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1 Introduction

Given a possibly large set of potential predictors, which ones do we include in our model?
Suppose X1, Xs, - -+ is a pool of potential predictors. The model with all predictors is given
by

Y=0+5Xi+5X+ -+,

is the most general model. It holds even if some of the individual ;’s are zero. But if some
B;’s zero or close to zero, it is better to omit those X;’s from the model. Reasons why you

should omit variables whose coefficients are close to zero:

(a) Parsimony principle:
Given two models that perform equally well in terms of prediction, one should choose

the model that is more parsimonious (simple).

(b) Prediction principle:
The model should give predictions that are as accurate as possible, not just for cur-
rent observation, but for future observations as well. Including unnecessary predictors
can apparently improve prediction for the current data, but can harm prediction for
future data. Note that the sum of squares error (SSE) never increases as we add more

predictors.

Next, we discuss all possible methods available in the literature.



2 Subset Approaches

The all-possible-regressions procedure calls for considering all possible subsets of the pool of
potential predictors and identifying for detailed examination a few good sub-sets according to
some criterion. The purpose of all-possible-regressions approach is identifying a small group
of regression models that are good according to a specified criterion (summary statistic) so
that a detailed examination can be made of these models leading to the selection of the final
regression model to be employed. The main problem of this approach is computationally
expensive. For example, with 10 predictors, we need to investigate 2! = 1024 potential
regression models. With the aid of modern computing power, this computation is possible.
But still the number of 1024 possible models to examine carefully would be an overwhelming

task for a data analyst.

Different criteria for comparing the regression models may be used with the all-possible-

regressions selection procedure. We discuss several summary statistics:

(i) R? (or SSE,)

P

(ii) R?,. (or MSE,)

adjip
(iii) C,
(iv) PRESS,
(v) Sequential Methods
(vi) AIC type criteria

We shall denote the number of all potential predictors in the pool by K — 1. Hence including
an intercept parameter [y, we have K potential parameters. The number of predictors in a
subset will be denoted by p — 1, as always, so that there are p parameters in the regression
function for this subset of predictors. Thus we have 1 < p < K. Now, we discuss each one

in detail.

1. R? (or SSE,)

P



Rg indicates that there are p parameters (or, p — 1 predictors) in a regression model.

The coefficient of multiple determination Rg is defined as

SSE
2 _ 4 _ P
=1 SSTO’

It measures the proportion of variance of Y explained by p — 1 predictors.
Rf) always goes up as we add more predictors.

Rf) varies inversely with SSE, because SSTO is constant for all possible regression
models. That is, choosing the model with the largest Rg is equivalent to choosing the

model with smallest SSE,,.
R; might not be a good criterion. WHY?
. R2,., (or MSE,)

One often considers models with a large Rf) value. However, Rﬁ always increases with

the number of predictors. Hence it can not be used to compare models with different

2

sizes. The adjusted coefficient of multiple determination R, , has been suggested as

an alternative criterion:

_ SSE,/(n—p) 1 n—1\ SSE, - MSE,
SSTO/(n—1) n—p) SSTO SSTO/(n — 1)

2 _
Radj ip 1

It is like Rg but with a penalty for adding unnecessary variables. RI% can go down when

a useless predictor is added. It can be even negative.

R?,., varies inversely with MSE, because SSTO/(n — 1) is constant for all possible

2

regression models. That is, choosing the model with the largest R, is equivalent to

choosing the model with smallest MSE,,.

R? is useful when comparing models of the same size, while R2,. (or C}) is used to

compare models with different sizes.

R?,., 1s better than R?.



3. Mallows C,

The Mallows C,, is concerned with the total mean squared error of the n fitted values
for each subset regression model. The mean squared error concept involves the total

error in each fitted value:

Y~ =Y~ B(YV) + BEY) — p,

[\

'
random error bias

where p; is the true mean response at ith observation. The means squared error for }A/;
is defined as the expected value of the square of the total error in the above. It can be
shown that
N ~ ~ 12
MSE(Y)) = E {(Yi - M)Q} = Var(Y}) + [Bias(y;)] ,
where Bias(}//\;) =F (2) — ;. The total mean square error for all n fitted values Y, is
the sum over the observation ¢:
n R n R n R 2
S OMSE(Y) = Y Var(¥) + 3 [Bias(yi)} .
i=1 i=1 i=1

It can be shown that
i\/ar(?i) —po®  and i Bias(7))] C = (- p)E(S?) - o),
i—1 i=1
where SZ is the MSE from the current model. Using this, we have
S"MSE(T:) = po? + (n = p)ESD) - o7, )
i=1

Dividing (1) by o2, we make it scale-free:

5 MSE() ) EE) =0

02 02 ’

i=1
If the model does not fit well, then S is a biased estimate of ¢°. We can estimate E(S;)
by MSE, and estimate ¢ by the MSE from the maximal model (the largest model we
can consider), i.e., 02 = MSEx_; = MSE(X},..., Xk ). Using the estimators for
E(S?) and o? gives

MSE, — MSE(Xy, ..., Xg_1) SSE,
MSE(X1,..., Xk 1) - MSE(Xy,..., Xk 1)

Cp=p+(n—p) — (n — 2p).
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Small C, is a good thing. A small value of C, indicates that the model is relatively
precise (has small variance) in estimating the true regression coefficients and predicting
future responses. This precision will not improve much by adding more predictors.

Look for models with small C,.

If we have enough predictors in the regression model so that all the significant predictors

are included, then MSE, ~ MSE(Xy,..., Xk_1) and it follows that C, ~ p.

Thus C, close to p is evidence that the predictors in the pool of potential predictors

(X1,...,Xk_1) but not in the current model, are not important.
Models with considerable lack of fit have values of C), larger than p.
The C), can be used to compare models with different sizes.

If we use all the potential predictors, then C), = K.

. PRESS,

The PRESS (prediction sum of squares) is defined as

-2

i=1

where £;) is called PRESS (prediction sum of squares) residual for the the ith obser-
vation. The PRESS residual is defined as ;) = Y; — }Af(i), where }Af(i) is the fitted value
obtained by leaving the ith observation. Models with small PRESS, fit well in the
sense of having small prediction errors. PRESS, can be calculated without fitting the
model n times, each time deleting one of the n cases. One can show that

. _ &

T T

where hy; is the ith diagonal element of H = X (X7 X)™' X7 (hat matrix).



3
1.
()

(i)

(iii)

(i)
(iv)

(v)
(vi)

Sequential Methods

Forward selection
Start with the null model.

Add the significant variable if p-value is less than pe,e,, (equivalently, F' is larger than
Fenter)-

Continue until no more variables enter the model.

. Backward elimination

Start with the full model.

Eliminate the least significant variable whose p-value is larger than premove, (equiva-

lently, F'is smaller than Fj.epove)-

Continue until no more variables can be discarded from the model.

. Stepwise selection

Start with any model.

Check each predictor that is currently in the model. Suppose the current model con-

tains X1,..., X. Then F statistic for X; is

SSE(Xl, ‘e ;Xi—l,Xi—i-l; cee ,Xk) - SSE(Xl, “ee ,Xk)
MSE(X1, ..., X)

Eliminate the least significant variable whose p-value is larger than premove, (equiva-

F =

~ F(lyn—Fk—1).

lently, F'is smaller than Fj.epope)-
Continue until no more variables can be discarded from the model.

Add the significant variable if p-value is less than pee,, (equivalently, F' is larger than

Fenter)-
Go to step (ii)
Repeat until no more predictors can be entered and no more can be discarded.
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4 Likelihood Based-Criteria

The following is based on Akaike’s approach Akaike (1973) and subsequent papers; see also
recent book by Burnham and Anderson (2003).

Suppose that f(y) : true model (unknown) giving rise to data ( is a vector of data) and
g(y,0) : candidate model (parameter vector). Want to find a model g(y, ) “close to” f(y).
The Kullback-Leibler discrepancy (K-L distance):

Fv)
K(f,g)=F {bg ( .
(9= Es 9(Y,0)

This is a measure of how “far” model ¢ is from model f (with reference to model f).

Properties:
K(f.9) =20  K(f,9)=0 < f()=4().
Of course, we can never know how far our model ¢ is from f. But Akaike (1973) showed

that we might be able to estimate something almost as good.

Suppose we have two models under consideration: ¢(y,0) and h(y, ¢). Akaike (1973)
showed that we can estimate K (f,g)— K(f,h). It turns out that the difference of maximized
log-likelihoods, corrected for a bias, estimates the difference of K-L distances. The maximized
likelihoods are, Eg = g(y,@) and zh(y,a), where 0 and $ are the ML estimates of the
parameters. Akaike’s result: [log(fg) — ¢q] — [log(Ly,) — ] is an asymptotically unbiased
estimate (i.e. bias approaches zero as sample size increases) of K(f,g) — K(f,h). Here ¢
is the number of parameters estimated in 6 (model g) and r is the number of parameters
estimated in ¢ (model h). The price of parameters: the likelihoods in the above expression

are penalized by the number of parameters.
The Akaike Information Criterion (AIC) for model g¢:
AIC = —2log(Ly) + 2. (2)

A biased correction version of AIC was proposed by Hurvich and Tsai (1989), called AIC¢,
defined by

AlICe = AIC+2¢(g+1)/(n—q—1)= -2 log(zg) +2qn/(n—q—1). (3)
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The difference between AIC and AIC is the penalty term. Intuitively, one can think of
2qn/(n—q—1) in (3) as a penalty term to discourage over-parameterization. Shibata (1976)
suggested that the AIC has a tendency to overestimate parameter q. By comparing the
penalty terms in (2) and (3), we can see that the factors, 2qn/(n — ¢ — 1) and 2q, for the
AICs and AIC statistics are asymptotically equivalent as n — oo. The AIC statistic
however has more extreme penalty for larger-order models which counteracts the over-fitting

tendency of the AIC.

Another approach is given by the much older notion of Bayesian statistics. In the Bayesian
approach, we assume that a priori uncertainty about the value of model parameters is rep-
resented by a prior distribution. Upon observing the data, this prior is updated, yielding a
posterior distribution. In order to make inferences about the model (rather than its param-
eters), we integrate across the posterior distribution. Under the assumption that all models
are a priori equally likely (because the Bayesian approach requires model priors as well as
parameter priors), Bayesian model selection chooses the model with highest marginal likeli-
hood. The ratio of two marginal likelihoods is called a Bayes factor (BF), which is a widely
used method of model selection in Bayesian inference. The two integrals in the Bayes factor
are nontrivial to compute unless they form a conjugated family. Monte Carlo methods are
usually required to compute BF, especially for highly parameterized models. A large sample

approximation of BF yields the easily-computable Bayesian information criterion (BIC)
BIC = -2 log(zg) + ¢ logn. (4)

In a sum, both AIC and BIC as well as their generalizations have a similar form as

~

LC = —2log(L,) + g, (5)

where A is fixed constant. From (2), (3), and (4), we can see that the BIC statistic has much
more penalty when n is large than AIC and AIC¢s to overcome the over-fitting. Also, from

(5), it is easy to see that LC includes AIC, AICs and BIC as a special case.

The recent developments suggest the use of a data adaptive penalty to replace the fixed
penalties A. See, Bai, Rao and Wu (1999) and Shen and Ye (2002). That is to estimate A

by data in a complexity form based on a concept of generalized degree of freedom.
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5 Cross-Validation and Generalized Cross-Validation

The cross validation (CV) is the most commonly used method for model assessment and
selection. The main idea is a direct estimate of extra-sample error. The general version of
CV is to split data into K roughly equal-sized parts and to fit the model to the other K-1

parts and calculate prediction error on the remaining part.
CV=> (V;—Y.,) (6)
i=1

where ?_i is the fitted value computed with i-th part of data removed.

A convenient approximation to CV for linear fitting with squared error loss is generalized
cross validation (GCV). A linear fitting method has the following property: Y = SY, where
Y; is the fitted value with the whole data and S = (Sij)nxn is the smoothing (hat) matrix.

For many linear fitting methods with leave-one-out (k = 1), it can be showed easily that

n n > 2
ov-yo-v-3 ()
i=1 "

=1

Due to the intensive computation, the CV can be approximated by the GCV, defined by

N WD »/ 1 e 1
GOV = Z<l—trace )/n> ~ (1 —trace(S)/n)?’ (7)

It has been shown that both the CV and GCV methods are very appalling to nonparametric

modeling; see the book by Hastie and Tishirani (1990). It follows from (7) that
GCV ~ Z(YZ — V)% (1 + trace(S) /n)? ~ 5° [SSE/5” + 2 trace(S)] , (8)

2

where 6% = >""  (V; — Y;)?/n. Therefore, under the normality assumption, GCV is asymp-

totically equivalent to AIC since trace(S) = gq.

Recently, the leave-one-out cross-validation method was challenged by Shao (1993). Shao
(1993) claimed that the popular leave-one-out cross-validation method, which is asymptot-
ically equivalent to many other model selection methods such as the AIC, the C),, and the

bootstrap, is asymptotically inconsistent in the sense that the probability of selecting the

9



model with the best predictive ability does not converge to 1 as the total number of obser-

vations n — oo and he showed that the inconsistency of the leave-one-out cross-validation

can be rectified by using a leave-n,-out cross-validation with n,, the number of observations

reserved for validation, satisfying n,/n — 1 as n — oc.

6

Penalized Methods

. Bridge and Ridge:

Frank and Friedman (1993) proposed the L,(¢ > 0) penalized least squares as

n

S =D B XA Y 1B
i=1 j J

which results in the estimator which is called the bridge estimator. If ¢ = 2, the

resulting estimator is called the ridge estimator given by 3 = (X7X + X I)~! XTY.

. LASSO:

Tibshirani (1996) proposed the so-called LASSO which is the minimizer of the following

constrained least squares

n

> (Y- Zﬁj Xij)? + A Z IEA

i=1

which results in the soft threshing rule BJ = sign(@)(] B\ﬂ - )"

. Non-concave Penalized LS:

Fan and Li (2001) proposed the non-concave penalized least squares

n

> (i— Zﬁj Xij)? + Zp)\(|/8j|)7

i=1
where the hard threshing penalty function py(]0]) = A — (|0] — AN)?|(|0] < ), which
results in the hard threshing rule B\] = B\? I(|B§]] > A). Finally, Fan and Li (2001)
proposed the so-called the smoothly clipped absolute deviation (SCAD) model selection

criterion with the penalized function defined as

/ (a)‘_e)+
Pi(0) = A I(@S)\)—ml(0>)\) for some a>2 and 6 >0,
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which results in the estimator

sign(BY)(|39] — A+ when |B%] < 2,
Ej: {(a—l)@—sign(@)a)\}/(a_g) WhenQAg\@\ga)\7
3? when |,,3\JO| > a .

Also, Fan and Li (2001) showed that the SCAD estimator satisfies three properties: (1)
unbiasedness, (2) sparsity, and (3) continuity and Fan and Peng (2004) considered the
case that the number of regressors can depend on the sample size and goes to infinity

in a certain rate.

7 Applications in Finance

We can apply the foregoing ideas to finance. Please read the paper by Cai, Chen, Fan and
Wang (2008).

8 Implementation in R

8.1 Classical Models

To fit a multiple regression in R, one can use Im() or glm(); see the followings for details

lm(formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,

singular.ok = TRUE, contrasts = NULL, offset, ...)

glm(formula, family = gaussian, data, weights, subset,
na.action, start = NULL, etastart, mustart,
offset, control = glm.control(...), model = TRUE,

method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL, ...)
to fit a regression model without intercept, you need to use

fit1=1lm(y~-1+x1+...x9)
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where fitl is called the objective function containing all outputs you need. If you want to

model diagnostic checking, you need to use
plot(fit1)

For multivariate data, it is usually a good idea to view the data as a whole using the pairwise

scatter plots generated by the pairs() function:
pairs(data)

To drop or add one variable from or to a regression model, you use the command drop1()

or add1(), for example,

dropl(fit)
add1(fit1, x10+x11+...+x20)

The last command means that you choose the "best” one from X5 to X20 to add it into
the model. Adding and dropping terms using add1() and dropl() is useful method for
selecting a model when only a few terms are involved, but it can quickly become tedious.
Functions add1() and drop1() are based on the C,, criterion. The step() function provides
an automatic procedure for conducting stepwise model selection. The step() function re-
quires an initial model, often constructed explicitly as an intercept-only model. For example,
suppose that we want to find the ”best” model involving X, ---, X, we could create an

intercept-only model and then call step() as follows:

fit0=1m(y~1)

fit2=step(fit0, "x1+x2+...+x10, trace=F)

step(object, scope, scale = 0,
direction = c("both", "backward", "forward"),

trace = 1, keep = NULL, steps = 1000, k = 2, ...)

With “trace=T" or “trace=1", step() displays the output of each step of the selection
process. The step() function is based on AIC or BIC by specifying k in the function. Also,
one can use the function stepAIC() in the package MASS for a wider range of object

classes.
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8.2 LASSO Type Methods

The package lasso2 provides many features for solving regression problems while imposing
Ly constraints on the estimates and the package lars provides efficient procedures for an
entire LASSO with the cost of a single least squares. In lars, you can use the function

lars()

lars(x, y, type = c("lasso", "lar", "forward.stagewise"),trace = FALSE,

Gram, eps = .Machine$double.eps, max.steps, use.Gram = TRUE)

and the function cv.lars() to compute the K-fold cross-validated mean squared prediction

error for least angle regressions (lars), LASSO, or forward stagewise.

cv.lars(x, y, K = 10, fraction = seq(from = 0, to = 1, length = 100),

trace = FALSE, plot.it = TRUE, se = TRUE, ...)

In the package lasso2, the function 11ce() is for regression fitting with L;-constraint on the

parameters.

lice(formula, data = sys.parent(), weights, subset, na.action,
sweep.out = 7 1, x = FALSE, y = FALSE,

contrasts = NULL, standardize = TRUE,

trace = FALSE, guess.constrained.coefficients = double(p),

0.5, absolute.t = FALSE)

bound

or the function gllce() for fitting a generalized regression problem while imposing an L,

constraint on the parameters

glice(formula, data = sys.parent(), weights, subset, na.action,
family = gaussian, control = glm.control(...), sweep.out = ~ 1,

x = FALSE, y = TRUE, contrasts

NULL, standardize = TRUE,

guess.constrained.coefficients = double(p), bound = 0.5, ...)

Also, you can use the function gev() to extracts the generalized cross-validation score(s)

from fitted model objects.
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gcv(object, ...)

8.3 Example

We begin by introducing several environmental and economic as well as financial time series
to serve as illustrative data for time series methodology. Figure 1 shows monthly values of an
environmental series called the Southern Oscillation Index (SOI) and associated recruitment
(number of new fish) computed from a model by Pierre Kleiber, Southwest Fisheries Center,
La Jolla, California. This data set is provided by Shumway (2006) and it can be downloaded
from https://www.ncei.noaa.gov/access/monitoring/enso/soi. Both series are for a period
of 453 months ranging over the years 1950-1987. The SOI measures changes in air pressure
that are related to sea surface temperatures in the central Pacific. The central Pacific Ocean
warms up every three to seven years due to the El Nino effect which has been blamed, in

particular, for foods in the midwestern portions of the U.S.

Both series in Figure 1 tend to exhibit repetitive behavior, with regularly repeating
(stochastic) cycles that are easily visible. This periodic behavior is of interest because
underlying processes of interest may be regular and the rate or frequency of oscillation
characterizing the behavior of the underlying series would help to identify them. One can also
remark that the cycles of the SOI are repeating at a faster rate than those of the recruitment
series. The recruit series also shows several kinds of oscillations, a faster frequency that
seems to repeat about every 12 months and a slower frequency that seems to repeat about
every 50 months. The study of the kinds of cycles and their strengths will be discussed later.
The two series also tend to be somewhat related; it is easy to imagine that somehow the fish
population is dependent on the SOI. Perhaps there is even a lagged relation, with the SOI

signaling changes in the fish population.

The study of the variation in the different kinds of cyclical behavior in a time series can
be aided by computing the power spectrum which shows the variance as a function of the

frequency of oscillation. Comparing the power spectra of the two series would then give
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Figure 1: Monthly SOI (left panel) and simulated recruitment (right panel) from a model
(n=453 months, 1950-1987).

valuable information relating to the relative cycles driving each one. One might also want
to know whether or not the cyclical variations of a particular frequency in one of the series,
say the SOI, are associated with the frequencies in the recruitment series. This would be
measured by computing the correlation as a function of frequency, called the coherence.
The study of systematic periodic variations in time series is called spectral analysis. See

Shumway (1988), Shumway (2006), and Shumway and Stoffer (2000) for details.

We will need a characterization for the kind of stability that is exhibited by the environ-
mental and fish series. One can note that the two series seem to oscillate fairly regularly
around central values (0 for SOI and 64 for recruitment). Also, the lengths of the cycles and
their orientations relative to each other do not seem to be changing drastically over the time

histories.

We consider the twelve month moving average a; = 1/12, j = 0, 1, £2, +3, £4, £5,
+6 and zero otherwise. The result of applying this filter to the SOI index is shown in Figure

2. It is clear that this filter removes some higher oscillations and produces a smoother series.
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Figure 2: The SOI series (black solid line) compared with a 12 point moving average (red
thicker solid line). The left panel: original data and the right panel: filtered series.

In fact, the yearly oscillations have been filtered out (see the right panel in Figure 2) and
a lower frequency oscillation appears with a cycling rate of about 42 months. This is the
so-called El Nino effect that accounts for all kinds of phenomena. This filtering effect will be
examined further later on spectral analysis since it is extremely important to know exactly

how one is influencing the periodic oscillations by filtering.

In Figure 3, we have made a lagged scatterplot of the SOI series at time ¢ + h against
the SOI series at time ¢ and obtained a high correlation, 0.412, between the series x;; 12 and
the series x; shifted by 12 years. Lower order lags at ¢ — 1, ¢ — 2 also show correlation.
The scatterplot shows the direction of the relation which tends to be positive for lags 1,
2, 11, 12, 13, and tends to be negative for lags 6, 7, 8. The scatterplot can also show no
significant nonlinearities to be present. In order to develop a measure for this self correlation

or autocorrelation, we utilize a sample version of the scaled auto-covariance function, say
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Figure 3: Multiple lagged scatterplots showing the relationship between SOI and the present
(x;) versus the lagged values (x;45) at lags 1 < h < 16.

where

%) = o D =77,

t=1
which is the sample counterpart with # = ', z;/n. Under the assumption that the

underlying process x; is white noise, the approximate standard error of the sample ACF is

17



o, =1/y/n. That is, p,(h) is approximately normal with mean 0 and variance 1/n.

As an illustration, consider the autocorrelation functions computed for the environmental

and recruitment series shown in the top two panels of Figure 4. Both of the autocorrelation

ACF of SOI Index ACF of Recruits
o h ’Hrf”r ’Hf m o[ UHHD.‘I‘"‘I‘.rl.‘,‘".‘lflr,‘”‘,‘|T|HIL
°----'HL--- H F’HPL] ¥--- B e LIHHP---'—'HL' ---------
g'_ [§) 10 20 30 40 50 g_ [§) 10 20 30 40 50
CCF of SOl and Recruits
o M- ||;-||m|r ------- - -l - 5
= __1||H__I||___I|H|IJ,” “ |_|” ||||_ ||| ]_|”HI__

—-40 —20 [§) 20 40

Figure 4: Autocorrelation functions of SOI and recruitment and cross correlation function
between SOI and recruitment.

functions show some evidence of periodic repetition. The ACF of SOI seems to repeat at
periods of 12 while the recruitment has a dominant period that repeats at about 12 to 16
time points. Again, the maximum values are well above two standard errors shown as dotted

lines above and below the horizontal axis.

In order to examine this possibility, consider the lagged scatterplot matrix shown in
Figures 5 and 6, respectively. Figure 5 plots the SOI at time t+h, ., versus the recruitment

series y; at lag 0 < h < 15 in Figure 5. There are no particularly strong linear relations
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Figure 5: Multiple lagged scatterplots showing the relationship between the SOI at time
t + h, say x4, (x-axis) versus recruits at time ¢, say y; (y-axis), 0 < h < 15.

apparent in this plots, i.e. future values of SOI are not related to current recruitment. This
means that the temperatures are not responding to past recruitment. In Figure 6, the current
SOI values, x; are plotted against the future recruitment values, y;1, for 0 < h < 15. It
is clear from Figure 6 that the series are correlated negatively for lags h = 5, ..., 9. The

correlation at lag 6, for example, is —0.60 implying that increases in the SOI lead decreases
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Figure 6: Multiple lagged scatterplots showing the relationship between the SOI at time ¢,
say z; (x-axis) versus recruits at time ¢ + h, say yyyp, (y-axis), 0 < h < 15.

in number of recruits by about 6 months. On the other hand, the series are hardly correlated
(0.025) at all in the conventional sense, measured at lag h = 0. The general pattern suggests

that predicting recruits might be possible using the El Nino at lags of 5, 6, 7, ... months.

We show in the right panels panel of Figure 7 the partial autocorrelation functions (PAC)
of the SOI series (left panel) and the recruits series (right panel). Note that the PACF of the
SOI has a single peak at lag h = 1 and then relatively small values. This means, in effect,
that fairly good prediction can be achieved by using the immediately preceding point and

that adding further values does not really improve the situation. Hence, we might try an
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Figure 7: Partial autocorrelation functions for the SOI (left panel) and the recruits (right
panel) series.

autoregressive model with p = 1. The recruits series has two peaks and then small values,

implying that the pure correlation between points is summarized by the first two lags.

We consider the simple problem of modeling the recruit series shown in the right panel of
Figure 1 using an autoregressive model. The top right panel of Figure 4 and the right panel
of Figure 7 shows the autocorrelation and partial autocorrelation functions of the recruit
series. The PACF has large values for h = 1 and 2 and then is essentially zero for higher
order lags. This implies by the property of an autoregressive model that a second order
(p = 2) AR model might provide a good fit. Running the regression program for an AR(2)
model with intercept

Ty = Qo+ Gr1Ti—1 + G2 o + Wy

leads to the estimators ¢y = 61.8439(4.0121), ¢y = 1.3512(0.0417), ¢5 = —0.4612(0.0416)
and 02 = 89.53, where the estimated standard deviations are in parentheses. To determine
whether the above order is the best choice, we fitted models for 1 < p < 10, obtaining

corrected AICC values summarized in Table 1 using (3). This shows that the minimum
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Table 1: AICC values for ten models for the recruits series

D 1 2 3 4 5 6 7 8 9 10
AICC | 5.75 5.52 5.53 5.54 554 555 555 556 5.57 5.58

AICC obtains for p = 2 and we choose the second order model.

The previous example uses various autoregressive models for the recruits series, for
example, one can fit a second-order regression model. We may also use this regression
idea to fit the model to other series such as a de-trended version of the SOI given in
previous discussions. We have noted in our discussions of Figure 7 from the partial au-
tocorrelation function that a plausible model for this series might be a first order au-
toregression of the form given above with p = 1. Again, putting the model above into
the regression framework z; = ¢g + ¢1 x,1 + w; for a single coefficient leads to the es-
timators ¢; = 0.59 with standard error 0.04, 52 = 0.09218 and AICC(1) = —1.375.
The ACF of these residuals shown in the left panel of Figure 8, however, will still show
cyclical variation and it is clear that they still have a number of values exceeding the
1.96/y/n threshold. A suggested procedure is to try higher order autoregressive mod-
els and successive models for 1 < p < 30 were fitted and the AICC values are plotted
in the right panel of Figure 8. There is a clear minimum for a p = 16 order model.
The coefficient vector is ¢ with components and their standard errors in the parentheses
0.4050(0.0469), 0.0740(0.0505), 0.1527(0.0499), 0.0915(0.0505), —0.0377(0.0500), —0.0803(0.0493),
—0.0743(0.0493), —0.0679(0.0492), 0.0096(0.0492), 0.1108 (0.0491), 0.1707(0.0492), 0.1606(0.0499),
0.0281(0.0504), —0.1902(0.0501), —0.1283(0.0510), —0.0413(0.0476), and 5% = 0.07166.

9 Computer Codes

TR R R
# This is the example for Southern Oscillation Index and Recruits data

HEHHHHHHBH R R R R R R R
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Figure 8: ACF of residuals of AR(1) for SOI (left panel) and the plot of AIC and AICC
values (right panel).

y<-read.table(file=""/Desktop/ECON817/data/soi.txt")

# read data file
x<-read.table(file=""/Desktop/ECON817/data/recruit.txt")
y=y[,1]

x=x[,1]

postscript(file=""/Desktop/ECON817/materials/figs/fig_2_1.eps",
horizontal=F,width=6,height=6)

#win.graph()

par (mfrow=c(1,2) ,mex=0.4,bg="yellow")

# save the graph as a postscript file
ts.plot(y,type="1",1ty=1,ylab="",x1lab="")

# make a time series plot

title(main="Southern Oscillation Index",cex=0.5)
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# set up the title of the plot
abline(0,0)

# make a straight line

#win.graph()
ts.plot(x,type="1",1ty=1,ylab="",xlab="")
abline(mean(x),0)
title(main="Recruit",cex=0.5)

dev.off ()

n=length(y)

n2=n-12

yma=rep (0,n2)

for(i in 1:n2){ymalil=mean(y[i:(i+12)])}
yy=y[7: (n2+6)]

yyO=yy-yma

# compute the mean

postscript(file=""/Desktop/ECON817/materials/figs/fig_2_2.eps",

horizontal=F,width=6,height=6)

par (mfrow=c(1,2) ,mex=0.4)
ts.plot(yy,type="1",1ty=1,ylab="",x1lab="")
points(1:n2,yma,type="1",1ty=1,1wd=3,col=2)
ts.plot(yy0,type="1",1ty=1,ylab="",xlab="")
points(1l:n2,yma,type="1",1ty=1,1wd=3,col=2)
abline(0,0)

dev.off ()

m=17
nl=n-m
y.soi=rep(0,nl*m)

dim(y.soi)=c(nl,m)
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y.rec=y.soi

for(i in 1:m){

y.soil[,i]l=y[i: (n1+i-1)]

y.rec[,il=x[i: (n1+i-1)]}

text_soi=c("1","2", 3", 4N npr nghn n7n g ngn mqon gt n12n 113",
"14","15","16")

postscript(file=""/Desktop/ECON817/materials/figs/fig_2_3.eps",
horizontal=F,width=6,height=6)

par (mfrow=c(4,4) ,mex=0.4,bg="1ight blue")

for(i in 2:17){

plot(y.soil,1],y.soil,i],type="p",pch="0",ylab="",xlab="",
ylim=c(-1,1) ,xlim=c(-1,1))

text(0.8,-0.8,text_soi[i-1],cex=2)}

dev.off ()

text1=c("ACF of SOI Index")

text2=c("ACF of Recruits")

text3=c("CCF of SOI and Recruits")

S0I=y

Recruits=x
postscript(file="c:/res-teach/xiamenl12-06/figs/fig_2_4.eps",
horizontal=F,width=6,height=6)
par (mfrow=c(2,2) ,mex=0.4,bg="1ight pink")
acf(y,ylab="",xlab="",ylim=c(-0.5,1),lag.max=50,main="")

# make an ACF plot

legend(10,0.8, textl) # set up the legend
acf (x,ylab="",xlab="",ylim=c(-0.5,1),lag.max=50,main="")
legend(10,0.8,text2)

ccf(y,x, ylab="",xlab="",ylim=c(-0.5,1),lag.max=50,main="")
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legend(-40,0.8,text3)
dev.off ()

postscript(file=""/Desktop/ECON817/materials/figs/fig-2.5.eps",
horizontal=F,width=6,height=6)

par (mfrow=c(4,4) ,mex=0.4,bg="1light green")

for(i in 1:16){
plot(y.soil,i],y.rec[,1],type="p",pch="0",ylab="",xlab="",
ylim=c(0,100) ,xlim=c(-1,1))

text(-0.8,10,text_soi[i],cex=2)}

dev.off ()

postscript(file=""/Desktop/ECON817/materials/figs/fig_2_6.eps",
horizontal=F,width=6,height=6)

par (mfrow=c(4,4) ,mex=0.4,bg="1ight grey")

for(i in 1:16){
plot(y.soil,1],y.rec[,i],type="p",pch="0",ylab="",xlab="",
ylim=c(0,100) ,x1lim=c(-1,1))

text(-0.8,10,text_soi[i],cex=2)}

dev.off ()

postscript(file=""/Desktop/ECON817/materials/figs/fig_2_7.eps",
horizontal=F,width=6,height=6)

par (mfrow=c(1,2) ,mex=0.4,bg="1ight blue")

pacf (y,ylab="",xlab="",1lag=30,ylim=c(-0.5,1) ,main="")
text(10,0.9,"PACF of SOI")

pacf (x,ylab="",xlab="",1lag=30,ylim=c(-0.5,1) ,main="")
text(10,0.9,"PACF of Recruits")

dev.off ()

i e e e e e e e e e T T s T
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x<-read.table(file=""/Desktop/ECON817/data/ex2-1a.txt")
x.soi=x[,1]
n=length(x.so0i)

aicc=0

if (aicc==1){

aic.value=rep(0,30) # max.lag=30
aicc.value=aic.value

sigma.value=rep(0,30)

for(i in 1:30){

fit3=arima(x.soi,order=c(i,0,0)) # fit an AR(i)
aic.value[i]=fit3$aic/n-2 # compute AIC
sigma.value[i]=fit3$sigma2

# obtain the estimated sigma”2
aicc.value[i]=log(sigma.value[i])+(n+i)/(n-i-2) # compute AICC
print(c(i,aic.value[i],aicc.value[il))}
data=cbind(aic.value,aicc.value)
write(t(data),file=""/Desktop/ECON817/materials/soi_aic.dat",ncol=2)
}elseq{
data<-matrix(scan(file=""/Desktop/ECON817/materials/soi_aic.dat") ,byrow=T,ncol=2)
}
text4=c("AIC", "AICC")

fitll=arima(x.soi,order=c(1,0,0))

residl=fit11$residual
postscript(file=""/Desktop/ECON817/materials/figs/fig_2_8.eps",
horizontal=F,width=6,height=6)

par (mfrow=c(1,2) ,mex=0.4,bg="1ight yellow")

acf(residl,ylab="",xlab="",lag.max=20,ylim=c(-0.5,1) ,main="")

27



text(10,0.8,"ACF of residuals of AR(1) for SOI")
matplot(1:30,data,type="b",pch="0",col=c(1,2),ylab="",xlab="Lag",cex=0.6)
legend(16,-1.40,text4,1ty=1,col=c(1,2))

dev.off ()

#fit2=arima(x.soi,order=c(16,0,0))

#print (fit2)
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