
Chapter I 

LINEAR ALGEBRA AND MATRIX METHODS IN 
ECONOMETRICS 

HENRI THEIL* 

University of Florida 

Contents 

1. Introduction 
2. Why are matrix methods useful in econometrics? 

2.1. Linear systems and quadratic forms 
2.2. Vectors and matrices in statistical theory 
2.3. Least squares in the standard linear model 
2.4. Vectors and matrices in consumption theory 

3. Partitioned matrices 
3. I, The algebra of partitioned matrices 
3.2. Block-recursive systems 
3.3. Income and price derivatives revisited 

4. Kronecker products and the vectorization of matrices 
4. I. The algebra of Kronecker products 
4.2. Joint generalized least-squares estimation of several equations 
4.3. Vectorization of matrices 

5. Differential demand and supply systems 
5.1. A differential consumer demand system 
5.2. A comparison with simultaneous equation systems 
5.3. An extension to the inputs of a firm: A singularity problem 
5.4. A differential input demand system 
5.5. Allocation systems 
5.6. Extensions 

6. Definite and semidefinite square matrices 
6. I. Covariance matrices and Gauss-Markov further considered 
6.2. Maxima and minima 
6.3. Block-diagonal definite matrices 

7. Diagonalizations 
7.1. ne standard diagonalization of a square matrix 

5 

: 
7 

*: 

:; 

:: 
16 
16 
17 
19 
20 

;; 

2: 

29 
30 

3”: 

*Research supported in part by NSF Grant SOC76-82718. The author is indebted to Kenneth 
Clements (Reserve Bank of Australia, Sydney) and Michael Intriligator (University of California, Los 
Angeles) for comments on an earlier draft of this chapter. 

Hundhook of Econometrics, Volume I, Edited by Z. Griliches and M.D. Intriligator 
0 North- Holland Publishing Company, I983 



H. Theil 

1.2. Special cases 
7.3. Aitken’s theorem 
7.4. The Cholesky decomposition 
7.5. Vectors written as diagonal matrices 
7.6. A simultaneous diagonalization of two square matrices 
7.7. Latent roots of an asymmetric matrix 

8. Principal components and extensions 
8.1. Principal components 
8.2. Derivations 
8.3. Further discussion of principal components 
8.4. The independence transformation in microeconomic theory 
8.5. An example 
8.6. A principal component interpretation 

9. The modeling of a disturbance covariance matrix 
9.1. Rational random behavior 
9.2. The asymptotics of rational random behavior 
9.3. Applications to demand and supply 

10. The Moore-Penrose inverse 
10.1. Proof of the existence and uniqueness 
10.2. Special cases 
10.3. A generalization of Aitken’s theorem 
10.4. Deleting an equation from an allocation model 

Appendix A: Linear independence and related topics 
Appendix B: The independence transformation 
Appendix C: Rational random behavior 
References 

:: 
53 
56 
57 
58 
61 
64 



Ch. 1: Linear Algebra and Matrix Methoak 

1. Introduction 

Vectors and matrices played a minor role in the econometric literature published 
before World War II, but they have become an indispensable tool in the last 
several decades. Part of this development results from the importance of matrix 
tools for the statistical component of econometrics; another reason is the in- 
creased use of matrix algebra in the economic theory underlying econometric 
relations. The objective of this chapter is to provide a selective survey of both 
areas. Elementary properties of matrices and determinants are assumed to be 
known, including summation, multiplication, inversion, and transposition, but the 
concepts of linear dependence and orthogonality of vectors and the rank of a 
matrix are briefly reviewed in Appendix A. Reference is made to Dhrymes (1978), 
Graybill (1969), or Hadley (1961) for elementary properties not covered in this 
chapter. 

Matrices are indicated by boldface italic upper case letters (such as A), column 
vectors by boldface italic lower case letters (a), and row vectors by boldface italic 
lower case letters with a prime added (a’) to indicate that they are obtained from 
the corresponding column vector by transposition. The following abbreviations 
are used: 

LS = least squares, 

GLS = generalized least squares, 

ML = maximum likelihood, 

6ij=Kroneckerdelta(=lifi=j,0ifi*j). 

2. Why are matrix methods useful in econometrics? 

2.1. Linear systems and quadratic forms 

A major reason why matrix methods are useful is that many topics in economet- 
rics have a multivariate character. For example, consider a system of L simulta- 
neous linear equations in L endogenous and K exogenous variables. We write y,, 
and x,~ for the &h observation on the lth endogenous and the kth exogenous 
variable. Then thejth equation for observation (Y takes the form 

k=l 

(2.1) 



tively: 

r YII Y12-.*YIL PI1 Pl2-.-PIL 

Y21 Y22...Y2L P 21 P22...P2L 
r= . . . , B= . . . . . . . . . 

YLI YL2.. YLL _P’ P,,...P,L_ KI 

When there are n observations ((Y = 1,. . . , n), there are Ln equations of the form 
(2.1) and n equations of the form (2.2). We can combine these equations 
compactly into 

E= 
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where &aj is a random disturbance and the y’s and p’s are coefficients. We can 
write (2.1) forj=l,...,L in the form 

y;I’+ x&B = E&, (2.2) 

whereyL= [yal... yaL] and x& = [ xal . . . xaK] are observation vectors on the endog- 
enous and the exogenous variables, respectively, E& = [ E,~. . . caL] is a disturbance 
vector, and r and B are coefficient matrices of order L X L and K X L, respec- 

Yr+ XB=E, (2.3) 

where Y and X are observation matrices of the two sets of variables of order 
n X L and n X K, respectively: 

Yll Yl,...YlL XII X12...XlK 

Y21 Y22 . -Y2 L x21 X22-.-X2K 

y= . . . 3 x= . . . 3 
. . . . 
. . . . 

_Y nl YtlZ...Y?lL_ X nl xn2.-. nK X 

and E is an n X L disturbance matrix: 

-%I El2...ElL 

E2l E22...&2L 

. . 

. . 

. . 

E nl %2... nL E 

Note that r is square (L X L). If r is also non-singular, we can postmultipy 
(2.3) by r-t: 

Y= -XBr-'+Er-'. (2.4) 
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This is the reduced form for all n observations on all L endogenous variables, each 
of which is described linearly in terms of exogenous values and disturbances. By 
contrast, the equations (2.1) or (2.2) or (2.3) from which (2.4) is derived constitute 
the structural form of the equation system. 

The previous paragraphs illustrate the convenience of matrices for linear 
systems. However, the expression “linear algebra” should not be interpreted in 
the sense that matrices are useful for linear systems only. The treatment of 
quadratic functions can also be simplified by means of matrices. Let g( z,, . . . ,z,) 
be a three tunes differentiable function. A Taylor expansion yields 

dz ,,...,z/J=&,..., Q+ ; (zi-q)z 
i=l I 

+g ; (ZiGi) 
r=l j=l 

&(r,mzj)+03Y (2.5) 

where 0, is a third-order remainder term, while the derivatives Jg/azi and 
a2g/azi dzj are all evaluated at z, = Z,,. . .,zk = I,. We introduce z and Z as 
vectors with ith elements zi and I~, respectively. Then (2.5) can be written in the 
more compact form 

ag 1 8% g(Z)=g(Z)+(Z-z)‘az+Z(Z-‘)‘azaz, -(z -z)+o,, (2.6) 

where the column vector ag/az = [ ag/azi] is the gradient of g( .) at z (the vector 
of first-order derivatives) and the matrix a*g/az az’ = [ a2g/azi azj] is the 
Hessian matrix of g( .) at T (the matrix of second-order derivatives). A Hessian 
matrix is always symmetric when the function is three times differentiable. 

2.2. Vectors and matrices in statistical theory 

Vectors and matrices are also important in the statistical component of economet- 
rics. Let r be a column vector consisting of the random variables r,, . . . , r,. The 
expectation Gr is defined as the column vector of expectations Gr,, . . . , Gr,. Next 
consider 

(r- &r)(r- &r)‘= I r, - Gr, 
r, - Gr, . I : [rl - Gr, r2 - &r,...r, - Gr,] 
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and take the expectation of each element of this product matrix. When defining 
the expectation of a random matrix as the matrix of the expectations of the 
constituent elements, we obtain: 

&[(r-&r)(r-&r)‘]= 

var r, cov(r,,r,) e-e cov( rl , rn ) 

4 r2, rl ) varr, --- cov( r2, r, > 

cov(r,,r,) cov(r,,r2) ... var r, 

This is the variance-covariance matrix (covariance matrix, for short) of the vector 
r, to be written V(r). The covariance matrix is always symmetric and contains the 
variances along the diagonal. If the elements of r are pairwise uncorrelated, ‘T(r) 

is a diagonal matrix. If these elements also have equal variances (equal to u2, say), 
V(r) is a scalar matrix, a21; that is, a scalar multiple a2 of the unit or identity 
matrix. 

The multivariate nature of econometrics was emphasized at the beginning of 
this section. This will usually imply that there are several unknown parameters; 
we arrange these in a vector 8. The problem is then to obtain a “good” estimator 
8 of B as well as a satisfactory measure of how good the estimator is; the most 
popular measure is the covariance matrix V(O). Sometimes this problem is 
simple, but that is not always the case, in particular when the model is non-linear 
in the parameters. A general method of estimation is maximum likelihood (ML) 
which can be shown to have certain optimal properties for large samples under 
relatively weak conditions. The derivation of the ML estimates and their large- 
sample covariance matrix involves the information matrix, which is (apart from 
sign) the expectation of the matrix of second-order derivatives of the log-likeli- 
hood function with respect to the parameters. The prominence of ML estimation 
in recent years has greatly contributed to the increased use of matrix methods in 
econometrics. 

2.3. Least squares in the standard linear model 

We consider the model 

y=Xtl+&, (2.7) 

where y is an n-element column vector of observations on the dependent (or 
endogenous) variable, X is an n X K observation matrix of rank K on the K 
independent (or exogenous) variables, j3 is a parameter vector, and E is a 
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disturbance vector. The standard linear model postulates that E has zero expecta- 
tion and covariance matrix a*I, where u* is an unknown positive parameter, and 
that the elements of X are all non-stochastic. Note that this model can be viewed 
as a special case of (2.3) for r = I and L, = 1. 

The problem is to estimate B and u2. The least-squares (LS) estimator of /I is 

b = (XX)_‘X’y (2.8) 

which owes its name to the fact that it minimizes the residual sum of squares. To 
verify this proposition we write e = y - Xb for the residual vector; then the 
residual sum of squares equals 

e’e = y’y - 2 y’Xb + b’x’Xb, (2.9) 

which is to be minimized by varying 6. This is achieved by equating the gradient 
of (2.9) to zero. A comparison of (2.9) with (2.5) and (2.6), with z interpreted as b, 
shows that the gradient of (2.9) equals - 2X’y + 2x’Xb, from which the solution 
(2.8) follows directly. 

Substitution of (2.7) into (2.8) yields b - j3 = (X’X)- ‘X’e. Hence, given &e = 0 
and the non-randomness of X, b is an unbiased estimator of /3. Its covariance 
matrix is 

V(b) = (XtX)-‘X’?f(e)X(X’X)-’ = a2(X’X)-’ (2.10) 

because X’?f( e)X = a2X’X follows from ?r( e) = a21. The Gauss-Markov theo- 
rem states that b is a best linear unbiased estimator of /3, which amounts to an 
optimum LS property within the class of /I estimators that are linear in y and 
unbiased. This property implies that each element of b has the smallest possible 
variance; that is, there exists no other linear unbiased estimator of /3 whose 
elements have smaller variances than those of the corresponding elements of b. A 
more general formulation of the Gauss-Markov theorem will be given and 
proved in Section 6. 

Substitution of (2.8) into e = y - Xb yields e = My, where M is the symmetric 
matrix 

M=I-X(X/X)_‘X (2.11) 

which satisfies MX = 0; therefore, e = My = M(XB + E) = Me. Also, M is 
idempotent, i.e. M2 = M. The LS residual sum of squares equals e’e = E’M’ME = 
E’M*E and hence 

e’e = E’ME. (2.12) 
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It is shown in the next paragraph that &(e’Me) = a2(n - K) so that (2.12) implies 
that cr2 is estimated unbiasedly by e’e/(n - K): the LS residual sum of squares 
divided by the excess of the number of observations (n) over the number of 
coefficients adjusted (K). 

To prove &(&Me) = a2( n - K) we define the truce of a square matrix as the 
sum of its diagonal elements: trA = a,, + * * - + a,,,,. We use trAB = trBA (if AB 
and BA exist) to write s’Me as trMee’. Next we use tr(A + B) = trA + trB (if A 
and B are square of the same order) to write trMee’ as tree’ - trX( X’X)- ‘X’ee’ 
[see (2.1 l)]. Thus, since X is non-stochastic and the trace is a linear operator, 

&(e’Me) = tr&(ee’)-trX(X’X)-‘X’&(ee’) 

= a2trl - a2trX(X’X)-‘X’ 

= u2n - u2tr( X(X)-‘X’X, 

which confirms &(e’Me) = a’( n - K) because (X’X)- ‘X’X = I of order K x K. 
If, in addition to the conditions listed in the discussion following eq. (2.7), the 

elements of e are normally distributed, the LS estimator b of /3 is identical to the 
ML estimator; also, (n - K)s2/u2 is then distributed as x2 with n - K degrees of 
.freedom and b and s2 are independently distributed. For a proof of this result see, 
for example, Theil(l971, sec. 3.5). 

If the covariance matrix of e is u2V rather than u21, where Y is a non-singular 
matrix, we can extend the Gauss-Markov theorem to Aitken’s (1935) theorem. 
The best linear unbiased estimator of /3 is now 

fi = (xv-lx)-‘xv-‘y, (2.13) 

and its covariance matrix is 

V(B) = uqxv-‘x)-l. (2.14) 

The estimator fi is the generalized least-squares (GLS) estimator of /3; we shall see 
in Section 7 how it can be derived from the LS estimator b. 

2.4. Vectors and matrices in consumption theory 

It would be inappropriate to leave the impression that vectors and matrices are 
important in econometrics primarily because of problems of statistical inference. 
They are also important for the problem of how to specify economic relations. We 
shall illustrate this here for the analysis of consumer demand, which is one of the 
oldest topics in applied econometrics. References for the account which follows 
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include Barten (1977) Brown and Deaton (1972) Phlips (1974), Theil(l975-76), 
and Deaton’s chapter on demand analysis in this Handbook (Chapter 30). 

Let there be N goods in the marketplace. We write p = [pi] and q = [ qi] for the 
price and quantity vectors. The consumer’s preferences are measured by a utility 
function u(q) which is assumed to be three times differentiable. His problem is to 
maximize u(q) by varying q subject to the budget constraintsp’q = M, where A4 is 
the given positive amount of total expenditure (to be called income for brevity’s 
sake). Prices are also assumed to be positive and given from the consumer’s point 
of view. Once he has solved this problem, the demand for each good becomes a 
function of income and prices. What can be said about the derivatives of demand, 
aqi/ahf and aqi/apj? 

Neoclassical consumption theory answers this question by constructing the 
Lagrangian function u(q)- A( pQ - M) and differentiating this function with 
respect to the qi’s. When these derivatives are equated to zero, we obtain the 
familiar proportionality of marginal utilities and prices: 

au 
- = Ap,, aqi i=l,...,N, (2.15) 

or, in vector notation, au/l@ = Xp: the gradient of the utility function at the 
optimal point is proportional to the price vector. The proportionality coefficient X 
has the interpretation as the marginal utility of income.’ 

The proportionality (2.15) and the budget constraint pb = A4 provide N + 1 
equations in N + 1 unknowns: q and A. Since these equations hold identically in 
M and p, we can differentiate them with respect to these variables. Differentiation 
of p@ = M with respect to M yields xi pi( dq,/dM) = 1 or 

(2.16) 

where */ait = [ dqi/dM] is the vector of income derivatives of demand. 
Differentiation of pb = A4 with respect to pi yields &pi( aqi/apj)+ qj = 0 (j = 
1 ,...,N) or 

,a4 
P ap’ = -4’9 (2.17) 

where aQ/ap’ = [ aqi/apj] is the N X N matrix of price derivatives of demand. 
Differentiation of (2.15) with respect to A4 and application of the chain rule 

‘Dividing both sides of (2.15) by pi yields 8u/6’(piqi) = X, which shows that an extra dollar of 
income spent on any of the N goods raises utility by h. This provides an intuitive justification for the 
interpretation. A more rigorous justification would require the introduction of the indirect utility 
function, which is beyond the scope of this chapter. 
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yields: 

Similarly, differentiation of (2.15) with respect to pj yields: 

kfE,&$=Pi$+xs,/, i,j=l ,.**, N, 
1 J J 

where aij is the Kronecker delta ( = 1 if i = j, 0 if i * j). We can write the last two 
equations in matrix form as 

(2.18) 

where U = a2u/&&’ is the Hessian matrix of the consumer’s utility function. 
We show at the end of Section 3 how the four equations displayed in (2.16)-(2.18) 
can be combined in partitioned matrix form and how they can be used to provide 
solutions for the income and price derivatives of demand under appropriate 
conditions. 

3. Partitioned matrices 

Partitioning a matrix into submatrices is one device for the exploitation of the 
mathematical structure of this matrix. This can be of considerable importance in 
multivariate situations. 

3.1. The algebra of partitioned matrices 

We write the left-most matrix in (2.3) as Y = [Y, Y2], where 

Y13 Yl,...YlL 

Y23 Y24 * * -Y2 L 
y2= . . . f _: . . . . 

Yns Yn4.*.YnL_ 

The partitioning Y = [Yl Y2] is by sets of columns, the observations on the first 
two endogenous variables being separated from those on the others. Partitioning 
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may take place by row sets and column sets. The addition rule for matrices can be 
applied in partitioned form, 

provided AI, and Bjj have the same order for each (i, j). A similar result holds for 
multiplication, 

provided that the number of columns of P,, and P2, is equal to the number of 
rows of Q,, and Q12 (sillily for P12, P22, Q2,, Q&. 

The inverse of a symmetric partitioned matrix is frequently needed. Two 
alternative expressions are available: 

[;’ ;]-I= [ _Cf)‘B’D C-1;$j;;BC-‘1’ (3.1) 

[z4, :I-‘= [A-‘+;;yi(-’ -AilBE], 
(3.2) 

where D = (A - BC-‘B’)-’ and E = (C - B’A-‘B)-‘. The use of (3.1) requires 
that C be non-singular; for (3.2) we must assume that A is non-singular. The 
verification of these results is a matter of straightforward partitioned multiplica- 
tion; for a constructive proof see Theil(l971, sec. 1.2). 

The density function of the L-variate normal distribution with mean vector p 
and non-singular covariance matrix X is 

f(x)= l 
(27r) L’2p11’2 

exp{-t(x-Cc)‘~-‘(x-Er)), (3.3) 

where 1x1 is the determinant value of X. Suppose that each of the first L’ variates 
is uncorrelated with all L - L’ other variates. Then p and X may be partitioned, 

(3.4) 

where (p,, Z,) contains the first- and second-order moments of the first L’ 
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variates and (pZ, X,) those of the last L - L’. The density function (3.3) can now 
be written as the product of 

ht%>= l 
(2n) L”2]E1 I”* 

exp{ - +(x1 - ~,1)‘F’(x~ -h>> 

and analogous function f2(x2). Clearly, the L-element normal vector consists of 
two subvectors which are independently distributed. 

3.2. Block -recursive systems 

We return to the equation system (2.3) and assume that the rows of E are 
independent L-variate normal vectors with zero mean and covariance matrix X, as 
shown in (2.4), Xl being of order L’ X L’. We also assume that r can be 
partitioned as 

(3.5) 

with r, of order L’ X L’. Then we can write (2.3) as 

WI Y,l ; [ I ; +N4 &l=[E, 41 
2 

or 

y,r, + XB, = El) (3.6) B2 
W’2+[X Y,] r 

[ 1 =E2, (3.7) 
3 

where Y= [Y, Y,], B = [B, I&], and E = [E, E,] with Y, and E, of order 
n x L’ and B, of order K X L’. 

There is nothing special about (3.6), which is an equation system comparable to 
(2.3) but of smaller size. However, (3.7) is an equation system in which the L’ 
variables whose observations are arranged in Y, can be viewed as exogenous 
rather than endogenous. This is indicated by combining Y, with X in partitioned 
matrix form. There are two reasons why Y, can be viewed as exogenous in (3.7). 
First, Y, is obtained from the system (3.6) which does not involve Y2. Secondly, 
the random component El in (3.6) is independent of E2 in (3.7) because of the 
assumed normality with a block-diagonal Z. The case discussed here is that of a 



Ch. 1: Linear Algebra and Matrix Methods 15 

block-recursive system, with a block-triangular r [see (3.5)] and a block-diagonal B 
[see (3.4)]. Under appropriate identification conditions, ML estimation of the 
unknown elements of r and B can be applied to the two subsystems (3.6) and 
(3.7) separately. 

3.3. Income and price derivatives revisited 

It is readily verified that eqs. (2.16)-(2.18) can be written in partitioned matrix 
form as 

u P 
[ I[ %/dM 

Pl 0 - ahlaM (3.8) 

which is Barten’s (1964) fundamental matrix equation in consumption theory. All 
three partitioned matrices in (3.8) are of order (N + 1) x (N + l), and the left-most 
matrix is the Hessian matrix of utility function bordered by prices. If U is 
non-singular, we can use (3.2) for the inverse of this bordered matrix: 

[I ;I-‘=*[ (p’u-‘p)u-‘-u-‘p(UFp)’ u-‘/J 

(U_‘P)’ 1 -1 * 
Premultiplication of (3.8) by this inverse yields solutions for the income and price 
derivatives: 

3L1u-~p, _?i=_L 
aM p’u-‘p aM pw- ‘p 

_=Au-‘_ A % 
ap f 

Pu-‘p(u-‘p)‘_ l 
pv- ‘p 

pu-‘pqc 
p7- ‘p 

(3.9) 

(3.10) 

It follows from (3.9) that we can write the income derivatives of demand as 

&=-&u-Lp’ 
and from (3.9) and (3.10) that we can simplify the price derivatives to 

i?L~U-‘- A __!ka4’_* 1 

w aXlaM aM aM aMq * 

(3.11) 

(3.12) 

The last matrix, - (*/aM)q’, represents the income effect of the price changes 
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on demand. Note that this matrix has unit rank and is not symmetric. The two 
other matrices on the right in (3.12) are symmetric and jointly represent the 
substitution effect of the price changes. The first matrix, AU-‘, gives the specific 
substitution effect and the second (which has unit rank) gives the general substitu- 
tion effect. The latter effect describes the general competition of all goods for an 
extra dollar of income. The distinction between the two components of the 
substitution effect is from Houthakker (1960). We can combine these components 
by writing (3.12) in the form 

(3.13) 

which is obtained by using (3.11) for the first +/c?M that occurs in (3.12). 

4. Kronecker products and the vectorization of matrices 

A special form of partitioning is that in which all submatrices are scalar multiples 
of the same matrix B of order p x q. We write this as 

a,,B a12B...alnB 

a2,B azzB...a,,B 
A@B=. .., 

. . . . 
a,,B amaB...a,,B I 

and refer to A@B as the Kronecker product of A = [aij] and B. The order of this 
product is mp x nq. Kronecker products are particularly convenient when several 
equations are analyzed simultaneously. 

4.1. The algebra of Kronecker products 

It is a matter of straightforward partitioned multiplication to verify that 

(A@B)(C@D) = ACBBD, (4.1) 

provided AC and BD exist. Also, if A and B are square and non-singular, then 

(~633~’ = A-‘QDB-’ (4.2) 

because (4.1) implies (A@B)(A-‘@B-l) = AA-‘@BB-’ = 181= I, where the 
three unit matrices will in general be of different order. We can obviously extend 
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(4.1) to 

provided A,A,A3 and B,B,B, exist. 
Other useful properties of Kronecker products are: 

(A@B)‘= A’@B’, (4.3) 
A@(B+C)=A@B+A@C, (4.4) 
(B+C)sA=B@A+C%4, (4.5) 
A@(B@C) = (A@B)@C. (4.6) 

Note the implication of (4.3) that A@B is symmetric when A and B are 
symmetric. Other properties of Kronecker products are considered in Section 7. 

4.2. Joint generalized least-squares estimation of several equations 

In (2.1) and (2.3) we considered a system of L linear equations in L endogenous 
variables. Here we consider the special case in which each equation describes one 
endogenous variable in terms of exogenous variables only. If the observations on 
all variables are (Y = 1 , . . . ,n, we can write the L equations in a form similar to 
(2.7): 

*=X,lp,+e,, j=l ,“‘, L, (4.7) 

where yj = [ yaj] is the observation vector on the j th endogenous variable, ej = 
[ eaj] is the associated disturbance vector with zero expectation, Xi is the observa- 
tion matrix on the Kj exogenous variables in the jth equation, and pj is the 
Kj-element parameter vector. 

We can write (4.7) for all j in partitioned matrix form: 

YI X, O...O 8, re, 

Y2 0 X,...O /3, e2 
= . . . + . . . 

YL_ _ 0 0:. .X, S, ei 

(4.8) 

or, more briefly, as 

y=@+e, (4.9) 
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where y and e are Ln-element vectors and Z contains Ln rows, while the number 
of columns of Z and that of the elements of B are both K, + . - . + K,. The 
covariance matrix of e is thus of order Ln X Ln and can be partitioned into L* 
submatrices of the form &(sjej). For j = 1 this submatrix equals the covariance 
matrix ‘V(sj). We assume that the n disturbances of each of the L equations have 
equal variance and are uncorrelated so that cV(.sj) = ~~1, where aij = vareaj (each 
a). For j z 1 the submatrix &(eje;) contains the “contemporaneous” covariances 
&(E,~E,,) for a=l,..., n in the diagonal. We assume that these covariances are all 
equal to uj, and that all non-contemporaneous covariances vanish: &(eaj.sll,) = 0 
for (Y * n. Therefore, &(eje;) = uj,I, which contains V(E~) = uj, I as a special case. 
The full covariance matrix of the Ln-element vector e is thus: 

u,J u,*I.. .u,,I 

0211 u,,I...u*,I 
v4 = . . . = XSI, (4.10) 

. . . . 

_%,I u,,I...u,,I 

where X = [?,I is the contemporaneous covariance matrix, i.e. the covariance 
matrix of [E u ,... E,~] for a=1 ,..., n. 

Suppose that 2 is non-singular so that X- ’ 8 I is the inverse of the matrix (4.10) 
in view of (4.2). Also, suppose that X,, . . . , X, and hence Z have full column rank. 
Application of the GLS results (2.13) and (2.14) to (4.9) and (4.10) then yields 

fi = [zyz-w)z]-‘Z’(X’c3I)y (4.11) 

as the best linear unbiased estimator of /3 with the following covariance matrix: 

V( )) = [z’(X-‘er)z] -‘. (4.12) 

In general, b is superior to LS applied to each of the L equations separately, but 
there are two special cases in which these estimation procedures are identical. 

The first case is that in which X,, . . . , X, are all identical. We can then write X 
for each of these matrices so that the observation matrix on the exogenous 
variables in (4.8) and (4.9) takes the form 

x o...o 
0 x...o 

z=. . . I : =18X. 
. . . 

0 0:-x 

(4.13) 
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This implies 

Z’(PCM)Z = (1@X)(z-‘@z)(z@x) =x-‘@XX 

and 

19 

[z’(z-‘@z)z]-‘z’(x-‘~z) = [z@(x~x)-‘](zex~)(8-‘ez) 
=zo(x’x)-‘X’. 

It is now readily verified from (4.11) that fi consists of L subvectors of the LS 
form (X’X)- ‘X’Y~. The situation of identical matrices X,, . . . ,X, occurs relatively 
frequently in applied econometrics; an example is the reduced form (2.4) for each 
of the L endogenous variables. 

The second case in which (4.11) degenerates into subvectors equal to LS vectors 
is that of uncorrelated contemporaneous disturbances. Then X is diagonal and it 
is easily verified that B consists of subvectors of the form ( XiXj)- ‘Xj’y~. See Theil 
( 197 1, pp. 3 1 l-3 12) for the case in which B is block-diagonal. 

Note that the computation of the joint GLS estimator (4.11) requires B to be 
known. This is usually not true and the unknown X is then replaced by the 
sample moment matrix of the LS residuals [see Zellner (1962)]. This approxima- 
tion is asymptotically (for large n) acceptable under certain conditions; we shall 
come back to this matter in the opening paragraph of Section 9. 

4.3. Vectorization of matrices 

In eq. (2.3) we wrote Ln equations in matrix form with parameter matrices r and 
B, each consisting of several columns, whereas in (4.8) and (4.9) we wrote Ln 
equations in matrix form with a “long” parameter vector /3. If Z takes the form 
(4.13), we can write (4.8) in the equivalent form Y = XB + E, where Y, B, and E 
are matrices consisting of L columns of the form yi, sj, and ej. Thus, the elements 
of the parameter vector B are then rearranged into the matrix B. On the other 
hand, there are situations in which it is more attractive to work with vectors 
rather than matrices that consist of several columns. For example, if fi is an 
unbiased estimator of the parameter vector /3 with finite second moments, we 
obtain the covariance matrix of b by postmultiplying fi - /I by its transpose and 
taking the expectation, but this procedure does not work when the parameters are 
arranged in a matrix B which consists of several columns. It is then appropriate to 
rearrange the parameters in vector form. This is a matter of designing an 
appropriate notation and evaluating the associated algebra. 

Let A = [a,... u4] be a p x q matrix, ai being the i th column of A. We define 
vecA = [a; a;... a:]‘, which is a pq-element column vector consisting of q 
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subvectors, the first containing the p elements of u,, the second the p elements of 
u2, and so on. It is readily verified that vec(A + B) = vecA +vecB, provided that 
A and B are of the same order. Also, if the matrix products AB and BC exist, 

vecAB = (Z@A)vecB = (B’@Z)vecA, 

vecABC= (Z@AB)vecC= (C’@A)vecB= (C’B’@Z)vecA. 

For proofs and extensions of these results see Dhrymes (1978, ch. 4). 

5. Differential demand and supply systems 

The differential approach to microeconomic theory provides interesting compari- 
sons with equation systems such as (2.3) and (4.9). Let g(z) be a vector of 
functions of a vector z; the approach uses the total differential of g(o), 

ag dg=-&z, (5.1) 

and it exploits what is known about dg/&‘. For example, the total differential of 
consumer demand is dq = (Jq/aM)dM +( %/ap’)dp. Substitution from (3.13) 
yields: 

dg=&(dM-p’dp)+hU’[dp-(+&d+], (5.4 

which shows that the income effect of the price changes is used to deflate the 
change in money income and, similarly, the general substitution effect to deflate 
the specific effect. Our first objective is to write the system (5.2) in a more 
attractive form. 

5.1. A differential consumer demand system 

We introduce the budget share wj and the marginal share ei of good i: 

Pi4i wi=-, M 
8, = a( Pi4i) 

1 ad49 (5.3) 

and also the Divisia (1925) volume index d(log Q) and the Frisch (1932) price 
index d(log P’): 

d(logQ) = !E wid(logqi)> d(logP’) = ; Bid(logpi), (5.4) 
i=l i=l 
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where log (here and elsewhere) stands for natural logarithm. We prove in the next 
paragraph that (5.2) can be written in scalar form as 

N 

wid(logqi)=Bid(logQ)+$ C Oiid 65) 
j=l 

where d[log( p,/P’)] is an abbreviation of d(logpj)-d(log P'), while $I is the 
reciprocal of the income elasticity of the marginal utility of income: 

dlogX -’ 
+= a1ogA4 ’ i 1 

and eii is an element of the symmetric N X N matrix 

8 = &,u- ‘P, 

(5.6) 

(5 -7) 

with P defined as the diagonal matrix with the prices p,, . . . ,pN on the diagonal. 
To verify (5.5) we apply (5.1) to M = p?~, yielding dM =q’dp + p’dq so that 

dM -q’dp = Md(log Q) follows from (5.3) and (5.4). Therefore, premultiplica- 
tion of (5.2) by (l/M)P gives: 

84 $Pdq=PaMd(logQ)+$PU-‘P 
t5m8) 

where 1= P- 'p is a vector of N unit elements. The ith element of (l/M)Pdq 
equals ( pi/M)dqi = w,d(log qi), which confirms the left side of (5.5). The vector 
P( dq/JM) equals the marginal share vector ~9 = [Oil, thus confirming the real- 
income term of (5.5). The jth element of the vector in brackets in (5.8) equals 
d(log pj)- d(log P'), which agrees with the substitution term of (5.5). The verifica- 
tion of (5.5) is completed by (X/M)PU-‘P= $43 [see (5.7)]. Note that 8&= 
(X/cpM)PU-‘p = P( +/JM) [see (3.11) and (5.6)]. Therefore, 

6h=e, dec = de = I, 6% 

where 1’8 = xi 0, = 1 follows from (2.16). We conclude from &= 0 that the eij’s 
of the ith equation sum to the ith marginal share, and from L’& = 1 that the fIij’s 
of the entire system sum to 1. The latter property is expressed by referring to the 
eij’s as the normalized price coefficients. 
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5.2. A comparison with simultaneous equation systems 

The N-equation system (5.5) describes the change in the demand for each good, 
measured by its contribution to the Divisia index [see (5.4)],2 as the sum of a 
real-income component and a substitution component. This system may be 
compared with the L-equation system (2.1). There is a difference in that the latter 
system contains in principle more than one endogenous variable in each equation, 
whereas (5.5) has only one such variable if we assume the d(logQ) and all price 
changes are exogenous.3 Yet, the differential demand system is truly a system 
because of the cross-equation constraints implied by the symmetry of the normal- 
ized price coefficient matrix 8. 

A more important difference results from the utility-maximizing theory behind 
(5.5), which implies that the coefficients are more directly interpretable than the 
y’s and p’s of (2.1). Writing [e”] = 8-l and inverting (5.7), we obtain: 

eij- cpM a2u 
A a( Pi4i) ‘( Pjqj) ’ 

(5.10) 

which shows that B’j measures (apart from +M/h which does not involve i andj) 
the change in the marginal utility of a dollar spent on i caused by an extra dollar 
spent on j. Equivalently, the normalized price coefficient matrix 8 is inversely 
proportional to the Hessian matrix of the utility function in expenditure terms. 

The relation (5.7) between 8 and U allows us to analyze special preference 
structures. Suppose that the consumer’s tastes can be represented by a utility 
function which is the sum of N functions, one for each good. Then the marginal 
utility of each good is independent of the consumption of all other goods, which 
we express by referring to this case as preference independence. The Hessian U is 
then diagonal and so is 8 [see (5.7)], while @I= 6 in (5.9) is simplified to Oii = 0,. 
Thus, we can write (5.5) under preference independence as 

wid(logqi) = e,d(logQ)+&d(log$), (5.11) 

which contains only one Frisch-deflated price. The system (5.11) for i = 1,. . . ,N 
contains only N unconstrained coefficients, namely (p and N - 1 unconstrained 
marginal shares. 

The apphcation of differential demand systems to data requires a parameteriza- 
tion which postulates that certain coefficients are constant. Several solutions have 

‘Note that this way of measuring the change in demand permits the exploitation of the symmetry of 
8. When we have d(log qi) on the left, the coefficient of the Frisch-deflated price becomes 8ij/w,, 
which is an element of an asymmetric matrix. 

3This assumption may be relaxed; see Theil(1975-76, ch. 9- 10) for an analysis of endogenous price 
changes. 
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been proposed, but these are beyond the scope of this chapter; see the references 
quoted in Section 2.4 above and also, for a further comparison with models of the 
type (2.1), Theil and Clements (1980). 

5.3. An extension to the inputs of a firm: A singularity problem 

Let the pi's and qi’s be the prices and quantities of N inputs which a firm buys to 
make a product, the output of which is z. Let z = g(q) be the firm’s production 
function, g( .) being three times differentiable. Let the firm’s objective be to 
minimize input expenditure p’q subject to z = g(q) for given output z and input 
prices p. Our objective will be to analyze whether this minimum problem yields a 
differential input demand system similar to (5.5). 

As in the consumer’s case we construct a Lagrangian function, which now takes 
the form p’q - p[ g(q) - z]. By equating the derivative of this function with respect 
to q to zero we obtain a proportionality of ag/&I to p [compare (2.15)]. This 
proportionality and the production function provide N + 1 equations in N + 1 
unknowns: q and p. Next we differentiate these equations with respect to z and p, 
and we collect the derivatives in partitioned matrix form. The result is similar to 
the matrix equation (3.8) of consumption theory, and the Hessian U now becomes 
the Hessian a2g/&&’ of the production function. We can then proceed as in 
(3.9) and following text if a2g/Jqa’ is non-singular, but this is unfortunately not 
true when the firm operates under constant returns to scale. It is clearly 
unattractive to make an assumption which excludes this important case. In the 
account which follows4 we solve this problem by formulating the production 
function in logarithmic form. 

and 

logz = h(q), 
using the following N X N Hessian matrix: 

H= 
a*h 

1 W%qi)W%qj) . 

(5.13) 

5.4. A differential input demand system 

The minimum of p’q subject to (5.12) for given z and p will be a function of z and _ 

(5.12) 

p. We write C(z, p) for this minimum: the cost of producing output z at the input 

4Derivations are omitted; the procedure is identical to that which is outlined above except that it 
systematically uses logarithms of output, inputs, and input prices. See Laitinen (1980), Laitinen and 
Theil(1978), and Theil (1977, 1980). 
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prices p. We define 

a1ogc ill,1 PlogC 
y=alogz’ $ Y2 a(logz)” ’ 

(5.14) 

so that y is the output elasticity of cost and J, < 1 ( > 1) when this elasticity 
increases (decreases) with increasing output; thus, 1c/ is a curvature measure of the 
logarithmic cost function. It can be shown that the input demand equations may 
be written as 

fid(logqi) =yt$d(logz)-rC, ; B,jd(log$), 
j=l 

(5.15) 

which should be compared with (5.5). In (5.15),fi is the factor share of input i (its 
share in total cost) and 0, is its marginal share (the share in marginal cost), 

(5.16) 

which is the input version of (5.3). The Frisch price index on the far right in (5.15) 
is as shown in (5.4) but with fii defined in (5.16). The coefficient Oij in (5.15) is the 
(i, j)th element of the symmetric matrix 

8 = iF(F- yH)-‘F, (5.17) 

where H is given in (5.13) and F is the diagonal matrix with the factor shares 
f,, . . . ,fN on the diagonal. This 8 satisfies (5.9) with 8 = [t9,] defined in (5.16). 

A firm is called input independent when the elasticity of its output with respect 
to each input is independent of all other inputs. It follows from (5.12) and (5.13) 
that H is then diagonal; hence, 8 is also diagonal [see (5.17)] and 8&= 0 becomes 
Oii = 8, so that we can simplify (5.15) to 

f,d(logq,)=yB,d(logz)-#8,d(log$+ (5.18) 

which is to be compared with the consumer’s equation (5.11) under preference 
independence. The Cobb-Douglas technology is a special case of input indepen- 
dence with H = 0, implying that F( F - yH)- ‘F in (5.17) equals the diagonal 
matrix F. Since Cobb-Douglas may have constant returns to scale, this illustrates 
that the logarithmic formulation successfully avoids the singularity problem 
mentioned in the previous subsection. 
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5.5. Allocation systems 

Summation of (5.5) over i yields the identity d(logQ) = d(log Q), which means 
that (5.5) is an allocation system in the sense that it describes how the change in 
total expenditure is allocated to the N goods, given the changes in real income 
and relative prices. To verify this identity, we write (5.5) for i = 1,. . . ,N in matrix 
form as 

WK = (l’WK)8 + @(I - LB’)Q, (5.19) 

where W is the diagonal matrix with w,, . . . , wN on the diagonal and A = [d(log pi)] 
and K = [d(log qi)] are the vectors logarithmic price and quantity changes so that 
d(logQ) = L’WK, d(log P’) = B’s. The proof is completed by premultiplying (5.19) 
by L’, which yields ~WK = ~WK in view of (5.9). Note that the substitution terms 
of the N demand equations have zero sum. 

The input demand system (5.15) is not an allocation system because the firm 
does not take total input expenditure as given; rather, it minimizes this expendi- 
ture for given output z and given input prices p. Summation of (5.15) over i 
yields: 

d(logQ) = ud(lw), (5.20) 

where d(log Q) = xi fid(log qi) = L’FK is the Divisia input volume index. Substitu- 
tion of (5.20) into (5.15) yields: 

fid(logqi)=Bid(logQ)-4 ; tiijd(log+). 
j = 1 

(5.21) 

We can interpret (5.20) as specifying the aggregate input change which is required 
to produce the given change in output, and (5.21) as an allocation system for the 
individual inputs given the aggregate input change and the changes in the relative 
input prices. It follows from (5.9) that we can write (5.19) and (5.21) for each i as 

wK= (I’wK)eL+cpe(I--ll’e)Q, (5.22) 

FK= (C’1oK)8L--\cle(I-LL’e)n, (5.23) 

which shows that the normalized price coefficient matrix 8 and the scalars C#I and 
# are the only coefficients in the two allocation systems. 

5.6. Extensions 

Let the firm adjust output z by maximizing its profit under competitive condi- 
tions, the price y of the product being exogenous from the firm’s point of view. 
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Then marginal cost aC/az equals y, while Oi of (5.16) equals a( piqi)/a( yz): the 
additional expenditure on input i resulting from an extra dollar of output 
revenue. Note that this is much closer to the consumer’s Si definition (5.3) than is 
(5.16). 

If the firm sells m products with outputs z,, . . . , z, at exogenous prices y,, . . . ,y,, 
total revenue equals R = &yrz, and g, = y,z,/R is the revenue share of product 
r, while 

d(loiG) = ;1: g,d(lw,) (5.24) 
r=l 

is the Divisia output volume index of the multiproduct firm. There are now m 
marginal costs, ac/aZ, for r = 1,. . . , m, and each input has m marginal shares: 9; 
defined as a( piqi)/azr divided by X/az,, which becomes 0; = a( piqi)/a( y,z,) 
under profit maxitiation. Multiproduct input demand equations can be for- 
mulated so that the substitution term in (5.15) is unchanged, but the output term 
becomes 

(5.25) 

which shows that input i can be of either more or less importance for product r 
than for product s depending on the values of 13: and 13,“. 

Maximizing profit by adjusting outputs yields an output supply system which 
will now be briefly described. The r th supply equation is 

grd&w,) = ~*s~,W(log$s)~ (5.26) 

which describes the change’ in the supply of product r in terms of all output price 
changes, each deflated by the corresponding Frisch input price index: 

d(log P”) = ; B,‘d(logp;). 
i=l 

(5.27) 

Asterisks are added to the coefficients of (5.26) in order to distinguish output 
supply from input demand. The coefficient $* is positive, while 0: is a normal- 
ized price coefficient defined as 

(5.28) 

‘This change is measured by the contribution of product r to the Divisia output volume index 
(5.24). Note that this is similar to the left variables in (5.5) and (5.15). 
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where crs is an element of the inverse of the symmetric m x m matrix 
[ a*C/az, az,]. The similarity between (5.28) and (5.7) should be noted; we shall 
consider this matter further in Section 6. A multiproduct firm is called output 
independent when its cost function is the sum of m functions, one for each 
product.6 Then [ d*C/az, az,] and [Q] are diagonal [see (5.28)] so that the change 
in the supply of each product depends only on the change in its own deflated 
price [see (5.26)]. Note the similarity to preference and input independence [see 
(5.11) and (5.18)]. 

6. Definite and semidefinite square matrices 

The expression x’Ax is a quadratic form in the vector X. We met several examples 
in earlier sections: the second-order term in the Taylor expansion (2.6), E’ME in 
the residual sum of squares (2.12), the expression in the exponent in the normal 
density function (3.3), the denominator p'U_ 'p in (3.9), and &3~ in (5.9). A more 
systematic analysis of quadratic forms is in order. 

6.1. &variance matrices and Gauss -Markov further considered 

Let r be a random vector with expectation Gr and covariance matrix 8. Let w’r be 
a linear function of r with non-stochastic weight vector w so that &( w’r) = w’&r. 

The variance of w’r is the expectation of 

[w’(r-&r)]*=w’(r-&r)(r-&r)‘w, 

so that var w’r = w’v(r)w = w%w. Thus, the variance of any linear function of r 

equals a quadratic form with the covariance matrix of r as matrix. 
If the quadratic form X’AX is positive for any x * 0, A is said to be positive 

definite. An example is a diagonal matrix A with positive diagonal elements. If 
x’Ax > 0 for any x, A is called positive semidefinite. The covtiance matrix X of 
any random vector is always positive semidefinite because we just proved that 
w%w is the variance of a linear function and variances are non-negative. This 
covariance matrix is positive semidefinite but not positive definite if w%w = 0 
holds for some w * 0, i.e. if there exists a non-stochastic linear function of the 
random vector. For example, consider the input allocation system (5.23) with a 

6Hall (1973) has shown that the additivity of the cost function in the m outputs is a necessary and 
sufficient condition in order that the multiproduct firm can be broken up into m single-product firms 
in the following way: when the latter firms independently maximize profit by adjusting output, they 
use the same aggregate level of each input and produce the same level of output as the multiproduct 
firm. 
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disturbance vector e added: 

Premultiplication by 1’ and use of (5.9) yields L’FK = L’FK + de, or 1’~ = 0, which 
means that the disturbances of the N equations sum to zero with unit probability. 
This property results from the allocation character of the system (6.1). 

We return to the standard linear model described in the discussion following 
eq. (2.7). The Gauss-Markov theorem states that the LS estimator b in (2.8) is 
best linear unbiased in the following sense: any other estimator B of j3 which is 
also linear in y and unbiased has the property that V(b)- V(b) is a positive 
semidefinite matrix. That is, 

w’[V(j)-Y(b)]w>O foranyw, 

or w’?r( /?)w > w’V(b)w. Since both sides of this inequality are the variance of an 
estimator of w’& the implication is that within the class of linear unbiased 
estimators LS provides the estimator of any linear function of /3 with the smallest 
possible variance. This is a stronger result than the statement in the discussion 
following eq. (2.10); that statement is confined to the estimation of elements 
rather than general linear functions of & 

To prove the Gauss-Markov theorem we use the linearity of fl in y to write 
B = By, where B is a K x n matrix consisting of non-stochastic elements. We 
define C = B - (XX)- ‘X’ so that fi = By can be written as 

[c+(rx)-‘xj y= [c+(rx)_‘X’](x#l+e) 

=(cx+z)/3+[c+(X~x)-‘X’]E. 

The expectation of B is thus (CX + Z)/3, which must be identically equal to /3 in 
order that the estimator be unbiased. Therefore, CX = 0 and B = /3 + [C + 
(X’X))‘X’]e so that V(B) equals 

[c+(rx)-‘X’]qe)[C+(X’X)-‘X’]’ 

=&CC’+ a*(X’X)-‘+ u*CX(X’X)-‘+ u*(X’X)-‘XC 

It thus follows from (2.10) and CX=O that V(b)-V(b)= a*CC’, which is a 
positive semidefinite matrix because a* w’CC’W = (aC’w)‘( aC’w) is the non-nega- 
tive squared length of the vector uC’W. 
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6.2. Maxima and minima 

The matrix A is called negative semidefinite if X’AX < 0 holds for any x and 
negative definite if X’AX < 0 holds for any x * 0. If A is positive definite, - A is 
negative definite (similarly for semidefiniteness). If A is positive (negative) 
definite, all diagonal elements of A are positive (negative). This may be verified 
by considering x’Ax with x specified as a column of the unit matrix of ap- 
propriate order. If A is positive (negative) definite, A is non-singular because 
singularity would imply the existence of an x f 0 so that Ax = 0, which is 
contradicted by X’AX > 0 ( -c 0). If A is symmetric positive (negative) definite, so 
is A-‘, which is verified by considering x’Ax with x = A - ‘y for y * 0. 

For the function g( *) of (2.6) to have a stationary value at z = z it is necessary 
and sufficient that the gradient ag/& at this point be zero. For this stationary 
value to be a local maximum (minimum) it is sufficient that the Hessian matrix 
a’g/az& at this point be negative (positive) definite. We can apply this to the 
supply equation (5.26) which is obtained by adjusting the output vector z so as to 
maximize profit. We write profit as y’z - C, where y is the output price vector and 
C = cost. The gradient of profit as a function of z is y - aC/az ( y is indepen- 
dent of z because y is exogenous by assumption) and the Hessian matrix is 
- a2C/&&’ so that a positive definite matrix a2C/azaz’ is a sufficient condi- 
tion for maximum profit. Since #* and R in (5.28) are positive, the matrix [@A] of 
the supply system (5.26) is positive definite. The diagonal elements of this matrix 
are therefore positive so that an increase in the price of a product raises its 
supply. 

Similarly, a sufficient conditions for maximum utility is that the Hessian U be 
negative definite, implying cp < 0 [see (3.9) and (5.6)], and a sufficient condition 
for minimum cost is that F - -yH in (5.17) be positive definite. The result is that 
[Oi,] in both (5.5) and (5.15) is also positive definite. Since (p and - $ in these 
equations are negative, an increase in the Frisch-deflated price of any good 
(consumer good or input) reduces the demand for this good. For two goods, i and 
j, a positive (negative) ~9~~ = eii implies than an increase in the Frisch-deflated 
price of either good reduces (raises) the demand for the other; the two goods are 
then said to be specific complements (substitutes). Under preference or input 
independence no good is a specific substitute or complement of any other good 
[see (5.11) and (5.18)]. The distinction between specific substitutes and comple- 
ments is from Houthakker (1960); he proposed it for consumer goods, but it can 
be equally applied to a firm’s inputs and also to outputs based on the sign of 
02 = 6’: in (5.26). 

The assumption of a definite U or F - yH is more than strictly necessary. In 
the consumer’s case, when utility is maximized subject to the budget constraint 
p’q = M, it is sufficient to assume constrained negative definiteness, i.e. x’Ux < 0 
for all x * 0 which satisfy p'x = 0. It is easy to construct examples of an indefinite 
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or singular semidefinite matrix U which satisfy this condition. Definiteness 
obviously implies constrained definiteness; we shall assume that U and 1: - yH 
satisfy the stronger conditions so that the above analysis holds true. 

6.3. Block -diagonal definite matrices 

If a matrix is both definite and block-diagonal, the relevant principal submatrices 
are also definite. For example, if X of (3.4) is positive definite, then .+X,x, + 
x;Z,x, > 0 if either x, f 0 or xZ f 0, which would be violated if either X, or E2 
were not definite. 

Another example is that of a logarithmic production function (5.12) when the 
inputs can be grouped into input groups so that the elasticity of output with 
respect to each input is independent of all inputs belonging to different groups. 
Then H of (5.13) is block-diagonal and so is 8 [see (5.17)]. Thus, if i belongs to 
input group Sg (g = 1,2,. . .), the summation over j in the substitution term of 
(5.15) can be confined toj E Sp; equivalently, no input is then a specific substitute 
or complement of any input belonging to a different group. Also, summation of 
the input demand equations over all inputs of a group yields a composite demand 
equation for the input group which takes a similar form, while an appropriate 
combination of this composite equation with a demand equation for an individual 
input yields a conditional demand equation for the input within their group. 
These developments can also be applied to outputs and consumer goods, but they 
are beyond the scope of this chapter. 

7. Diagonalizations 

7.1. The standard diagonalization of a square matrix 

For some n X n matrix A we seek a vector x so that Ax equals a scalar multiple A 
of x. This is trivially satisfied by x = 0, so we impose x’x = 1 implying x * 0. Since 
Ax = Xx is equivalent to (A - X1)x = 0, we thus have 

(A-hl)x=O, x)x=1, (7.1) 

so that A - XI is singular. This implies a zero determinant value, 

IA - AI\ = 0, (7.2) 

which is known as the characteristic equation of A. For example, if A is diagonal 
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with d ,, . . . ,d, on the diagonal, (7.2) states that the product of di - A over i 
vanishes so that each di is a solution of the characteristic equation. More 
generally, the characteristic equation of an n x n matrix A is a polynomial of 
degree n and thus yields n solutions X, , . . . , A,,. These Ai’s are the latent roots of A; 
the product of the Ai’s equals the determinant of A and the sum of the Xi’s equals 
the trace of A. A vector xi which satisfies Axi = hixi and x;xi = 1 is called a 
characteristic vector of A corresponding to root Xi. 

Even if A consists of real elements, its roots need not be real, but these roots 
are all real when A is a real symmetric matrix. For suppose, to the contrary, that h 
is a complex root and x + iy is a characteristic vector corresponding to this X, 
wherei=m.ThenA(x+iy)=h(x+iy), whichwepremultiplyby(x-iy)‘: 

x’Ax + y’Ay + i( x’Ay - y/Ax) = X (x’x + y’y ) . (7.3) 

But x’Ay = y’Ax if A is symmetric, so that (7.3) shows that X is the ratio of two 
real numbers, x’Ax + y’Ay and x’x + y’y. Roots of asymmetric matrices are 
considered at the end of this section. 

Let Xi and Xj be two different roots (hi * Xj) of a symmetric matrix A and let 
xi and xj be corresponding characteristic vectors. We premultiply Ax, = Xixi by xJI 
and Axj = Xjxj by xi and subtract: 

xj’Axi - x;Axj = (Xi - Xj)x;xj. 

Since the left side vanishes for a symmetric matrix A, we must have x;xj = 0 
because Xi * Aj. This proves that characteristic vectors of a symmetric matrix are 
orthogonal when they correspond to different roots. When all roots of a symmet- 
ric n x n matrix A are distinct, we thus have xixj = aij for all (i, j). This is 
equivalent to 

X’X=I, whereX= [x, +...x,]. (7.4) 

Also. 

AX= [Ax, . ..Ax.] = [X,x, . ..X”x.], 

or 

AX= XA, (7.5) 

where A is the diagonal matrix with h,, . . . , A, on the diagonal. Premultiphcation 
of (7.5) by X’ yields X’AX = X’XA, or 

X’AX = A (7.6) 
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in view of (7.4). Therefore, when we postmultiply a symmetric matrix A by a 
matrix X consisting of characteristic vectors of A and premultiply by X’, we 
obtain the diagonal matrix containing the latent roots of A. This double multipli- 
cation amounts to a diagonalization of A. Also, postmultiplication of (7.5) by X’ 
yields AXX’ = XAX’ and hence, since (7.4) implies X’ = X-’ or XX’ = 1, 

A = XAX’= i &x,x;. (7.7) 
i=l 

In the previous paragraph we assumed that the Ai’s are distinct, but it may be 
shown that for any symmetric A there exists an X which satisfies (7.4)-(7.7), the 
columns of X being characteristic vectors of A and A being diagonal with the 
latent roots of A on the diagonal. The only difference is that in the case of 
multiple roots (Ai = Aj for i * j) the associated characteristic vectors (xi and fj) 
are not unique. Note that even when all X’s are distinct, each xi may be arbitrarily 
multiplied by - 1 because this affects neither Axi = hixi nor xjxj = 0 for any 
(i, j); however, this sign indeterminacy will be irrelevant for our purposes. 

7.2. Special cases 

Let A be square and premultiply Ax = Xx by A to obtain A2x = XAx = X2x. This 
shows that A2 has the same characteristic vectors as A and latent roots equal to 
the squares of those of A. In particular, if a matrix is symmetric idempotent, such 
as M of (2.1 l), all latent roots are 0 or 1 because these are the only real numbers 
that do not change when squared. For a symmetric non-singular A, p&multiply 
Ax = Ax by (AA)-’ to obtain A-lx= (l/A)x. Thus, A-’ has the same character- 
istic vectors as those of A and latent roots equal to the reciprocals of those of A. 
If the symmetric n x n matrix A is singular and has rank r, (7.2) is satisfied by 
X = 0 and this zero root has multiplicity n - r. It thus follows from (7.7) that A 
can then be written as the sum of r matrices of unit rank, each of the form hixixi, 
with Ai * 0. 

Premultiplication of (7.7) by Y’ and postmultiplication by y yields y’Ay = 
ciXic,?, with ci = y’xi. Since y’Ay is positive (negative) for any y f 0 if A is 
positive (negative) definite, this shows that all latent roots of a symmetric positive 
(negative) definite matrix are positive (negative). Similarly, all latent roots of a 
symmetric positive (negative) semidefinite matrix are non-negative (non-positive). 

Let A,,, be a symmetric m x m matrix with roots A,, . . . ,A, and characteristic 
vectors x,,...,x,; let B,, be a symmetric n x n matrix with roots p,, . . . ,p,, and 
characteristic vectors y,, . . . , y,,. Hence, A,,,@Bn is of order mn X mn and has mn 
latent roots and characteristic vectors. We use Amxi = Xixi and B,, yj = pjyj in 

(A,eB~)(Xi~Yj)=(A,xi)‘(B,~)=(‘ixi)’(~jYj)=’i~j(Xi’vi), 
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which shows that xi@y, is a characteristic vector of A,@B, corresponding to root 
A,pj. It is easily venf’ed that these characteristic vectors form an orthogonal 
matrix of order mn x mn: 

Since the determinant of A,@B, equals the product of the roots, we have 

It may similarly be verified that the rank (trace) of A,@B, equals the product of 
the ranks (traces) of A,,, and B,. 

7.3. Aitken’s theorem 

Any symmetric positive definite matrix A can be written as A = QQ’, where Q is 
some non-singular matrix. For example, we can use (7.7) and specify Q = XA1i2, 
where AlI2 is the diagonal matrix which contains the positive square roots of the 
latent roots of A on the diagonal. Since the roots of A are all positive, AlI2 is 
non-singular; X is non-singular in view of (7.4); therefore, Q = XA’12 is also 
non-singular. 

Consider in particular the disturbance covariance matrix a2V in the discussion 
preceding eq. (2.13). Since u2 > 0 and V is non-singular by assumption, this 
covariance matrix is symmetric positive definite. Therefore, V- ’ is also symmetric 
positive definite and we can write V- ’ = QQ’ for some non-singular Q. We 
premultiply (2.7) by Q’: 

Q’y = (Q’X)/3 + Q’E. (7.8) 

The disturbance vector Q’e has zero expectation and a covariance matrix equal to 

cr2Q’VQ=a2Q’(QQ’)-‘Q=cr2Q’(Q’)-‘Q-’Q=u21, 

so that the standard linear model and the Gauss-Markov theorem are now 
applicable. Thus, we estimate j3 by applying LS to (7.8): 

which is the GLS estimator (2.13). The covariance matrix (2.14) is also easily 
verified. 
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7.4. The Cholesky decomposition 

The diagonalization (7.6) uses an orthogonal matrix X [see (7.4)], but it is also 
possible to use a triangular matrix. For example, consider a diagonal matrix D 
and an upper triangular matrix C with units in the diagonal, 

c= 0 I 0 

yielding 

C’DC = 
d, d,c,* d,c,, 

d,c,2 d,c;z + d2 dlW13 + d2c23 - 

dlC13 d,c,,c,, + 4c2, d,c& + d,c;, + d, 1 
It is readily verified that any 3 x 3 symmetric positive definite matrix A = [aij] 
can be uniquely written as C’DC (d, = a, ,, c,~ = ~,~/a,,, etc.). This is the 
so-called Cholesky decomposition of a matrix; for applications to demand analysis 
see Barten and Geyskens (1975) and Theil and Laitinen (1979). Also, note that 
D = (C’)- ‘AC- ’ and that C- ’ is upper triangular with units in the diagonal. 

7.5. Vectors written as diagonal matrices 

On many occasions we want to write a vector in the form of a diagonal matrix. 
An example is the price vector p which occurs as a diagonal matrix P in (5.8). An 
alternative notation is @, with the hat indicating that the vector has become a 
diagonal matrix. However, such notations are awkward when the vector which we 
want to write as a diagonal matrix is itself the product of one or several matrices 
and a vector. For example, in Section 8 we shall meet a nonsingular N X N matrix 
X and the vector X- ‘6. We write this vector in diagonal matrix form as 

0 

CjX2j 

0 

. . . 

. . . 

. . . 

where xij is an element of X- ’ and all summations are overj = 1,. . . , N. It is easily 
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verified that 

(X-‘&l = X-‘6, 6yx-‘6), = Iyxy’. 
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(7.10) 

7.6. A simultaneous diagonalization of two square matrices 

We extend (7.1) to 

(A-XB)x=U, x’Bx=l, (7.11) 

where A and B are symmetric n X n matrices, B being positive definite. Thus, B- ’ 
is symmetric positive definite so that B- ’ = QQ’ for some non-singular Q. It is 
easily seen that (7.11) is equivalent to 

(Q’AQ-XI)~=O, fy=i, Y=~-k (7.12) 

This shows that (7.11) can be reduced to (7.1) with A interpreted as Q’AQ. If A is 
symmetric, so is Q’AQ. Therefore, all results for symmetric matrices described 
earlier in this section are applicable. In particular, (7.11) has n solutions, A,, . . . ,A, 
and n ,,..., x,, the xi’s being unique when the hi’s are distinct. From y,‘yj = Sij 
and yi = Q- ‘xi we have xjBxj = tiij and hence X’BX = I, where X is the n x n 
matrix with xi as the ith column. We write (A - XB)x = 0 as Axi = hiBxi for the 
ith solution and as AX = BXA for all solutions jointly, where A is diagonal with 
x ,, . . . ,A, on the diagonal. Premultiplication of AX = BXA by X’ then yields 
X’AX = X’BXA = A. Therefore, 

X’AX=A, X’BX = I, (7.13) 

which shows that both matrices are simultaneously diagonalized, A being trans- 
formed into the latent root matrix A, and B into the unit matrix. 

It is noteworthy that (7.11) can be interpreted in terms of a constrained 
extremum problem. Let us seek the maximum of the quadratic form X’AX for 
variations in x subject to X’BX = 1. So we construct the Lagrangian function 
x’Ax - p( X’BX - l), which we differentiate with respect to x, yielding 2Ax - 
2pBx. By equating this derivative to zero we obtain Ax = pBx, which shows that 
p must be a root hi of (7.11). Next, we premultiply Ax = pBx by x’, which gives 
x’Ax = px’Bx = p and shows that the largest root Ai is the maximum of x’Ax 
subject to X’BX = 1. Similarly, the smallest root is the minimum of x’Ax subject to 
X’BX = 1, and all n roots are stationary values of x’Ax subject to X’BX = 1. 
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7.7. Latent roots of an asymmetric matrix 

Some or all latent roots of an asymmetric square matrix A may be complex. If 
(7.2) yields complex roots, they occur in conjugate complex pairs of the form 
a f bi. The absolute value of such a root is defined as dm, which equals [al 
if b = 0, i.e. if the root is real. If A is asymmetric, the latent roots of A and A’ are 
still the same but a characteristic vector of A need not be a characteristic vector of 
A’. If A is asymmetric and has multiple roots, it may have fewer characteristic 
vectors than the number of its rows and columns. For example, 

is an asymmetric 2x2 matrix with a double unit root, but it has only one 
characteristic vector, [ 1 01’. A further analysis of this subject involves the Jordan 
canonical form, which is beyond the scope of this chapter; see Bellman (1960, ch. 
11). 

Latent roots of asymmetric matrices play a role in the stability analysis of 
dynamic equations systems. Consider the reduced form 

y, = 4 + Ay,_, + x4*x, + u,, (7.14) 

where s: is an L-element observation vector on endogenous variables at time t, a is 
a vector of constant terms, A is a square coefficient matrix, A* is an L X K 
coefficient matrix, x, is a K-element observation vector on exogenous variables at 
t, and U, is a disturbance vector. Although A is square, there is no reason why it 
should be symmetric so that its latent roots may include conjugate complex pairs. 
In the next paragraph we shall be interested in the limit of A” as s + co. Recall 
that A2 has roots equal to the squares of those of A ; this also holds for the 
complex roots of an asymmetric A. Therefore, A” has latent roots equal to the s th 
power of those of A. If the roots of A are all less than 1 in absolute value, those of 
AS will all converge to zero as s + co, which means that the limit of A” for s + co 
is a zero matrix. Also, let S = I + A + * . - + AS; then, by subtracting AS = A + 
A*+ . . . +A”+’ we obtain (I - A)S = I - AS+’ so that we have the following 
result for the limit of S when all roots of A are less than 1 in absolute value: 

lim (I+A+ **. +X)=(1-A)_‘. (7.15) 
s-r00 

We proceed to apply these results to (7.14) by lagging it by one period, 
Ye_ I = (I + Ay,_, + A*x,_, + ul_ I, and substituting this into (7.14): 

y,=(I+A)a+A* Js_* + A*x, + kU*x,_, + u, + Au,_, 
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When we do this s times, we obtain: 

y,=(I+A+ ... + A”)a + AS+‘y,_s_, 

+ A*x, + AA*+, + . . . + A”A*x,_, 

+ u, + Au,_, + . . . + AS~t_s. (7.16) 

If all roots of A are less than 1 in absolute value, so that A” converges to zero as 
s -+ cc and (7.15) holds, the limit of (7.16) for s + co becomes 

y,=(I-A)-‘a+ E ASA*x,_s+ E Ah_,, (7.17) 
s=o s=o 

which is the final form of the equation system. This form expresses each current 
endogenous variable in terms of current and lagged exogenous variables as well as 
current and lagged disturbances; all lagged endogenous variables are eliminated 
from the reduced form (7.14) by successive lagged application of (7.14). The 
coefficient matrices A”A* of xl_, for s = 0,1,2, . . . in (7.17) may be viewed as 
matrix multipliers; see Goldberger (1959). The behavior of the elements of ASA* 
as s + cc is dominated by the root of A with the largest absolute value. If this 
root is a conjugate complex pair, the behavior of these elements for increasing s is 
of the damped oscillatory type. 

Endogenous variables occur in (7.14) only with a one-period lag. Suppose that 
Ay,_, in (7.14) is extended to A, y,_, + - - - + A,y,_,, where r is the largest lag 
which occurs in the equation system. It may be shown that the relevant de- 
terminantal equation is now 

1X(-1)+X’-‘A,+ -.. +A,I=O. (7.18) 

When there are L endogenous variables, (7.18) yields LT solutions which may 
include conjugate complex pairs. All these solutions should be less than 1 in 
absolute value in order that the system be stable, i.e. in order that the coefficient 
matrix of x,_~ in the final form converges to zero as s + co. It is readily verified 
that for 7 = 1 this condition refers to the latent roots of A,, in agreement with the 
condition underlying (7.17). 

8. Principal components and extensions 

8.1. Principal components 

Consider an n X K observation matrix 2 on K variables. Our objective is to 
approximate Z by a matrix of unit rank, ue’, where u is an n-element vector of 
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values taken by some variable (to be constructed below) and c is a K-element 
coefficient vector. Thus, the approximation describes each column of Z as 
proportional to v. It is obvious that if the rank of Z exceeds 1, there will be a 
non-zero n x K discrepancy matrix Z - vc’ no matter how we specify v and c; we 
select v and c by minimizing the sum of the squares of all Kn discrepancies. Also, 
since UC’ remains unchanged when v is multiplied by k * 0 and c by l/k, we shall 
impose v’v = 1. It is shown in the next subsection that the solution is 0 = v, and 
c = c, , defined by 

(ZZ’- h,Z)v, = 0, (8.1) 
c, = Z’V,) (8.2) 

where A, is the largest latent root of the symmetric positive semidefinite matrix 
ZZ’. Thus, (8.1) states that v, is a characteristic vector of ZZ’ corresponding to 
the largest latent root. (We assume that the non-zero roots of ZZ’ are distinct.) 
Note that o, may be arbitrarily multiplied by - 1 in (8.1) but that this changes c, 
into - c, in (8.2) so that the product v,c; remains unchanged. 

Our next objective is to approximate the discrepancy matrix Z - qc; by a 
matrix of unit rank qc;, so that Z is approximated by v,c; + &. The criterion is 
again the residual sum of squares, which we minimize by varying 9 and c2 subject 
to the constraints 4% = 1 and U;v, = 0. It is shown in the next subsection that the 
solution is identical to (8.1) and (8.2) except that the subscript 1 becomes 2 with 
X, interpreted as the second largest latent root of ZZ’. The vectors vi and v, are 
known as the first and second principal components of the K variables whose 
observations are arranged in the n X K matrix Z. 

More generally, the ith principal component vi and the associated coefficient 
vector ci are obtained from 

(ZZ’- XiZ)Vi = 0, (8.3) 
ci=z’vi, . (8.4) 

where Xi is the ith largest root of ZZ’. This solution is obtained by approximating 
z - v*c; - * . . - vi_ ,c,L_ 1 by a matrix SC;, the criterion being the sum of the 
squared discrepancies subject to the unit length condition vivi = 1 and the 
orthogonality conditions vjq = 0 for j = 1,. . . , i - 1. 

8.2. Derivations 

It is easily verified that the sum of the squares of all elements of any matrix A 
(square or rectangular) is equal to tr A’A. Thus, the sum of the squares of the 
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elements of the discrepancy matrix Z - UC’ equals 

tr( Z - uc’)‘( Z - z)c’) = tr Z’Z - tr CV’Z - trZ’0c’ + tr &UC’ 

= trZ’Z-2v’Zc+(u’u)(c’c), 

which can be simplified to 

39 

tr Z’Z - 2 V’ZC + c’c (8.5) 

in view of u’u = 1. The derivative of (8.5) with respect to c is - 2Z’u + 2c so that 
minimizing (8.5) by varying c for given v yields c = Z’u, in agreement with (8.2). 
By substituting c = Z’u into (8.5) we obtain trZ’Z - u’ZZ’U; hence, our next step 
is to maximiz e u’ZZ’U for variations in u subject to V’U = 1. So we construct the 
Lagrangian function u’ZZ’u - p( u’u - 1) and differentiate it with respect to v and 
equate the derivative to zero. This yields ZZ’u = pu so that u must be a 
characteristic vector of ZZ’ corresponding to root p. This confirms (8.1) if we can 
prove that p equals the largest root A, of ZZ’. For this purpose we premultiply 
ZZ’u = pu by I)‘, which gives v’ZZ’v = pv’u = p. Since we seek the maximum of 
u’ZZ’U, this shows that p must be the largest root of ZZ’. 

To verify (8.3) and (8.4) for i = 2, we consider 

tr( Z - u,c; - v&)‘( Z - u,c; - u,c;) 

= tr( Z - u,ci )‘( Z - u,ci ) - 2 tr( Z - u,c; )‘u,c; + tr c,t$u,c; 

= tr(Z - u,c;)‘(Z - u,c;)-2c;Z’u, + c.&, (8.6) 

where the last step is based on u\y = 0 and ~4% = 1. Minimization of (8.6) with 
respect to c2 for given v, thus yields c2 = Z’y, in agreement with (8.4). Substitu- 
tion of c2 = Z’v, into (8.6) shows that the function to be minimized with respect 
to y takes the form of a constant [equal to the trace in the last line of (8.6)] minus 
U;ZZ’u;?. So we maximize U;ZZ’u, by varying u, subject to u;uz = 0 and u& = 1, 
using the Lagrangian function u;ZZ’u, - p,u’,q - ~~(4% - 1). We take the de- 
rivative of this function with respect to y and equate it to zero: 

2ZZ’q - I_L,v, - 2/A9Jz = 0. (8.7) 

We premultiply this by vi, which yields 2v;ZZ’v, = ~,v’,u, = p, because v;v2 = 0. 
But u;ZZ’u, = 0 and hence EL, = 0 because (8.1) implies &ZZ’u, = X,&u, = 0. We 
can thus simplify (8.7) to ZZ’iz, = pzuz so that 4 is a characteristic vector of ZZ’ 
corresponding to root Pi. This vector must be orthogonal to the characteristic 
vector u, corresponding to the largest root A,, while the root pcLz must be as large 
as possible because the objective is to maximize %ZZ’q = p2$,nz = p2. Therefore, 
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pz must be the second largest root X, of ZZ’, which completes the proof of (8.3) 
and (8.4) for i = 2. The extension to larger values of i is left as an exercise for the 
reader. 

8.3. Further discussion of principal components 

If the rank of 2 is r, (8.3) yields r principal components corresponding to positive 
roots A , , . . . , A,. In what follows we assume that 2 has full column rank so that 
there are K principal components corresponding to K positive roots, A,, . . . ,A,. 

By premultiplying (8.3) by 2’ and using (8.4) we obtain: 

(z’z-xil)ci=O, (8.8) 

so that the coefficient vector ci is a characteristic vector of Z’Z corresponding to 
root Xi. The vectors c,, . . . , cK are orthogonal, but they do not have unit length. To 
prove this we introduce the matrix Y of all principal components and the 
associated coefficient matrix C: 

v= [q . ..qJ. c= [c, . ..+I. 

so that (8.3) and (8.4) for i = 1,. . . ,K can be written as 

(8.9) 

ZZ’V= VA, (8.10) 

c = Z’V, (8.11) 

where A is the diagonal matrix with h,, . . . , A, on the diagonal. By premultiplying 
(8.10) by V’ and using (8.11) and V’V= I we obtain: 

cc= A, (8.12) 

which shows that c , , . . . , cK are orthogonal vectors and that the squared length of 
ci equals hi. 

If the observed variables are measured as deviations from their means, Z’Z in 
(8.8) equals their sample covariance matrix multiplied by n. Since Z’Z need not 
be diagonal, the observed variables may be correlated. But the principal compo- 
nents are all uncorrelated because $9 = 0 for i * j. Therefore, these components 
can be viewed as uncorrelated linear combinations of correlated variables. 

8.4. The independence transformation in microeconomic theory 

The principal component technique can be extended so that two square matrices 
are simultaneously diagonalized. An attractive way of discussing this extension is 
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in terms of the differential demand and supply equations of Section 5. Recall that 
under preference independence the demand equation (5.5) takes the form (5.11) 
with only one relative price. Preference independence amounts to additive utility 
and is thus quite restrictive. But if the consumer is not preference independent 
with respect to the N observed goods, we may ask whether it is possible to 
transform these goods so that the consumer is preference independent with 
respect to the transformed goods. Similarly, if a firm is not input independent, 
can we derive transformed inputs so that the firm is input independent with 
respect to these? An analogous question can be asked for the outputs of a 
multiproduct firm; below we consider the inputs of a single-product firm in order 
to fix the attention. 

Consider the input allocation equation (5.21) and divide by fi: 

d(lOg qi) = 2 d(log Q) - z jc, dijd( log F). (8.13) 

This shows that 13,/f, is the elasticity of the demand for input i with respect to the 
Divisia input volume index; we shall express this by referring to 0,/f, as the 
Divisia elasticity of input i, which is the firm’s input version of the consumer’s 
income elasticity of the demand for a good.7 Also, (8.13) shows that - J/di,/fi is 
the elasticity of input i with respect to the Frisch-deflated price of input j. Under 
input independence the substitution term is simplified [see (5.15) and (5.18)] so 
that (8.13) becomes 

d(log qi) = 4 d(log Q) - 4 d( log $ ) . 
I I 

(8.14) 

Hence, all price elasticities vanish except the own-price elasticities; the latter take 
the form - J/0,/f, and are thus proportional to the Divisia elasticities with - I/J as 
the (negative) proportionality coefficient. 

Next consider the input allocation system in the form (5.23): 

FK = (C’Eic)& - @(I - d+. (8.15) 

Our objective is to define transformed inputs which diagonalize 8. We perform 
this under the condition that total input expenditure and its Divisia decomposi- 
tion are invariant under the transformation. The derivation is given in Appendix 
B and the result may be described by means of a simultaneous diagonalization 

‘The consumer’s version of 13,/f, is 0,/w,; it is easily verified [see (5.3)] that O,/ w, equals the 
elasticity of 4, with respect to M. 
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similar to (7.13): 

X%X=A, x’lix = I, (8.16) 

where A is the diagonal matrix with the roots X,, . . . , A, on the diagonal. These 
roots are the Divisia elasticities of the transformed inputs. The allocation equa- 
tion for transformed input i takes the form 

d(logqTi) = &d(logQ)+,d(log$$), (8.17) 

where the subscript T stands for “transformed”. A comparison of (8.17) and 
(8.14) shows that the Divisia volume and Frisch price indexes and J, are all 
invariant under the transformation. 

Recall from (7.11) and (7.13) that any column xi of the matrix X in (8.16) 
satisfies 

(e-AiF)ni=O. 

We premultiply this by - $F- ‘: 

[-~P-‘e-(-~xi)l]xi=O. 

(8.18) 

(8.19) 

Since - $F-‘8 = [ - JIdij/fi] is the price elasticity matrix of the observed inputs 
[see (8.13)] and - J’A, is the own-price elasticity of transformed input i [see 
(8.17)], (8.19) shows that the latter elasticity is a latent root of the price elasticity 
matrix - #F- ‘8 of the observed inputs. This is an asymmetric matrix, but the 
hi’s are nevertheless real. To prove this we premultiply (8.18) by F-II2 and write 
the result as 

P- wep- l/2 - hiI) F'/2xi = 0. (8.20) 

Since F-‘/263F-1/2 is symmetric positive definite, the Xi’s are all real and 
positive. Hence, all transformed inputs have positive Divisia elasticities. The 
diagonahzation (8.20) is unique when the Xi’s are distinct. This means that the 
transformed inputs are identified by their Divisia elasticities. 

These elasticities can be used as a tool for the interpretation of the transformed 
inputs. Another tool is the so-called composition matrix 

T = (X-‘&X-‘, (8.21) 

where (X-‘&)4 is defined in (7.9). The column sums of T are the factor shares 
f,, . . . ,fN of the observed inputs and the row sums are the factor shares of the 
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transformed inputs. Each row of T gives the composition of the factor share of a 
transformed input in terms of observed inputs; each column of T shows the 
composition of the factor share of an observed input in terms of transformed 
inputs. For proofs of these results we refer to Appendix B; below we consider an 
example illustrating these results, after which a comparison with principal compo- 
nents will follow at the end of this section. 

8.5. An example 

We consider a two-input translog specification of (5.12): 

logz=constant+cylogK+~logL+~~logK logL, (8.22) 

where K is capital, L is labor, and a, p, and [ are constants satisfying LX > 0, /3 > 0, 
and - 1 < 5 < 1; units are chosen so that K = L = 1 holds at the point of 
minimum input expenditure. Then it may be shown that the 2 x 2 price coefficient 
matrix - +@ = [ - #eij] of (8.15) equals 

(8.23) 

where fK is the factor share of capital and fL that of labor ( fK + fL = 1). Recall 
from Section 6 that inputs i and j are called specific complements (substitutes) 
when 19,, = qi is positive (negative). Thus, (8.23) combined with 4 > 0 shows that 
capital and labor are specific complements (substitutes) when E is positive 
(negative), i.e. when the elasticity of output with respect to either input is an 
increasing (decreasing) function of the other input [see (8.22)]. 

The input independence transformation eliminates all specific substitutability 
and complementarity relations. The mathematical tool is the simultaneous di- 
agonalization (8.16). It may be verified that, for - $S given in (8.23), the matrix 

(8.24) 

satisfies X’I;X = I and that X($&)X is a diagonal matrix whose diagonal 
elements are l/(1 - 5) and l/(1 + E). A comparison with (8.16) and (8.17) shows 
that the own-price elasticities of the transformed inputs are 

(8.25) 
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Multiple roots occur when 5 = 0, but this is the uninteresting case in which (8.22) 
becomes Cobb-Douglas, which is in input independent form and thus requires no 
transformation. 

Substitution of (8.24) into (8.21) yields the composition matrix 

[fK+m r,+\ir,r,] (T,) 
T=$ f&&z L 

(capital) 
f&%] CT,). 

(labor) 
(8.26) 

The column sums are the factor shares of the observed inputs: fK for capital and 
fL for labor. The row sums are the factor shares of the transformed inputs: 4 
+ m for the input T, corresponding to root A, and 4 - JfKf for T2 
corresponding to A,. The following is a numerical specification of (8.26), bordered 
by row and column sums, for fK = 0.2 and fL = 0.8: 

Both observed inputs are positively represented in T,, whereas T, is a contrast 
between labor and capital. When the firm buys more Tz, its operation becomes 
more labor-intensive, each dollar spent on T2 being equivalent to two dollars 
worth of labor compensated by one dollar worth of capital services which is given 
up* 

8.6. A principal component interpretation 

We return to (8.8) with Z’Z interpreted as n times the matrix of mean squares and 
products of the values taken by the observed variables. In many applications of 
the principal component technique, the observed variables have different dimen- 
sions (dollars, dollars per year, gallons, etc.). This causes a problem, because 
principal components change in value when we change the units in which the 
observed variables are measured. To solve this problem, statisticians frequently 
standardize these variables by using their standard deviations as units. This 
amounts to replacing Z’Z in (8.8) by D-‘/*Z’ZD-‘I*, where D is the diagonal 
matrix whose diagonal is identical to .that of Z’Z. Thus, hi of (8.8) is now 
obtained from the characteristic equation 

/D-~/*z~zD-~/* - A,J( = 0. (8.27) 
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It is of interest to compare this with 

IF-‘/2@F-“2 - h,If = 0, (8.28) 

which is the characteristic equation associated with (8.20). In both cases, (8.27) 
and (8.28), we determine a latent root of a symmetric positive definite matrix 
(Z’Z or @) pre- and postmultiplied by a diagonal matrix. However, the diagonal 
elements of F are not identical to those of 8, which is in contrast to D and Z’Z in 
(8.27). The diagonal elements of F describe the expenditure levels of the inputs 
(measured as fractions of total expenditure), whereas each diagonal element of 8 
describes the change in the demand for an input caused by a change in its 
Frisch-deflated price. 

Thus, while D in (8.27) is directly obtained from Z’Z, the analogous matrix F 
in (8.28) is unrelated to 8. Why do we have this unrelated F, which describes 
expenditure levels, in (8.28) and in the simultaneous diagonalization (8.16)? The 
answer is that the input independence transformation is subject to the constraint 
that that total input expenditure and its Divisia decomposition remain invariant. 
We may view this transformation as a cost-constrained principal component 
transformation. Similarly, when the transformation is applied to the consumer 
demand system (5.5) or to the output supply system (5.26), it is budget-con- 
strained in the first case and revenue-constrained in the second. Such constraints 
are more meaningful from an economic point of view than the standardization 
procedure in (8.27). 

9. The modeling of a disturbance covariance matrix 

We mentioned in Section 4 that the disturbance covariance matrix X which occurs 
in the GLS estimator (4.11) is normally unknown and that it is then usually 
replaced by the sample moment matrix of the LS residuals. Although this 
approximation is acceptable under certain conditions when the sample is suffi- 
ciently large, it is less satisfactory when the number of equations, L in (4.7) and 
(4.8), is also large. The reason is that B contains many unknowns when L is large 
or even moderately large. In fact, the sample moment matrix S of the residuals 
may be singular so that Z-i in (4.11) cannot be approximated by S- ‘. This 
situation often occurs in applied econometrics, e.g. in the estimation of a fairly 
large system of demand equations. One way of solving this problem is by 
modeling the matrix Z. Below we describe how this can be performed when the 
equations are behavioral equations of some decision-maker. 
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9.1. Rational random behavior 

Letx=[x,... xk]’ be the vector of variables controlled by this decision-maker. We 
write J for the feasible region of x; x for the optimal value of x (X E J); and 
I( x, i) for the loss incurred when the decision is x rather than X: 

/(x,X)=0 ifx=X, 
>O ifx*X. (9.1) 

We assume that the optimal decision X depends on numerous factors, some of 
which are unknown, so that x is only theoretically optimal in the sense that it is 
optimal under perfect knowledge. The decision-maker can improve on his 
ignorance by acquiring information. If he does not do this, we describe the 
decision made as random with a differentiable density function p,,(x), to be 
called the prior density function. (The assumption of randomness is justified 
by the decision-maker’s uncertainty as to the factors determining X.) If he does 
acquire information, pO( .) is transformed into some other density function p( .) 
and the amount of information received is defined as 

1=/p(x)logzdx,...dx,, 
J 

(9.2) 

which is a concept from statistical information theory [see Theil(1967)]. We write 
c(l) for the cost of information and 

i=J,I( x,x)p(x)dx, . ..dx. (9.3) 

for the expected loss. If c(Z) and i are measured in the same unit (dollars or any 
other unit), thepatural solution is the decision distribution with density function 
p( 0) which minimizes c(I)+ l This p( .) was derived by Barbosa (1975) and the 
result (see Appendix C) is 

p(x)crp,,(x)exp( -v) ifxE J, (9.4) 

where a means “is proportional to”, the proportionality coefficient being inde- 
pendent of x, and c’ is the marginal cost of information dc/dI at the solution 
(9.4). 

Behavior generated by the distribution which density function (9.4) is called 
rational random behavior. This distribution is determined by three factors: the 
prior density function p,,(x), the loss function l(x, x), and the marginal cost of 
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information c’. For example, let x be a scalar and the loss function quadratic: 
1(x, ~2) =4(x - x)*. Then, if p,,(x) equals a constant independent of x for each 
x E J, (9.4) becomes 

ifxE J, (9.5) 

which is the density function of a truncated normal decision distribution over the 
interval J. 

9.2. The asymptotics of rational random behavior 

The case of a small marginal cost of information is of particular interest. 
that the prices of the goods and services which the decision-maker buys 

Imagine 
in order 

to acquire information decline so that c’ converges to zero; it is shown in 
Appendix C that the random decision with density function (9.4) then converges 
in probability to the theoretically optimal decision Z. Also, if the loss function has 
a zero gradient and a symmetric positive definite Hessian matrix A at x = X, 

x,z)=O and x,x)=A atx=X, 

then as c’ + 0 the density function p( x) of (9.4) converges to 

&I $4 l”*exP( -4(x-T)'($A)(x-x)}, P-7) 

(9-e) 

which is the density function of the multinormal decision distribution [see (3.3)] 
with mean vector 3i and covariance matrix c’A -‘. Note that (9.7) is completely 
determined by c’ and two characteristics of the loss function: the theoretically 
optimal decision Z at which the loss vanishes [see (9. l)] and the Hessian matrix A 
of this function at this point. The relationship between the covariance matrix 
c’A - ’ and the Hessian matrix A of the loss function enables us to model the 
disturbance covariance matrix of the decision-maker’s behavioral equations; 
examples will follow in the next subsection. 

The prior density function pO( a) does not occur in the asymptotic result (9.7). 
This reflects the fact that when information is cheap in the sense that its marginal 
cost c’ is small, the decision-maker acquires information to such an extent that his 
behavior becomes independent of his prior notions. Thus, whereas we obtained 
(9.5) under the assumption that p,(x) is a constant independent of x, this 
assumption is unnecessary in the asymptotic case c’ + 0. Also, (9.5) is the density 
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function of a truncated normal distribution, but the truncation becomes irrelevant 
as c’ --, 0. The asymptotic version of (9.5) is the univariate normal density 
function with mean equal to the theoretically optimal decision x and variance 
equal to the marginal cost of information c’. The declining variance as c’ + 0 
reflects the attractiveness of a more extensive search for the theoretical optimum 
when information becomes cheaper. 

It is of interest to compare the density function (9.7) of the asymptotic normal 
decision distribution with the asymptotic normal density of a statistical estimator. 
In fact, it is not difficult to prove that rational random behavior for small c’ is 
equivalent to large-sample ML estimation of the theoretically optimal decision E, 
with a large sample interpreted as a small marginal cost of information. The clue 
for this equivalence is the similarity of the roles played by the Hessian matrix of 
the loss function and the information matrix in ML theory. 

A second statistical comparison is that with Kadane’s (1971) small-u asymp- 
totics, which consists of an asymptotic series of a multiple (I of the variance of the 
disturbance of a structural equation. If this equation is a behavioral equation of a 
decision-maker, Kadane’s approach is equivalent to the asymptotic version of 
rational random behavior when we identify u with c’. 

Another statistical comparison of interest is that with the theorem which states 
that out of all distributions with range (- co, cc) and a given mean vector and a 
given covariance matrix, the multinormal distribution has the largest entropy. The 
link between this theorem and the normal density function (9.7) is the informa- 
tion definition (9.2); both (9.2) and the entropy are measures from information 
theory. However, note that the normal density (9.7) is not obtained by imposing a 
given mean vector and covariance matrix a priori. The mean vector and covari- 
ante matrix (9.7) are determined by the loss function, apart from the scalar c’. 

Yet another statistical comparison is with Bayesian inference. There is consid- 
erable similarity between the exact (i.e., non-asymptotic) result (9.4) and the 
Bayesian derivation of the posterior density function of a parameter vector. The 
occurrence of the prior density function on the right in (9.4) provides one 
similarity. Another is the presence of c’ (which depends on the information 
acquired) in the exponent of (9.4); this should be compared with the role of the 
likelihood function (representing the information obtained from the sample) in 
the Bayesian formula. A third similarity is the disappearance of the prior density 
function from the asymptotic result (9.7). In Bayesian analysis, too, the posterior 
density function is dominated by the likelihood function and is no longer affected 
by the prior density function when the sample is large. All these similarities reflect 
the fact that rational random behavior and Bayesian inference both describe 
learning processes based on acquiring information. Nevertheless, the two theories 
are not equivalent because of the occurrence of the unknown constant X in (9.4). 
The likelihood function in Bayesian analysis involves no unknown constants; this 
function is determined by the parameter vector, which is viewed as random, and 



Ch. I: Linear Algebra and Matrix Methods 49 

the sample, which is viewed as a set of known constants for the derivation of the 
posterior density function. 

9.3. Applications to demand and supply 

When we apply the theory of rational random behavior to the utility-maximizing 
consumer or the cost-minimizing firm, we must take into consideration that the 
criterion function is subject to a constraint (a budget or technology constraint). 
This can be solved by using the constraint to eliminate one of the goods. The 
consumer’s loss function in (9.4) then involves N - 1 quantities and its derivation 
from an algebraically specified utility function is straightforward. However, the 
differential approach provides no such specification so that (9.4) cannot be used; 
the same holds for the firm because the approach provides no algebraic specifica- 
tion of the production function. But it is possible to use the asymptotic result 
(9.7) which requires only the theoretically optimal decision and the Hessian 
matrix of the loss function. The account which follows is therefore based on the 
asymptotic decision distribution (9.7) rather than (9.4); this also has the ad- 
vantage of not requiring a specification of the prior density function pO( -). 

Consider the input allocation system in the form (6.1), 

~~=(~‘~~)e1--~(I-1L’~)B+e, (9.8) 

or in scalar form, using & = 8 = [I$], 

(9.9) 

where [ ei] = e. The left variable in (9.9) is the i th decision variable of the firm. The 
right side, excluding ei, is the theoretical optimum of this variable, while .E~ is the 
random deviation from this optimum which is predicted by the theory of rational 
random behavior. Since (9.7) implies normality with a mean equal to the 
theoretically optimal decision, the .si’s are multinormal with zero mean. Their 
covariance matrix (see Appendix C) is 

T(e) = a*(@- 866’8), (9.10) 

or in scalar form, 

cov(q, Ej) = ayeij - e,e,), (9.11) 

where a* is a coefficient which is proportional to the marginal cost of information 
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c’. The covariance matrix (9.10) equals a scalar multiple of the coefficient matrix 
of P = [d(logpi)] in (9.8) so that the covariance (9.11) is proportional to the 
substitution effect (specific plus general) of a change in the price of j on the 
demand for i. 

The above result also holds when (9.7) is applied to the consumer; the only 
modification required is that fi and 4 in (9.9) become wi and - +, respectively [see 
(5.5)]. Note in particular that the disturbance covariance matrix (9.10) involves 
only unknown (a’) in addition to 8 which already occurs in the systematic part 
of the equations. Thus, the implications of rational random behavior are quite 
strong. We obtain even stronger implications for the demand and supply equa- 
tions of the multiproduct firm; a brief account follows below. 

Recall that when the firm makes m products, the output term of the input 
demand system (5.15) takes the form (5.25). So, by adding a disturbance &i we 
obtain: 

fid(logqi) = y ~ e,‘gl.d(lOgz,)- ~ ~ B,d(log~)+Ei. 
r=l j=l 

(9.12) 

Application of (9.7) yields the result that the si’s of this input demand system are 
.multinormal with zero means and that their variances and covariances take the 
same form (9.11) which also holds for the consumer and the single-product firm. 
Next, by assuming that the firm adjusts its outputs so as to maximize profit, we 
obtain the output supply system (5.26) which we reproduce with a disturbance E: 
added: 

g,d(logz,) = $* 2 Qd(log$)+e:. 
s=l 

(9.13) 

By applying (9.7) we find that the ET’S are multinormal with zero means and the 
following variance-covariance structure: 

cov( ET, E:) = u2+* -e;. 
Ylc/ 

(9.14) 

Since u2 already occurs in (9.11) for the input demand disturbances, (9.14) 
provides no further unknowns. In addition, (9.7) implies that the input demand 
disturbances (the ei’s) are stochastically independent of the output supply dis- 
turbances (the ET’S). This independence has important implications for statistical 
inference in demand and supply models; it implies that g,d(log z,.) can be viewed 
as predetermined in the input demand system (9.12). It is also important for the 
problem of how to organize the firm in terms of its input and output manage- 
ment, but such matters are beyond the scope of this chapter. 



Ch. I: Linear Algebra and Matrix Methodr 

10. The Moore-Penrose inverse 

51 

A matrix has an inverse only if it is square and nonsingular, but any m x n matrix 
A of rank r has a unique Moore-Penrose inverse, written A +, which is determined 
by the following four conditions: 

AA+A= A, (10.1) 

A+AA+=A+, (10.2) 

AA+ and A +A are symmetric. (10.3) 

It may be verified that these conditions are satisfied by A + = A - ’ in the special 
case m = n = r. Our first objective is to prove that A + exists and is unique.8 

10.1. Proof of the existence and uniqueness 

The uniqueness of A + is established by assuming that conditions (lO.l)-( 10.3) 
have two solutions, A + = B and A + = C, and verifying the following 16 steps 
based on (lO.l)-( 10.3): 

B = BAB = B(AB)‘= BB’A’= BB’(ACA)‘= BB’A’C’A’ 

= B(AB)‘(AC)‘= BABAC= BAC= BACAC= (BA)‘(CA)‘C 

=~~B~A~c~c=(ABA)~cc=~~c~c=(c~)~c=c~c=c. 

Therefore, B = C, which proves that A + is unique when it exists. 
To prove the existence of A+ we consider first a zero matrix A of order m X n; 

then A + equals the n X m zero matrix, which may be verified by checking 
(lO.l)-(10.3). Next consider a non-zero matrix A so that its rank r is positive. 
Then A’A is a symmetric positive semidefinite matrix of order n X n and rank r, 
and it is possible to express A + in terms of the positive latent roots of A’A and 
the characteristic vectors associated with these roots. Write D for the diagonal 
r x r matrix which contains the positive roots of A’A on the diagonal and H for 
an n x r matrix whose columns are characteristic vectors corresponding to these 
roots. Then (7.7) applied to A’A yields 

A’A = HDH’, (10.4) 

‘There are other generalized inverses besides the Moore-Penrose inverse, most of which are 
obtained by deleting one or more of the four conditions. For example, using (10.1) and (10.2) but 
deleting (10.3) yields the reflexive generalized inverse, which in not unique; see Laitinen and Theil 
(1979) for an application of this inverse to consumption theory. Monographs on applications of 
generalized inverses to statistics include Albert (1972), Ben-Israel and Greville (1974), Boullion and 
Ode11 (197 l), Pringle and Rayner (197 l), and Rao and Mitra (197 1). 
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and the result for A + is 

A + = HD-‘H’A’ > (10.5) 

which is an n X m matrix of rank r. 
To verify (10.5) we introduce an n x (n - r) matrix K whose columns are 

characteristic vectors of A’A corresponding to the zero roots: 

A’AK = 0. (10.6) 

The n x n matrix [H K] consists of characteristic vectors of A’A corresponding 
to all roots and is therefore an orthogonal matrix, which can be expressed in two 
ways. Premultiplying [H K] by its transpose and equating the product to the 
unit matrix yields 

H’H = I, K’K = I, H’K = 0, (10.7) 

while postmultiplying [H K] by its transpose and equating the product to the 
unit matrix gives 

HH’ + KK’ = I. (10.8) 

The verification of (10.5) is now a matter of checking conditions (lO.l)-(10.3). 
Premultiplying (10.5) by A yields AA ’ = AHD- 'H'A', which is symmetric. Next 
we postmultiply (10.5) by A, A+A = HD-‘H’A’A, and hence in view of (10.4) 
and (10.7), A +A = HD- ‘H’HDH’ = HH’, which is also symmetric. We postmulti- 
ply this by (10.5): 

A +AA + = HH’HD-‘H’A’= HD- ‘H’A’= A +, 

which confirms (10.2). Finally, we postmultiply AA+ = AHD-‘H’A’ by A: 

AA+A= AHD-‘H’A’A= AHD-‘H’HDH’= AHIT= A. 

To verify the last step, AHH’ = A’, we premultiply (10.6) by K’, which gives 
(AK)‘AK = 0 or AK = 0. Therefore, AKK’= 0 so that premultiplication of (10.8) 
by A yields AHH’ = A. 

10.2. Special cases 

If A has full column rank so that (A'A)- ’ exists, A + = (A'A)- 'A', which may 
either be verified from (10.4) and (10.5) for r = n or by checking (lO.l)-( 10.3). We 
may thus write the LS coefficient vector in (2.8) as b = X+y, which may be 
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viewed as an extension of b = X- ‘y in the special case of a square non-singular X 
(as many regressors as observations). 

If A is a symmetric n X n matrix of rank r, then 

A= ; Ai.&, 
i=l 

(10.9) 

where A,,..., A, are the non-zero latent roots of A and x,, . . . ,xr are characteristic 
vectors associated with these roots. Also, Axi = 0 and A +xi = 0 for i = r + 1,. . . , n, 
where x T+, , . . . ,x, are characteristic vectors of A corresponding to the zero roots. 
Thus, if A is symmetric, A+ has characteristic vectors identical to those of A, the 
same number of zero roots, and non-zero roots equal to the reciprocals of the 
non-zero roots of A. The verification of these results is again a matter of checking 
(lO.l)-(10.3) and using x[x, = aij. Since a symmetric idempotent matrix such as 
M in (2.11) has only zero and unit roots, it thus follows as a corollary that such a 
matrix is equal to its own Moore-Penrose inverse. 

10.3. A generalization of Aitken’s theorem 

We return to the linear model (2.7), reproduced here: 

y=Xp+&. (10.10) 

As before, we assume that X is an n X K matrix of rank K consisting of 
non-stochastic elements and that E has zero expectation, but we now assume that 
the covariance matrix of E takes the singular form u * V, the n X n matrix V having 
rank r -C n. Hence, the Aitken estimator (2.13) does not exist, but is seems 
reasonable to ask whether 

/!I= (X’v+x)_‘X’v+y (10.11) 

exists and is a best linear unbiased estimator of /3. It will appear that each of these 
properties (the existence and the best linear unbiasedness) requires a special 
condition involving both V and X. 

The matrix V is comparable to A’A in (10.4) and (10.6) in that both are 
symmetric positive semidefinite n x n matrices of rank r. Therefore, we can apply 
(10.4) and (10.6) to V rather than A'A : 

V = HDH’, (10.12) 

VK=O, (10.13) 
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where D is now the r X r diagonal matrix with the positive latent roots of V on the 
diagonal, H is an n X r matrix whose columns are characteristic vectors of V 
corresponding to these roots, and K is an n x (n - r) matrix consisting of 
characteristic vectors of V that correspond to the zero roots. The results (10.7) 
and (10.8) are also valid in the present interpretation. In addition, (10.9) and 
(10.12) imply 

V+ = HD-‘H’. (10.14) 

Our strategy, similar to that of the proof of Aitken’s theorem in Section 7, will 
be to premultiply (10.10) by an appropriate matrix so that the transformed 
disturbance vector has a scalar covariance matrix. We select D-‘12H’, where 
D-‘12 is the diagonal matrix with the reciprocals of the positive square roots of 
the diagonal elements of D in the diagonal: 

D- 1/2Hry = (D- ‘/“H’X)j3 + D- ‘12H’e. 

The covariance matrix of D-‘12H’e is 

(10.15) 

where the last step is based on H’VH = D, which is obtained by premultiplying 
(10.12) by H’ and postmultiplying by H and using H’H = I [see (10.7)]. Since 
D-‘12H’e thus has a scalar covariance matrix, let us apply LS to (10.15). 
Assuming that H’X and hence D- ‘/2H’X have full column rank, we find the 
following estimator of j3: 

(D-t/2Hfx)+D-t/2Hry= (x’HD-~H’x)-‘x’HD-~H’~. 

This is indeed identical to (10.11) in view of (10.14). 

(10.16) 

Two considerations are important for the appraisal of this procedure. First, we 
assumed that HIX has full column rank; if the rank is smaller, the matrix product 
in parentheses on the right in (10.16) is singular so that (10.11) does not exist. 
Therefore, a necessary and sufficient condition for the existence of the estimator 
(10.11) is that H’X have maximum rank, where H consists of r characteristic 
vectors of V corresponding to the positive roots. Secondly, we obtained (10.15) by 
premultiplying (10.10) by D-‘/2H’, which reduces the number of observations 
from n to r. We can recover the “missing” n - r observations by premultiplication 
by K’, yielding K’y = K’Xj3 + K’E. The covariance matrix of K’e is a2K’VK = 0 
[see (10.13)] so that K’e vanishes with unit probability. Therefore, 

K’y = K’Xfi, 

which amounts to a linear constraint on j3 unless K’X = 0. 

(10.17) 
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To clarify this situation, consider the following example for K = 1, n = 3, and 
r = 2: 

X=[# V=[i i ;], H=[i 81, K=[;]. (10.18) 

Here X has full column rank but H’X = 0 so that the matrix product in 
parentheses on the right in (10.16) is singular; in fact, the underlying equation 
(10.15) does not contain j? at all when H’X = 0. Thus, the estimator (10.11) does 
not exist, but in the case of (10.18) it is nevertheless possible to determine /3 (a 
scalar in this case) exactly! The reason is that (10.18) implies K’y = y3 and 
K’X = 1 so that (10.17) states that y, equals the parameter. Ultimately, this results 
from the zero value of the third diagonal element of V in (10.18) and the non-zero 
third element of X. 

Under the assumptions stated in the discussion following eq. (lO.lO), the 
estimator (10.11) exists when H’X has full column rank and it is a best linear 
unbiased estimator of B when K’X = 0 [so that (10.17) is not a real constraint on 
/3]. A proof of the latter statement follows in the next paragraph. If K’X is a 
non-zero matrix, (10.17) is a linear constraint on j3 which should be incorporated 
in the estimation procedure; see Theil (1971, sec. 6.8). 

We can write any linear estimator of /LI as 

s = [A +(X’Y+X)-‘X’V+] y, (10.19) 

where A is some K x n matrix consisting of non-stochastic elements. By substitut- 
ing Xfi + e for y in (10.19) and taking the expectation we find that the unbiased- 
ness of B requires 

AX=O, (10.20) 

so that j? - /Cl = [A + (X’V+X)- ‘X’V+ ]e and the covariance matrix of fi equals 

V(j?) =&[A +(X’V+X)-‘XV+]+‘+ V+x(x’V+x)-‘I. (10.21) 

For A = 0 we have B = B in view of (10.19). Thus, using V+ IV+ = V+ and 
(10.21), we obtain: 

V(B) = 02(x’v+x)-‘, (10.22) 

which is a generalization of (2.14). The excess of (10.21) over (10.22) equals a 
multipleo2ofAVA’+AVV+X(X’VfX)-‘+(X’VtX)-’X’V+VA’.ButAVV’X 
=0 so that ‘V(B)-‘V(b)=a2AVA’, which is positive semidefinite and thus 
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establishes that B is best linear unbiased. To verify that A VV+X is a zero matrix 
we use (10.12) and (10.14) in 

VV+ = HDH’HD- ‘H’ = HH’ = I - KK’, 

where the last two steps are based on (10.7) and (10.8). So, using (10.20) and 
K’X = 0 also, we have 

AVV+X=AX-AKK’X=O-O=O. 

The matrix ?r( b)- Ir( /) = u *A VA’ is obviously zero when we select A = 0, but 
it may also be zero for A * 0 when V is singular, which suggests that there is no 
unique best linear unbiased estimator of 8. This is not true, however; if the 
estimator (10.11) exists, i.e. if H’X has full column rank, it is the unique best 
linear unbiased estimator of /3 when K’X = 0. The reason is that A VA’ = 0 is 
equivalent to &[Ae(Ae)‘] = 0 so that Ae is a zero vector with unit probability. 
Using (10.20) also, we obtain Ay = A(X,L? + e) = 0, which in conjunction with 
(10.19) shows that the best hnear unbiased estimator of /3 must be of the form 
(10.1 l), even though A may be a non-zero matrix. 

10.4. Deleting an equation from an allocation model 

The Moore-Penrose inverse can also be conveniently used to prove that when we 
estimate an N-equation allocation system such as (6.1), we can simply delete one 
of the N equations (it does not matter which). The clue is the fact that each 
equation can be obtained by adding the N - 1 others. We prove this below for an 
allocation system which is linear in the parameters. The strategy of the proof will 
be to start with GLS estimation of N - 1 equations with a non-singular dis- 
turbance covariance matrix, followed by adding the deleted equation (so that the 
disturbance covariance matrix becomes singular), and then proving that the 
resulting estimator (10.11) is identical to the original GLS estimator. 

We can formulate the problem in the following more general way. Lety = X,8 + E 
have a non-singular covariance matrix v(e) = a* V of order n X n. We premultiply 
by a matrix B of order (n + n’) x n and rank n: 

By = BXB + Be. (10.23) 

For example, take B’ = [I C], which means that we add to the original n 
observations n’ linear combinations of these observations. The covariance matrix 
of Be takes the singular form a*BVB’. Thus, the matrix V of the previous 
subsection becomes B VB’ here, while X becomes BX. We conclude that condition 
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K’X = 0 is now K’( BX) = 0, where K is a matrix whose n’ columns are character- 
istic vectors of B VB’ corresponding to the zero roots: (B VB’)K = 0 and K’K = I. 
Evidently, a sufficient condition for K is B’K = 0 and K’K = I. Such a K can be 
obtained as a matrix whose columns are characteristic vectors of the idempotent 
matrix Z - B( B'B)- 'B' corresponding to the unit roots: 

[I- B(B~B)-'B~]K=K. 

The GLS estimator (10.11) of /3 in (10.23) is then 

[x'B'(BVB')+BX]-'X'B'(BVB')+B~. (10.24) 

This is identical to (XV-‘X)) ‘X’V-‘y, and hence to the GLS estimator ob- 
tained from the original n observations, because 

B'(BVB')+B=V-', 

which follows from BVB'(BVB')+BVB'= BVB' [see (lO.l)] premultiplied by 
V- ‘( B’B)- ‘B’ and postmultiplied by B( B'B)- ‘VP ‘. It is unnecessary to check 
the condition that H'(BX) has full column rank, H being a matrix whose n 
columns are characteristic vectors of BVB’ corresponding to the positive roots. 
The reason is that the estimator (10.24) would not exist if the condition were not 
satisfied, whereas we know that (10.24) equals (XV- IX)- ‘XV ‘y. 

Appendix A: Linear independence and related topics 

Consider a matrix Y= [Q,... u,] and a linear combination Vc of its n columns. 
The vectors 0 ,, . . . ,v,, are said to be linearly independent if Vc = 0 implies c = 0, i.e. 
if there exists no non-trivial linear combination of the vi’s which is a zero vector. 
For example, the columns of the 2x2 unit matrix are linearly independent 
because 

c,[~]+~z[~]=[~~]=[~] implies c,=c,=O, 

but v, = [l 01’ and vz = [2 01’ are not linearly independent because c,v, + czq 
= 0 if (for example) c, = 2 and c2 = - 1. 

For any m X n matrix A the column rank is defined as the largest number of 
linearly independent columns, and the row rank as the largest number of linearly 
independent rows. It can be shown that these two ranks are always equal; we can 
thus speak about the rank r of A, which obviously satisfies r < m, n. If all 
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columns (rows) of A are linearly independent, A is said to have full column (row) 
rank. For any A, the ranks of A, A’, A’A, and AA’ are all equal. Also, the rank of 
AB is at most equal to the rank of A and that of B. For example, 

which illustrates that the rank of AB may be smaller than both that of A and that 
of B. (A zero matrix has zero rank.) If A is square (n x n) and has full rank 
(r = n), it is called non-singular and its inverse A-’ exists. 

For any vector u = [q], its length is defined as the positive square root of 
v’v = xi vi”. If v’v = 1, v is said to have unit length. The inner product of two 
vectors v = [vi] and w = [ wi] consisting of the same number of elements is defined 
as D’W = xi viwi. If V’W = 0, u and w are called orthogonal vectors. 

A square matrix X which satisfies X’ = X- ’ is called an orthogonal matrix. 
Premultiplication of X’ = X- ’ by X gives XX’ = I, which shows that each row of 
X has unit length and that any two rows of X are orthogonal vectors. Postmulti- 
plication of X’ = X- ’ by X gives X’X = I so that each column of X (each row of 
X’) also has unit length and any two columns of X are also orthogonal vectors. 

Appendix B: The independence transformation 

The independence transformation is based on three axioms, the first being the 
invariance of total expenditure. Let a dollar spent on observed inputj result in rjj 
dollars spent on transformed input i, so that the expenditure on i equals cjrijpjqj 
and the total expenditure on all transformed inputs equals cj(&rjj)pjqj, which 
must be identical to cjpjqj because of the invariance postulated. Therefore, 
c,rij = 1 for eachj, or 

r’R = I’, (B.1) 

where R = [rjj]. By dividing the expenditure cjrijfjqj on transformed input i by 
total expenditure C (which is invariant) we obtam the factor share fTi of this 
input. Therefore, f Tj = cjrijjfi, or 

F,t = RFL, 03.2) 

where FT is the diagonal factor share matrix of the transformed inputs. 
The second axiom states that the logarithmic price and quantity changes of the 

transformed inputs are linear combinations of their observed counterparts, mT = 
S,s and K= = S*K, so that the associated Divisia indexes are invariant. The Divisia 
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volume index is d(logQ) = I’FK and its transformed counterpart is dFTtcT = 
dF&u = r’F(R’S,)tt [see (B.2)]. Thus, the invariance of this index requires 
R’S, = I or S, = (R’)- ‘. We can proceed similarly for the price index L’F~, which 
yields the same result for S,, so that the price and quantity transformations use 
the same matrix, or = Sr and or = SK, where S = (R’)-‘. See remark (3) below 
for the case of a singular R. 

The third axiom diagonalizes 8. We premultiply (8.15) by R, which yields 
RFtc = RFR’Su = RFR’K, on the left because R’S = I and SK = K=. When we 
proceed similarly on the right and use (B.l) also, we obtain: 

RFR~U, = ( ~FK)( RBR$ - +R~R’[I - d( R~R’)] 7+, (B.3) 

which is an allocation system of the same form as (8.15), with logarithmic price 
and quantity changes or and K=, p rovided RFR’ on the left equals the diagonal 
factor share matrix FT. The new normalized price coefficient matrix is R@R’, 
which occurs in the same three places in (B.3) as 8 does in (8.15). [The matrix 
R8R’ is indeed normalized because ~‘R@R’L = 4% = 1 follows from (B. l).] There- 
fore, RFR’ = FT and R8R’ = diagonal are the conditions under which (B.3) is an 
input independent allocation system. These are two conditions on R, which must 
satisfy (B. 1) also. 

We proceed to prove that 

R = (x-‘6),x’ (B.4) 

satisfies these three conditions, with X defined in (8.16) and (X’r), in (7.9). 
First, 1’R = I’ is true for (B.4) in view of (7.10). Secondly, RFR’ = 
(X- ‘L)~X’FX( X- 16)A = (X- ‘6): [see (8.16)] so that 

RFR’ = FT = ( X- ‘t): = diagonal. (B.5) 

Thirdly, using 8 = (Xl)- ‘AX- ’ [see (8.16)], we have R8R’ = (X- ‘&):A, which is 
diagonal. So, using (B.5) also and premultiplying (B.3) by (RFR')- ’ = ( X-‘t)i2, 
we obtain: 

which is the matrix version of (8.17). The expression which is subtracted in 
parentheses in the substitution term of (B.6) represents the deflation by the Frisch 
price index, which is invariant. To prove this we note that the marginal share 
vector of the transformed inputs equals R86 = RB in view of the real-income term 
in (B.3) and R’L = c; the invariance of the Frisch index then follows from 
(Rt?J)‘s, = &R’Sa = (9%. 
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The expenditure on transformed input i equals rijpjqj dollars insofar as it 
originates with observed input j. By dividing this amount by total expenditure C 
we obtain rijfi, which is thus the factor share of transformed input i insofar as it 
originates with observed input j. This rjjfj is an element of the matrix RF, to be 
written T: 

T = RF= (X-‘&X-‘, (B.7) 

where the last step is based on (B.4) and F = (X’)-‘X-’ [see (8.16)]. Postmulti- 
plication of (B.7) by L gives TL = RFL = F+ [see (B.2)]; hence the row sums of T 
are the factor shares of the transformed inputs. Also, L’T = L’RF = dF, so that the 
column sums of T are the factor shares of the observed inputs. Note that (B.7) 
and its row and column sums confirm the results on the composition matrix. Note 
further that F = (X’)- ‘X- ’ and 8 = (Xl)- 'AX- ’ [see (8.16)] imply that the price 
elasticity matrix - #F-‘8 in (8.19) equals - #XAX-‘. So, using (B.7) also, we 
have 

T(- $F-‘e) = - I/J(X-‘&AX-’ = - $A(X-l&X-’ = - ,j,AT_ 

Combining the first and last member yields ti( - #F'- ‘S) = - GAiti, where tl is 
the i th row of T, or 

t;[-#F-‘e-(-J/x,)1]=& 

Therefore, each row of the composition matrix is a characteristic row vector of the 
(asymmetric) price elasticity matrix of the observed inputs. 

We conclude with the following remarks. 

(1) Although the solution (B.4) satisfies all three conditions, it is not unique. 
However, it may be shown that this solution is unique up to premultiplication by 
an arbitrary permutation matrix; such a multiplication affects only the order in 
which the transformed inputs are listed. 

(2) We proved in the second paragraph that the price and quantity transforma- 
tions take the form or = Ss and icr = SK, where S = (R’)-‘. It thus follows from 
(B.l) that S-‘I = L or SL = L. Therefore, when the prices of the observed inputs 
change proportionately, B being a scalar multiple k of I, the price of each 
transformed input changes in the same proportion: rr = S(kr) = kSr = kb. The 
quantities have the same desirable property. 

(3) It follows from (B.4) that R is singular when (X-II), contains a zero diagonal 
element, and from (B.5) that this implies a zero factor share of one of the 
transformed inputs. In that case S = (R’)-’ does not exist. The simplest way to 
interpret this situation is by means of a perturbation of the firm’s technology so 
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that the i th element of X- ‘I converges from a small non-zero value to zero. It may 
be shown that d(logpri) then increases beyond bounds. If the increase is toward 
cc, transformed input i is priced out of the market; if it is toward - co, i becomes 
a free good; in both cases no money is spent on i in the lit. In particular, if 
(5.12) represents a homothetic technology, N - 1 elements of X- ‘1 are zero and all 
observed inputs collectively behave as one transformed input with unitary Divisia 
elasticity; no money is spent on any transformed input whose Divisia elasticity 
differs from 1. For proofs of these results see Theil (1977). 

(4) The independence transformation was first formulated by Brooks (1970) and 
axiomatically justified by Theil (1975-76, ch. 12) for a finite-change version of 
the consumer demand system (5.22). The XI’s are then income elasticities of 
transformed consumer goods. Rossi (1979a) proved that when all observed goods 
are specific substitutes, the transformed good with the smallest income elasticity 
represents all observed goods positively and that all other transformed goods are 
contrasts between observed goods similar to Tz in (8.26). The former transformed 
good serves to satisfy the consumer’s wants associated with the observed goods in 
the least luxurious manner; this result is of particular interest when the transfor- 
mation is applied to a group of goods which satisfy similar wants such as different 
brands of the same type of commodity? For an integrated exposition of the 
independence transformation in consumption and production theory see Theil 
(1980, ch. 10-11). 

Appendix C: Rational random behavior 

To verify (9.4) we write p*(x) = p(x)+ Sf(x) for some density function other 
that the p(x) of (9.4), where S is independent of x so that f( .) must satisfy 

I() f x dx,...dx,=O. 
J 

The information I* and the expected loss I” associated with p*( *) are 

I*= JIPb)+sf(~)ll% J P(x)+sf(x) dx 

POW 
, . ..dxk. 

I*=i+S(l(x,x)f(x)dx,...dx,, 
JJ 

(C-2) 

‘When 8 is block-diagonal, so is X in (8.16), which means that the independence transformation 
can be applied to each block separately. We have a block-diagonal 8 under block independence. See 
the end of Section 6 for block independent inputs; the extension to block independent consumer 
goods is straightforward. 
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where i is the expected loss (9.3) associated with the p( -) of (9.4). We apply a 
Taylor expansion to (C.2) as a function of 8: 

I* = I + k,S + +k,S2 + 0( S3), 

where I is the information (9.2) associated with (9.4) and 

(C-4) 

P(X) k, = ~f(x)log PO(x) dx, --.dx/c, 

[f WI’ k, =J, p(x) dx, . ..dx.. 

(C.5) 

(C-6) 

Next we apply a Taylor expansion to c( I*), writing c’ = de/d I and c” = d2c/d I 2 
for the derivatives of c( *) at the I of (9.4): 

and we add this to (C.3): 

c(l*)+!*=c(1)+,_+6 k,c’+~(x,r)f(x)dx,...dx, 
I 1 

+$S2(k2c’+k;c”)+0(63) (c.7) 

For c(l)+ I to be minimal we require the coefficient of 6 in (C.7) to vanish for 
any f(e) satisfying (C.1) and that of a2 to be positive. The latter condition is 
satisfied when c’ > 0 and c” > 0 (a positive nondecreasing marginal cost of 
information) because (C.6) implies k, > 0 when f(x) f 0 for some x. It follows 
from (C.5) that the former condition amounts to a zero value of 

c’log$$+l(r,E) f(x)dx,...dx,. 
I 

This integral vanishes, given (C.l), when the expression in brackets is a constant 
independent of x, which yields (9.4) directly. 

To prove the asymptotic results for small c’ we take the logarithm of (9.4): 

f(x, x) logp(x) =constant+logpO(r)-7, c-4 

and substitute X for x, using (9.1): 

logp(X) =constant+logp,(Z). 
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Since the constants in these equations are equal, subtraction yields 

log-p(x)= log Pcm + G, 4 - - 
P(X) POW c’ . (C.9) 

It follows from (9.1) that as c’ + 0 the last term increases beyond bounds for any 
x t X, so that the same holds for p( F)/p( x) on the left. Hence, as c’ --, 0 the 
density p(x) becomes zero for each x * ? and the random decision with density 
function (9.4) thus converges in probability to X. 

To verify the asymptotic distribution (9.7), we define 

u=+(x-r), (C.10) 

so that I(x, X) = I(% + @u, x). We apply a Taylor expansion to I(x, X)/C’, using 
(9.6): 

=+u’Au+o(@). (c.11) 

We assume that p,(x) is positive and differentiable around 5. Hence, we can 
apply a Taylor expansion to log p,,(x) and write it as log po( 2) plus a linear 
remainder term in x - X. Therefore, in view of (C.lO), 

logP,(x) = logP,w+o(~), 

which in conjunction with (C.8) and (C. 11) shows that log p( x) equals a constant 
minus fu’Au plus two remainder terms which both converge to zero as c’ + 0. The 
result (9.7) is then obtained by substitution from (C.10) for v in $+Au. 

We obtain (9.11) from (9.7) by using the budget or technology constraint to 
eliminate one of the decision variables from the criterion function. Let these 
variables be the quantities bought by the consumer; it was shown by Theil 
(1975-76, sec. 2.6-2.7) that (9.7) then yields variances and covariances of the 
form 

cov(qi,qj) = -k Xu’j- 
i 

h aq. &lj I- 

i aii/aMaMaikf 7 
(C.12) 

where k b 0 is proportional to the marginal cost of information c’. A comparison 
of (C.12) with (3.12) shows that cov(q,, qj) is proportional to the substitution 
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component (specific plus general) of aqi/aFj. We obtain (9.11) from (C.12) by 
rearrangements required by the left variable m (5.5). 

The results (9.11) and (9.14) for the multiproduct firm and the stochastic 
independence of the input demand disturbances and the output supply dis- 
turbances were derived by Laitinen and Theil (1978). Reference should also be 
made to Bowman et al. (1979) and to Rossi (1979b, 1979~) for a comparison of 
rational random behavior and search theory. 
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