The Inverse of a Partitioned Matrix

Zongwu Cai, Department of Economics, University of Kansas

January 27, 2023

Consider a pair A, B of $n \times n$ matrices, partitioned as

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right),
$$

where A_{11} and B_{11} are $k \times k$ matrices. Suppose that A is nonsingular and $B=A^{-1}$. In this note it will be shown how to derive the $B_{i j}$'s in terms of the $A_{i j}$'s, given that

$$
\begin{equation*}
\operatorname{det}\left(A_{11}\right) \neq 0 \text { and } \operatorname{det}\left(A_{22}\right) \neq 0 . \tag{1}
\end{equation*}
$$

If $B=A^{-1}$, then,

$$
\begin{align*}
A B & =\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) \tag{2}\\
& =\left(\begin{array}{ll}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}\right) \\
& =\left(\begin{array}{ll}
I_{k} & O_{k, n-k} \\
O_{n-k, k} & I_{n-k}
\end{array}\right),
\end{align*}
$$

where as usual I denotes the unit matrix and O a zero matrix, with sizes indicated by the subscripts involved. To solve (2), we need to solve four matrix equations:

$$
\begin{align*}
& A_{11} B_{11}+A_{12} B_{21}=I_{k}, \tag{3}\\
& A_{11} B_{12}+A_{12} B_{22}=O_{k, n-k}, \tag{4}\\
& A_{21} B_{11}+A_{22} B_{21}=O_{n-k, k} \tag{5}\\
& A_{21} B_{12}+A_{22} B_{22}=I_{n-k} \tag{6}
\end{align*}
$$

It follows from (4) and (5) that

$$
\begin{align*}
& B_{12}=-A_{11}^{-1} A_{12} B_{22}, \tag{7}\\
& B_{21}=-A_{22}^{-1} A_{21} B_{11}, \tag{8}
\end{align*}
$$

so that (3) and (6) become

$$
\begin{aligned}
& \left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right) B_{11}=I_{k}, \\
& \left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right) B_{22}=I_{n-k} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& B_{11}=\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right)^{-1} \\
& B_{22}=\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)^{-1} .
\end{aligned}
$$

Substituting these solutions in (7) and (8) it follows that

$$
\begin{aligned}
& B_{12}=-A_{11}^{-1} A_{12}\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)^{-1} \\
& B_{21}=-A_{22}^{-1} A_{21}\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right)^{-1} .
\end{aligned}
$$

Thus,
$A^{-1}=\left(\begin{array}{ll}\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right)^{-1} & -A_{11}^{-1} A_{12}\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)^{-1} \\ -A_{22}^{-1} A_{21}\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right)^{-1} & \left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)^{-1}\end{array}\right)$.
Moreover, since $A A^{-1}=I_{n}$ implies $A^{-1} A=I_{n}$, we also have

$$
A^{-1}=\left(\begin{array}{ll}
\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right)^{-1} & -\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right)^{-1} A_{12} A_{22}^{-1} \\
-\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)^{-1} A_{21} A_{11}^{-1} & \left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)^{-1}
\end{array}\right)
$$

