | x) = p ≈ 󰁥Sc (νp(x) | x)− 󰁥fc (νp(x) | x) (󰁥νp(x)− νp(x)) , (4.12)

then, by Theorem 4.1,

󰁥νp(x)− νp(x) ≈
󰁫
󰁥Sc (νp(x) | x)− p

󰁬
/ 󰁥fc (νp(x) | x) ≈

󰁫
󰁥Sc (νp(x) | x)− p

󰁬
/f (νp(x) | x) .

As an application of Theorem 4.2, we can establish the following theorem for the asymptotic

normality of 󰁥νp(x) but the proof is omitted since it is similar to that for Theorem 4.2.

Theorem 4.3: Under Assumptions A1 - A6, we have

√
nh [󰁥νp(x)− νp(x)− Bν(x)] → N

󰀋
0, σ2

ν(x)
󰀌
,

where the asymptotic bias is Bν(x) = BS (νp(x) | x) /f (νp(x) | x) and the asymptotic vari-

ance is σ2
ν(x) = µ0 (W

2) p(1−p)/ [g(x)f 2 (νp(x) | x)]. In particular, if Assumption A7 holds,

then,

√
nh

󰀗
󰁥νp(x)− νp(x)−

h2

2

S0,2 (νp(x) | x)
f (νp(x) | x)

µ2(W )

󰀘
→ N

󰀋
0, σ2

ν(x)
󰀌
.

Remark 4.5: First, as a consequence of Theorem 4.3, 󰁥νp(x)−νp(x) = Op

󰀃
h2 + h2

0 + (nh)−1/2
󰀄

so that 󰁥νp(x) is a consistent estimator of νp(x) with a convergence rate. Also, note that the

asymptotic results for 󰁥νp(x) in Theorem 4.3 are akin to those for 󰁥νl,p(x) = 󰁥S−1
ll (p | x)

in Yu and Jones (1998) for iid data. But in the bias term of Theorem 4.3, the quantity

S0,2 (νp(x) | x) /f (νp(x) | x), involving the second derivative of the conditional distribution

function with respect to x, replaces ν ′′
p (x), the second derivative of the conditional VaR func-

tion itself, which is in the bias term of the “check” function type local linear estimator in

Yu and Jones (1998) for iid data and Cai and Xu (2008) for time series. See Cai and Xu

(2008) for details. This is not surprising since the bias comes only from the approximation.

The former utilizes the approximation of the conditional distribution function but the later

uses the approximation of the conditional VaR function. Finally, Theorems 4.2 and 4.3 im-

ply that if the initial bandwidth h0 is chosen small as possible such as h0 = o(h), the final

estimates of S(y | x) and νp(x) are not sensitive to the choice of h0 as long as it satisfies

Assumption A7. This makes the selection of bandwidths much easier in practice, which will

be elaborated later (see Section 4.5.1).
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Remark 4.6: Similar to Remark 4.5 , we can derive the asymptotic mean squared error for

󰁥νp(x). By following Yu and Jones (1998), Theorem 4.3, and (4.20) (given in Section 4.6

imply that the AMSE of 󰁥νp(x) is given by

AMSE (󰁥νp(x)) =
{h2S0,2 (νp(x) | x)µ2(W )− h2

0f
1,0 (νp(x) | x)µ2(K)}2

4f 2 (νp(x) | x)

+
1

nh

µ0 (W
2) [p(1− p) + 2h0f (νp(x) | x)α(K)]

f 2 (νp(x) | x) g(x)
. (4.13)

Note that the above result is similar to that in Theorem 1 in Yu and Jones (1998) for the

double kernel local linear conditional quantile estimator. But, a comparison of (4.13) with

Theorem 3 in Cai (2002) for the WNW estimator reveals that (4.13) has two extra terms

(negligible if Assumption A7 is satisfied) due to the vertical smoothing in the y direction, as

mentioned previously. By minimizing AMSE in (4.13) and taking h0 = o(h), therefore, we

obtain the optimal bandwidth given by

hopt ,ν(x) =

󰀥
µ0 (W

2) p(1− p)

{µ2(W )S0,2 (νp(x) | x)}2 g(x)

󰀦1/5

n−1/5.

Therefore, the optimal rate of the AMSE of 󰁥νp(x) is n−4/5. By comparing hopt,ν(x) with

hopt ,S(y | x), it turns out that hopt,ν(x) is hopt,ν(y | x) evaluated at y = νp(x). Therefore, the

best choice of the bandwidth for estimating Sc(y | x) can be used for estimating νp(x).

Remark 4.7: Similar to (4.11), one can establish the asymptotic result at boundaries for

νp(x) as follows, one can show that under Assumption A7,

√
nh [󰁥νp(ch)− νp(ch)− Bν,c] → N

󰀃
0, σ2

ν,c

󰀄
,

where the asymptotic bias is Bν,c = h2β2(c)S
0,2 (νp(0+) | 0+) / [2β1(c)f (νp(0+) | 0+)] and

the asymptotic variance is σ2
ν,c = β0(0)p[1− p]/ [β2

1(c)f
2 (νp(0+) | 0+) g(0+)]. Clearly, 󰁥νp(x)

inherits all good properties from the WDKLL estimator of Sc(y | x). Note that the above

result can be established by using the second assertion in Lemma 4.1 and following the same

lines along with those used in the proof of Theorem 4.2 and omitted.

Finally, we examine the asymptotic behavior for 󰁥µp(x) at both interior and boundary

points. First, we establish the following theorem for the asymptotic normality for 󰁥µp(x)

when x is an interior point.
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Theorem 4.4: Under Assumptions A1 - A4 and B2 - B5, we have

√
nh [󰁥µp(x)− µp(x)− Bµ(x)] → N

󰀋
0, σ2

µ(x)
󰀌
,

where the asymptotic bias is Bµ(x) = Bµ,0(x) +
h2
0

2
µ2(K)p−1f (νp(x) | x) with

Bµ,0(x) =
h2

2
µ2(W )p−1

󰀅
l0,21 (νp(x) | x)− νp(x)S

0,2 (νp(x) | x)
󰀆
,

and the asymptotic variance is

σ2
µ(x) =

µ0 (W
2)

p g(x)

󰀅
p−1l2 (νp(x) | x)− pµ2

p(x) + (1− p)νp(x) {νp(x)− 2µp(x)}
󰀆
.

In particular, if Assumption A7 holds true, then,

√
nh [󰁥µp(x)− µp(x)− Bµ,0(x)] → N

󰀋
0, σ2

µ(x)
󰀌
.

Remark 4.8: First, Theorem 4.4 concludes that 󰁥µp(x) − µp(x) = Op

󰀃
h2 + h2

0 + (nh)−1/2
󰀄

so that 󰁥µp(x) is a consistent estimator of µp(x) with a convergence rate. Also, note that the

asymptotic results in Theorem 4.4 imply that 󰁥µp(x) is a consistent estimator for µp(x) with a

convergence rate (nh)−1/2. Further, note that although the asymptotic variance σ2
µ(x) is the

same as that in Scaillet (2005) for 󰁨µp(x), Scaillet (2005) did not provide an expression for

the asymptotic bias term like Bµ(x) in the first result or Bµ,0(x) in the second conclusion in

Theorem 4.4. Clearly, the second term in the asymptotic bias expression is carried over from

the y direction smoothing at the initial step and it is negligible if Assumption A7 is satisfied.

Clearly, Assumption A7 implies that Bµ(x) becomes Bµ,0(x).

Remark 4.9: Like Remark 4.5, the AMSE for 󰁥µp(x) can be derived in the same manner.

It follows from Theorem 4.4 that the AMSE of 󰁥µp(x) is given by

AMSE (󰁥µp(x)) =
1

nh
σ2
µ(x) +

󰀝
Bµ,0(x) +

h2
0

2
µ2(K)p−1f (νp(x) | x)

󰀞2

. (4.14)

Under Assumption A7, minimizing AMSE in (4.14) with respect to h yields the optimal

bandwidth given by

hopt ,µ(x) =

󰀥
σµ(x)

µ2(W )p−1
󰀋
l0,21 (νp(x) | x)− νp(x)S0,2 (νp(x) | x)

󰀌
󰀦2/5

n−1/5.

Therefore, as expected, the optimal rate of the AMSE of 󰁥µp(x) is n−4/5.
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Finally, we offer the asymptotic results for 󰁥µp(x) at the left boundary point x = ch. By

the same fashion, one can show that under Assumption A7,

√
nh [󰁥µp(ch)− µp(ch)− Bµ,c] → N

󰀃
0, σ2

µ,c

󰀄
,

where the asymptotic bias is

Bµ,c = h2β2(c)p
−1

󰀅
l0,21 (νp(0+) | 0+)− νp(0+)S0,2 (νp(0+) | 0+)

󰀆
/ [2β1(c)] ,

and the asymptotic variance is

σ2
µ,c =

β0(0)

pβ2
1(c)g(0+)

󰀅
p−1l2 (νp(0+) | 0+)− pµ2

p(0+) + (1− p)νp(0+) {νp(0+)− 2µp(0+)}
󰀆
.

Note that the proof of the above result can be carried over by using the second assertion in

Lemma 4.1 and following the same lines along with those used in the proof of Theorem 4.4 and

omitted. Next, we consider the comparison of the performance of the WDKLL estimation

󰁥µp(x) with the NW type kernel estimator 󰁨µp(x) as in Scaillet (2005). To this effect, it is not

very difficult to derive the asymptotic results for the NW type kernel estimator but the proof

is omitted since it is along the same line with the proof of Theorem 4.2. See Scaillet (2005) for

the results at the interior point. Under some regularity conditions, it can be shown although

tediously (see Cai (2002) for details) that at the left boundary x = ch, the asymptotic bias

term for the NW type kernel estimator 󰁨µp(x) is of the order h by comparing to the order

h2 for the WDKLL estimate (see Bµ,c above). This shows that the WDKLL estimate does

not suffer from boundary effects but the NW type kernel estimator estimate does. This is

another advantage of the WDKLL estimator over the WW type kernel estimator 󰁨µp(x).

4.5 Empirical Examples

To illustrate the proposed methods, we consider two simulated examples and two real data

examples on stock index returns and security returns. Throughout this section, the Epanech-

nikov kernel K(u) = 0.75 (1− u2)+is used and bandwidths are selected as described in the

next section.

4.5.1 Bandwidth Selection

With the basic model at hand, one must address the important bandwidth selection issue,

as the quality of the curve estimates depends sensitively on the choice of the bandwidth. For
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practitioners, it is desirable to have a convenient and effective data-driven rule. However,

almost nothing has been done so far about this problem in the context of estimating νp(x)

and µp(x) although there are some results available in the literature in other contexts for

some specific purposes.

As indicated earlier, the choice of the initial bandwidth h0 is not very sensitive to the

final estimation but it needs to be specified. First, we use a very simple idea to choose

h0. As mentioned previously, the WNW method involves only one bandwidth in estimating

the conditional distribution and VaR. Because the WNW estimate is a linear smoother (see

(4.5)), we recommend using the optimal bandwidth selector, the so-called nonparametric

AIC proposed by Cai and Tiwari (2000), to select the bandwidth, called 󰁨h. Then we take

0.1× 󰁨h or smaller as the initial bandwidth h0. For the given h0, we can select h as follows.

According to (4.8), 󰁥Fc(· | ·) is a linear estimator so that the nonparametric AIC selector

of Cai and Tiwari (2000) can be applied here to select the optimal bandwidth for 󰁥Fc(· · ·),
denoted by hS. As mentioned at the end of Remark 6 , the bandwidth for 󰁥νp(x) is the

same as that for 󰁥Fc(· | ·) so that it is simply to take hS as hν . From (4.9), 󰁥µp(x) is a linear

estimator too for given 󰁥νp(x). Therefore, by the same token, the nonparametric AIC selector

is applied to selecting hµ for 󰁥µp(x). This simple approach is used in our implementation in

the next sections.

4.5.2 Simulated Examples

In the simulated examples, we demonstrate the finite sample performance of the estimators

in terms of the mean absolute deviation error. For example, the MADE for 󰁥µp(x) is defined

as

Eµp =
1

n0

n0󰁛

k=1

|󰁥µp (xk)− µp (xk)| ,

where {xk}n0

k=1 are the pre-determined regular grid points. Similarly, we can define the

MADE for 󰁥νp(x), denoted by Eνp .

Example 4.1: We consider an ARCH type model with Xt = Yt−1,

Yt = 0.9 sin (2.5Xt) + σ (Xt) εt,

where σ2(x) = 0.8
√
1.2 + x2 and {εt} are iid standard normal random variables. We consider

three sample sizes: n = 250 and 500, and 1000 and the experiment is repeated 500 times
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for each sample size. The mean absolute deviation errors are computed for each sample size

and each replication.

The 5% WDKLL and NW estimations are summarized in Figure 4.1 for CVaR and in

Figure 4.2 for CES. For each n, the Box-plots of 500Eνp-values of the WDKLL and NW

estimations are plotted in Figure 4.1(d) for CVaR and in Figure 4.2 (d) for CES.
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Figure 4.1: Simulation results for Example 4.1 when p = 0.05. Displayed in (a) - (c) are the
true CVaR functions (solid lines), the estimated WDKLL CVaR functions (dashed lines),
and the estimated NW CVaR functions (dotted lines) for n = 250, 500 and 1000, respectively.
Box-plots of the 500 MADE values for both the WDKLL and NW estimations of CVaR are
plotted in (d).

From Figures 4.1(d) and 4.2(d), we can observe that the estimation becomes stable as

the sample size increases for both the WDKLL and NW estimators. This is in line with our

asymptotic theory that the proposed estimators are consistent. Further, it is obvious that

the MADEs of the WDKLL estimator are smaller than those for the NW estimator. This

indicates that our WDKLL estimator has smaller bias than that for the NW estimator. This
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implies that the overall performance of the WDKLL estimator should be better than that

for the NW estimator.
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Figure 4.2: Simulation results for Example 4.1 when p = 0.05. Displayed in (a) - (c) are
the true CES functions (solid lines), the estimated WDKLL CES functions (dashed lines),
and the estimated NW CES functions (dotted lines) for n = 250, 500 and 1000, respectively.
Box-plots of the 500 MADE values for both the WDKLL and NW estimations of CES are
plotted in (d).

Figures 4.1(a) − (c) for n = 250, 500 and 1000, respectively, display the true CVaR

function (solid line) νp(x) = 0.9 sin(2.5x) + σ(x)Φ−1(1 − p), where Φ(·) is the standard

normal distribution function, together with the dashed and dotted lines representing the

proposed WDKLL (dashed) and NW (dotted) estimates of CVaR, respectively, which are

computed based on a typical sample. The typical sample is selected in such a way that its

Eνp value is equal to the median in the 500 replications. From Figures 4.1(a) − (c), we can

observe that both the estimated curves are closer to the true curve as n increases and the

performance of the WDKLL estimator is better than that for the NW estimator, especially
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at boundaries.

In Figures 4.2(a)-(c), the true CES function µp(x) = 0.9 sin(2.5x)p+σ(x)µ1 (Φ
−1(1− p))

is displayed by the solid line, where µ1(t) =
󰁕∞
t

uφ(u)du and φ(·) is the standard normal

distribution density function, and the dashed and dotted lines present the proposed WDKLL

(dashed) and NW (dotted) estimates of CES, respectively, from a typical sample. The

typical sample is selected in such a way that its Eµp-value is equal to the median in the 500

replications. We can conclude from Figures 4.2(a)− (c) that the CES estimator has a similar

performance as that for the CVaR estimator.
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Figure 4.3: Simulation results for Example 4.1 when p = 0.01. Displayed in (a) - (c) are the
true CVaR functions (solid lines), the estimated WDKLL CVaR functions (dashed lines), and
the estimated NW CVaR functions (dotted lines) for n = 250, 500 and 1000 , respectively.
Box-plots of the 500 MADE values for both WDKLL and NW estimation of the conditional
VaR are plotted in (d).

The 1% WDKLL and NW estimates of CVaR and CES are computed under the same

setting and they are displayed in Figures 4.3 and 4.4, respectively. Similar conclusions
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to those for the 5% estimates can be observed. But it is not surprising to see that the

performance of the 1% CVaR and CES estimates is not good as that for the 5% estimates

due to the sparsity of data.
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Figure 4.4: Simulation results for 4.1 when p = 0.01. Displayed in (a) - (c) are the true
CES functions (solid lines), the estimated WDKLL CES functions (dashed lines), and the
estimated NW CES functions (dotted lines) for n = 250, 500 and 1000, respectively. Box-
plots of the 500 MADE values for both the WDKLL and NW estimations of CVaR are
plotted in (d).

Example 4.2: In the above example, we consider only the case when Xt is one-dimensional.

In this example, we consider the multivariate situation, i.e. Xt consists of two lagged vari-

ables: Xt1 = Yt−1 and Xt2 = Yt−2. The data generating model is given below:

Yt = m (Xt) + σ (Xt) εt,
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where m(x) = 0.63x1 − 0.47x2, σ
2(x) = 0.5 + 0.23x2

1 + 0.3x2
2, and {εt} are iid generated

from N(0, 1). Three sample sizes: n = 200, 400, and 600 , are considered here. For each

sample size, we replicate the design 500 times. Here we present only the Box-plots of the 500

MADEs for the CVaR and CES estimates in Figure 4.5. Figure 4.5(a) displays the Box-plots

of the 500Eνp-values of the WDKLL and NW estimates of CVaR and the Box-plots of the

500Eµp-values of the WDKLL and NW estimates of CES are given in Figure 4.5(b). From

Figures 4.5(a) and (b), it is visually verified that both WDKLL and NW estimations become

stable as the sample size increases and the performance of the WDKLL estimator is better

than that for the NW estimator.
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Figure 4.5: Simulation results for Example 4.2 when p = 0.05. (a) Box-plots of MADEs
for both the WDKLL and NW estimates for CVaR. (b) Box-plots of MADEs for Both the
WDKLL and NW estimates for CES.

4.5.3 Real Examples

Example 4.3: Now, we illustrate our proposed methodology by considering a real data set

on Dow Jones Industrials (DJI) index returns. We took a sample of 1801 daily prices from
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DJI index, from November 3, 1998 to January 3, 2006, and computed the daily returns as

100 times the difference of the log of prices. Let Yt be the daily negative log return (log loss)

of DJI and Xt be the first lagged variable of Yt. The estimators proposed in this chapter

are used to estimate the 5% CVaR and CES functions. The estimation results are shown in

Figure 4.6 for the 5% CVaR estimate in Figure 4.6(a) and the 5% CES estimate in Figure
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Figure 4.6: (a) 5% CVaR estimate for DJI index. (b) 5% CES estimate for DJI index.

4.6(b). Both CVaR and CES estimates exhibit a U-shape, which corresponds to the so-called

”volatility smile”. Therefore, the risk tends to be lower when the lagged log loss of DJI is

close to the empirical average and larger otherwise. We can also observe that the curves are

asymmetric. This may indicate that the DJI is more likely to fall down if there was a loss

within the last day than there was a same amount positive return.

Example 4.4: We apply the proposed methods to estimate the conditional value-at-risk

and expected shortfall of the International Business Machine Co. (NYSE: IBM) security

returns. The data are daily prices recorded from March 1, 1996 to April 6, 2005. We use

the same method to calculate the daily returns as in Example 4.3. In order to estimate the
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value-at-risk of a stock return, generally, the information set Xt may contain a market index

of corresponding capitalization and type, the industry index, and the lagged values of stock

return. For this example, Yt is the log loss of IBM stock returns and only two variables are

chosen as information set for the sake of simplicity. Let Xt1 be the first lagged variable of

Yt and Xt2 denote the first lagged daily log loss of Dow Jones Industrials (DJI) index. Our

main results from the estimation of the model are summarized in Figure 4.7. The surfaces

of the estimators of IBM returns are given in Figure 4.7(a) for CVaR and in Figure 4.7(b)

for CES. For visual convenience, Figures 4.7(c) and (e) depict the estimated CVaR and CES

curves (as function of Xt2) for three different values of Xt1 = (−0.275,−0.025, 0.325) and

Figures 4.7(d) and (f) display the estimated CVaR and CES curves (as function of Xt1 ) for

three different values of Xt2 = (−0.225, 0.025, 0.425).

From Figures 4.7(c) - (f), we can observe that most of these curves are U-shaped. This

is consistent with the results observed in Example 4.3. Also, we can see that these three

curves in each figure are not parallel. This implies that the effects of lagged IBM and lagged

DJI variables on the risk of IBM are different and complex. To be concrete, let us examine

Figure 4.7(d). Three curves are close to each other when the lagged IBM log loss is around

−0.2 and far away otherwise. This implies that DJI has fewer effects (less information) on

CVaR around this value. Otherwise, DJI has more effects when the lagged IBM log loss is

far from this value.

4.6 Proofs

4.6.1 Proofs of Theorems

In this section, we present the proofs of Theorems 4.1 - 4.4. First, we list two lemmas. The

proof of Lemma 4.1 can be found in Cai (2002) and the proof of Lemma 4.2 is relegated to

Section 4.6.2.

Lemma 4.1: Under Assumptions A1 - A5, we have

λ = −hλ0 {1 + op(1)} and pt(x) = n−1bt(x) {1 + op(1)} ,

where λ0 = µ2(W )g′(x)/ [2µ2 (W
2) g(x)] and bt(x) = [1− hλ0 (Xt − x)Wh (x−Xt)]

−1. Fur-

ther, we have

pt(ch) = n−1bct(ch) {1 + op(1)} ,
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Figure 4.7: (a) 5% CVaR estimates for IBM stock returns. (b) 5% CES estimates for IBM
stock returns index. (c) 5% CVaR estimates for three different values of lagged negative
IBM returns (−0.275,−0.025, 0.325). (d) 5% CVaR estimates for three different values of
lagged negative DJI returns (−0.225, 0.025, 0.425). (e) 5% CES estimates for three different
values of lagged negative IBM returns (−0.275,−0.025, 0.325). (f) 5% CES estimates for
three different values of lagged negative DJI returns (−0.225, 0.025, 0.425).

where bct(x) = [1 + λc (Xt − x)Kh (x−Xt)]
−1.
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Lemma 4.2: Under Assumptions A1 - A5, we have, for any j ≥ 0,

Jj = n−1

n󰁛

t=1

ct(x)

󰀕
Xt − x

h

󰀖j

= g(x)µj(W ) +Op

󰀃
h2
󰀄
,

where ct(x) = bt(x)Wh (x−Xt).

Before we start to provide the main steps for proofs of theorems. First, it follows from

Lemmas 4.1 and 4.2 that

Wc,t(x, h) ≈
bt(x)Wh (x−Xt)󰁓n
t=1 bt(x)Wh (x−Xt)

≈ n−1g−1(x)bt(x)Wh (x−Xt) =
ct(x)

ng(x)
. (4.15)

Now we embark on the proofs of the theorems.

Proof of Theorem 4.1. By (4.7), we decompose 󰁥fc(y | x) − f(y | x) into three parts as

follows

󰁥fc(y | x)− f(y | x) ≡ I1 + I2 + I3, (4.16)

where with εt,1 = Y ∗
t (y)− E (Y ∗

t (y) | Xt),

I1 =
n󰁛

t=1

εt,1Wc,t(x, h), I2 =
n󰁛

t=1

[E (Y ∗
t (y) | Xt)− f (y | Xt)]Wc,t(x, h),

and

I3 =
n󰁛

t=1

[f (y | Xt)− f(y | x)]Wc,t(x, h).

An application of the Taylor expansion, (4.7), (4.15), and Lemmas 4.1 and 4.2 gives

I3 =
n󰁛

t=1

1

2
f 0,2(y | x)Wc,t(x, h) (Xt − x)2 + op

󰀃
h2
󰀄

=
1

2
g−1(x)f 0,2(y | x)n−1

n󰁛

t=1

ct(x) (Xt − x)2 + op
󰀃
h2
󰀄

=
h2

2
µ2(W )f 0,2(y | x) + op

󰀃
h2
󰀄
.

By (4.2) and following the same steps as in the proof of Lemma 4.2, we have

I2 =
h2
0µ2(K)

2g(x)
n−1

n󰁛

t=1

f 2,0 (y | Xt) ct(x) + op
󰀃
h2
0 + h2

󰀄
=

h2
0

2
µ2(K)f 2,0(y | x) + op

󰀃
h2
0 + h2

󰀄
.

Therefore,

I2 + I3 =
h2

2
µ2(W )f 0,2(y | x) + h2

0

2
µ2(K)f 2,0(y | x) + op

󰀃
h2 + h2

0

󰀄
= Bf (y | x) + op

󰀃
h2 + h2

0

󰀄
.
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Thus, (4.16) becomes

󰁳
nh0h

󰁫
󰁥fc(y | x)− f(y | x)− Bf (y | x) + op

󰀃
h2 + h2

0

󰀄󰁬
=

󰁳
nh0hI1

=g−1(x)I4 {1 + op(1)} → N
󰀋
0, σ2

f (y | x)
󰀌

where I4 =
󰁳

h0h/n
󰁓n

t=1 εt,1ct(x). This, together with Lemma 4.3 in Section 4.6.2, there-

fore, proves the theorem.

Proof of Theorem 4.2. Similar to (4.16), we have

󰁥Sc(y | x)− S(y | x) ≡ I5 + I6 + I7, (4.17)

where with εt,2 = Ḡh0 (y − Yt)− E
󰀃
Ḡh0 (y − Yt) | Xt

󰀄
,

I5 =
n󰁛

t=1

εt,2Wc,t(x, h), I6 =
n󰁛

t=1

󰀅
E
󰀋
Ḡh0 (y − Yt) | Xt

󰀌
− S (y | Xt)

󰀆
Wc,t(x, h),

and

I7 =
n󰁛

t=1

[S (y | Xt)− S(y | x)]Wc,t(x, h).

Similar to the analysis of I2, by the Taylor expansion, (4.7), and Lemmas Lemmas 4.1 and

4.2, we have

I7 =
n󰁛

t=1

1

2
S0,2(y | x)Wc,t(x, h) (Xt − x)2 + op

󰀃
h2
󰀄

=
1

2
S0,2(y | x)g−1(x)n−1

n󰁛

t=1

ct(x) (Xt − x)2 + op
󰀃
h2
󰀄

=
h2

2
µ2(W )S0,2(y | x) + op

󰀃
h2
󰀄
.

To evaluate I6, first, we consider the following

E
󰀅
Ḡh0 (y − Yt) | Xt = x

󰀆
=

󰁝 ∞

−∞
K(u)S (y − h0u | x) du

=S(y | x) + h2
0

2
µ2(K)S2,0(y | x) + o

󰀃
h2
0

󰀄

=S(y | x)− h2
0

2
µ2(K)f 1,0(y | x) + o

󰀃
h2
0

󰀄
. (4.18)

By (4.18) and following the same arguments as in the proof of Lemma 4.2, we have

I6 = −h2
0µ2(K)

2g(x)
n−1

n󰁛

t=1

f 1,0 (y | Xt) ct(x) + op
󰀃
h2
0 + h2

󰀄
= −h2

0

2
µ2(K)f 1,0(y | x) + op

󰀃
h2
0 + h2

󰀄
.
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Therefore,

I6 + I7 =
h2

2
µ2(W )S0,2(y | x)− h2

0

2
µ2(K)f 1,0(y | x) + op

󰀃
h2 + h2

0

󰀄
= BS(y | x) + op

󰀃
h2 + h2

0

󰀄
,

so that by (4.17),

√
nh

󰁫
󰁥Sc(y | x)− S(y | x)− BS(y | x) + op

󰀃
h2 + h2

0

󰀄󰁬
=

√
nhI5.

Clearly, to accomplish the proof of theorem, it suffices to establish the asymptotic normality

of
√
nhI5. To this end, first, we compute Var (εt,2 | Xt = x). Note that

E
󰀅
Ḡ2

h0
(y − Yt) | Xt = x

󰀆
=

󰁝 ∞

−∞
Ḡ2

h0
(y − u)f(u | x)du

=

󰁝 ∞

−∞

󰁝 ∞

−∞
K (u1)K (u2)S (max (y − h0u1, y − h0u2) | x) du1du2

=S(y | x) + 2h0α(K)f(y | x) +O
󰀃
h2
0

󰀄
, (4.19)

which, in conjunction with (4.18), implies that

Var (εt,2 | Xt = x) = S(y | x)[1− S(y | x)] + 2h0α(K)f(y | x) + o (h0) .

This, together with the fact that

Var (εt,2ct(x)) = E
󰀅
c2t (x)E

󰀋
ε2t,2 | Xt

󰀌󰀆
= E

󰀅
c2t (x)Var (εt,2 | Xt)

󰀆
,

leads to

hVar {εt,2ct(x)} = µ0

󰀃
W 2

󰀄
g(x) [S(y | x){1− S(y | x)}+ 2h0α(K)f(y | x)] + o (h0) .

Now, since |εt,2| ≤ 1, by following the same arguments as those used in the proofs of Lemmas

4.2 and 4.3 in Section 4.6.2 (or Lemma 1 and Theorem 1 in Cai (2002)), we can show although

tediously that

Var (I8) = σ2
S(y | x)g2(x) + 2µ0

󰀃
W 2

󰀄
h0α(K)f(y | x)g(x) + o (h0) , (4.20)

where I8 =
󰁳

h/n
󰁓n

t=1 εt,2ct(x), and

√
nhI5 = g−1(x)I8 {1 + op(1)} → N

󰀋
0, σ2

S(y | x)
󰀌

This completes the proof of Theorem 4.2.
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Proof of Theorem 4.4. Similar to (4.12), we use the Taylor expansion and ignore the

higher terms to obtain

󰁝 ∞

󰁥νp(x)
yKh0 (y − Yt) dy ≈

󰁝 ∞

νp(x)

yKh0 (y − Yt) dy − νp(x)Kh0 (νp(x)− Yt) [󰁥νp(x)− νp(x)]

= YtḠh0 (νp(x)− Yt)− νp(x)Kh0 (νp(x)− Yt) [󰁥νp(x)− νp(x)] + h0G1,h0 (νp(x)− Yt) .

Plugging the above into (4.9) leads to

p󰁥µp(x) ≈ 󰁥µp,1(x) + I9, (4.21)

where

󰁥µp,1(x) =
n󰁛

t=1

Wc,t(x, h)YtḠh0 (νp(x)− Yt)− νp(x) 󰁥fc (νp(x) | x) [󰁥νp(x)− νp(x)] ,

which will be shown later to be the source of both the asymptotic bias and variance, and

I9 = h0

n󰁛

t=1

Wc,t(x, h)G1,h0 (νp(x)− Yt) ,

which will be shown to contribute only the asymptotic bias (see Lemma 4.4 in Section (4.7).

From (4.12) and (4.8),

󰁥fc (νp(x) | x) [󰁥νp(x)− νp(x)] ≈
n󰁛

t=1

Wc,t(x, h)
󰀋
Ḡh0 (νp(x)− Yt)− p

󰀌
.

Therefore, by (4.15),

󰁥µp,1(x) =
n󰁛

t=1

Wc,t(x, h)
󰀅
{Yt − νp(x)} Ḡh0 (νp(x)− Yt)− pνp(x)

󰀆

=
n󰁛

t=1

Wc,t(x, h)εt,3 +
n󰁛

t=1

Wc,t(x, h)E {ζt(x) | Xt}

≈ g−1(x)n−1

n󰁛

t=1

εt,3ct(x) +
n󰁛

t=1

Wc,t(x, h)E {ζt(x) | Xt}

≡ 󰁥µp,2(x) + 󰁥µp,3(x),

where ζt(x) = [Yt − νp(x)] Ḡh0 (νp(x)− Yt) + pνp(x) and εt,3 = ζt(x)− E {ζt(x) | Xt}. Next,
we derive the asymptotic bias and variance for 󰁥µp,1(x). Indeed, we will show that asymptotic

bias of 󰁥µp(x) comes from both 󰁥µp,3(x) and I9, and the asymptotic variance for 󰁥µp,1(x) is only
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from 󰁥µp,2(x). First, we consider 󰁥µp,3(x). Now, it is easy to see by the Taylor expansion that

E
󰀅
YtḠh0 (νp(x)− Yt) | Xt = v

󰀆
=

󰁝 ∞

−∞
K(u)du

󰁝 ∞

νp(x)−h0u

yf(y | v)dy

=

󰁝 ∞

−∞
l1 (νp(x)− h0u | v)K(u)du = l1 (νp(x) | v) +

h2
0

2
µ2(K)l2,01 (νp(x) | v) + o

󰀃
h2
0

󰀄

=l1 (νp(x) | v)−
h2
0

2
µ2(K)

󰀅
νp(x)f

1,0 (νp(x) | v) + f (νp(x) | x)
󰀆
+ o

󰀃
h2
0

󰀄
,

which, in conjunction with (4.18), leads to

ζ(v) = E [ζt(x) | Xt = v] = A (νp(x) | v)−
h2
0

2
µ2(K)f (νp(x) | v) + o

󰀃
h2
0

󰀄
, (4.22)

whereA (νp(x) | v) = l1 (νp(x) | v)−νp(x) [S (νp(x) | v)− p]. It is easy to verify thatA (νp(x) | v) =
E [{Yt − νp(x)} I (Yt ≥ νp(x)) | Xt = v]+pνp(x), A (νp(x) | x) = pµp(x), andA0,2 (νp(x) | x) =
l0,21 (νp(x) | x)− νp(x)S

0,2 (νp(x) | x). Therefore, by (4.22), the Taylor expansion, and (4.7),

󰁥µp,3(x) becomes

󰁥µp,3(x) =
n󰁛

t=1

Wc,t(x, h)ζ (Xt) = ζ(x) +
1

2
ζ ′′(x)

n󰁛

t=1

Wc,t(x, h) (Xt − x)2 + op
󰀃
h2
󰀄
.

Further, by Lemmas 4.1 and 4.2,

󰁥µp,3(x) = ζ(x) +
h2

2
µ2(W )ζ ′′(x) + op

󰀃
h2
󰀄

= pµp(x) +
h2

2
µ2(W )A0,2 (νp(x) | x)−

h2
0

2
µ2(K)f (νp(x) | x) + op

󰀃
h2
0

󰀄
.

This, in conjunction with Lemma 4.4 in Section 4.7 concludes that

󰁥µp,3(x) + I9 = p [µp(x) +Bµ(x)] + op
󰀃
h2 + h2

0

󰀄
,

so that by (4.21),

󰁥µp,1(x)− p [µp(x) +Bµ(x)] = 󰁥µp,2(x) + op
󰀃
h2 + h2

0

󰀄
,

and

󰁥µp(x)− µp(x)− Bµ(x) = p−1󰁥µp,2(x) + op
󰀃
h2 + h2

0

󰀄
.

Finally, by Lemma 4.5 in Section 4.7, we have

√
nh

󰀅
󰁥µp(x)− µp(x)− Bµ(x) + op

󰀃
h2 + h2

0

󰀄󰀆
=

1

pg(x)
I10 {1 + op(1)} → N

󰀋
0, σ2

µ(x)
󰀌
,

where I10 =
󰁳

h/n
󰁓n

t=1 εt,3ct(x). Thus, we prove the theorem.
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4.6.2 Proofs of Lemmas

In this section, we present the proofs of Lemmas 4.2 - 4.5. Note that we use the same

notation as in Sections 4.2 - 4.6. Also, throughout this section, we denote a generic constant

by C, which may take different values at different appearances.

Proof of Lemmas 4.2. Let ξt = ct(x) (Xt − x)j /hj. It is easy to verify by the Taylor

expansion that

E (Jj) = E (ξt) =

󰁝
vjW (v)g(x− hv)

1 + hλ0vW (v)
dv = g(x)µj(W ) +O

󰀃
h2
󰀄
, (4.23)

and

E
󰀃
ξ2t
󰀄
= h−1

󰁝
v2jW 2(v)g(x− hv)

[1 + hλ0vW (v)]2
dv = O

󰀃
h−1

󰀄
.

Also, by the stationarity, a straightforward manipulation yields

nVar (Jj) = Var (ξ1) +
n󰁛

t=2

ln,tCov (ξ1, ξt) , (4.24)

where ln,t = 2(n− t+1)/n. Now decompose the second term on the right hand side of (4.24)

into two terms as follows

n󰁛

t=2

|Cov (ξ1, ξt)| =
dn󰁛

t=2

(· · · ) +
n󰁛

t=dn+1

(· · · ) ≡ Jj1 + Jj2, (4.25)

where dn = O
󰀃
h−1/(1+δ/2)

󰀄
. For Jj1, it follows by Assumption A4 that |Cov (ξ1, ξt)| ≤ C, so

that Jj1 = O (dn) = o (h−1). For Jj2, Assumption A2 implies that
󰀏󰀏󰀏(Xt − x)j Wh (x−Xt)

󰀏󰀏󰀏 ≤
Chj−1, so that |ξt| ≤ Ch−1. Then, it follows from the Davydov’s inequality (see, e.g., Lemma

1.1) that |Cov (ξ1, ξt+1)| ≤ Ch−2α(t), which, together with Assumption A5, implies that

Jj2 ≤ Ch−2
󰁛

t≥dn

α(t) ≤ Ch−2d−(1+δ)
n = o

󰀃
h−1

󰀄
.

This, together with (4.24) and (4.25), therefore implies that Var (Jj) = O ((nh)−1) = o(1).

This completes the proof of the lemma.

Lemma 4.3: Under Assumptions A1 - A6 with h in A3 and A6 replaced by hh0, we have

I4 =

󰁵
h0h

n

n󰁛

t=1

εt,1ct(x) → N
󰀋
0, σ2

f (y | x)g2(x)
󰀌
.
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Proof of Lemmas 4.3. It follows by using the same lines as those used in the proof of

Lemma 4.2 and Theorem 1 in Cai (2002), omitted. The outline is described as follows.

First, similar to the proof of Lemma 4.2, it is easy to see that

Var (I4) = h0hVar (εt,1ct(x)) + h0h
n󰁛

t=2

ln,tCov (ε1,1c1(x), εt,1ct(x)) . (4.26)

Next, we compute Var (εt,1 | Xt = x). Note that

h0E
󰀅
Y ∗
t (y)

2 | Xt = x
󰀆
=

󰁝 ∞

−∞
K2(u)f (y − h0u | x) du = µ0

󰀃
K2

󰀄
f(y | x) +O

󰀃
h2
0

󰀄
,

which, together with the fact that

Var (εt,1ct(x)) = E
󰀅
c2t (x)E

󰀋
ε2t,1 | Xt

󰀌󰀆
= E

󰀅
c2t (x)Var (εt,1 | Xt)

󰀆

and (4.2), implies that

hh0Var (εt,1ct(x)) = µ0

󰀃
K2

󰀄
µ0

󰀃
W 2

󰀄
f(y | x)g(x) +O

󰀃
h2
0

󰀄
= σ2

f (y | x)g2(x) +O
󰀃
h2
0

󰀄
.

As for the second term on the right hand side of (4.26), similar to (4.25), it is decomposed

into two summons. By using Assumption A4 for the first summon and using the Davydov’s

inequality and Assumption A5 to the second summon, we can show that the second term

on the right hand side of (4.26) goes to zero as n goes to infinity. Thus, Var (I4) → σ2
f (y |

x)g2(x) by (4.26). To show the normality, we employ Doob’s small-block and large-block

technique (see, e.g., Ibragimov and Linnik, 1971, p. 316). Namely, partition {1, . . . , n}
into 2qn + 1 subsets with large-block of size rn =

󰁭
(nhh0)

1/2
󰁮
and small-block of size sn =

󰁭
(nhh0)

1/2 / log n
󰁮
, where qn = ⌊n/ (rn + sn)⌋ with ⌊x⌋ denoting the integer part of x. By

following the same steps as in the proof of Theorem 1 in Cai (2002), we can accomplish

the rest of proofs: the summands for the large-blocks are asymptotically independent, two

summands for the small-blocks are asymptotically negligible in probability, and the standard

Lindeberg-Feller conditions hold for the summands for the large-blocks. See Cai (2002) for

details. So, the proof of the lemma is complete.

Lemma 4.4: Under Assumptions A1 - A6, we have

I9 = h0

n󰁛

t=1

Wc,t(x, h)G1,h0 (νp(x)− Yt) = h2
0µ2(K)f (νp(x) | x) + op

󰀃
h2
0

󰀄
.
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Proof of Lemmas 4.4. Define ξt,1 = ct(x)G1,h0 (νp(x)− Yt). Then, by Lemma 4.1, I9 =

I10 {1 + op(1)}, where I10 = g−1(x)h0

󰁓n
t=1 ξt,1/n. Similar to (4.23),

E (ξt,1) = E [ct(x)E {G1,h0 (νp(x)− Yt) | Xt}]

=

󰁝 ∞

−∞

󰁝 ∞

−∞

K(u)W (v)uS (νp(x)− h0u) | x) g(x− hv)

1 + hλ0vW (v)
dudv

= h0µ2(K)f (νp(x) | x) g(x) +O
󰀃
h0h

2
󰀄
,

and

E
󰀃
ξ2t,1

󰀄
= E

󰀅
b2t (x)W

2
h (x−Xt)E

󰀋
G2

1,h0
(νp(x)− Yt) | Xt

󰀌󰀆
= O (h0/h) ,

so that Var (ξt,1) = O (h0/h). By following the same arguments in the derivation of Var (Jj)

in Lemma 4.2, one can show that Var (I10) = O ((nh)−1) = o(1). This proves the lemma.

Lemma 4.5: Under Assumptions A1 - A4 and B2 - B5, we have Under Assumptions A1 -

A6, we have

I10 =

󰁵
h

n

n󰁛

t=1

εt,3ct(x) → N
󰀋
0, p2g2(x)σ2

µ(x)
󰀌
.

Proof of Lemmas 4.5. It follows by using the same lines as those used in the proof of

Lemma 4.1 and Theorem 1 in Cai (2001), omitted. The main idea is as follows. First,

similar to the proof of Lemmas 4.2 and 4.3, we will show by Assumptions B1 - B3 that

Var (I10) → p2σ2
µ(x)g

2(x). (4.27)

Finally, we need to compute Var (εt,3ct(x)). Since

Var (εt,3ct(x)) = E
󰀅
c2t (x)E

󰀋
ε2t,3 | Xt

󰀌󰀆
= E

󰀅
c2t (x)Var (ζt(x) | Xt)

󰀆
,

then, we first need to calculate Var (ζt(x) | Xt). To this effect, by (4.22),

Var (ζt(x) | Xt = v) = Var
󰀅
(Yt − νp(x)) Ḡh0 (νp(x)− Yt) | Xt = v

󰀆

=E
󰀅
(Yt − νp(x))

2 Ḡ2
h0
(νp(x)− Yt) | Xt = v

󰀆
− [l1 (νp(x) | v)− νp(x)S (νp(x) | v)]2 +O

󰀃
h2
0

󰀄
.

Similar to (4.19),

E
󰀅
(Yt − νp(x))

2 Ḡ2
h0
(νp(x)− Yt) | Xt = v

󰀆
=

󰁝 ∞

−∞
G2

h0
(νp(x)− y) (y − νp(x))

2 f(y | v)dy

=

󰁝 ∞

−∞

󰁝 ∞

−∞
K (u1)K (u2) τ (max (νp(x)− h0u1, νp(x)− h0u2) | v) du1du2

=τ (νp(x) | v)− 2h0τ
1,0 (νp(x) | v)α(K) +O

󰀃
h2
0

󰀄
= τ (νp(x) | v) +O

󰀃
h2
0

󰀄
,
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since τ 1,0 (νp(x) | v) = 0, where τ(u | v) = l2(u | v) − 2νp(x)l1(u | v) + ν2
p(x)S(u | v).

Therefore,

Var (ζt(x) | Xt = v) = Var [(Yt − νp(x)) I (Yt ≥ νp(x)) | Xt = v] +O
󰀃
h2
0

󰀄
,

and

hVar (εt,3ct(x)) = µ0

󰀃
W 2

󰀄
Var [(Yt − νp(x)) I (Yt ≥ νp(x)) | Xt = x] g(x) + o(1).

Similar to Lemmas 4.2 and 4.3, clearly, we have,

Var (I10) = hVar (εt,3ct(x)) + h
n󰁛

t=2

ln,tCov (ε1,3c1(x), εt,3ct(x)) ,

and the first term on right hand side of the above equation converges to p2σ2
µ(x)g

2(x). As

for the second term on the right hand side of the above equation, similar to (4.25), it is

decomposed into two summons. By using Assumptions A4 and B2 for the first summon and

using the Davydov’s inequality and Assumptions A5 and B3 to the second summon, we can

show that the second term on the right hand side of the above equation goes to zero as n

goes to infinity. Thus, (4.27) holds. To show the normality, we employ Doob’s small-block

and large-block technique (see, e.g., Ibragimov and Linnik, 1971, p. 316). Namely, partition

{1, . . . , n} into 2qn + 1 subsets with large-block of size rn and small-block of size sn, where

sn is given in Assumption B4, qn = ⌊n/ (rn + sn)⌋, and rn =
󰀇
(nh)1/2/γn

󰀈
with γn satisfying

followings: γn is a sequence of positive numbers γn → ∞ such that γnsn/
√
nh → 0 and

γn(n/h)
1/2α (sn) → 0 by Assumption B4. By following the same steps as in the proof of

Theorem 1 in Cai (2001) and using Assumption B5, we can accomplish the rest of proofs:

the summands for the large-blocks are asymptotically independent, two summands for the

small-blocks are asymptotically negligible in probability, and the standard Lindeberg-Feller

conditions hold for the summands for the large-blocks. See Cai (2001) for details. Therefore,

the lemma is proved.

4.7 Computer Codes

Please see the files chapter4-1.r, chapter4-2.r, chapter4-3.r, and chapter4-4.r for making

figures. If you want to learn the codes for computation, they are available upon request.
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Chapter 5

Nonparametric Regression Models
with Integrated Covariates

5.1 Introduction

Nonparametric estimation techniques have become cornerstone research topics in statistics

for the last three decades since they offer numerous advantages relative to parametric tech-

niques and have more flexibility and robustness to functional form misspecification, and

have been embraced by applied researchers in many fields; see the books by Fan and Gij-

bels (1996) and Fan and Yao (2003). Asymptotic theory underlying various nonparametric

estimators and test statistics for many commonly used models have been well established

for independent and identically distributed (iid) data and some weak and strong dependent

time series. The only nonparametric asymptotic analysis when covariates are integrated or

unit root (denoted by I(1)) time series that we are aware of includes the papers, to name just

a few, by Phillips and Park (1998), Park and Hahn (1999), Chang and Martinez-Chombo

(2003), Chang and Park (2003), Juhl (2005), Cai, Li and Park (2009), Xiao (2009), Phillips

(2009a, 2009b) and Phillips (2009). Particularly, Phillips and Park (1998), Juhl (2005),

Phillips (1999), and Wang and Phillips (2009a, 2009b) considered the case when the true

data generating process is a linear unit root process, while Park and Hahn (1999), Chang and

Martinez-Chombo (2003), Chang and Park (2003), Cai, Li and Park (2009), Xiao (2009),

Cai and Wang (2014), Cai, Wang and Wang (2015), and Sun, Cai and Li (2013) studied the

models linearized in the nonstationary variables.

In this chapter, for the observed data {(Yt, Zt)} for t = 1, . . . , n, I study a nonparametric

186
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regression function with integrated covariate as follows,

Yt = β(Zt) + εt, (5.1)

where E(εt|Zt) = 0, {εt} is stationary and β(·) is an unknown regression function. Here, Zt

is an integrated process satisfying

Zt = ρZt−1 + ut, (5.2)

where ρ = 1 and {ut} is a stationary sequence. Clearly, Zt is persistent and nonstationary.

Indeed, model (5.1) is not new in literature but its asymptotics developed in the present

chapter is novel when Zt is persistent and nonstationary. For example, if Zt is stationary,

model (5.1) has been studied extensively in the literature; see Fan and Gijbels (1996) and

Fan and Yao (2003) for details, while it was investigated by Karlsen and Tjøstheim (2001)

for Zt being null recurrent time series and Karlsen, Myklebust and Tjøstheim (2007) for

the φ-irreducible Markov chain time series and by Bandi (2002) and Cai, Jing, Kong and

Liu (2017) for nearly integrated time series (ρ in (5.2) is assumed to be ρ = 1 + c/n with

c < 0). A functional coefficient type model with I(1) covariates and nonlinear cointegration

is investigated by Cai, Li and Park (2009), Xiao (2009), Cai, Wang and Wang (2015), and

Sun, Cai and Li (2013), respectively. Finally, note that Wang and Phillips (2009a, 2009b)

considered the case to allow E(εt|Zt) ∕= 0 and Cai, Jing, Kong and Liu (2017) extended the

situation to allow {ut} in (5.2) to be a long memory process and ρ to be nearly one. For

simplicity of notation, I consider only one-dimensional case since extension to multivariate

Zt involves fundamentally no new ideas but complicated notations.

Model (5.1) might have a great potential in many applications. For example, in macroe-

conomics, a particular parametric form of (5.1) can be used for forecasting inflation rate

based on some persistent and nonstationary covariates such as velocity of monetary supply;

see Bachmeier, Leelahanon and Li (2006), which showed that the velocity is an I(1) process.

Also, using a semiparametric regression model with integrated covariates, Sun, Cai and Li

(2013) considered the purchasing power parity hypothesis using Canadian and U.S. price and

exchange rate data. Indeed, they showed that the difference between the two countries’ 10-

year Treasury bond rates is an I(1) process. Finally, it can be employed for the predictability

of stock returns using various lagged financial variables, such as the dividend yield, term and

default premia, the dividend-price ratio, the earning-price ratio, the book-to-market ratio,



5.1. INTRODUCTION 188

and interest rates; see Elliott and Stock (1994), Cavanagh, Elliott, and Stock (1995), Bandi

(2002), Torous, Valkanov, and Yan (2004), Campbell and Yogo (2006), Polk, Thompson,

and Vuolteenho (2006), Rossi (2007), Cai and Wang (2014), Cai, Wang and Wang(2015),

and Cai, Jing, Kong and Liu (2017), and among others. In fact, Campbell and Yogo (2006)

showed that the 95% confidence intervals for ρ in (5.2) are [0.957, 1.007] and [0.939, 1.000]

for the log dividend-price ratio and the log earnings-price ratio, respectively; see Panel A

in Table 4 of Campbell and Yogo (2006). As advocated by Campbell and Yogo (2006),

Bachmeier, Leelahanon and Li (2006), and Cai, Li and Park (2009), the predictive power of

using integrated or nearly integrated (highly persistent) covariates in a regression model can

be improved significantly due to less noise.

The main purpose of the current chapter is to estimate the nonparametric regression β(·)
by using the local linear (polynomial) and local constant (Nadaraya-Watson) fitting schemes

and the main contribution of present chapter to the literature is to derive the asymptotic

theory for both estimators. For simplicity, the main results can be summarized as follows.

First, the optimal rate of convergence is n1/5 slower than the usual n2/5 rate for stationary

case. Consequently, the order of the asymptotic mean-squared error (AMSE) is n−2/5 rather

than the standard rate n−4/5. The intuitive explanation to this phenomenon is that an I(1)

time series takes longer to revisit levels in its range. Second, the asymptotic bias term,

similar to the stationary case, is independent of the stationary density of the regressor and

is due to the linear approximation, which is typical for a local linear fitting scheme; see,

for example, Fan and Gijels (1996) for details. Third, the limiting distribution is a mixed-

normal (conditional normal) with the asymptotic variance depending inversely on the local

time of a Brownian motion in which the unit root series can be embedded. Furthermore,

the integrated covariate requires the larger bandwidths. Indeed, the optimal (in the AMSE

sense) bandwidth is Op(n
−1/10) implying a larger optimal bandwidth than in conventional

kernel regressions with stationary regressors where the optimal bandwidth is known to be

O(n−1/5). Clearly, the use of conventional bandwidth has the theoretical potential of under-

smoothing in the presence of I(1) covariates. Finally, it is very interesting that both local

linear and local constant estimators share exactly same asymptotic properties at both interior

and boundary points.
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5.2 Statistical Properties

5.2.1 Local Linear Estimation

β(·) is estimated using local linear fitting from observations {(Yt, Zt)}nt=1. Our motivation

of using local linear fitting is its high statistical efficiency in an asymptotic minimax sense,

design adaptation and automatic correction for edge effects, as discussed in Fan and Gijbels

(1996). Although a general local polynomial technique is applicable as well, it is well known

that the local linear fitting will suffice for many applications; see Fan and Gijbels (1996)

for a very comprehensive discussion, and that the theory developed for the local linear

estimator continues to hold for the local polynomial estimator with only slight modification.

Another virtue of using local polynomials is that both the unknown functions as well as their

derivatives can be estimated simultaneously. For simplicity, the focus is only on local linear

estimation and leave the generalization for additional research.

It is assumed throughout this chapter that β(·) is twice continuously differentiable, so

that at any given z, a local approximation is used as β(Zt) ≃ β(z) + β′(z) (Zt − z), when Zt

is a neighborhood of z, where ≃ denotes the first order Taylor approximation and β′(z) is

the first derivative of β(z). Hence, (5.1) is approximated by

Yt ≃ θ0 + (Zt − z) θ1 + εt,

and it becomes a local linear model. Therefore, the locally weighted sum of squares is

n󰁛

t=1

[Yt − θ0 − (Zt − z) θ1]
2 Kh(Zt − z), (5.3)

where Kh(z) = K(z/h)/h, K(·) is the kernel function, and h = hn > 0 is the bandwidth

satisfying h → 0 and nh → ∞ as n → ∞, which controls the amount of smoothing used in

the estimation. By minimizing (5.3) with respect to θ0 and θ1, the local linear estimate of

β(z) is obtained and is denoted by 󰁥β(z), and the local linear estimator of the derivative of

β(z) is denoted by 󰁥β′(z). It is easy to show that the minimizer of (5.3) is given by

󰀣
󰁥β(z)
󰁥β′(z)

󰀤
=

󰀥
n󰁛

t=1

󰀕
1

Zt − z

󰀖⊗2

Kh(Zt − z)

󰀦−1 n󰁛

t=1

󰀕
1

Zt − z

󰀖
Yt Kh(Zt − z), (5.4)

where A⊗2 = AAT (A⊗1 = A) for a vector or matrix A.



5.2. STATISTICAL PROPERTIES 190

5.2.2 Notations and Assumptions

Since Zt is an I(1) process, it can be re-expressed as Zt = Z0 +
󰁓t

s=1 us, where {us} is a

stationary process with mean zero and variance σ2
u. In what follows, it is assumed that the

process {ut} is a stationary linear process as us =
󰁓∞

j=0 cj ωs−j, where ωj is a white noise

with mean zero and σ2
ω = Var(ωj) < ∞, and {cj} satisfies, for some 0 < τ ≤ 1,

∞󰁛

j=0

|cj|τ < ∞, and
∞󰁛

j=0

cj = 1. (5.5)

Then, σ2
u = Var(us) = σ2

ω

󰁓∞
j=0 c

2
j and Cov(us, us+t) = σ2

ω

󰁓∞
j=0 cj cj+t for any s and t. Note

that the assumption on {ut} being a linear process is due to an application of some results

from Jeganathan (2004). Of course, it can be relaxed at the cost of involving lengthier

mathematical proofs. Clearly, one has

Zt/
√
n = Z0/

√
n+

1√
n

[nr]󰁛

s=1

us

for r = t/n. An application of Donsker’s theorem (see, for example, Theorem 14.1 in

Billinsley (1999) for iid {ut} with the existence of the second moment of ut) leads to

Zt/
√
n =⇒ Wu(r), (5.6)

where “ =⇒ ” represents weak convergence, Wu(·) = σ0 W (·) with W (·) being a standard

Brownian motion on [0, 1] and σ2
0 = limn→∞ Var(n−1/2

󰁓n
t=1 ut), which is assumed to exist

and be finite. In particular, it follows from Merlevéde, Peligrad and Utev (2006) that (5.6)

holds if {ut} is stationary strong mixing sequence and satisfies, for some δ0 > 0,

E|ut|2+δ0 < ∞, and
∞󰁛

k=1

k(2+δ0)/δ0 α(k) < ∞, (5.7)

where α(·) is the mixing coefficient; see, e.g., Hall and Heyde (1980) for the definition.

Define ηt,z = (Zt − z)/
√
t for any z and let ft,z(·) denote the density of ηt,z. Also, let

ft,s,z(·, ·) represent the joint density function of (ηt,z, ηs,z). Furthermore, let Ft be the smallest

sigma field generated by {(Ys, Zs)}ts=−∞. The following assumptions are listed.

Assumptions:
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(C1) E(εt|Zt,Ft−1) = 0, E(ε2t |Zt,Ft−1) = σ2
󰂃 , E(ε4t |Zt,Ft−1) < C a.s., and {ut} is a station-

ary and mixing process satisfying constraints as imposed by (5.5) and (5.7), where σ2
󰂃 ,

C and σ2
0 are finite positive constants.

(C2) Both ft,z(·) and ft,s,z(·, ·) have bounded continuous derivative functions (for all t, s and

fixed z).

(C3) K(·) is a kernel function with a finite support, say [−1, 1] and it is symmetric.

(C4) nh → ∞ and nh10 = O(1).

Next, we discuss the above conditions. Condition C1 requires that {εt} is a martingale

difference process with conditional homogenous variance and a finite fourth moment. The

martingale difference assumption can be relaxed to a mixing process, and the assumption on

the conditional homogenous error can be relaxed to the case that E(ε2t |Zt) is non-constant,

with a lengthier proof. C2 is a very mild assumption. Indeed, it is satisfied if {ut} is

commonly assumed to be iid normal. Finally, Assumptions C3 and C4 are commonly imposed

in the kernel estimation literature and Assumption C4 is satisfied for the optimal bandwidth

h = O(n−1/10) (see later).

Finally, the local time L(t, x) for a standard Brownian motion is defined in (1.4), which

is

L(t, x) = lim
∆→0

1

2∆

󰁝 t

0

I{|W (s)−x|≤∆}ds, 0 ≤ t ≤ 1, and x ∈ R,

where IA is the indicator function of an event A and W (·) is a standard Brownian motion;

see Karatzas and Shreve (1991), Phillips and Park (1998), and Park and Phillips (1999) for

details. Finally, define

µj(K) =

󰁝
uj K(u)du and νj(K) =

󰁝
uj K2(u)du.

Note that L(t, z) can be consistently estimated by Sn,0(z); see Lemma 5.1 in Section 5.5.

5.2.3 Asymptotic Results

Now, main result is stated below and the proof is relegated to Section 5.5.
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Theorem 5.1: . Under Assumptions (C1) – (C4), one has

√
n1/2 h

󰁫
󰁥β(z)− β(z)− h2B(z)

󰁬
d−→ MN(σ2

β),

where B(z) = µ2(K)β′′(z)/2 and MN(σ2
β) is a mixed normal distribution with mean zero

and variance σ2
β = σ2

ε σ0 ν0(K) /L(1, 0) with σ2
ε defined in Assumption C1.

Remark 5.1: First, ξt is called to be a mixed normal with mean µt and covariance Σt if the

conditional distribution of ξt given µt and Σt is N(µt, Σt); see Phillips and Park (1998) for

details. Note that the asymptotic properties for 󰁥β′(z) can be obtained as the same fashion as

those in Theorem 5.1 and omitted. By comparing the results in Theorem 5.1 and conventional

findings in Fan and Gijbels (1996) and Fan and Yao (2003) for the stationary covariates, the

new results can be summarized as follows. Clearly, h2µ2(K)β′′(z)/2 serves as the asymptotic

bias, which is the same as that for stationary case when one uses a local linear estimation

method; see Fan and Yao (2003). However, the convergence rate is the order of n1/4h1/2

much lower with a factor n1/4 by comparing with that for stationary covariates. Also, the

stochastic asymptotic variance is independent of the grid point z. Indeed, one can show

that the results in Theorem 5.1 hold true as long as any z = zn satisfies zn/
√
n → 0 and

n1/4 h5/2 β′′(zn) = O(1); see Theorem 5.2 later. Furthermore, from the asymptotic bias and

variance presented in Theorem 5.1, the stochastic AMSE is given by

AMSE = Var+ bias2 = σ2
β n

−1/2h−1 +
h4

4
µ2
2(K) [β′′(z)]

2
.

The minimization of the AMSE with respect to h yields the optimal bandwidth

hopt =

󰀕
σβ

µ2(K)|β′′(z)|

󰀖2/5

n−1/10 = Op(n
−1/10),

which is stochastic and much larger than the conventional optimal bandwidth hopt,s = O(n−1/5)

for the stationary case; see Fan and Yao (2003). Therefore, if hopt,s were be used in esti-

mating β(·) in (5.1), the nonparametric estimator given in (5.6) would be under-smoothing.

Hence, it would be a very interesting future research topic on how to select the data-driven

(optimal) bandwidth theoretically and empirically.

Now, the focus is on investigating the asymptotic behaviors at boundaries. When Zt is

I(1), it follows from (5.6) that when z = a
√
n (a ∕= 0) and r = t/n,

P (Zt ≥ z) = P (Zt ≥ a
√
n) → P (Wu(r) ≥ a/σu) = 1− Φ(a/

√
rσ0) > 0,
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where Φ(·) is the distribution of the standard normal random variable. This means that

there is a great chance that |Zt| can take large values. In other words, an I(1) time series

takes longer to revisit levels in its range. Now, the question is how the asymptotic behaviors

of the estimator look like when z is large like z = a
√
n for any fixed a. To this end, the

following asymptotic results is obtained at boundary z = a
√
n for any fixed a. However, the

detailed proofs are not provided since they follow closely the same arguments as those used

in the proof of Theorem 5.1.

Theorem 5.2: . If Assumptions (C1) – (C4) hold and n1/4 h5/2 β′′(a
√
n) = O(1) for any a,

then, one has

√
n1/2 h

󰁫
󰁥β(a

√
n)− β(a

√
n)− h2 B(a

√
n)
󰁬

d−→ MN(σ2
a),

whereMN(σ2
a) is a mixed normal distribution with mean zero and variance σ2

a = σ2
ε σ0 ν0(K)/L(1,

a/σ0).

Remark 5.2: Comparing Theorem 5.2 with Theorem 5.1, one can observe that the magni-

tude of the asymptotic variance of 󰁥β(·) at the boundary points (z = O(n1/2)) differs from that

for the interior points (z = o(n1/2)). This finding is different from its stationary counterpart;

see Fan and Gijbels (1996) for the stationary case.

5.2.4 Nadaraya-Watson Estimation

Now, the turn is to discussing the asymptotic properties for the local constant estimator of

β(·). It is well documented that the Nadaraya-Watson estimator is given by

󰁨β(z) =
n󰁛

t=1

Yt Kh(Zt − z)/
n󰁛

t=1

Kh(Zt − z). (5.8)

For 󰁨β(z), the following theorem can be established.

Theorem 5.3: . Under the assumptions of Theorem 5.1, both 󰁨β(z) and 󰁥β(z) share the exact

same asymptotic properties. That is,

√
n1/2 h

󰁫
󰁨β(z)− β(z)− h2B(z)

󰁬
d−→ MN(σ2

β),

where B(z) = µ2(K)β′′(z)/2 and MN(σ2
β) is a mixed normal distribution with mean zero

and variance σ2
β = σ2

ε σ0 ν0(K) /L(1, 0). Further, Theorem 5.2 holds for 󰁨β(z).
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Remark 5.3: It is clear that h2µ2(K)β′′(z)/2 serves as the asymptotic bias, which is the

same as that case when one uses a local linear estimation method (see Theorem 5.1). How-

ever, for the stationary Zt case with a local constant estimation method, there is an additional

leading bias term which has the form of h2µ2(K)f ′
z(z)β

′(z)/2fz(z), where fz(·) is the sta-

tionary density of Zt when Zt is stationary; see Fan and Gijbels (1996). Theorem 5.3 shows

that for non-stationary Zt, the local constant estimator has the same leading bias as that

of a local linear method. This is an interesting new finding that is not shared by a local

constant estimator if Zt is stationary. It can be shown that with nonstationary Zt, the bias

term associated with f ′
t,z(z)β

′(z) has an order of h2n−1/2 ln(n), which is smaller than h2; see

Lemma 5.4 in 5.5. Therefore, the leading bias contains only one term associated with β′′(z)

with the order h2. Interestingly, as in the case of standard local polynomial methods, the

Nadaraya-Watson estimator is design-adaptive too in the sense of Fan and Gijbels (1996).

Clearly, this property should be interpreted as follows. The clustered designs are not expected

to occur in the presence of integrated (highly persistent) processes. Therefore, the theoreti-

cal relevance of the design-adaptation property and the theoretical appeal of local polynomial

methods over the standard Nadaraya-Watson kernel estimates seem to vanish.

5.3 An Illustrative Empirical Application

Sun, Cai and Li (2013) investigated the purchasing power parity (PPP) hypothesis using

Canadian and U.S. price index and exchange rate data. The PPP theory says that the

following setup holds st = β1+β1 pt+β2 p
∗
t +ut, where st, pt, and p∗t are the logarithm of the

nominal exchange rate expressed as Canadian dollars per unit of U.S. dollar, the Canadian

and U.S. aggregate price levels, respectively. The aggregate price index is measured by the

producer price index (PPI) base-weighted to the year 2000. Sun, Cai and Li (2013) used

monthly data for the period from January 1974 to December 2009 so that there are 432

observations.

Sun, Cai and Li (2013) argued that based on the sticky-price theory of exchange rate

determination, exchange rate movements also respond to monetary shocks. Due to sticky

prices, the goods markets adjust to the monetary shocks slower than asset markets. Hence,

in addition to the aggregate price levels, some other economic variables, such as interest rate

differentials between two nations, also affect exchange rate formation and adjust more quickly
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to monetary shocks than the aggregate price indexes do. Therefore, to verify this economic

theory, I will examine whether exchange rate depends on the interest rate differential between

U.S. and Canada. Specifically, Zt = TUS,t − TCN,t denotes the difference between the two

countries’ 10-year Treasury bond rates. The time series plot of Zt is given in Figure 5.1(a)

and its autocorrelation function (ACF) plot is displayed in Figure 5.1(b). Applying the
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Figure 5.1: (a) Time series plot of Zt; (b) ACF plot of Zt; (c) ACF plot of Zt − Zt−1; (d)
Estimated curve of β(z).

augmented Dickey-Fuller (ADF) test statistic to the interest rate differential, I can not reject

the null hypothesis H0 : ρ = 1, so that Zt follows a unit root process at the 5% significance

level. Therefore, Zt is treated as an integrated series. Indeed, one might evidence visually
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from Figures 5.1(a) and 5.1(b) that Zt is a unit root process. Also, one can see from Figure

5.1(c) that ut = Zt − Zt−1 is autocorrelated. Indeed, the Ljung-Box test rejects the null

hypothesis of unautocorrelation of ut.

Thus, for simplicity, the following nonparametric model is considered, by ignoring the

price indices (pt and p∗t ) for two countries

st = β(Zt) + εt.

The Epanechnikov kernel K(u) = 0.75(1 − u2)+ is used, and the smoothing parameter h

is selected by the least squares cross-validation method so that h = 0.425. Figure 5.1(d)

depicts the nonparametric estimate of β(z). From Figure 5.1(d), it is very interesting to

learn that 󰁥β(z) is nonlinear and reaches its max when z = −0.35. Further, it is increasing

if z ≤ −0.35 and then it is decreasing when z > −0.35. Also, it is asymmetric and the left

side has a longer tail. The reaction of exchange rate to the the 10-year Treasury bond rate

differential between the two nations is different based on the differential value. This means

that when the U.S. 10-year Treasury bond rate becomes much lower or higher than that for

the Canadian bond rate, the exchange rate between two nations becomes lower. In other

words, the Canadian dollar is appreciated. Therefore, my analysis confirms that exchange

rate between U.S. and Canada depends on the interest rate differential between two nations.

5.4 Discussion

This chapter studies a nonparametric regression model for integrated time series data by

considering using the local polynomial local constant fitting schemes to estimate the non-

parametric function and derives the asymptotic properties of the proposed estimators. The

theoretical results show that the asymptotic bias has the same as that for stationary covari-

ates. But, the convergence rate for the nonstationary covariates is slower than that for the

stationary covariates by a factor of n−1/4. Further, the asymptotic distribution is not normal

any more but just a mixed normal associated with the local time of a standard Brownian

motion. Moreover, it shows that the asymptotic properties for both the local linear and local

constant estimators are exactly same.

It would like to mention some interesting future research topics related to this chapter.

First, it would be very useful and important to discuss how to select the data-driven (opti-

mal) bandwidth theoretically and empirically. Second, it should allow the errors {εt} to be
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serially correlated time series, say α-mixing, to be heteroscedastic, and to be correlated with

covariates as in Wang and Phillips (2009a, 2009b). Third, the model should include both

stationary and nonstationary covariates. Finally, it is warranted to consider some extensions

to other types of models like additive models, index models and varying coefficient mod-

els, and other types of nonstationarity such as nearly integrated processes; see, e.g., Bandi

(2002), Torous, Valkanov and Yan (2005), Campbell and Yogo (2006), Polk, Thompson and

Vuolteenaho (2006), Rossi (2007), Cai and Wang (2014), Cai, Wang and Wang (2015), and

Cai, Jing, Kong and Liu (2017), which have a potential application in applied fields like

economics and finance.

5.5 Proofs

Before proving the main results of this paper, we first give a few lemmas that will be used

frequently in the proofs below. Throughout this section, C denotes a generic positive constant

and it may take different values at different appearances.

To prove Theorem 5.1, define Gj(u) = uj K(u) for any j ≥ 0. Then, it is easy to

verify that Gj(·) is continuous and has a compact support. Also, both Gj(·) and G2
j(·) are

integrable. Also, define Sn(z) as follows

Sn(z) = n−1/2

n󰁛

t=1

Kh(Zt − z)

󰀕
1

Zt,z,h

󰀖⊗2

=

󰀕
Sn,0(z) Sn,1(z)
Sn,1(z) Sn,2(z

󰀖

where Zt,z,h = (Zt − z)/h and for 0 ≤ j ≤ 2,

Sn,j(z) =
1√
n

n󰁛

t=1

Kj,h(Zt − z)

with Kj,h(u) = Gj(u/h)/h. Then, re-express Sn,j(z) as

Sn,j(z) =
βn

n

n󰁛

t=1

Gj(βn(γ
−1
n Zt + xn)),

where βn =
√
n/h, γn =

√
n, and xn = −z/

√
n. Clearly, xn → 0 for any fixed z and xn = −a

if z = a
√
n. Finally, let φδ(x) = exp (−x2/2 δ2) /

√
2 π δ2 for any δ > 0 and oL2(1) denote

the convergence in L2. Before proving the theorem, I first present some preliminary results.

In what follows, it is assumed that Zt satisfies (5.5).
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Lemma 5.1: Under assumption that the density of ηt,z is bounded for all t,

(i) Sn,j(z)
p−→

󰀫
µj(K)L(1, 0)/σ0, if z is fixed,

µj(K)L(1, a/σ0)/σ0, if z = a
√
n,

and for any p > 0 and z,

(ii) E [Sn,j(z)] = O(1), and (iii) E [|Kj,h(Zt − z)|p] = O(t−1/2 h1−p).

Note that the above results still hold if fixed z is changed to be any zn satisfying zn/
√
n → 0.

Proof: To establish the first assertion, I use some results from Jeganathan (2004). Indeed,

by Proposition 6 and Lemma 7 of Jeganathan (2004), for each δ > 0,

Sn,j(z) =
µj(K)

n

n󰁛

t=1

φδ(γ
−1
n Zt + xn) + oL2(1).

Since φδ(z) satisfies the Lipschitz condition and xn → 0,

Sn,j(z) =
µj(K)

n

n󰁛

t=1

φδ(γ
−1
n Zt) + oL2(1) =

µj(K)

n

n󰁛

t=1

φδ(Wu(t/n)) + oL2(1)

in view of (5.6) and (5.7). By Lemma 9 of Jeganathan (2004), one has

Sn,j(z) = µj(K)

󰁝 1

0

φδ(Wu(s))ds+ oL2(1).

An application of Proposition 11 of Jeganathan (2004) gives

Sn,j(z) = µj(K)L(1, 0)/σ0 + oL2(1)

as δ ↓ 0. By the same token, it is easy to show the case of xn = −a (z = a
√
n). For assertion

(ii), one has

E [Sn,j(z)] = n−1/2

n󰁛

t=1

E [Kj,h(Zt − z)]

= n−1/2 h−1

n󰁛

t=1

󰁝
Gj(t

1/2u/h) ft,z(u)du

= n−1/2

n󰁛

t=1

t−1/2

󰁝
Gj(v) ft,z(ht

−1/2v)dv

≤ C n−1/2

n󰁛

t=1

t−1/2 = O(1).
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Finally, recall that Kj,h(u) = h−1Gj(u/h) and Gj(u) = uj K(u). It can be shown easily by

the boundedness of ft,z(·) that

E [|Kj,h(Zt − z)|p] = h−p

󰁝
|Kj,h(t

1/2u/h)|pft(u)du

= t−1/2h1−p

󰁝
|Gj(v)|pft,z(t−1/2hv)dv ≤ Ct−1/2h1−p.

This proves the lemma.

By Lemma 5.1, one has

Sn(z) =

󰀕
Sn,0(z) Sn,1(z)
Sn,1(z) Sn,2(z)

󰀖
=

󰀕
1 0
0 h2 µ2(K)

󰀖
L(1, 0)/σ0 {1 + op(1)},

which, by replacing Yt in (5.4) by Yt = β(Zt) + εt, implies that

󰁥β(z)− β(z) ≡ [L(1, 0)/σ0 ]
−1 {Bn + Cn} {1 + op(1)}, (5.9)

where Bn = n−1/2
󰁓n

t=1 [β(Zt)− β(z)− β′(z)(Zt − z)]Kh(Zt − z) and Cn = n−1/2
󰁓n

t=1 εt

Kh(Zt − z). I analyze Bn and Cn in Lemma B.2 and Lemma B.3 below.

Lemma 5.2: . Under Assumptions given in Theorem 5.1, then,

Bn = h2B(z)[Sn,2(z)] + op(h
2) = h2B(z)L(1, 0)/σ0 + op(h

2).

Proof: Note that the proof is similar to that for Lemma 5.1. Similar to Lemma 5.1, one

can show that

Bn = n−1/2

n󰁛

t=1

[β(Zt)− β(z)− β′(z)(Zt − z)]Kh(Zt − z)

=
h2

2
β′′(z)Sn,2(z){1 + op(1)}

=
h2

2
L(1, 0) β′′(z)µ2(K)/σ0{1 + op(1)}.

This completes the proof of Lemma 5.2.

Lemma 5.3: Under Assumptions given in Theorem 5.1, then,

n3/4h1/2Cn
d−→ MN(σ2

1),

where MN(σ2
1) is a mixed normal with mean zero and covariance matrix σ2

1 = σ2
εν0(K)

L(1, 0)/σ0.
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Proof: Clearly, E[Cn] = 0 since E(εt|Zt) = 0. Also, by the assumptions that {εt} is a

martingale difference and E(ε2t |Zt) = σ2
ε , one can conclude that the conditional variance of

n1/4h1/2 Cn, given {Zt}, is

Dn =
σ2
ε h√
n

n󰁛

t=1

K2
h(Zt − z).

Similar to the proof of Lemma 5.1, one can show that

Dn = σ2
ε ν0(K)L(1, 0)/σ0 + op(1).

Finally, by the central limit theorem for a martingale difference (see, e.g., Hall and Heyde

(1980, p.58)), one obtains the conditional limiting distribution of Cn given {Zt},

n1/4h1/2Cn
d−→ MN(σ2

1).

This proves the lemma.

Proof of Theorem 5.1: It is easy to check from Lemmas 5.1 and 5.2 that

Cn = h2B(z)L(1, 0)/σ0 + op(h
2).

Therefore, by (5.9) and Lemma 5.3, one has

n1/4h1/2
󰁫
󰁥β(z)− β(z)− h2B(z) + op(h

2)
󰁬

= σ0 [L(1, 0)]−1 n1/4h1/2 Cn{1 + op(1)}
d−→ MN(σ2

β),

which concludes the proof of the theorem.

Proof of Theorem 5.3: It is easy to see from Lemma 5.1 that

󰁨β(z)− β(z) ≡ {En + Cn} /Sn,0(z) = [L(1, 0)/σ0 ]
−1 {En + Cn} {1 + op(1)},

where En = n−1/2
󰁓n

t=1 [β(Zt)− β(z)]Kh(Zt − z). Similar to Lemma 5.2, one has

En =

󰀗
h β′(z)Sn,1(z) +

h2

2
β′′(z)Sn,2(z)

󰀘
{1+ op(1)} =

h2

2
L(1, 0) β′′(z)µ2(K)/σ0{1+ op(1)}

by Lemma 5.4 below. By Lemma 5.3, similar to the proof of Theorem 5.1, Theorem 5.3 is

proved.
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Lemma 5.4: . Under Assumptions given in Theorem 5.1, then,

E[En] = O(h2n−1/2 ln(n)) +O(h2).

Proof: I first compute the following intermediate quantity. A simple calculation leads to

E[(β(Zt)− β(z))Kh(Zt − z)]

= t−1/2

󰁝
[β(z + h v)− β(z)]K(v) ft,z(t

−1/2hv)dv.

≈ t−1/2

󰁝
[β′(z)hv + h2β′′(z)v2/2][ft,z(0) + f ′

t,z(0)t
−1/2hv]K(v)dv

= h2t−1β′(z)f ′
t,z(0)µ2(K) +

1

2
h2t−1/2β′′(z)ft,z(0)µ2(K),

which implies that the order of the second term dominates the order of the first term.

Therefore,

E[En] ≈ h2β′(z)µ2(K)n−1/2

n󰁛

t=1

t−1f ′
t,z(0) +

1

2
h2µ2(K)β′′(z)n−1/2

n󰁛

t=1

t−1/2ft,z(0)

= h2β′(z)µ2(K)−1/2n−1/2O(ln(n)) +
1

2
h2µ2(K)β′′(z)n−1/2O(n1/2)

= O(h2n−1/2 ln(n)) +O(h2).

This concludes the proof of the lemma.
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