Data Analysis and Graphics Using R —
An Introduction

J H Maindonald,

Statistical Consulting Unit of the Graduate School,

Australian National University.

January 27, 2000

a —{ Data ae from: Ezekiel, M. (1930). ® |
M ethods of Correlation Analysis. .
1
o
S 4
—
€ 8 1
()
Q
5]
B
s 3 4
g
Q.
(o}
o
" Q 4
o
N
o -
5 10 15 20 25
Speed (mph)

©J. H. Maindonald 2000. A licence is granted for personal study and classroom use. Redistribution
in any other form is prohibited.

Languages shape the way we think, and determine what we can thinkBsgarhin Whorf.).

22 1

32 36 40

95

hdingth

85

skullw

95

totlngth

85

75

32 36 40

I
17

eye

15

13

85 95 75 85 95 13 17

15
Reference: Lindenmeyer, D. B, Viggers, K. L., Cunningham, R. B., and Donnell¥, C.F.1995.
Morphological variation among populations of the mountain brush tail posaum Trichosurus caninus
Ogilby (Phalangeridae: M arsupialia). Australian Journal of Zoology 43: 449-458.

possumn. 1 Any of many chiefly herbivorous, long-tailed, tree-dwelling, mainly Australian marsupials,
some of which are gliding animals (e bgush-tailed possum, flying possum). 2 a mildly scornful term
for a person3 an affectionatenode of address.

From the Australian Oxford Paperback Dictionary,etl, 1996.

Introduction 1
1. Starting Up 3

1.1 Installation 3

1.2 Getting started 3

1.2.1 Using the Console (or Command Line) Win&ow
1.3 A Short R Session 5

1.4 Further Notational Details 7

1.5 On-line Help8

1.6 Exercise 8

2. An Overview of R11

2.1 The Uses of R 11

2.2 The Look and Feel of R 13
2.3 R Objects 14

*2.4 Looping 14

2.5 R Functions — Examples 15
2.6 Built-in data sets 16

2.7 The R Directory Structure 17
2.8 Exercises 17

3. R Data Structures19

3.1 Vectors 19

3.2 Missing Values 20

3.3 Data frames 21

3.4 Factors 24

3.5 Ordered Factors 26

3.6 Lists26

*3.7 Matrices and Arrays27

3.8 Different Types of Attachmen?®
3.9 Exercises 30

4. Plotting 32

4.1 plot () and allied functions 32

4.2 Fine control — Parameter settings 33
4.3 Adding points, lines and text 33

4.4 Other Useful Plotting FunctioBS

4.5 Plotting Mathematical SymboB8

4.6 Guidelines for Graph38

4.7 Exercises 39

4.8 References 40

5. Panel plots42

5.1 Examples that Present Panels of Scatterplots — Using coplot(42
5.2 The Panel Function 43

5.3 Exercises 43

6. Linear (Multiple Regression) Models and Analysis of Variance
6.1 The Model Formula in Straight Line Regressidi®

6.2 Regression Objects 47

6.3 Model Formulae, and the X Matrix 48

6.4 Multiple Linear Regression Models 51

6.5 Polynomial and Spline Regression 54

6.6 Using Factors in R Models 56

6.7 Multiple Lines — Different Regression Lines for Different Specig8
6.8 aov models (Analysis of Variance) 62

6.9 Exercises 64

6.10 Referencest4

7. Multivariate and Tree-Based Methods 66

7.1 Multivariate EDA, and Principal Components Analysis66

7.2 Cluster Analysis 67

7.3 Discriminant Analysi$s7

7.4 Decision Tree models (Tree-based models) 68

??

46

7.5 Exercises 69
7.6 References 69

8. Useful Functions 72
8.1 Common Useful Functions 72
8.2 Making Tables 72
8.3 Matching and Ordering 73
8.4 String Functions 73

8.5 Application of a Function to the Columns of an Array or Data Frame 74

8.6 tapply() 74

8.7 Breaking Vectors and Data Frames Down into Lists — split() 75
*8.8 Merging Data Framé&$

8.9 Dates 76

8.10 Exercises 77

9. Writing Functions and other Code 78
9.1 Syntax and Semantic&8

9.2 A Function that gives Data Frame Details 78
9.3 Naming and Record-Keeping Issues 79

9.4 Data Management 79

9.5 Issues for the Writing and Use of Functions 79
9.6 Graphs 80

9.7 A Simulation Exampl80

9.8 Exercises 80

10. GLM, and General Non-linear Model$34

10.1 A Taxonomy of Extensions to the Linear Mo8é!

10.2 Logistic Regression85

10.3 glm models (Generalized Linear Regression Modelliigg)
10.4 Models that Include Smooth Spline Terms 89

10.5 Non-linear Models 89

10.6 Model Summaries 89

10.7 Further Elaboration80

10.8 Exercises 90

10.9 References90

11. Multi-level Models, Time Series and Survival Analysis
*11.1 Multi-Level Models, Including Repeated Measures Models 92
11.2 Time Series Model$95

11.3 Survival Analysis 96

11.5 Exercises 96

11.4 References96

12. Advanced Programming Topics 98
12.1. Methods 98

12.2 Extracting Arguments to Functions 98

12.3 Parsing and Evaluation of Expressidi

12.4 Searching R functions for a specified token. 101
13. R Resources 102

13.1 R Packages for Windows 102

13.2 Literature written by expert users 102

13.3 The R-help electronic mail discussion list 103
13.4 Competing Systems — XLISP-STAT103

14. Appendix 1 104

14.1 Data Sets Referred to in these Note$04

14.2 Answers to Selected Exercid€gl

??

92

Introduction

R implements a dialect of the S language which was developed at AT&T Bell Laboratories by Rick Becker,
John Chambers and Allan Wilks. Versions of R are available, at no cost, for 32-bit versions of Microsoft
Windows and for Linux and other Unix systems. It is available through the Comprehensive R Archive Network
(CRAN). Web addresses are given at the beginning of Chapter 1, and in Chapter 7.

The citation for John Chambers’ 1998 Association for Computing Machinery Software award stated that S has
“forever altered how people analyze, visualize and manipulate data.” The R project enlarges on the ideas and
insights that generated the S language.

Here are points relating to the use of R that you may want to consider:
1. R has extensive and powerful graphics abilities, which are tightly linked with its analytic abilities.

2. Although there is no official support for R, its informal support network, accessible from the r-help mailing
list, can be highly effective.

3. Simple calculations and analyses can be handled straightforwardly, albeit (in the current version) using a
command line interface. Chapters 1 and 2 are intended to give the flavour of what is possible without getting
deeply into the R language. If you do in due course find that simple methods are not adequate, R has a huge
range of more advanced abilities that you can call into use. Alternatively you can adapt the available abilities
to give you what you need.

4. The R community is widely drawn, from application area specialists as well as statistical specialists. It is also
a community that is sensitive to the potential for misuse of statistical techniques and suspicious of what might
appear to be mindless use. You will find scepticism of the use of models which are not susceptible to some
minimal form of data-based validation.

5. Because R is free, you have no right to expect attention, on the r-help list or elsewhere, to your particular
problem. Be grateful for whatever help you get.

There is no substitute for experience and expert knowledge, even when the statistical analysis task may seem
straightforward. Neither R nor any other statistical system will give you the statistical expertise that you need to
use sophisticated abilities, or to know when naive methods are not enough. Experience with the use of R is
however, more than with most systems, likely to be an educational experience.

While R is as reliable as any statistical software that is available, and exposed to higher standards of scrutiny
than most other systems, you will find traps which call for special care. Many of the model fitting routines in R
are leading edge. There may be a limited tradition of experience of the limitations and potential pitfalls of some
of the newer abilities. Whatever statistical system you are using, and especially when there is some element of
complication, check each step with care.

Hurrah for the R development team!

Jeff Wood (CMIS, CSIRO), Andreas Ruckstuhl (Technikum Winterthur Ingenieurschule, Switzerland) and John
Braun (University of Winnipeg) gave me exemplary help in getting the earlier S-PLUS version of this document
somewhere near shipshape form. John Braun gave valuable help with proofreading, and provided several of the
data sets and a number of the exercises. | take full responsibility for the errors that remain. | am grateful, also,
to the various scientists named in the notes who have allowed me to use their data.

The R Project

The initial version of R was developed by Ross lhaka and Robert Gentleman, both from the University of
Auckland. Development of R is now overseen by a “core team’ of about a dozen people, widely drawn from
different institutions worldwide. The development model is similar to that of the increasingly popular Linux
operating system.

Like Linux, R is an “open source” system. Source-code is available for inspection or for adaptation to other
systems. In principle, if it is unclear what a routine does, one can check the source code. Exposing code to the

22 1

critical scrutiny of highly expert users has proved an extremely effective way to identify bugs and other
inadequacies, and to elicit ideas for enhancement. Reported bugs are commonly fixed in the next minor-minor
release, which will usually appear within a matter of weeks.

A point and click interface is at an early stage of development. Users should be aware that R is developing
rapidly. Substantial new features appear every few months. The current version of R is designed for use with
small to medium sized data sets. It uses a “fixed memory” model. Depending on available computer memory
and on R workspace settings, the processing of a data set containing one hundred thousand observations and
perhaps ten variables may press the limits of what R can reasonably handle.

The S language on which R is largely based is best known through its commercial S-PLUS implementation.

Most of the independent libraries that were developed for S-PLUS have been adapted to run under R. These give
access to up-to-date methodology from leading statistical researchers. Like S-PLUS, R has strong graphics
abilities. R has no complete equivalent of S-PLUS trellis graphics, though coplot has a limited ability to

produce scatterplot panels.

R is attractive as a language environment for the development of new scientific computational tools. Computer-
intensive components can, if computational efficiency demands, be handled by a call to a function that is written
in the C language.

The R-help mailing list is a useful source of advice and help. Do be sure to check the available documentation
before posting this list. Archives are available that can be searched for questions that may have been previously
answered. Chapter 13 gives useful web addresses.

The Use of these Notes

The notes are designed so that users can run the examples in the scripbféedis) using the notes as
commentary. You can either type the commands in at the console, or you can open a display file window and
feed the commands in one at a time from the display file window. Section 1.2 gives details of these alternative
ways to input commands to R.

Users who are working through these notes on their own should have available for reference the document:
“An Introduction to R’ written by the R Development Core Team 1999. To download a copy, go to

http://cran.r-project.org
and look for the nearest CRAN (Comprehensive R Archive Network) site.
Australian users may wish to go directly to the site:

http://mirror.aarnet.edu.au/CRAN/

22 2

1. Starting Up

R must be installed on your system! If it is not, follow the instructions on installation of R.

You then need to set up one or more R icons (or a folder containing one or more icons) on your screen.

1.1 Installation
At the time of writing, the latest Microsoft Windows version is RwW-0.90.1 . Files are:

rwinst.exe (This controls the installation.)

rw0901b1.zip, rw0901b2.zip (Binaries for RW-0.90.1)
rw0901h.zip (Text help)

rw0901w.zip (html help)

rw0901ch.help [compiled html; activate wilptions(chmhelp=T)]
rw091l.zip (latex help files - most users will not need these)

You should get the latest versions of the files. Make sure that all the files you want to install (certainly
rw0901b1.zip and rw0901b2.zip, and probably rw0901h.zip) are in the same directory. Run rwinst.exe, and
follow instructions. Finally, create a link (e. g. by right-clicking in blank space on the Windows screen, or in a
folder where you want to include the link). Settéeyet to be

<path to binary>\rw091\bin\rgui.exe
where <path to binary> is the path to the directory in which you placed the files used for installation
You can also, optionally, setStart in directory. This functions as a working directory, where any R objects
that you create will by default be saved, providing that you request this before quitting. It pays to have a

separate workingStart in) directory, and a separate associated icon, for each major project. For more details.
see the README file that is included with the R distribution.

The Australian mirror site, from which you can download new releases of R as they appear, is:

http://mirror.aarnet.edu.au/CRAN/
For Windows 95 etc binaries, look in

http://mirror.aarnet.edu.au/CRAN/windows/windows-9x/
Look under the directorigase. There is also eontributed directory, from which you can get libraries for R.

1.2 Getting started

Click on the R icon. Or if there is more than one icon, choose the icon that corresponds to the project on which
you want to work. For this demonstration | will click on mgotesicon.

In interactive use under Microsoft Windows there are two ways to input commands to R. You can use either or
both of these forms of input at your discretion:

1. For the moment, we will type commands into ¢bemand window, at the command line prompt. Fig. 1
shows the command window as it appears when R has just been started.

2. The screen snapshot in Fig.2 shovdisplay file window. To get a display file window, go to thide
menu. Then click oDisplay File. You will be asked for the name of a file whose contents are then
displayed in the window. In Fig. 2 the file was rcommands.txt.

i you want a larger memory space than the default you may warget akin to

<path to binary>\rw091\bin\rgui.exe --vsize 30M --nsize 1000k

[The defaultis--vsize 6M --nsize 250k . Thensize (cons blocks) settings control the space for the
building blocks of the language and therkspace. Thesize (heap) setting creates space for new objects as
they are created. The settingvsize 6M should be adequate for 5000 observations on 40 numeric variables.]

22 3

Any commands that are to be input to R are highlighted in the window. Clicking on the "Paste to console’
icon, on the far left of the display file toolbar in Figs. 2 and 3, then sends these commands to R.

File Edit Mizc Windows Help

EEFBRRE

E : Copyright 12959, The R Development Core Team
Version 0.90.0 [(Novenber 22, 1993)

E iz free software and comes with ABSOLUTELY NCO WARRAWNTTY.
¥Tou are welcome to redistribute it under certain conditions.

Type "2license™ or "?licence™ for distcribution details.

E iz a collabhorative project with many contributors.

Type "loontributors" for a list.

Type "demwo) ™ for sowe demos, "help()™ for on-line help, or
"help.start ()™ for a HTHL browser interface to help.

Type fog() " oto it R.

[Previously saved workspace restored]

> 1

Fig. 1: The R console (command line) window.

File Edit Windomws

=10 x|

= File - C:/R/r-notesfrcommands. txt

R : Copl # This file contains notes, ahnd R commands. —
Wersion # Thiz iz a display file window. When the
focus is on this window, 3 icons are visible:
R iz fre # "Paste to Console' [left), “Print' (middle),
Tou are | # and "Return focus to Console' (right).
Type
To zend commands to B from this window, highlight
B iz a ¢ # themwm and click on the "Paste to Console' icon.
Tvpe
Here are commands that you mwight like to try:
Tvpe
austpop <- read.table ("austpop.txe™, T
Type # Make sure that the file austpop.txt is in the
working directory.
[Frewim
austpop
> file.: names (austpop)
= I plot (ACT ~ Year, data=austpop, pch=16)
i) # Only if you want to guit
242
sgrt(10) -
Z2F3%4rg

=l =i

Fig. 2: The focus is on an R display file window, with the console window in the background.

File Edit ‘“wWindows
i |2 1D

[
[J_- | Paste to console
- - Fig. 3: The “paste to console’, “print’, and “return focus to console’ icons.

Under Unix, the standard form of input is the command line interface. Under both Microsoft Windows and
Unix, a further possibility is to run R from within the emacs edlitor

1.2.1 Using the Console (or Command Line) Window
Fig. 1 showed the console window when it was first opened.

The command line prompt, i. e. the is an invitation to start typing in your commands. For example, type in
2+2 and press thEnter key. Here is what | get on my screen:

> 242
[1]1 4
>

Here the result is 4. THA] says, a little strangely, “first requested element will follow”. Here, there is just one
element. The indicates that R is ready for another command.

Just in case you want to quit from R at this point, you should know that the exit or quit command is

> qQO

Alternatives are to click on tHéle menu and then daxit, or to click on theX in the top right hand corner of
the R window.

1.3 A Short R Session

We will read into R a file that holds the population figures for Australian states and territories, and the total
population, at various times since 1917. We will use information from this file to create a graph. Here is the
information in the file:

Year NSWVic. Qd SA WA Tas. NT ACT Aust.

1917 1904 1409 683 440 306 193 5 3 4941

1927 2402 1727 873 565 392 211 4 8 6182

1937 2693 1853 993 589 457 233 6 11 6836

1947 2985 2055 1106 646 502 257 11 17 7579

1957 3625 2656 1413 873 688 326 21 38 9640

1967 4295 3274 1700 1110 879 375 62 103 11799

1977 5002 3837 2130 1286 1204 415 104 214 14192

1987 5617 4210 2675 1393 1496 449 158 265 16264

1997 6274 4605 3401 1480 1798 474 187 310 18532

% For this, you need to install on your PC bethacs and themacs add-on call ESS. You can get ESS from
http://franz.stat.wisc.edu/pub/ESS, oftff is easier fronitp:// franz.stat.wisc.edu/pub/ESS .

22 S

> austpop <- read.table(“a:/austpop.txt”, header=T)

The<- is a left diamond brackek] followed by a minus sign-{. It means “is assigned to”. You use
header=T to ensure that R uses the first line to get header information for the columns. If column headings are
not included in the file, the argument can be omitted.

Type inaustpop at the command line prompt, and the object will be displayed, thus:
> austpop

Year NSW Vvic. Qld SA WA Tas. NT ACT Aust.
1917 1904 1409 683 440 306 193 5 3 4941
1927 2402 1727 873 565 392 211 4 8 6182
1937 2693 1853 993 589 457 233 6 11 6836
1947 2985 2055 1106 646 502 257 11 17 7579
1957 3625 2656 1413 873 688 326 21 38 9640
1967 4295 3274 1700 1110 879 375 62 103 11799
1977 5002 3837 2130 1286 1204 415 104 214 14192
1987 5617 4210 2675 1393 1496 449 158 265 16264
1997 6274 4605 3401 1480 1798 474 187 310 18532

O 00 N O V1 A W N R

>
We will learn later thaaustpop is a special form of R object, known as a data frame. Data frames that consist
entirely of numeric data have the same structure as numeric matrices.

We will now do a plot of the ACT population between 1917 and 1997. We will first of all remind ourselves of
the column names:
> names (austpop)
[1] "Year‘" "NSW" IIV_i c . mn IIQ‘I dll IISAII "WA" "TaS . mn "NT"
[9] "AcCT" "Aust."
>

A simple way to get the plot is:
> plot(ACT ~ Year, data=austpop, pch=16)
>

The optionpch=16 sets the plotting character to solid black dots. Fig. 4 shows the graph:

22 6

ACT
150 200 250 300
| | | |

100
|
®

I I I I
1920 1940 1960 1980 2000

Yea

Fig. 4: ACT population, at various times between 1917 and 1997.
This plot can be improved greatly. We can specify more informative axis labels, change size of the text and of
the plotting symbol, and so on.

To quit from the R session type
>q0

You will be asked whether you want to save the workspace image. Unless you are quite sure that you do not
want to save any of the objects that were newly created in your R sessiol,edick

1.3.1 Entry of Data at the Command Line

A data frame is a rectangular array of columns of data. Here we will have two columns, and both columns will
be numeric. The following data gives, for each amount by which an elastic band is stretched over the end of a
ruler, the distance which the band moved when released:

Stretch (mm) Distance (cm)

46 148
54 182
48 173
50 166
44 109
42 141
52 166

You can uselata.frame() to input these (or other) data directly at the command line. We will give the data
frame the namelastic:

elastic <- data.frame(stretch=c(46,54,48,50,44,42,52), distance=c(148,182,173,166,109,141,166))

1.4 Further Notational Details
As noted earlier, the command line prompt is

>

22 7

R commands (expressions) are typed in following this pr%mpt

There is also a continuation prompt, used when, following a carriage return, the command is still not complete.
By default, the continuation prompt is

+

In these notes, we often continue commands over more than one line, but omit the + that will appear on the
commands window if the command is typed in as we show it.

When you type the names of R objects or commands, case is significantAuBtiypop is different from
austpop. For file names however, the Microsoft Windows conventions apply, and case does not distinguish
file names. On Unix systems letters that have a different case are treated as different.

Anything which follows a# on the command line is taken as comment and ignored by R.

Note: Notice that, in order to quit from the R session we had todype This is becauseg is a function.
Typing g on its own, without the parentheses, displays the text of the function on the screen. Try it!

1.5 On-line Help

To get a help window (under R for Windows) with a list of help topics, type in
> help()

In R for Windows, you can alternatively click on the help menu item, and then use key words to do a search. To
get help on a specific R function, epd.ot), type in

> help(plot)

Often users need to experiment to discover precisely what a specific R function does. The documentation may
be short on details of the specific formula that has been used. The documentation is however improving rapidly.

1.6 Exercise
1. In the data frameTlastic from section 1.3.1, pladistance againsstretch.

2. The following ten observations, taken during the years 1970-79, are on October snow cover for Eurasia.
(Snow cover is in millions of square kilometers):

year snow.cover
1970 6.5
1971 12.0
1972 14.9
1973 10.0
1974 10.7
1975 7.9
1976 21.9
1977 12.5
1978 14.5
1979 9.2

i. Enter the data into R. [Section 1.3.1 showed one way to do this. To save entering the years separately you can
type1970:1979]

ii. Plot snow. cover versustime.
iii Use thehist () command to plot a histogram of the snow cover values.
iv. Repeat ii and iii after taking logarithms of snow cover.

3. Input the following data, on damage that had occurred in space shuttle launches prior to the disastrous launch
of Jan 28 1986. These are the data, for 6 launches out of 24, that were included in the pre-launch charts that
were used in deciding whether to proceed with the launch. (Data for the 23 launches where information is
available is in the data setrings that accompanies these notes.)

Temperature Erosion Blowby Total

22 8

(3] incidents incidents incidents
53

3 2 5
57 1 0 1
63 1 0 1
70 1 0 1
70 1 0 1
75 0 2 1

Enter these data into a data frame, with (for example) column rnzemperature, erosion, blowby
andtotal. (Refer back to Section 1.3.1). Plot total incidents against temperature.

??

??

1C

2. An Overview of R

2.1 The Uses of R

2.1.1 R may be used as a calculator.

R evaluates and prints out the result of any expression that one types in at the command line in the console
window. Expressions are typed following the promy)tdn the screen. The result, if any, appears on
subsequent lines

> 242

[1]1 4

> sqrt(10)

[1] 3.162278

> 2%3%4%5

[1] 120

> 1000*%(1+0.075)A5 - 1000 # Interest on $1000, compounded annually

[1] 435.6293

> # at 7.5% p.a. for five years

> pi # R knows about pi

[1] 3.141593

> 2*pi*6378 #Circumference of Earth at Equator, in km; radius is 6378 km
[1] 40074.16

> sin(c(30,60,90)*pi/180) # Convert angles to radians, then take sin()
[1] 0.5000000 0.8660254 1.0000000

>

2.1.2 R will provide numerical or graphical summaries of data

There is a special class of object calledhta frame, used to store rectangular arrays in which the columns may
be vectors of numbers or factors or text strings. Data frames are central to the way that all the more recent R
routines process data . For now, think of data frames as matrices, where the rows are observations and the
columns are variables.

As a first example, consider the data framid 1s, available from the Venables and Ripley MASS library. |

have included these data with the data sets that accompany these notes. This has three columns (variables), with
the nameslistance, ¢c1imb, andtime. Typing insummary Chi11s)gives summary information on these
variables. There is one column for each variabthus:

> dataChills) # Gives access to the data frame hills
> summaryChills)
distance climb time
Min.: 2.000 Min.: 300 Min.: 15.95
1st Qu.: 4.500 1st Qu.: 725 1st Qu.: 28.00
Median: 6.000 Median:1000 Median: 39.75

Mean: 7.529 Mean:1815 Mean: 57.88
3rd Qu.: 8.000 3rd Qu.:2200 3rd Qu.: 68.62
Max.:28.000 Max. :7500 Max.:204.60

>

Thus we can immediately see that the range of distances (first column) is from 2 miles to 28 miles, and that the
range of times (third column) is from 15.95 (minutes) to 204.6 minutes
We will discuss graphical summaries in the next section.

22 11

2.1.3 R has extensive abilities for graphical presentation

The main R graphics functionpsl ot (). In addition topTot () there are functions for adding points and lines
to existing graphs, for placing text at specified positions, for specifying tick marks and tick labels, for labelling
axes, and so on.

There are various other alternative helpful forms of graphical summary. A helpful graphical summary for the
hi11s data frame is the scatterplot matrix, shown in Fig. 5, that was obtained by typing

> pairs(hills)

1000 4000 7000

Q)
TS
«
o o F
° °
distance o ° o o
oo o 000 - S
o, @ o 00
%8800 F o
%o 2 °
o ° o
o
S
~
. o, 00
S o o
8 climb
<
- 880 °8°a
- 0% ©° ©° o o ° o o
] o °© o °
S Ta%e 8%
o o =4
o o r
° o
° ° o
3
time o
° ° =
° ° ° °
3 03
o e I
g £ °°
T T T T T T T T T
5 10 15 20 25 50 100 150 200

Fig. 5: Scatterplot matrix for the Scottish hill race data.

2.1.4 R will handle a variety of specific analyses
The examples that will be given are correlation and regression.

Correlation:
We calculate the correlation matrix for th&11s data:

> options(digits=3)
> cor(hills)
distance climb time

distance 1.000 0.652 0.920
climb 0.652 1.000 0.805
time 0.920 0.805 1.000

Suppose we wish to calculate logarithms, and then calculate correlations. We can do all this in one step, thus:
> cor(log(Chills))

distance climb time

distance 1.00 0.700 0.890
climb 0.70 1.000 0.724
time 0.89 0.724 1.000

??

12

Unfortunately R was not clever enough to relabel distance as log(distance), climb as log(climb), and time as
log(time). It is possible to write a function which will relabel in this way. Notice that the correlations between
time and distance, and between time and climb, have reduced. Why do you think that has happened?

Straight Line Regression:

Here is a straight line regression calculation. One specifiés én linear model) expression, which R

evaluates. The data are stored in the data fehastic that accompanies these notes. The variable names

are the names of columns in that data frame. The command asks for the regression of distance travelled by the
elastic band (distance) on the amount by which it is stretched (stretch).

> plot(distance~stretch,data=elastic, pch=16)
> elastic.Im<-1m(distance~stretch,data=elastic)
> Im(distance~stretch,data=elastic)

call:
Tm(formula = distance ~ stretch, data = elastic)

Coefficients:
(Intercept) stretch
-63.571 4.554

You can get more complete information by typing in
> summary(Im(distance~stretch,data=elastic))
Try it!

2.1.5 R is an Interactive Programming Language
Suppose we want to calculate the Fahrenheit temperatures which correspond to Celsius temperatures 25, 26, ...,
30. Here is a good way to do this in R:

> celsius <- 25:30

> fahrenheit <- 9/5*celsius+32

> conversion <- data.frame(Celsius=celsius, Fahrenheit=fahrenheit)

> print(conversion)

Celsius Fahrenheit

1 25 77.0
2 26 78.8
3 27 80.6
4 28 82.4
5 29 84.2
6 30 86.0
>

We could also have used a loop. In general it is preferable to avoid loops whenever, as here, there is a good
alternative. Loops may involve severe computational overheads.

2.2 The Look and Feel of R

R is a function language. There is a language core which uses standard forms of algebraic notation, allowing
you to do the calculations described in Section 2.1.1. Beyond this, most computation is handled using functions.
Even the action of quitting from an S session uses a function call. When you type

> a()

22 13

you are invoking the functioq (for quit). In most expressions you can treat every object — vectors, arrays, lists
and so on — as a whole. Use of operators and functions which operate on objects as a whole largely avoids the
need for explicit loops. For an example, look back to section 2.1.5 above.

The structure of an R program looks very like the structure of the widely used general purpose language C and
its successors'tand Java

2.3 R Objects

All R entities, including functions and data structures, exist as objects. They can all be operated on as data.
Type in1s) to see the names of all objects in your working directory. An alternative@d is
objects(). In both cases you can restrict the names to those with a particular pattern, e. g. starting with the

letter ‘p5.

If you type the name of an object at the prompt, the contents of the object are printed out. Try typing in
mean, etc.

Important: When you quit, R will ask whether you want to save the workspace image. This allows you to retain,
for use in the next session in the same working directory, any objects that you have created in the current
session. Careful housekeeping may be needed to ensure that you do not at the same time retain numerous
objects that you will never use again. Before you tyfg, userm() to remove them. Saving the workspace

image will them save everything else. The workspace image will be automatically loaded when you start another
session in that directory.

*62 4 Looping
In R there is often a better alternative to writing an explicit loop. Where possible, you should use one of the
built-in functions to avoid explicit looping. A simple example dfar loop is7

for (i in 1:10) print(i)
Here is another example offar loop, to do in a complicated way what we did very simply in section 2.1.5:

> # Fahrenheit to Celsius

> for (fahrenheit in 25:30)

+ print(c(fahrenheit, 9/5*fahrenheit + 32))
[1] 25 77

[1] 26.0 78.8

[1] 27.0 80.6

[1] 28.0 82.4

[1] 29.0 84.2

[1] 30 86

>

“ Note however that R has no header files, most declarations are implicit, there are no pointers, and vectors of
text strings can be defined and manipulated directly. The implementation of R relies heavily on list processing
ideas from the LISP language. Lists are a key part of R syntax.

° Type inhelp(1s) andhelp(grep) to get details. The pattern matching conventions are those used for
grep(), which is modelled on the Unigrep command.

! Other looping constructs are:
repeat <expression> ## You'll need break somewhere inside

while (x>0) <expression>

?? 14

2.4.1 More on looping
Here is a long-winded way to sum the three number 31, 51 and 91:

> answer <- O

> for (j in c(31,51,91)){answer <- j+answer}
> answer

[1] 2173

>

The calculation iteratively builds up the object answer, using the successive vgjuisef in the vector
(31,51,91). i.e. Initiallyj=31, andanswer is assigned the value 31 + 0 = 31. The®1, andanswer is
assigned the value 51 + 31 = 82. Finafly91, and answer is assigned the value 91 + 81 = 1TBen the
procedure ends, and the contentaofswer can be examined by typing in answer and pressingriter key.

There is a much easier (and better) way to do this calculation:

> sum(c(31,51,91))
[1] 173

Much of the art of using R effectively lies in avoiding unnecessary loops.

2.5 R Functions — Examples
2.5.1 An Approximate Miles to Kilometers Conversion

> miles.to.km <- function(miles)miles*8/5
The return value is the value of the final (and in this instance only) expression which appears in the function
8
body'.

Use the function thus

> miles.to.km(175) # Approximate distance to Sydney, in miles
[1] 280
>

You can do the conversion for several distances, all at the one time. To convert a vector of the three distances
100, 200 and 300 miles to distances in kilometers, specify:

> miles.to.km(c(100,200,300))

[1] 160 320 480
>

2.5.2 A Plotting function

In a tasting experiment twenty individuals were each given two milk samples. One sample was of milk that had
one unit of an additive, and the other sample was of milk that had four units of an additive. Did the additive
affect the perceived sweetness? The data frainid (with columnsone andfour) has the result. Sweetness

was measured on a scale that ran from 1 to 9, with 1 denoting “not nearly sweet enough”, 5 denoting “just right”
and 9 denoting “much too sweet”.

We plot, for each participant, tHf®ur result against thene result, but insisting on the same range for the x
and y axes.

xyrange <- range(milk)
plot(four ~ one, data = milk, x1im = xyrange, ylim = xyrange, pch = 16)

Alternatively a return value may be given using an exptieturn () statement. This is however an
uncommon construction

22 15

abline(0, 1) # Line where "four' value = “one' value

In order to keep together the code used for the graph, we could store these in a function, thus:

fig6 <- function ()

{
xyrange <- range(milk) # Range of all values in the data frame
plot(four ~ one, data = milk, x1im = xyrange, ylim = Xxyrange,
pch = 16)
abline(0, 1) # Line where "four' value = “one' value
}

The function’s name i§1g6. We enclose the function body in braces ({}). The above function might be a
first step to writing a function that takes any data frame, plots one named column against another named column,
and shows the line y = x. Later, we will give this as an exercise.

®
oo
~ ®
© - ¢ ¢
°
o - °
= . °
>
4
pe: e o
¥ e
.
m_
.
N_
I I I I I I
2 3 4 5 6 7

one

Fig. 6: Sweetnessassessment for milk sample with
four units of additive (y-axis) versus one unit (x-axis).

2.6 Built-in data sets

We will often use data sets that accompany one of the R libraries, usually stored as data frames. One such data

frame isai rqua'l'ityg, giving measurements made on 111 successive days in New York. Because this is in
the base library all you need do to bring it into the working directory is to type:

> data(airquality) # Bring data set into working directory
Here is summary information on this data frame

> summary(airquality)

9 This holds the same kind of data as the S-PLUS dateietsronmental andair.

22 16

0zone solar.R wind Temp

Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :56.00
1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:72.00
Median : 31.50 Median :205.0 Median : 9.700 Median :79.00
Mean : 42.13 Mean :185.9 Mean : 9.958 Mean 177.88
3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00
Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00
NA's : 37.00 NA's 1 7.0
Month Day
Min. :5.000 Min. : 1.0

1st Qu.:6.000 1st Qu.: 8.0
Median :7.000 Median :16.0
Mean :6.993 Mean :15.8
3rd Qu.:8.000 3rd Qu.:23.0
Max. :9.000 wMmax. :31.0

Type indata() to get a list of built-in data sets.

2.7 The R Directory Structure

R has a search list, which you can however change in the course of your session. This includes the list of
libraries where R will look for the objects that are needed as your session proceeds. To get a full list of these
directories, type in

> search()
[1] ".GlobalEnv™ "Autoloads™ "package:base”

So in addition to the global environment, there are objects which are in the working directory and the base
package or library. If you add further libraries (also called packages), they will be added to this list. For
example:

> Tibrary(ts) # Time series Tibrary, included with the distribution
> search()

[1] ".GlobalEnv" "package:ts" "Autoloads" "package:base"

>

2.8 Exercises
1. For each of the following code sequences, predict the result. Then use R to do the computation:

a)

answer <- 0

for (j in 3:5){ answer <- j+answer }
b)

answer<- 10

for (j in 3:5){ answer <- j+answer }
c)

answer <- 10
for (j in 3:5){ answer <- j*answer }

2. Look up the help for the functiprod (), and userod() to do the calculation in 1(c) above.
Alternatively, how would you expeprod () to work? Try it!

3. Add up all the numbers from 1 to 100 in two different ways: ufiag and usingsum. Now apply the
function to the sequence 1:100. What is its action?

4. Multiply all the numbers from 1 to 50 in two different ways: usfiogr and usingprod.

”? 17

5. The volume of a sphere of radius r is given 15y/8. For spheres having radii 3, 4, 5, ..., 20 find the
corresponding volumes and print the results out in a table. Use the technique of section 2.1.5 to construct a data
frame with columnsradius andvolume.

22 18

3. R Data Structures

3.1 Vectors

. : 10
Vectors may have mode logical, numeric or characteExamples of vectors are

> c(2,3,5,2,7,1)

[1]1235271

> 3:10 # The numbers 3, 4, .., 10

[1] 3 4 5 6 7 8 910

> c(T,F,F,F,T,T,F)

[1] TRUE FALSE FALSE FALSE TRUE TRUE FALSE

> c("canberra","sydney","Newcastle","Darwin")
[1] "canberra™ "Sydney" "Newcastle" "Darwin"

The first two vectors above are numeric, the third is logical (i. e. a vector with elements of mode logical), and
the fourth is a string vector (i. e. a vector with elements of mode character).
Thecinc(2, 3, 5, 7, 1) isan acronym for “concatenate”, i. e. the meaning is: “Join these numbers

together in to a vectdt. Observe how one can concatenate two vectors. In the following we form wectors
andy, which we then concatenate to form a veator

> x <- ¢(2,3,5,2,7,D)

> X

[1]235271

>y <- ¢(10,15,12)

>y

[1] 10 15 12

>z <- c(X, y)

> z

[1] 2 3 5 2 7 11015 12
>

We will later meet lists. The concatenate functidi) may also be used to join lists.

3.1.1 Subsets of Vectors
There are three ways to extract subsets of vectors.

1. Specify the numbers of the elements which are to be extracted, e. g.

> x <- ¢(3,11,8,15,12) # Assign to x the values 3, 11, 8, 15, 12
> x[c(2,4)] # Extract elements (rows) 2 and 4

[1] 11 15

>

You can use negative humbers to omit elements:

> x <- ¢(3,11,8,15,12)

10 Below, we will meet the notion of "class", which is important for implementation of some of the sophisticated
language features of R The logical, numeric and character vectors just given have class NULL, i. e. they have
no class. There are special types of humeric vector which do have a class attribute. Factors are the most
important example. Although often used as a compact way to store character strings, factors are, technically,
numeric vectors. The class attribute of a factor has, as one might expect, the value "factor".

22 19

> x[-c(2,3)]
[1] 3 15 12
>

2. Specify a vector of logical values. The elements that are extracted are those for which the logical value is
TRUE. Thus suppose we want to extract values which are greater than 10.

> x<-c(3,11,8,15,12)

> x>10

[1] FALSE TRUE FALSE TRUE TRUE
> x[x>10]

[1] 11 15 12

3. Where elements are named, one can use a vector of names to extract the elements

> c(Andreas=178, John=185, Jeff=183)[c("John","Jeff™)]
John Jeff
185 183

3.1.2 Patterned Data

You can use 5:15 to generate the numbers 5, 6, ..., 15. If you enter 15:5, this will generate the sequence in the
reverse order.

To repeat the sequence (2, 3, 5) four times over, ee@fc(2,3,5), 4) thus:

> rep(c(2,3,5),4)
[1] 235235235235
>
If instead you want four 2s, then four 3s, then four 5s, erepi(c(2,3,5), c(4,4,4)). Another way to
achieve the same effectiep(c(2,3,5), each=4).
> rep(c(2,3,5),c(4,4,4)) # An alternative 1is rep(c(2,3,5), each=4)
[1]1 222233335555
>
Note further that, in place af(4,4,4) we could writerep(4,3). So a further possibility is that in place of
rep(c(2,3,5), c(4,4,4)) we could enterep(c(2,3,5), rep(4,3)).

In addition to the above, note that the functrmp () has an argumertength.out, meaning “keep on
repeating the sequence until the lengthéagth.out.”

3.2 Missing Values

In R, the missing value symbolN&. Any arithmetic operation or relation that invol\N#s generates aNA.
This applies also to the relatiors<=, >, >=,==, !=. The first four compare magnitudes; tests for equality,
and ! = tests for inequality.

This may lead to unintended consequences. Specifically, notethHA generateslA.

Be sure to usés.na(x) to test which values of areNA. As use ok==NA gives a vector ofAs, you get
no information at all abowt. For example

> x <- ¢(1,6,2,NA)

> is.na(x) # TRUE for when NA appears, and otherwise FALSE

[1] FALSE FALSE FALSE TRUE

> X==NA # A1l elements are set to NA
[1] NA NA NA NA

> NA==NA

[1] NA

>

22 20

WARNING : This is chiefly for those who may move between R and S-PLUS. In important respects, R’s
behaviour with missing values is more intuitive than that of S-PLUS. Thus

y[x>2] <- x[x>2]
gives the result which the naive user might expect, i. e. replace elemrntstiofelements of whereverx>2.
Whereverx>2 gives the resulA, no action is taken.

For example

> x <- ¢(1,6,2,NA,10)
>y <- ¢(1,4,2,3,0)

> x>2

[1] FALSE TRUE FALSE NA TRUE
> x[x>2]

[1] 6 NA 10

> y[x>2]

[1] 4NA O

>

> y[x>2] <- x[x>2]
>y

[1] 1 6 2 310

>

Whenx>2 yields a subscript on the left hand side tha#Asno replacement is made. The value on the right is
irrelevant, except that there should be one value on the right corresponding to each elems@rthet is either
TRUE orNA. Here is a further example of R’s behaviour:

> x <- c(1,6,2,NA,10)

> X

[1] 1 6 2 NA 10

> x>2

[1] FALSE TRUE FALSE NA TRUE
> x[x>2] <- ¢(20,21,22)

> X

[1] 120 2 NA 22

>

One can uséis.na(x) to limit the selection, on both sides, to those elememntstiadit are noNAs. Specify
y[lis.na(x) & x>2] <- x[!is.na(x) & x>2]

This does give the same result as in S-PLUS! For code that is to be used in both R and S-PLUS, you need to

include thelis.na(x) test, as above. The S-PLUS result fropix>2] <- x[x>2] is different from
that above.

We will have more to say on missing values in the section on data frames which now follows.

3.3 Data frames

The concept of a data frame is fundamental to the use of most of the R modelling and graphics functions. A data
frame is a generalisation of a matrix, in which different columns may have different modes. All elements of any
column must however have the same mode, i. e. all numeric or all factor, or all character.

Data frames where all columns hold numeric data have some, but not all, of the properties of matrices. There
are important differences that arise because data frames are implemented as lists. If you want to be sure that a

data frame of numeric data will behave like a matrix of numeric datasuseatrix() to turnitinto a
matrix.

Lists are discussed below, in section 3.6.

??

21

The function read. table() offers a ready means to read a rectangular array into an R data frame. Suppose
that the fileprimates.dat contains:

"Potar monkey" 10 115

Gorilla 207 406
Human 62 1320
"Rhesus monkey™ 6.8 179
Chimp 52.2 440

Then

primates <- read.table("a:/primates.dat")

will create the data fram@rimates, from a file on thaa: drive. The text strings in the first column will
become the first column in the data frame.

Suppose that primates is a data frame with three columns — species name, body weight, and brain weight. You
can give the columns names by typing in:

> names(primates)<-c(“Species”,"Bodywt","Brainwt™)
Here then are the contents of the data frame.

> primates
Species Bodywt Brainwt

1 Potar monkey 10.0 115
2 Gorilla 207.0 406
3 Human 62.0 1320
4 Rhesus monkey 6.8 179
5 Chimp 52.2 440
>

3.3.1 Idiosyncrasies

The functionread. table() is straightforward for reading in rectangular arrays of data that are entirely
numeric. When, as in the above example, one of the columns contains text strings, the column is by default

stored as a factor with as many different levels as there are unique text %trings

Problems may arise when small mistakes in the data cause R to interpret a column of supposedly numeric data as
character strings. For example there may be an O (oh) somewhere where there should be a 0 (zerd)) or an el (
where there should be a orl8.(If you use any missing value symbols other than the def&ilf you need to

make this explicit see section 3.3.2 below. Otherwise any appearance of such syrffppéiasl(.) and blank

(in a case where the separator is something other than a space) will cause to whole column to be treated as
character data.

Where the file that you are reading in contains character as well as numeric data, whether by design or accident,
the behaviour ofead. table () may seem idiosyncratic. Until you are familiar with its idiosyncrasies, you

may wish to use the parameter settrsg is = TRUE.

3.3.2 Missing values when using read.table()

The functionread. table () expects missing values to be codetlasunless you seta. strings to
recognise other characters as missing value indicators. If you have a text file that has been output from SAS,

you will probably want to seta.strings=c(".").

12 Storage of columns of character strings as factors is efficient when a small number of distinct strings are each
repeated a large number of times.

13 Specifyingas.is = T prevents columns of (intended or unintended) character strings from being converted
into factors.

22 22

You may specify multiple missing value indicators, ed@. strings=c(“NA”,™. ", 7*” "") The""
will ensure that empty cells are enteredNAs.

3.3.3 Separators when using read.table()

With data from spreadshe%f%sit is sometimes necessary to use(4ht™) or comma as the separator. The
default separator is white space. To set tab as the separator, sppsii\t".

3.3.4 Component Parts of Data frames

Recall that the data franprrimates has a column of species names, thedywt in column 2, then
Brainwt in column 3. Any of the following will pick out column 3 of the data frgnmd mates and store it
in the vectobrain.wt:

brain.wt<-primates$Brainwt

brain.wt<-primates[, 3]

brain.wt<-primates[,”Brainwt”]

brain.wt<-primates[[3]] # Take the object that is stored

in the second 1list element.

Consider the data franBarley. A version is available with the data sets that are supplied to complement
these notes. The data setmer that is bundled with the Venables and Ripley MASS library has the same data,
but arranged differently.

> names(Barley)

[1] "Site" "Var'1'ety" "Year" "Yield”

> levels(Barley$site)

[1] "¢* "p" "GR™ "M" UF" "w"

> Tevels(Barley$variety)

[1] "manchuria" "Peatland" '"Svansota" "Trebi" "velvet"
Notice that abbreviations have been used for site names, while variety names are given in full.

We will extract the data for 1932, at thesite.

> Duluth1932 <- Barley[Barley$year=="1932" & Barley$site=="D",
+ c("variety","yield")]
> Duluth1932
variety Yield
56 Manchuria 67.7
57 Svansota 66.7
58 velvet 67.4
59 Trebi 91.8
60 Peatland 94.1
>

The first column holds the row labels, which in this case are the numbers of the rows that have been extracted. In

place ofc(“variety”, “yield”) we could have written, more simply(2,4).

14 one way to get mixed text and numeric data across from Excel is to saverkisbeet in a csv text file

with comma as the separator. If for example file namy#si 1e . csv and is on drive a:, use
read.table("a:/myfile.csv", sep=",") toread the data into R. This copes with any spaces which
may appear in text strings. [But watch that none of the cell entries include commas.]

22 23

3.3.5 Data Sets that Accompany R Libraries

Type indata() to get a list of data sets (mostly data frames) associated with all libraries that are in the current
search path. To get information on the data sets that are included in the base library, specify

data(package="base”) # Here you must specify “package’, not “library’.
and similarly for any other library.

In order to bring any of these data frames into the working directory, specifically request it. (Ensure though that
the relevant library is attached.) Thus to bring in the dataisequality from the base library, type in

data(airquality)

The default Windows distribution includes the libraB#sE, EDA, STEPFUN (empirical distributions), andS

(time series). Other libraries must be explicitly installed. For remaining sections of these notes, it will be useful
to have the MASS library installed. The current Windows version is bundled in the file VR61-6.zip, which you
can download from the directory of contributed packages at any of the CRAN sites.

The base library is automatically attached at the beginning of the session. To attach any other installed library,
use thelibrary () (or, equivalentiypackage ()) command.

3.4 Factors
One justification for factors is that they provide an economical way of storing vectors of character strings in
which many of the same character strings are stored a number of times. We start with this storage economy

explanation of factors because it is a good context in which to explain the dual identity o%?ao@malysis of
variance and regression models provide another more cogent reason for the use of factors, as will become
apparent in chapter 6.

The data framé sTandcities which accompanies these notes holds the populations of the 19 island nation
cities with a 1995 urban centre population of 1.4 million or more. The row names are the city names, the first
column ountry) has the name of the country, and the second colpopu(ation) has the urban centre
population, in millions. Here is a table that gives the number of times each country occurs

Australia Cuba Indonesia Japan Philippines Taiwan United Ki ngdom
3 1 4 6 2 1 2
[There are 19 cities in all.]

Rather than store "Australia’ three times, “Indonesia’ four times, and so on, it is more economical to different
numerical codes for each of the different countries, then using a look-up table to associate code with country:

country code

Australia
Cuba

I ndonesi a

Japan

Phi |'i ppi nes

Tai wan

United
Ki ngdom

~N| o O Al W] N

If the column for country is stored as a factor, then the value is 1 when the country is Australia, 2 when the
country is Cuba, and so on. The numbers 1, 2, . . ., 7 are factor “indices” or “codes”. The country names are the

15 Factors are vectors which have mode numeric and class "factor". They have an attribute levels which
specifies the level names.

?? 24

factor levels. When you print out the contents of the country column, what you see are the names, not the codes.
R does the translation invisibly. In fact the codes are invisible in most operations that you might want to do with
factors. There are, though, annoying exceptions which can make the use of factors tricky.

The level names are stored as a factor attribute in the levels vector. We can get details of the level names by
typing inTevels(islandcities$country), thus:

> levels(islandcities$country)

[1] "Australia” ""Cuba" "Indonesia" "Japan"
[5] "Philippines" "Taiwan" "United Kingdom"
>

When a factor is created, the default behaviour is that level names are in alphabetical order. This order of the
level names is purely a convenience. Level names can be re-arranged to any order you like. [Later we will meet
ordered factors, i. e. factors with ordered levels, where the order is not arbitrary.]

Note the dual identity of the factaountry. Itis at one and the same time a numeric vector and a vector of
character strings. In truth it is neither of these, but rather a data structure that encompasses them both. The view
which a factor presents depends on how you intend to use it.

Here is a simple example. The statement

> ffl<-factor(c("uc","uc", "ANuU","ANU"))
> ffl

[1] uC uC ANU ANU

Levels: ANU UC

stores the values (2, 2, 1, 1), with the levels vector equaNiod,(UC). The levels vector haNU first
because the order of levels is by default alphanumeric order. You cattptaitdirst by specifying

> ff2<-factor(c("uc","uc", "ANU","ANU"), Tevels=c("uc", "ANU"))
> ff2

[1] uC uC ANU ANU

Levels: UC ANU

The “labels” parameter of factor allows you to change level names. The label text string that you specify for
each level becomes the new level name. You need to exercise care that the label names are in the same order as
the relevant level names vector.

> factor(c("uc","uc", "ANu","ANU"),

+ Tlabels=c("Australian National University”, "University of Canberra™))
[1] university of Canberra University of Canberra

[3] Australian National University Australian National University
Levels: Australian National University University of Canberra

> factor(c("uc","uc", "ANU","ANU"),levels=c("uc","aNu"),

+ Tlabels=c("University of Canberra™, "Australian National University™))
[1] university of Canberra University of Canberra

[3] Australian National University Australian National University
Levels: University of Canberra Australian National University

>

Factors have the potential to cause a few surprises, so be carefull Here are two points to note:
1. When you make a vector of character strings a column of a data frame, R by default turns it into a factor.
Enclose the vector of character strings in the wrapper funt{9nf you want it to remain character.

2. There are some contexts in which factors become numeric vectors. You can be sure of getting the vector of
text strings by specifying e. gs. character (ffl).

3. To extract the numeric levels 1, 2, 3, ..., speaiéy. integer (ff1).

22 25

3.5 Ordered Factors

Actually, it is their levels which are ordered. To create an ordered factor, or to turn a factor into an ordered
factor, use the functioardered(). The levels of an ordered factor are assumed to specify positions on an
ordinal scale. Try

> stress.level<-rep(c("low”,"medium”,"high"),2)

> ordf.stress<-ordered(stress.level, levels=c("low","medium","high™))
> ordf.stress

[1] Tow medium high Tow medium high

Levels: Tow < medium < high

> ordf.stress<"medium"

[1] TRUE FALSE FALSE TRUE FALSE FALSE

> ordf.stress>="medium"

[1] FALSE TRUE TRUE FALSE TRUE TRUE

>

Later we will meet the notion of inheritance. Ordered factors inherit the attributes of factors, and have a further
ordering attribute. When you ask for the class of an object, you get details both of the class of the object, and of
any classes from which it inherits. Thus:

> class(ordf.stress)

[1] "ordered” "factor"

3.6 Lists

Lists allow you to collect an arbitrary set of R objects together under a single name. You might for example
collect together vectors of several different modes and lengths, scalars, matrices or more general arrays,
functions, etc. Lists can be, and often are, a rag-tag of different objects. We will use for illustration the list
object that R creates as output fromlancalculation.

For example, suppose that we create a linear model (Im) @ljasttic.Tm (c. f. sections 1.1.4 and 2..1.4) by
specifying

elastic.Im <- Im(distance~stretch, data=elastic)
You will find thateTastic. Tm consists of a variety of different kinds of objects, stored as a list. You can get

the names of these objects by typing in
> names(elastic.1m)

[1] "coefficients” "residuals” "effects"” "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model™

>

Here are three different and equivalent ways to examine the first list element
> elastic.Im$coefficients

(Intercept) stretch
-63.571429 4.553571

> elastic.Im[["coefficients"]]
(Intercept) stretch
-63.571429 4.553571

> elastic.Im[[1]]

(Intercept) stretch
-63.571429 4.553571

>

Note that we can also ask fetastic. Im[“coefficients”] orelastic.Im[1]. These are subtly
different. Either of these give us the list whose only element is the above vector. This is reflected in the result

22 26

that is printed out. The information is precededlapefficients, meaning “list element with name
coefficients”.

> elastic.Im[1]

$coefficients

(Intercept) stretch
-63.571429 4.553571

The second list element is a vector of length 7
> options(digits=3)
> elastic.Im$residuals
1 2 3 4 5 6 7
2.107 -0.321 18.000 1.893 -27.786 13.321 -7.214

We defer discussion of list elements 3 to 9, interesting though they are. The tenth list element is
> elastic.Im$call

Tm(formula = distance ~ stretch, data = elastic)
> mode(elastic.Tm$call)
[1] "call™

*3.7 Matrices and Arrays

In these notes the use of matrices and arrays will be quite limited. For almost everything we do here, data frames
have more general relevance, and achieve what we require. Matrices are likely to be important for those users
who wish to implement new regression and multivariate methods.

All the elements of a matrix have the same mode, i. e. all numeric, or all character. Thus a matrix is a more
restricted structure than a data frame. One reason for numeric matrices is that they allow a variety of
mathematical operations which are not available for data frames. Another reasomistthax generalises to
array, which may have more than two dimensions.

Note that matrices are stored columnwise. Thus consider

> XX <- matrix(1:6,ncol=3) # Equivalently, enter matrix(1:6,nrow=2)
> XX
[,11 [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
>

If XX is any matrix, the assignment
X <- as.vector(xx)

places columns ofx, in order, into the vectot. In the example above, we get back the elements 1, 2, .. ., 6.
Names may be assigned to the rows and columns of a matrix. We give details below.
Matrices have the attribute “dimension”. Thus

> dim(xx)

[1]1 2 3
In fact a matrixs a vector (numeric or character) whose dimension attribute has length 2.
Now set

> X34 <- matrix(1l:12,ncol=4)

> x34

[,11 [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 36 9 12

??

27

>
Here are examples of the extraction of columns or rows or submatrices

> x34[2:3,c(1,4)] # Extract rows 2 & 3 & columns 1 & 4
[,11 [,2]

[1,1] 2 11

[2,] 3 12

> X34[2,] # Extract the second row
[1] 2 5 8 11

> x34[-2,] # Extract all rows except the second
[,11 [,21 [,3]1 [,4]

[1,1] 1 4 7 10

[2,] 3 6 9 12

> x34[-2,-3] # Extract the matrix obtained by omitting row 2 & column 3
[,11 [,2] [,3]

[1,] 1 4 10

[2,] 3 6 12

>

You can use thdimnames () function to assign and/or extract matrix row and column names. The
dimnames () function gives a list, in which the first list element is the vector of row names, and the second list
element is the vector of column names. This generalises in the obvious way for use with arrays, which we now
discuss.

3.7.1 Arrays

The generalisation from a matrix (2 dimensions) to allow > 2 dimensions gives an array. A matrix is a 2-
dimensional array.

Suppose you have a numeric vector of length 24. So that we can easily keep track of the elements, we will make
them 1, 2, .., 24. Thus
> X <- 1:24
Then
> dim(x) = c(4,6)
turns this into a 4 x 6 matrix.

> X

[,11 [,2]1 [,3] [,4] [,5] [,6]
[1,] 1 5 9 13 17 21

[2,] 2 6 10 14 18 22
[3,] 3 7 11 15 19 23
[4,] 4 8 12 16 20 24
>

Now try
> dim(x) <-c(3,4,2)
> X

L L 1

[,11 [,2] [,3] [,4]
[1,] 1 4 7 10

22 28

[,11 [,2] [,3] [,4]
[,7 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24

3.7.2 Conversion of Numeric Data frames into Matrices
Useas.matrix() for this purpose.

Suppose for example that you want to interchange the rows and columns of a data frame that contains only
numbers. You can do this by usit§as.matrix()) to convert it to a matrix and transpose it, then
data.frame() to convert it back to a data frame.

The first three columns of teoths'® data frame that accompanies these notes are numeric. So we can do this:

> transposed.moths <- data.frame(t(as.matrix(moths[,1:3])))
> transposed.moths
X1 X2 X3 X4 X5 X6 X7 X8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18
meters 25 37 109 10 133 26 4 3 3 27 16 6 17 3 5163 10 5
A 9 3 70 93 00O0 39 7 12 6 2 1 5 2 2
P 820 9 2 118 552 516 0 0O O O 1 4 o0
X19 X20 X21 X22 X23 X24 X25 X26 X27 X28 X29 X30 X31 X32 X33 X34
meters 13 63 4 4 33241 18 2 182 48 20 3 36 233 44 35
A 23 10 5 6 2 4 2 3 4 3 3 1 3 6 1 9
P 6 12 0 5 1 1 o0 1 2 3 4 o0 1 3 1 o
X35 X36 X37 X38 X39 x40 x41
meters 8 55 6 90 44 21 36
A 100 2 0 6 0 0 9
P O 0 2 2 4 4 1

3.8 Different Types of Attachments

When R starts up, it has a list of directories where it looks, in order, for objects. You can inspect the current list
by typing insearch (). The working directory comes first on the search list.

You can extend the search list in two ways. You can uskitheary () command to add libraries.

Alternatively, or in addition, you can place a list of R objects on the search list. A data frame is in fact a
specialised list, with its columns as the objects. If you add a data frame to the search list, then you can refer to
the columns by name, without the need to specify the data frame to which they belong. If there is any overlap of
names, the order on the search list determines what name will be taken.

The documentation speaks of attaching databases.

3.8.1 Attaching Data Frames
Thus

> attach(primates)
then allows you to refer ®rainwt andBodywt, where you would otherwise have to type
primates$Brainwt andprimates$Bodywt. This assumes that you do not have any other variables or
columns of attached data frames that have either of these names.

8 am grateful td&sharynWragg, who was an honours student at ANU, for making these data available.

22 29

> Bodywt
Potar monkey Gorilla Human Rhesus monkey Chimp

10 207 62 6.8 52.2
> Brainwt
Potar monkey Gorilla Human Rhesus monkey Chimp
115 406 1320 179 440

To detach this data frame, type

> detach(“primates™)
i. €. quotes are now used.

Note how the use of quotes changes. You specify the name (without quotes) when you attach, and enclose the
name between quotes when you detach.

3.9 Exercises
. Generate the numbers 101, 102, ..., 112, and store the result in thexvector

1
2. Generate four repeats of the sequence of numbers (4, 6, 3).

3. Generate the sequence consisting of eight 4s, then seven 6s, and finally nine 3s.

4. Create a vector consisting of one 1, then two 2's, three 3's, etc., and ending with nine 9's.

5. Determine, for each of the columns of the data framequality (base library), the median, mean, upper
and lower quartiles, and range.
[Specifydata(airquality) to bring the data frama&irquality into the working directory.]

6. For each of the following calculations, decide what you would expect, and then check to see if you were right!
a)
answer <- c(2, 7, 1, 5, 12, 3, 4)
for (j in 2:Tength(answer)){ answer[j] <- max(answer[j],answer[j-1])}
b)
answer <- c(2, 7, 1, 5, 12, 3, 4)
for (j in 2:Tength(answer)){ answer[j] <- sum(answer[j],answer[j-1])}
7. In the built-in data framairquality (a) extract the row or rows for whi€zone has its maximum
value; and (b) extract the vector of valueswafnd for values of0zone that are above the upper quatrtile.

8. Refer to the Eurasian snow data that is given in Exercise 1.6 . Find the mean of the snow cover (a) for the
odd-numbered years and (b) for the even-numbered years.

9. Determine which columns of the data frag@ers93 (MASS library) are factors. For each of these factor
columns, print out the levels vector. Which of these are ordered factors?

10.Usesummary () to get information about data in the data fraaesquality, attitude (both in the
base library)andcpus (MASS library). Write brief notes, for each of these data sets, on what you have
been able to learn.

11 From the data frammetcars (MASS library) extract a data frammezcars6 which holds only the
information for cars with 6 cylinders.

12. From the data frameéars93 (MASS library) extract a data frame which holds only information for small
and sporty cars.

13. Store the numbers obtained in exercise 2, in order, in the columns of a 3 x 4 matrix.

14. Store the numbers obtained in exercise 3, in order, in the columns of a 6 by 4 matrix. Extract the matrix
consisting of rows 3 to 6 and columns 3 and 4, of this matrix.

15.Remove all the data frames which you have brought into the working directory.

22 30

??

31

4. Plotting

The functiongplot (), points(), Tines(), text(), mtext(), axis(), identify() etc.forma
suite that plots points, lines and text. To see some of the possibilities which R offers, enter

demo(graphics)
Press the Enter key to move to each new graph.

4.1 plot () and allied functions

The basic command is

plot(y~x)
or

plot(x,y)
wherex andy must be the same length. This second form of command is the model that you need to follow for
points(), Tines(), text(), etc.
Try

> plot((0:20)*pi/10, sin((0:20)*pi/10))

> plot((1:50)*1.75, sin((1:50)*1.75))
Comment on the appearance which these graphs present. Would you have guessed, if you had not known the
formula for plotting the data, that these pointsd lay on a sine curve?
Here are two further examples.

> attach(elastic) # R now knows where to find stretch & distance
> plot(stretch, distance) # Alternatively: plot(distance~stretch)
> detach(“elastic”) # Not strictly necessary, but it is well to tidy up.

> attach(austpop) # These are the data we read in from austpop.txt
plot(year, ACT, type="1") # Join the points

(Il‘lll = Il‘l.ine")
detach("austpop")

Thepoints () function allows you to add points to a plot. Thimes () function allows you to add lines to

a plot17. Thetext () function allows you to place text anywhere on the plot. iitext () function allows
you to place text in the margins. Taeis () function gives you fine control over axis ticks and labels.
You might also like to try

> attach(austpop)
> plot(spline(Yyear, ACT), type="1") # Fit smooth curve thru the points
> detach(“austpop™)

4.1.1 Newer plot methods

Above, | described the default plot method. There are other ways in which you galod®) . The plot

function is a generic function which has special methods for “plotting” various different classes of object. For
example, you can plot a data frame. Plotting a data frame gives, for each numeric variable, a normal probability
plot. Or you can plot thém object that is created by the use of tne() modelling function. This is designed

to give helpful diagnostic and other information that will aid in the interpretation of regression results.

17 Actually these functions are identical, differing only in the default setting for the pararggter The default

setting forpoints() istype = "p", and forlines() istype = "1". Explicitly settingtype = "p
causes either function to plot pointyype = "1" gives lines

22 32

Try
plot(hills) # Has the same effect as pairschills)

4.2 Fine control — Parameter settings

Much of the time, the default settings of parameters, such as character size, are adequate. If however you do
need to change parameter settingspte() function does this. For example,

par(cex=1.25, mex=1.25)
increases the text and plot symbol size 25% above the default. | havemadged 25 to ensure that there is
room in the margin to accommodate the increased text size.

On the first use gpar () to make changes to the current device, it is a good idea to store the existing settings,
so that you can restore them later. For this, you can specify

oldpar <- par(cex=1.25, mex=1.25)
This stores the existing settingsahdpar, then changes parameters (heex andmex) as requested. You
can then restore the original parameter settings laterpaitt{oTdpar). Inside a function it is a good idea to

specify, e. g.
oldpar <- par(cex=1.25, mex=1.25)
on.exit(par(oldpar))

Type inheTp(par) to get a list of all the parameter settings that are availablgpaiti() .

4.2.1 Multiple plots on the one page

The parametanfrow can be used to configure the graphics sheet so that subsequent plots appear row by row,
one after the other in a rectangular layout, on the one page. If you want a column by column layout, then use
mfcol. Inthe example below we look at four different transformations of the primates data.

par(mfrow=c(2,2))

data(Animals) # Needed if Animals (MASS library) is not already loaded
attach(Animals).

plot(body, brain)

plot(sqrt(body), sqrt(brain))

plot((body)A0.1, (brain)A0.1)

plot(log(body),Tog(brain))

detach("Animals"™)

par(mfrow=c(1,1)) # Restore to 1 figure per page

4.2.2 The shape of the graph sheet

Often it is desirable to exercise control over the shape of the graph page, e. g. so that the individual plots are
rectangular rather than square. In R for Windows you can usgnaiph () orx11() to set up the graphics

page. It takes the parameteredth (in inches)height (in inches) angpointsize (in 1/72 of an inch).

The setting opointsize (default =12) determines character heights. It is the relative sizes of these
parameters that matter for screen display or for incorporation into Word and similar programs. Graphs can be
enlarged or shrunk by pointing at one corner, holding down the left mouse button, and pulling.

4.3 Adding points, lines and text

Here is a simple example that shows how to use the funicigit () to add text labels to the points on a plot.

> primates
Bodywt Brainwt
Potar monkey 10.0 115
Gorilla 207.0 406
Human 62.0 1320

22 33

Rhesus monkey 6.8 179
Chimp 52.2 440
attach(primates) # Needed if primates is not already attached.
plot(Bodywt, Brainwt, xlim=c(5, 250))
specify x1im so that there is room for the Tlabels
> text(x=Bodywt, y=Brainwt,
Tabels=row.names(primates), adj=0) # adj=0 implies Teft adjusted text
> detach("primates™)
Fig. 7 shows the result.

VvV V V

dHuman
o
o _|
N
—
o
S _|
o
—
§ g |
m [ee]
ks g _
£ 8
o
s | &Chimp ©
Q
o
Q 1 Rhesus monkey
dPotar monkey
T T T T T
0 50 100 150 200
primates$Bodywt

Fig. 7: Plot of the primate data, with labels on points.

Fig. 7 would be adequate for identifying points, but is not a presentation quality graph. We now show how to
improve it.

In Fig. 8 we use the1ab (x-axis) andy1ab (y-axis) parameters to specify meaningful axis titles. We move the
labelling to one side of the points by including appropriate horizontal and vertical offsets. Ahwuse

par() $cxy[1] to get a 1-character space horizontal offset,chiul <- par() $cxy[2] togeta 1-

character height vertical offset. I've ugedh=16 to make the plot character a heavy black dot. This helps
make the points stand out against the labelling.

?? 34

o
o _|
Te}
-
eHuman
o
8 8
= —
(o)
K]
2
_C
s g4
0 e Chimp eGorilla
¢ Rhesus monkey
®Potar monkey
o p—
I I I I I I
0 50 100 150 200 250

Body weight (kg)
Fig. 8: Improved version of Fig. 7.

Here is the R code that we used in Fig. 8:
> plot(x=Bodywt, y=Brainwt, pch=16,
xlab="Body weight (kg)", ylab="Brain weight (g)",
x1im=c(5,250), ylim=c(0,1500))
> chw <- strwidth(“ “)
> chh <- strheight(“ “)
> text(x=Bodywt+chw, y=Brainwt+c(-.1,0,0,-.1,0)*chh,
Tlabels=primates$Species, adj=0)
To place the text to the left of the points, specify
> text(x=Bodywt- 0.75*chw, y=Brainwt+c(-.1,0,0,-.1,0)*chh,
labels=primates$Species, adj=1)

4.3.1 Adding Text in the Margin

mtext(side, 1ine, text, ..) adds textinthe margin of the current plot. The sides are numbered
1(x-axis), 2(y-axis), 3(top) and 4.

4.4 Other Useful Plotting Functions

4.4.1 Scatterplot smoothing
scatter.smooth() plots points, then adds a smooth curve through the points.

4.4.2 Normal probability plots

qgnorm(y) gives a normal probability plot of the elementyofThe points of this plot will lie approximately

on a straight line if the distribution is Normal. It is a good idea to calibrate your eye to recognise plots which
indicate non-normal variation by doing several normal probability plots for random samples of the relevant size
from a normal distribution, as in Fig. 9. Herés the difference between the columns four and one in the data

22 35

framemi Tk that we encountered in section 2.4.2. For a one-sample t-test to be valid, this vector of differences
should have an approximately Normal distribution.

" Random normal Random normal Random nor mal
[[[
o _ = N Z o~ 4 = o]
c c K c o c - .
o o 7 - [-1 Pt [- __."] -1 il
' — _] I~ o _ r o | P o o : :a
5] o ° i o © ¢ v o -
g o1 A S s °q.
S ‘% 5 ‘% N et ‘% v ..
' T ITTTTT ' I'TTTT i ITTTTT
-2 0 2 -2 0 2 -2 0 2 -2 0 2
T heoretica Quantiles T heoretica Quantiles T heoretica Quantiles T heoretica Quantiles
" Random normal Random normal Random normal Random nor mal
g o5 g 4 - g o5 $
3 - 3 o1 / 8 o4 7 s .1
o - o _| -
) '/ o o] /) _ .-f" o ° 1 &
a 1 - = .- ER = .
- - o * s N o
(% TTTTT (% S TTTTTTd (% FTTTT (% TTTTT
-2 0 2 -2 0 2 -2 0 2 -2 0 2
T heoretica Quantiles T heoretica Quantiles T heoretica Quantiles T heoretica Quantiles
" Random normal Random normal | Random normal Random nor mal
] v o]]
= T . = o] = - =
& « - /’ g — / S ,-"F‘ g T ~
S P > wn _| > © J > . 4
o 4 4 o o ¥ o 1/ o ° -
o2 @ - -~ o2 - 2 1 F
s 95 2 n EEEIE g ~q.7
£ . - E 5 - £ B A £ D
& T 111 G & TTTIT1 & T 111 & TT 1711
-2 0 2 -2 0 2 -2 0 2 -2 0 2
T heoretica Quantiles T heoretica Quantiles T heoretica Quantiles T heoretica Quantiles

Fig. 9: N ormal Probability Plots. The probability plot for the differences for the
milk tasting data is the top left plot. Remaining plots are for random normal data.

The code which produced Fig. 9 is:

par(mfrow=c(3,4)) # A 3 by 4 layout of plots
y <- elastic$four-elastic$one
qgnorm(y, ylab="Four - One™)

Normal probability plot for differences

in times, for the milk tasting data (20 values)
for(i in 1:11)qgnorm(rnorm(21)) # Plots for 11 normal random samples

each of size 20.

par(mfrow=c(1,1)) # Change back to default layout

The plot fory (= four - one in the milk data frame) at the top left does seem just as linear as any of the plots
of normal data. The idea is an important one. In order to judge whether data are normally distributed, one
examines a number of randomly generated samples of the same size from a normal distribution. It is a way to
train the eye.

By default,rnorm() generates random samples from a distribution with mean 0 and standard deviation 1.

4.4.3 Rug Plots

rug(x) adds, along the x-axis of the current plot, vertical bars showing the distribution of vakue®©né
can also add rugs along the y direction. Here is an example:

xyrange <- range(milk)
plot(four ~ one,

22 36

data = milk,

x1im = xyrange,

ylim = xyrange, pch = 16)
rug(miTk$one)

rug(milk$four, side = 2)
abline(0, 1)

Fig. 10 shows the result:

- '
- Y
~ ®
© T hd ®
- °
o T ®
= - ° °
=}
— °
8 - e o
¥ e
= ®
(‘0 p—
®
N p—
L1 | [| L1l |
T | | | | T
2 3 4 5 6 7

one

Fig. 10: Each of 20 panelists compared two milk samples for
sweetness. The y-ordinate is the assessment for four units of additive,
while the x-ordinate is the assessment for one unit of additive.

4.4.4 Scatterplot matrices

Section 2.1.3 demonstrated the use ofph@rs () function. Note that this function allows only very limited
control over graphics parameters. The paranw®rhas no effect on the size of the plotting symbols. Settings
of mar (inner margins) andma (outer margins) are ignored, in the latter case with extensive warning messages.

4.4.5 Histograms and Density Plots

It is worth learning to understand and use density plots, as an alternative or adjunct to histograms. The
appearance that histograms present can be strongly influenced by the choice of breakpoints between histogram
cells. Try the following:

v

data(islands) # From the base library
hist(islands)

plot(density(islands))
plot(density(sqrt(islands)))
plot(density(log(islands)))

VvV V V V

4.4.6 Dotplots
These can be a good alternative to barcharts. They have a much higher information to ink ratio! Try

”? 37

dotplot(islands) # Vector of named numeric values

Unfortunately there are many names, and there is substantial overlap. The following is better, but shrinks the
sizes of the points so that they almost disappear:

dotplot(islands, cex=0.2)

4.5 Plotting Mathematical Symbols

Both text () andmtext () will take an expression rather than a text strifg. plot (), either or both of
x1ab andyTab can be an expression. Fig. 11 was produced with

plot(x, y, x1ab="Radius”, ylab=expression(Area == pi*raA2))

o
o _|
s
IS
o
o _|
o
©
N
e
E o
Il 8 —
s <
S
<
o
o _|
o
~
o_

I I I I I I
0 10 20 30 40 50

Radius

Fig. 11: The y-axis label is a mathematical expresson.

The final plot from

demo(graphics)
shows some of the possibilities for plotting mathematical symbols.

4.6 Guidelines for Graphs

Design graphs to make their point tersely and clearly, with a minimum waste of ink. Label as necessary to
identify important features. In scatterplots the graph should attract the eye’s attention to the points that are
plotted, and to important grouping in the data. Use solid points, large enough to stand out relative to other
features, when there is little or no overlap.

When there is extensive overlap of plotting symbols, use open plotting symbols. Where points are dense,
overlapping points will give a high ink density, which is exactly what one wants.

Use scatterplots in preference to bar or related graphs whenever the horizontal axis represents a quantitative
effect.

Use graphs from which information can be read directly and easily in preference to those that rely on visual
impression and perspective. Thus in scientific papers contour plots are much preferable to surface plots or two-
dimensional bar graphs.

Draw graphs so that reduction and reproduction will not interfere with visual clarity.

22 38

Explain clearly how error bars should be interpreted SE limits,+ 95% confidence intervat, SD limits, or
whatever. Explain what source of “error(s)’ is represented. It is pointless to present information on a source of
error that is of little or no interest, for example analytical error when the relevant source of “error’ for
comparison of treatments is between fruit.

Use colour or different plotting symbols to distinguish different groups. Take care to use colours that contrast.

The list of references at the end of this chapter has further comments on graphical and other presentation issues.

4.7 Exercises

1. Plot the graph of brain weighirfain) versus body weighbpdy) for the data seinimals from theMASS
library. Label the axes appropriately.
[To access this data frame, spedifibrary(mass); data(Animals)]

2. Repeat the plot 1, but this time plotting log(brain weight) versus log(body weight). Use the row labels to label
the points with the three largest body weight values. Label the axes in untransformed units.

3. Repeat the plots 1 and 2, but this time place the plots side by side on the one page.

4. The data sdturon that accompanies these notes has mean July average water surface elevations, in feet,

IGLD (1955) for Harbor Beach, Michigan, on Lake Huron, Station 5014, for 18601-i98@Iternatively you
can work with the vectdrakeHuron from the ts library, which has mean heights for 1875-1772 only.)

a) Plotmean . height against year.

b) Use the identify function to determine which years correspond to the lowest and highest mean levels.
That is, type

identify(huron$year,huron$mean.height,labels=huron$year)

and use the left mouse button to click on the lowest point and highest point on the plot. To quit, press
both mouse buttons simultaneously.

c) As in the case of many time series, the mean levels are correlated from year to year. To see how
each year's mean level is related to the previous year's mean level, use

Tlag.plot(huron$mean.height)
This plots the mean level at year i against the mean level at year i-1.

5. Check the distributions of head lengthd Tngth) in thepossum19 data set that accompanies these notes.
Compare the following forms of display:

a) a histogramh(i st (possum$hdingth));
b) a stem and leaf plostem(qgnorm(possum$hdingth));
c) a normal probability plotggnorm(possum$hdingth)); and
d) a density plotglot density(possum$hdingth)).
What are the advantages and disadvantages of these different forms of display?

6. Tryx <- rnorm(10). Print out the numbers that you get. Look up the helpriarm. Now generate a
sample of size 10 from a normal distribution with mean 170 and standard deviation 4.

7. Usemfrow() to set up the layout for a 3 by 4 array of plots. In the top 4 rows, show normal probability
plots (section 4.4.2) for four separate ‘random’ samples of size 10, all from a normal distribution. In the middle
4 rows, display plots for samples of size 100. In the bottom four rows, display plots for samples of size 1000.
Comment on how the appearance of the plots changes as the sample size changes.

18 Source: Great Lakes Water Levels, 1860-1986. U.S. Dept. of Commerce, National Oceanic and
AtmosphericAdministration, National Ocean Survey.

19 pata relate to the papkeindenmeyer, D. B.Yiggers, K. L., Cunningham, R. B., and Donnelly, C. F. 1995.
Morphological variation among populations of the mountain brush tail po§sighpsuruscaninusOgilby
(PhalangeridaeMarsupialia). Australian Journal of Zoology 43: 449-458.

22 39

8. The functionrunif () can be used to generate a sample from a uniform distribution, by default on the
interval 0 to 1. Tryx <- runif(10), and print out the numbers you get. Then repeat exercise 6 above, but
taking samples from a uniform distribution rather than from a normal distribution. What shape do the points
follow?

*9. If you find exercise 8 interesting, you might like to try it for some further distributions. For examgpie
rchisq(10,1) will generate 10 random values from a chi-squared distribution with degrees of freedom 1.
The statement <- rt(10,1) will generate 10 random values from a t distribution with degrees of freedom
one. Make normal probability plots for samples of various sizes from these distributions.

4.8 References
Cleveland, W. S. 1993. Visualizing Data. Hobart Press, Summit, New Jersey.

Cleveland, W. S. 1985. The Elements of Graphing Data. Wadsworth, Monterey, California.

Maindonald J H 1992. Statistical design, analysis and presentation issues. New Zealand Journal of Agricultural
Research 35: 121-141.

Tufte, E. R. 1983. The Visual Display of Quantitative Information. Graphics Press, Cheshire, Connecticut,
U.S.A.

Tufte, E. R. 1990. Envisioning Information. Graphics Press, Cheshire, Connecticut, U.S.A.
Tufte, E. R. 1997. Visual Explanations. Graphics Press, Cheshire, Connecticut, U.S.A.
Wainer, H. 1997. Visual Revelations. Springer-Verlag, New York

22 40

??

41

5. Panel plots

Thecoplot () function is the equivalent of the S-PLUS trellis graphics funotigmlot (), but with a
limitation to two conditioning factors or variables only. It allows R users access to a very limited form of trellis
graphics. Trellis plots allow the use of the layout on the page to reflect meaningful aspects of data structure.

5.1 Examples that Present Panels of Scatterplots — Usiagpl ot ()

The function that draws panels of scatterploisaplot (). We will use data from an experiment on the
effects of the tinting of car windows on visual performazﬁceData are in the data framiént.st. In this data
frame,csoa (critical stimulus onset asynchrony, i. e. the time in milliseconds required to recognise an
alphanumeric target) it (inspection time, i. e. the time required for a simple discrimination task) age

are variables, whil&inting (3 levels) andarget (2 levels) are ordered factors. The variad#s is coded

1 for males and 2 for females, while the varigggp is coded 1 for young people (all in their early 20s) and
2 for older participants (all in the early 70s).

coplot(csoa~it|tinting+target,data=tint.st)
coplot(csoa~it|tinting+target,col=palette()[tint.st$sex],data=tint.st)

Use different colours to identify sex
coplot(csoa~it|tinting+target, data=tint.st, panel=panel.smooth)
coplot(csoa~it|tinting+target, pch=tint.st$agegp, data=tint.st,
panel=panel.smooth)

Different colours for different agegroups, and show smooth

There seems no easy way to do separate smooths by agegroup

All four of the above commands plosoa againsti t for each combination dfinting andtarget. The

second command uses different colours for the different colours for males and females. The third command
adds a smooth. The fourth command uses different symbols for males and females, and a smooth. The graph
given by this fourth and final command is shown in Fig. 12.

20 Burns, N. R.Nettlebeck, T., White, M. and/illson, J. 1999. Effects of car window tinting on visual
performance: a comparison of elderly and young drivers. Ergonomics 42: 428-443.

22 42

Given : tinting
0.5 1.0 1.5 2.0 2.5 3.0 3.5

T T T T T T T
50 100 200 50 100 200
1 1 1 1 1 1 1 1
4 — @
L o
o
Fo
-
o
8 o % o ° e — § N
AR o Ao L D4 ° z o~
A 009 o Ao A8 2 -2
o o °0 oo % ——
o A 5]
op © ¥ 2 g’
A
§ AA - 1 L]]le*=
o -
c
© 3]
. 2
g | O
—
Q 4 ° 2 4 § <
© o ° I —
o ° -
o J o o
81 &,
o | ° °A°°
< ? o
AN +4 Fo
T T T T
50 100 200

Fig. 12: The use ofoplot (). For this graph, specify:
coplot(csoa~it|tinting+target, pch=tint.st$agegp, data=tint.st,
panel=panel.smooth)

Question: Why is it desirable to ensure thainting andtarget are ordered factors, rather than simply
factors?

5.1.1 Using Ranges of Continuous Variables to Define Panels

Where conditioning is on a continuous varialdep1ot () will break it down into ranges which in general
overlap. The parametaumber controls the number of ranges, aander1ap controls the fraction of overlap.
For example

coplot(time ~ distance | climb, data=hills, overlap=0.5, number=3)

By defaultoverlap is 0.5, i. e. each successive pair of categories have around half their values in common.

5.2 The Panel Function
The panel function controls what appears in any panel. Users are able to supply their own.

5.3 Exercises

1. The following data gives milk volume (g/day) for smoking and nonsmoking mdthers
Smoking Mothers: 621, 793, 593, 545, 753, 655, 895, 767, 714, 598, 693
Nonsmoking Mothers: 947, 945, 1086, 1202, 973, 981, 930, 745, 903, 899, 961

Present the data (i) in side by side boxplots; (ii) using a dotplot form of display.

21 pata are from the paper ~"Smoking During Pregnancy and Lactation and Its Effects on Breast Milk Volume"
(Amer. J. of Clinical Nutrition).

22 43

2. Repeat the plot as in exercise 1, but this time including a scatterplot smooth on each panel.

3. Taking the data framghips that accompanies these notes, plotidents against service for each
level of consyr (construction period) and for each leveperiod (period of service).

4. Repeat the plot from exercise 4, but now plotiog(i dents+1) against loggervice), and use a different
colour or plot symbol for each differeshiptype.

5. For the possum data set, generate the following plots for each separate pordgli@nd for each sex
(sex) separately:

a) histograms dfid1ngth — usehistogram();
b) normal probability plots didTngth — useqgmath();
c) density plots ohd1ngth — usedensityplot().

The histogram function allows you to control the ratio of the y to x scatgsect) and the number of intervals
(nint). Investigate the effect of varying these. Tensityplot function allows you to vary parameters
aspect andwidth. The parametaridth controls the width of the smoothing window. Investigate the
effect of varying these paramters.

6. The following exercises relate to the data frggossum that accompanies these notes:

(a) Using thecop1ot function, explore the relation betwekdTngth andtot1ngth, taking into account
sex andPop.

(b) Construct a contour plot chest versushelly andtot1ngth.
(c) Construct box and whisker plots tad 1ngth, usingsite as a factor.

(d) Construct normal probability plots fhd1gth, for each separate level 8&€x andPop. Is there evidence
that the distribution ohdT1gth varies with the level of these other factors.

7. The framairquality thas is in the base library has columbgone, Solar.R, Wind, Temp, Month
andDay. PlotOzone againsiSolar.R for each of three temperature ranges, and each of three wind ranges.

?? 44

??

45

6. Linear (Multiple Regression) Models and Analysis of Variance

6.1 The Model Formula in Straight Line Regression

We begin with the straight line regression example that appeared earlier, in section 2.1.4. First we will plot the
data:

> plot(distance ~ stretch, data=elastic)
The code for the regression calculation is:

> elastic.Im <- Im(distance ~ stretch, data=elastic)
Heredistance ~ stretch is a model formula. We will meet more general types of model formulae in the
course of this chapter. Fig. 13 shows the plot:

180

160

distance
140

120
|

I I I I I I I
42 44 46 48 50 52 54

stretch

Fig. 13: Plot of distance (cm) versus stretch (mm) for
the rubber band data, with fitted least squares line.

The output from the regression is Bm object, which we have callegll astic.Tm . Now examine a summary
of the regression results. Notice that the documentation of the call gives details of the model formula.

> options(digits=4)
> summary(elastic.1m)

call:
Tm(formula = distance ~ stretch, data = band)

Residuals:
1 2 3 4 5 6 7
2.107 -0.321 18.000 1.893 -27.786 13.321 -7.214

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) -63.57 74.33 -0.86 0.431
stretch 4.55 1.54 2.95 0.032

22 46

Residual standard error: 16.3 on 5 degrees of freedom
Multiple R-Squared: 0.635, Adjusted R-squared: 0.562
F-statistic: 8.71 on 1 and 5 degrees of freedonm, p-value: 0.0319

6.2 Regression Objects

An Tm object is a list of named elements. Above, we created the @djasttic.1m . Here are the names of
its elements:

> names(elastic.Tm)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values™ "assign" "gqr" "df.residual”
[9] "xlevels" "call" "terms" "model"

>

Various functions are available for extracting information that you might want from the list. This is better than
manipulating the list directly. Examples are:

> coef(elastic.Tm)

(Intercept) stretch
-63.571 4.554
> resid(elastic.1m)
1 2 3 4 5 6 7
2.1071 -0.3214 18.0000 1.8929 -27.7857 13.3214 -7.2143
>

The function most often used to inspect regression outgwnimary (). It extracts the information that users
are most likely to want. For example, in section 6.1, we had
summary(elastic.1m)

There is a plot method fdm objects. It gives diagnostic information. Fig. 13 shows the result of typing in:
par(mfrow = c(2, 2))
plot(elastic.1m)

By default the first, second and fourth plot use the row names to identify the three most extreme residuals. [If
explicit row names are not given when the data frame is created, then the row numbers will be used.]

”? 47

Residuals vs Fitted Normal Q-Q plot

o
S 7 ® s 8 0 @
g s g
» 8 -
Tg o o o ° x o o O ©
o B
g 9- ° £o34 o
& 3
. 3 .
g o
% — £] ®
I I I I I I I I I I I
130 150 170 -1.0 0.0 05 1.0
Fitted values Theoretical Quantiles
Scale-Location plot Cook's distance plot
1 — ° @
[S
o
< Q ©
o E S
o - 7]
° S < |
~ 2 o
o o e o
— o =}
° o i |
o 4 > | . .
I I I I I I e I I I I I I I
130 150 170 1 2 3 4 5 6 7
Fitted values Obs. number

Fig. 14: Diagnostic plot of Im object, obtainedfpyot (elastic.1m).

6.3 Model Formulae, and the X Matrix

The model formula for the lawn roller example whisstance ~ stretch. The model formula is a recipe

for setting up the calculations. All the calculations described in this chapter require the use of an model matrix
or X matrix, and a vector y of values of the dependent variable. For some of the examples we discuss later, it
helps to know what the X matrix looks like. Details for the elastic band example follow.

The straight line model is
y=a+bx+residual
which we write as

y=1xa+xxbh+residual

22 48

The X matrix, with the y-vector alongside, is:

X y
Stretch (mm) Distance (cm)

1 46 148
1 54 182
1 48 173
1 50 166
1 44 109
1 42 141
1 52 166

The functiormodeT.matrix() prints out the model matrix. Thus:

> model.matrix(distance ~ stretch, data=elastic)
(Intercept) stretch

1 1 46
2 1 54
3 1 48
4 1 50
5 1 44
6 1 42
7 1 52
attr(,"assign")

[1] 01

>

Another possibility, withelastic. 1m as in section 6.1, is:
> model.matrix(elastic.1m)

For each row, one takes some multiple of the value in the first column of the model matrix, another multiple of
the value in the second column, and adds them, tdfigiee values. Another name jsedicted values. The aim

is to reproduce, as closely as possible, the values in the y-colummesihels are the differences between the
values in the y-column and the fitted values. Least squares regression, which is the form of regression that we
describe in this course, chooseandb so that the sum of squares of the residuals is as small as possible.

The following are the fitted values and residuals that we get with the estimatés ¥3.6) and (= 4.55) that
a least squares regression program chooses for us:

22 48

X y y y-y

Stretch (mm) (Fitted) (Observed) (Residual)
x-63.6 x4.55 1x-63.6 + 4.55 Stretch , [Distance (mm Observed - Fitted
1 46 -63.6 + 4.55 71521475_.7_! 148 148-145.7 = 2.3
1 54 -63.6 + 45554 =182.1 182 182-182.1 =-0.1
1 48 -63.6 + 4.55¢ 48 = 154.8 173 173-154.8 = 18.2
1 50 -63.6 + 4.55 50 = 163.9 166 166-163.9= 2.1
1 44 -63.6 + 45544 = 136.6 109 109-136.6 = -27.6
1 42 -63.6 + 455 42 =127.5 141 141-127.5=13.5
1 52 -63.6 + 455 52 =173.0 166 166-173.0=-7.0

Note that we usé/ [pronounced y-hat] as the symbol for predicted values.

We might alternatively fit the simpler (nho intercept) model. For this we have
y=xxb+e

wheree is random variation with mean 0. The X matrix then consists of a single column, the x’s.

6.3.1 Model Formulae in General
Here is what model formulae look like:

y~X+2 :Im, gim,, etc.

y~x+fac+fac:x :Im, gim, aov, etc. (Ifac is a factor anc is a variablefac: x allows a
different slope for each different level bac.)

Model formulae are widely used to set up most of the model calculations in R.

The R parsezr2 makes no distinction between model formulae and the sorts of formulae that are used for
specifying coplots. The difference may matter once one tries to do something with the formula. By way of
reminder, here is a graph formula for coplots.

y~x | facl+fac?2

This gives a plot of againstx for each different combination of levelsfic1 (across the page) arfdc2
(up the page).

*6.3.2 Manipulating Model Formulae
Model formulae can be assigned, e. g.

formyxz <- formula(y~x+2z)
or

formyxz <- formula(“y~x+z")

22 The parser is a part of the R implementation code. It takes R statements and turns them into code which can
be more directly executed by the computer.

22 50

The argument to formula() can, as just demonstrated, be a text string. This makes it straightforward to paste the
argument together from components that are stored in text strings.

For example

> names(elastic)

[1] "stretch"” "distance™

> nam_names(elastic)

> formds<-paste(nam[1],"~",nam[2])
> Tm(formds,data=elastic)

call:
Tm(formula = formds, data = elastic)

Coefficients:
(Intercept) distance
26.3780 0.1395

6.4 Multiple Linear Regression Models

6.4.1 The data frame Rubber

The data seRubber from theMASSlibrary is from the accelerated testing of tyre rubRefThe variables are
Toss (the abrasion loss in gm/hrhhard (hardness in “Shore’ units), abens (tensile strength in kg/sg m).

We examine the scatterplot matrix (Fig. 15)

2 The original source is O.L. Davies (1947) Statistical Methods in Research and Prod@dtienandBoyd,
Table 6.1 p. 119.

22 o1

o
. o * o 9
. . B
. . o
)) -9
g L)
loss ‘e o * ¢ . * -
L * ¢ + O o
* e *e * ¢ . s r a
ee
.) -
. . . . °
L —
:' ° . s}
o _
o . © o ®
) . .
.)
S Jee ® . « ¢, . - .
. . -)
o - ee . . e
) . . .
. . hard . PR
8 b L4 . . e o . d
*® . .
o | * . . *
o)
. .
o
* U
eee © ® ¢ o o N
)
. . -
e o ee
. hd e . - S
e o . . N
b . . . tens -
[} .] o e 9 ° LIPS | 8
—
LI s *, |
.
LIS e o
[. F
T T T T T T T T T T T T T T —
50 150 250 350 120 160 200 240

Fig. 15: Scatterplot matrix for the Rubber data frame.

There is a negative correlation between loss and hardness. We proceed to regre$mlodsaandtens.

Rubber.1m <- Tm(loss~hard+tens, data=Rubber)
> options(digits=3)
> summary (Rubber.Tm)

call:
Im(formula = Toss ~ hard + tens, data = Rubber)

Residuals:
Min 1Q Median 3Q Max
-79.38 -14.61 3.82 19.75 65.98

coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 885.161 61.752 14.33 3.8e-14
hard -6.571 0.583 -11.27 1.0e-11
tens -1.374 0.194 -7.07 1.3e-07

Residual standard error: 36.5 on 27 degrees of freedom

Multiple R-Squared: 0.84, Adjusted R-squared: 0.828

F-statistic: 71 on 2 and 27 degrees of freedom, p-value: 1.77e-011
The examination of diagnostic plots is left as an exercise.

6.4.2 weights of Books

??

The books to which the data in the datactbdbooks (accompanying these notes) refer were chosen to cover a
wide range of weight to height ratios. Here are the data:

> oddbooks
thick height width weight

1 14 30.5 23.0 1075
2 15 29.1 20.5 940
3 18 27.5 18.5 625
4 23 23.2 15.2 400
5 24 21.6 14.0 550
6 25 23.5 15.5 600
7 28 19.7 12.6 450
8 28 19.8 12.6 450
9 29 17.3 10.5 300
10 30 22.8 15.4 690
11 36 17.8 11.0 400
12 44 13.5 9.2 250

Notice that as thickness increases, weight reduces.

logbooks <- log(oddbooks) # we might expect weight to be
proportional to thick * height * width
Tlogbooks. Tml<-1m(weight~thick,data=1ogbooks)
summary (logbooks.Tml) $coef
Estimate Std. Error t value Pr(>|t])
(Intercept) 9.69 0.708 13.7 8.35e-08
thick -1.07 0.219 -4.9 6.26e-04

>
>
>
>

> Tlogbooks.Tm2<-1Tm(weight~thick+height,data=1ogbooks)
> summary(logbooks.1m2) $coef
Estimate Std. Error t value Pr(>|t])

(Intercept) -1.263 3.552 -0.356 0.7303
thick 0.313 0.472 0.662 0.5243
height 2.114 0.678 3.117 0.0124

> Togbooks.1m3<-Tm(weight~thick+height+width,data=1ogbooks)
> summary(logbooks.1m3) $coef
Estimate Std. Error t value Pr(>|t]|)

(Intercept) -0.719 3.216 -0.224 0.829
thick 0.465 0.434 1.070 0.316
height 0.154 1.273 0.121 0.907
width 1.877 1.070 1.755 0.117

So isweight proportional tathick * height * width?

The correlations betweerhick, height andwidth are so strong that if one tries to use more than one of
them as a explanatory variables, the coefficients are ill-determined. They contain very similar information, as is
evident from the scatterplot matrix. The regressionseight andwidth give plausible results, while the
coefficient of the regression drhi ck is entirely an artefact of the way that the books were selected.

The design of the data collection really is important for the interpretation of coefficients from a regression
equation. The design for the collection of these data was about as bad as it gets!

22 53

6.5 Polynomial and Spline Regression

We show how calculations that have the same structure as multiple linear regression may be used to model a
curvilinear response. We build up curves from linear combinations of transformed values. A warning is that the
use of polynomial curves of high degree are in general unsatisfactory. Spline curves, which are constructed by
joining together low order polynomial curves (typically cubics) in such a way that the slope changes smoothly,
are in general preferable.

6.5.1 Polynomial Terms in Linear Models

The data framseedrates®” that accompanies these notes gives, for each of a number of different seeding
rates, the number of barley grain per head.

> plot(grains ~ rate, data=seedrates) # Plot the data

Fig. 16 shows the data, with fitted quadratic curve:

grain
18.0 185 19.0 195 20.0 205 21.0
L

I I I I I
60 80 100 120 140

rate

Fig. 16: Plot of number of grain per head versus sedingrate,
for the barley seedingrate data, with fitted quadratic curve.

We will need an X-matrix with a column of ones, a column of valugaae, and a column of values of
rate?. We can achieve this by putting batate andI (rateA2) into the model formula.
> seedrates.Im2<-Tm(grain~rate+I(rateA2),data=seedrates)

> summary(seedrates.1m2)

call:
Im(formula = grain ~ rate + I(rateA2), data = seedrates)

Residuals:
1 2 3 4 5

24 Data are fromMcLeod, C. C. (1982) Effect of rates of seeding on barley grown for grain.Zdaland
Journal of Agriculture 10: 133-136. Summary details are in Maindonald, J. H. (1992).

?? 54

0.04571 -0.12286 0.09429 -0.00286 -0.01429

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) 24.060000 0.455694 52.80 0.00036
rate -0.066686 0.009911 -6.73 0.02138
I(rateA2) 0.000171 0.000049 3.50 0.07294

Residual standard error: 0.115 on 2 degrees of freedom

Multiple R-Squared: 0.996, Adjusted R-squared: 0.992

F-statistic: 256 on 2 and 2 degrees of freedom, p-value: 0.0039

> hat <- predict(seedrates.1m2)

> Tines(spline(seedrates$rate, hat))

> # Placing the spline fit through the fitted points allows a smooth curve.
> # For this to work the values of seedrates$rate must be ordered.

>

Again, check the form of the model matrix. Type in:

> model.matrix(grain~rate+I(rateA2),data=seedrates)
(Intercept) rate I(rateA2)

1 1 50 2500
2 1 75 5625
3 1 100 10000
4 1 125 15625
5 1 150 22500

attr(,"assign")
[1] 012

This example demonstrates a way to extend linear models to handle specific types of non-linear relationships.
We can use any transformation we wish to form columns of the model matrix. We could, if we wished, add an
x3 column.

Once the model matrix has been formed, we are limited to taking linear combinations of columns.

6.5.2 What order of polynomial?
A polynomial of degree 2, i. e. a quadratic curve, looked about right for the above data. How does one check?

One way is to fit polynomials, e. g. of each of degrees 1 and 2, and compare them thus:

> seedrates.Iml<-Tm(grain~rate,data=seedrates)

> seedrates.Im2<-Tm(grain~rate+I(rateA2),data=seedrates)
> anhova(seedrates.1m2,seedrates.Tml)

Analysis of variance Table

Model 1: grain ~ rate + I(rateA2)
Model 2: grain ~ rate
Res.Df Res.sum Sq Df Sum Sq F value Pr(>F)
1 2 0.026286
2 3 0.187000 -1 -0.160714 12.228 0.07294

The F-value is large, but on this evidence there are too few degrees of freedom to make a totally convincing case
for preferring a quadratic to a line. However the paper from which these data come gives an independent
estimate of the error mean square (0.17 on 35 d.f.) based on 8 replicate results that were averaged to give each
value for number of grains per head. If we compare the change in the sum of squares (0.1607, on 1 df) with a

22 55

mean square of 0.1735 df), the F-value is now 5.4 on 1 and 35 degrees of freedom, and we have p=0.024 .
The increase in the number of degrees of freedom more than compensates for the reduction in the F-statistic.

> # However we have an independent estimate of the error mean

> # square. The estimate is 0.17A2, on 35 df.

> 1-pf(0.16/0.17A2, 1, 35)

[1] 0.0244
Finally note that Rwas 0.972 for the straight line model. This may seem good, but given the accuracy of these
data it was not good enough! The statistic is an inadequate guide to whether a model is adequate. Even for any
one context, Rwill in general increase as the range of the values of the dependent variable increises. (R
larger when there is more variation to be explained.) A predictive model is adequate when the standard errors of
predicted values are acceptably small, not wheadRieves some magic threshold.

6.5.3 Spline Terms in Linear Models

By now, readers of this document will be used to the idea that it is possible to use linear models to fit terms that
may be highly nonlinear functions of one or more variables. The fitting of polynomial functions was a simple
example of this. Spline functions variables extend this idea further. The splines that | demonstrate are
constructed by joining together cubic curves, in such a way the joins are smooth. The places where the cubics
join are known as “knots’. It turns out that, once the knots are fixed, and depending on the class of spline curves
that are used, spline functions of a variable can be constructed as a linear combination of basis functions, where
each basis function is a transformation of the variable.

The data frame&ars is in the base library.
> data(cars)

> plot(dist~speed,data=cars)

> Tlibrary(splines)

> cars.Im<-Tm(dist~bs(speed) ,data=cars) # By default, there are no knots
> hat<-predict(cars.1m)

> lines(cars$speed,hat,1ty=3) # NB assumes values of speed are sorted

> cars5.Im<-Tm(dist~bs(speed,5),data=cars) # try for a closer fit (1 knot)
> ci5<-predict(cars.1m5,interval="confidence",se.fit=T)

> names(ci5)

[1] "fit" "se.fit" "df" "residual.scale"
Tines(cars$speed,ci5$fit[,"fit"])

> lines(cars$speed,ci5S$fit[,"lwr"],1ty=2)

> Tines(cars$speed,ci5$fit[, "upr”], 1ty=2)
>

v

6.6 Using Factors in R Models

Factors are essential, when there are categorical or “factor” variables, for specifying R models. Consider data

from an experiment that compared houses with and without cavity insGfatidthile one would not usually

handle these calculations usinglammodel, it makes a simple example to illustrate the choice of a baseline

level, and a set of contrasts. Different choices, although they fit equivalent models, give output in which some of
the numbers are different and must be interpreted differently.

We begin by entering the data from the command line:

> insulation <- factor(c(rep("without™, 8), rep("with", 7)))
8 without, then 7 with

25 Data are from Hand, D. J.; Daly, Eynn, A. D.;Ostrowski, E., eds. (1994). A Handbook of Small Data
Sets. Chapman and Hall.

22 56

"with’ precedes "without’ in alphanumeric order, & is the baseline
> kwh <- ¢(10225, 10689, 14683, 6584, 8541, 12086, 12467,
12669, 9708, 6700, 4307, 10315, 8017, 8162, 8022)

To formulate this as a regression model, we take kWh as the dependent variable, and the factor insulation as the
explanatory variable.

> insulation <- factor(c(rep("without™, 8), rep("with", 7)))

> # 8 without, then 7 with

> kwh <- ¢(10225, 10689, 14683, 6584, 8541, 12086, 12467,
+ 12669, 9708, 6700, 4307, 10315, 8017, 8162, 8022)
> insulation.Im <- Im(kwh ~ insulation)
> summary(insulation.lm, corr=F)

call:
Tm(formula = kwh ~ insulation)

Residuals:
Min 1Q Median 3Q Max
-4409 -979 132 1575 3690

coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 7890 874 9.03 5.8e-07
insulation 3103 1196 2.59 0.022

Residual standard error: 2310 on 13 degrees of freedom
Multiple R-Squared: 0.341, Adjusted R-squared: 0.29
F-statistic: 6.73 on 1 and 13 degrees of freedom, p-value: 0.0223

The p-value is 0.022, which may be taken to indicate (p < 0.05) that we can distinguish between the two types of
houses. But what does the “intercept” of 7890 mean, and what does the value for “insulation” of 3103 mean?
To interpret this, we need to know that the factor levels are, by default, taken in alphabetical order, and that the
initial level is taken as the baseline. Wioth comes beforwi thout, andwi th is the baseline. Hence:

Average for Insulated Houses = 7980

To get the estimate for uninsulated houses take 7980 + 3103 = 10993.

The standard error of the difference is 1196.

6.6.1 The Model Matrix

It often helps to think in terms of the model matrix or X matrix. Here are the X and the y that are used for the
calculations. Note that the first eight data values wemiglhouts:

Contrast kWh

”? 57

x 7980 x 3103 Add to get Compare with Residual
1 1 7980+3103=10993 10225 10225-10993
1 1 7980+3103=10993 10689 10689-10993
1 1 7980+3103=10993 14683 etc.
1 1 7980+3103=10993 6584
1 1 7980+3103=10993 8541
1 1 7980+3103=10993 12086
1 1 7980+3103=10993 12467
1 1 7980+3103=10993 12669
1 0 7980+0 9708 9708-7980
1 0 7980+0 6700 6700-7980
1 0 7980+0 4307 etc.
1 0 7980+0 10315
1 0 7980+0 8017
1 0 7980+0 8162
1 0 7980+0 8022
Type in

model.matrix(kwh~insulation)

and check that you get the above model matrix.

*6.6.2 Other Choices of Contrasts

There are other ways to set up the X matrix. In technical jargon, there are other contrasts that one can choose.
One obvious alternative is to makéthout the first factor level, so that it becomes the baseline. You can do
this in the following way:

insulation <- factor(insulation, labels=c("without", "with"))
Make “without’ the baseline

Another possibility is to use what are called the “sum” contrasts. With the “sum” contrasts the baseline is the
mean over all factor levels. The effect for the first level is omitted; the user has to calculate it as minus the sum

of the remaining effects. Here is the output you get if you use the “sum’ cSitrasts
> options(contrasts = c("contr.sum”, "contr.poly"), digits = 2)

Try the “sum’ contrasts

> insulation <- factor(insulation, levels=c("without™, "with"))
Make “without' the baseline

> insulation.Im <- Im(kwh ~ insulation)

> summary(insulation.lm, corr=F)

call:

%5 The second string element, i."eontr.poly", is the default setting for factors with ordered levels. [One
uses the function ordered() to create ordered factors.]

22 o8

Im(formula = kwh ~ insulation)

Residuals:
Min 1Q Median 3Q Max
-4409 -979 132 1575 3690

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) 9442 598 15.78 7.4e-10
insulation 1551 598 2.59 0.022

Residual standard error: 2310 on 13 degrees of freedom
Multiple R-Squared: 0.341, Adjusted R-squared: 0.29
F-statistic: 6.73 on 1 and 13 degrees of freedom, p-value: 0.0223

Here is the interpretation:
average of (mean for “without”, “mean for with”) = 9442

To get the estimate for uninsulated houses (the first level), take 9442 + 1551 = 10993
The “effects’ sum to one. So the effect for the second level (with’) is -1551. Thus
to get the estimate for insulated houses (the first level), take 9442 =183R0.

The sum contrasts are sometimes called “analysis of variance” contrasts.

You can set the choice of contrasts for each factor separately, with a statement such as:

> insulation <- C(insulation, contr=treatment)
Also available are the Helmert contrasts. These are not at all intuitive, even though S-PLUS uses them as the
default. Novices should avoid théf

6.7 Multiple Lines — Different Regression Lines for Different Species

The terms which appear on the right of the model formula may be variables or factors, or interactions between
variables and factors, or interactions between factors. Here we take advantage of this to fit different lines to
different subsets of the data.

In the example which follows, we had weights for a porpoise spetatkeifa styx) and for a dolphin species
(Delphinus delphis). We takex; to be a variable which has the value ODatphinus delphis, and 1 forStellena
styx. We takex, to be body weight. Then possibilities we may want to consider are:

A: Asingleline:y=a+bx,

B: Two parallel lines:yy =a; +a; x; +b x,
[For the first group fellena styx; x; = 0) the constant term &, while for the second groupé phinus
delphis; x; = 1) the constant term & + a,.]

C: Two separate lineg:=a; +a, X; + by Xo + by Xy %o
[For the first group@elphinus delphis; x; = 0) the constant term & and the slope is;. For the second group
(Sellena styx; x; = 1) the constant term & + a,, and the slope is; + b,.]

2" The interpretation of thieelmert contrasts is simple enough when there are just two levels. With >2 levels,
thehelmert contrasts give parameter estimates which in general do not make a lot of sense, basically because the
baseline keeps changing, to the average for all previous factor levels. You do better to use either the treatment
contrasts, or the sum contrasts. With the sum contrasts the baseline is the overall mean.

S-PLUS makekbelmert contrasts the default, perhaps for reasons of computational efficiency. This was an
unfortunate choice.

22 59

We show results from fitting the first two of these models, i. e. A and B:

plot(logheart ~ logweight, data=dolphins) # Plot the data
options(digits=4)

cet.1ml <- Tm(logheart ~ logweight, data = dolphins)
summary(cet.Iml, corr=F)

VvV V V V

call:
Tm(formula = logheart ~ logweight, data = dolphins)

Residuals:
Min 1Q Median 3Q Max
-0.15874 -0.08249 0.00274 0.04981 0.21858

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.325 0.522 2.54 0.024
Togweight 1.133 0.133 8.52 6.5e-07

Residual standard error: 0.111 on 14 degrees of freedom

Multiple R-Squared: 0.838, Adjusted R-squared: 0.827
F-statistic: 72.6 on 1 and 14 degrees of freedom, p-value: 6.51e-007
>

For model B (parallel lines) we have
> cet.Im2 <- Im(logheart ~ species + logweight, data=dolphins)

Check what the model matrix looks like:
> model.matrix(cet.1m2)

(Intercept) factor(species) Togweight

1 1 1 3.555
2 1 1 3.738
3 1 1 4.263
4 1 1 4.174
5 1 1 4.143
6 1 1 4.159
7 1 1 3.807
8 1 0 3.989
9 1 0 4.078
10 1 0 3.912
11 1 0 3.738
12 1 0 4.007
13 1 0 3.611
14 1 0 3.850
15 1 0 3.689
16 1 0 3.951
attr(,"assign")

[11 012

attr(,"contrasts")
[1] "contr.treatment"

Now look at an output summary:

??

> summary(cet.Tm2)

call:
Tm(formula = logheart ~ factor(species) + logweight, data = dolphins)

Residuals:
Min 1Q Median 3Q Max
-0.1163 -0.0649 -0.0114 0.0606 0.1282

coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.6052 0.4139 3.88 0.0019
factor(species) 0.1435 0.0448 3.21 0.0069
Togweight 1.0458 0.1067 9.80 2.3e-07

Residual standard error: 0.0859 on 13 degrees of freedom

Multiple R-Squared: 0.91, Adjusted R-squared: 0.896
F-statistic: 65.5 on 2 and 13 degrees of freedom, p-value: 1.62e-007
>

> plot(cet.1m2) # Plot diagnostic information for the model just fitted.

For model C, the statement is:
> cet.1m3 <- Tm(logheart ~ factor(species) + logweight +

factor(species):logweight, data=dolphins)

Check what the model matrix looks like:
> model.matrix(cet.1m3)

(Intercept) factor(species) Togweight factor(species).logweight

1 1 1 3.555 3.555
2 1 1 3.738 3.738
3 1 1 4.263 4.263
4 1 1 4.174 4.174
5 1 1 4.143 4.143
6 1 1 4.159 4.159
7 1 1 3.807 3.807
8 1 0 3.989 0.000
9 1 0 4.078 0.000
10 1 0 3.912 0.000
11 1 0 3.738 0.000
12 1 0 4.007 0.000
13 1 0 3.611 0.000
14 1 0 3.850 0.000
15 1 0 3.689 0.000
16 1 0 3.951 0.000
attr(,"assign")

[110123

attr(,"contrasts")$"factor(species)"
[1] "contr.treatment"

Now see why one should not waste time on model C.
> anova(cet.Iml,cet.1m2,cet.1m3)

Analysis of variance Table

??

Model 1: logheart ~ logweight
Model 2: logheart ~ factor(species) + logweight

Model 3: logheart ~ factor(species) + logweight + factor(species):logweight

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 14 0.1717

2 13 0.0959 1 0.0758 10.28 0.0069
3 12 0.0949 1 0.0010 0.12 0.7346
>

6.8 aov models (Analysis of Variance)

The class of models which can be directly fittedhas models is quite limited. In essenemv provides, for
data where all combinations of factor levels have the same number of observations, another viea of an

model. One can however specify the error term that is to be used in testing for treatment effects. See section

6.8.2 below.

By default, R uses the treatment contrasts for factors, i. e. the first level is taken as the baseline or reference
level. A useful function izeTevel (). The parametaref can be used to set the level that you want as the

reference level.

6.8.1 Plant Growth Example
Here is a simple randomised block design:

??

> data(PlantGrowth) # From the MASS library
> attach(PlantGrowth)

> boxplot(split(weight,group)) # Looks OK

> data(Q

> PlantGrowth.aov<-aov(weight~group)

> summary(PlantGrowth.aov)

Df Sum Sgq Mean Sq F value Pr(>F)
group 2 3.7663 1.8832 4.8461 0.01591
Residuals 27 10.4921 0.3886
> summary.Im(PlantGrowth.aov)

call:
aov(formula = weight ~ group)

Residuals:
Min 1Q Median 3Q Max
-1.0710 -0.4180 -0.0060 0.2627 1.3690

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) 5.0320 0.1971 25.527 <2e-16
grouptrtl -0.3710 0.2788 -1.331 0.1944
grouptrt2 0.4940 0.2788 1.772 0.0877

Residual standard error: 0.6234 on 27 degrees of freedom
Multiple R-Squared: 0.2641, Adjusted R-squared: 0.2096

F-statistic: 4.846 on 2 and 27 degrees of freedom, p-value: 0.01591

62

> help(cabbages)

> data(cabbages) # From the MASS Tlibrary
> names(cabbages)
[1] "cult" "Date" "Headwt" "vitcC"

> coplot(Headwt~VitC]|Cult+Date,data=cabbages)

Examination of the plot suggests that cultivars differ greatly in the variability in head weight. Variation in the
vitamin C levels seems relatively consistent between cultivars.
> VitC.aov<-aov(VitC~Cult+Date,data=cabbages)
> summary(VvitC.aov)
Df Sum Sg Mean Sg F value Pr(>F)

cult 1 2496.15 2496.15 53.0411 1.179e-09
Date 2 909.30 454.65 9.6609 0.0002486
Residuals 56 2635.40 47 .06

>

*6.8.2 Shading of Kiwifruit Vines

These data (yields in kilograms) are in the data frkivei shade which accompanies these notes. They are

from an experimer%? where there were four treatments - no shading, shading from August to December, shading
from December to February, and shading from February to May. Each treatment appeared once in each of the
three blocks. The northernmost plots were grouped in one block because they were similarly affected by shading
from the sun. For the remaining two blocks shelter effects, in one case from the east and in the other case from
the west, were thought more important. Results are given for each of the four vines in each plot. In

experimental design parlance, the four vines within a plot constitute subplots.

ThebTock: shade mean square (sum of squares divided by degrees of freedom) provides the error term. (If
this is not specified, one still gets a correct analysis of variance breakdown. But the F-statistics and p-values will
be wrong.)

> kiwishade$shade <- relevel(kiwishade$shade, ref="none™)

> ## Make sure that the level “none” (no shade) is used as reference

> kiwishade.aov<-aov(yield~block+shade+Error(block:shade),data=kiwishade)
> summary (kiwishade.aov)

Error: block:shade

Df Sum Sgq Mean Sq F value Pr(>F)
block 2 172.35 86.17 4.1176 0.074879
shade 3 1394.51 464.84 22.2112 0.001194
Residuals 6 125.57 20.93

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 36 438.58 12.18
> coef(kiwishade.aov)
(Intercept) :
(Intercept)
96.5327

28| am grateful to W. SSnelgar for the use of these data. Further details, including a diagram showing the
layout of plots and vines and details of shelter, are in Maindonald (1992).

22 63

block:shade :
blocknorth blockwest shadeAug2Dec shadeDec2Feb shadeFeb2May
0.993125 -3.430000 3.030833 -10.281667 -7.428333

within :
numeric(0)

6.9 Exercises

1. Using the data framears (in the base library), platistance (i. e. stopping distance) verssipeed. Fit

a line to this relationship, and plot the line. Then try fitting and plotting a quadratic curve. Does the quadratic
curve give a useful improvement to the fit? If you have studied the dynamics of particles, can you find a theory
that would tell you how stopping distance might change with speed?

2. Using the data framt®i 11s (in library MASS), regresstime ondistance andc1imb. What can you
learn from the diagnostic plots which you get when you ploi thebject? Try also regressid@g(time) on
Tog(distance) andlog(c1imb). Which of these regression equations would you prefer?

3. Using the data frameeams (in the data sets accompanying these notes), carry out a regression of
strength onSpecificGravity andMoisture. Carefully examine the regression diagnostic plot,
obtained by supplying the name of the object as the first parametergdot (). What does this indicate?

4. Type

> hosp<-rep(c(”RNC”,”Hunter”,”Mater”),2)

> hosp

> fhosp<-factor(hosp)

> levels(fhosp)
Now repeat the steps involved in forming the fadtoosp, this time keeping the factor levels in the oRRC,
Hunter, Mater.

Usecontrasts(fhosp) to form and print out the matrix of contrasts. Do this using helmert contrasts,
treatment contrasts, and sum contrasts. Using an outcome variable

y <- c(2,5,8,10,3,9)
fit the modellm(y~fhosp), repeating the fit for each of the three different choices of contrasts. Comment on
what you get.

For which choice(s) of contrasts do the parameter estimates change when you re-order the factor levels?

5. In section 6.7 check the form of the model matrix (i) for fitting two parallel lines and (ii) for fitting two
arbitrary lines when one uses then contrasts. Repeat the exercise forhlienert contrasts.

6. In the data setement (MASS library), examine the dependenceygamount of heat produced) &h, x2, x3
andx4 (which are proportions of four constituents). Begin by examining the scatterplot matrix. As the
explanatory variables are proportions, do they require transformation, perhaps by takiithdogf)? What
alternative strategies one might use to find an effective prediction equation?

7. In the data sqiressure (base library), examine the dependence of pressure on temperature.
[Transformation of temperature makes sense only if one first converts to degrees Kelvin. Consider
transformation of pressure. A logarithmic transformation is too extreme; the direction of the curvature changes.
What family of transformations might one try?

*8. Repeat the analysis of thd wi shade data (section 6.8.2), but replacigror (block: shade) with
block:shade. Comment on the output that you get fremmmary (). To what extent is it potentially
misleading? Also do the analysis wherebA®ck: shade term is omitted altogether. Comment on that
analysis.

6.10 References
Atkinson, A. C. 1986. Comment: Aspects of diagnostic regression analysis. Statistical Science 1, 397-402.
Atkinson, A. C. 1988. Transformations Unmasked. Technometrics 30: 311-318.

?? 64

Cook, R. D. and Weisberg, S. 1999. Applied Regression including Computing and Graphics. Wiley.

Harrell, F. E., Lee, K. L., and Mark, D. B. 1996. Tutorial in Biostatistics. Multivariable Prognostic Models:
Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors.
Statistics in Medicine 15: 361-387.

Maindonald J H 1992. Statistical design, analysis and presentation issues. New Zealand Journal of Agricultural
Research 35: 121-141.

Venables, W. N. and Ripley, B. D., 2nd edn 1997. Modern Applied Statistics with S-Plus. Springer, New York.

Weisberg, S.,” edn, 1985. Applied Linear Regression. Wiley.
Williams, G. P. 1983. Improper use of regression equations in the earth sciences. Geology 11: 195-197

22 65

7. Multivariate and Tree-Based Methods

7.1 Multivariate EDA, and Principal Components Analysis
Principal components analysis is often a useful exploratory tool for multivariate data. The patessat that
accompanies these notes has nine morphometric measurements on each of 102 mountain brushtail possums,

trapped at seven sites from southern Victoria to central Quee%gslaNcith such data it is sensible to begin by
examining relevant scatterplot matrices. This may draw attention to gross errors in the data. A plot in which the
sites and/or the sexes are identified will draw attention to any very strong structure in the data. For example one
site may be quite different from the others, for some or all of the variables.

Here are some of the possibilities for examining these data:

pairs(possum[,6:14], col=palette()[as.integer(possum$sex)])
pairs(possum[,6:14], col=palette()[as.integer(possum$site)])

here<-!is.na(possum$pes) # we need to exclude missing values
print(sum(!here)) # Check how many values are missing
Tibrary(mva) # Load x-variate analysis library

possum.prc <- princomp(possum[here,6:14]) # Principal components

Print scores on second pc versus scores on first pc,

by populations and sex, identified by site

coplot(possum.prc$scores[,2] ~
possum.prc$scores[,1] | possum$Pop[here]+possum$sex[here],
col=palette() [as.integer(possum$site)])

Fig. 17, which uses different plot symbols for different sites, was produced using:

coplot(possum.prc$scores[,2] ~
possum.prc$scores[,1] | possum$Pop[here]l+possum$sex[here],
pch=as.integer(possum$site))

29 For further details, sdendenmayer, D. B.Yiggers, K. L., Cunningham, R. B., and Donnelly, C. F. 1995.
Morphological variation among columns of the mountaimshtail possumnilrichosurus caninus Ogilby
(PhalangeridaeMarsupiala). Australian Journal of Zoology 43: 449-458.

22 66

Given : possum$Pop[here]

0.5 1.0 1.5 2.0 25
1 1 1 1 1
| other |
Vic |
T T T T T
15 5 0 5 10
I N N N N < =
+ % - — 2
X N
e
<>WI§!E
~ oooo EEP - © o '@‘
7 T e Lo] Eirs g
A =
o - %
o A L S 3
8 +*
& o 4 o4 — | ® %
°c - x - 2
S Do o
E 77 v oy P =
7 o i 5
g AR 11- L2 2
o ®% O]
0 o 0o B
-V
o
S 4
' i B | w
A o
T T T T T 1
-15 -5 0 5 10

possum.prc$scores], 1]

Fig. 17: Second principal component versus first principal component,
by population and by sex, for the possum data.

7.2 Cluster Analysis

In the language of Ripley (19938) cluster analysis is a form of unsupervised classification. It is “unsupervised”
because the clusters are not known in advance. There are two types of algorithms — algorithms based on
hierachical agglomeration, and algorithms based dterative relocation.

In hierarchical agglomeration each observation starts as a separate group. Groups that are “close” to one
another are then successively merged. The output yields a hierarchical clustering tree which shows the
relationships between observations and between the clusters into which they are successively merged. A
judgement is then needed on the point at which further merging is unwarranted.

In iterative relocation, the algorithm starts with an initial classification, which it then tries to improve. How
does one get the initial classification? Typically, by a prior use of a hierarchical agglomeration algorithm.

Themva library has the cluster analysis routines. The function dist() calculates distances. The function hclust()
does hierarchical agglomerative clustering, with a choice of methods available. The function kmeans() (k-means
clustering) implements iterative relocation.

7.3 Discriminant Analysis

We start with data which are classified into several groups, and want a rule which will allow us to predict the
group to which a new data value will belong. In the language of Ripley (1996), our interest is in supervised
classification. For example, we may wish to predict, based on prognostic measurements and outcome
information for previous patients, which future patients will remain free of disease symptoms for twelve months

30 References are at the end of the chapter.

”? 67

or more. Here are calculations for fhes sum data frame, using theda () function from the Venables &
Ripley MASSlibrary:

> Tibrary(mass) # only if not already attached.
> here<- !is.na(possum$pes)

> possum.lda <- lda(site~hdlngth+skullw+totlngth+

+ taill+pes+earconch+eye+chest+belly,data=possum,

+ subset=here)

> options(digits=4)

> possum.lda$svd # Examine the singular values

[1] 15.7578 3.9372 3.1860 1.5078 1.1420 0.7772

>

> plot(possum.lda, dimen=3)

> # Scatterplot matrix for scores on 1st 3 canonical variates, as in Fig. 18

377777 74 4 4 7 7%] 3 752 5@ s o
7 7 - o
LD1 2 2 L
2]:.I' 1 12 <
1,1 B
5 ﬁézlglgnﬂ;ﬁ%i 1 1 2% L7
2 2Lt 1871 B
hy i [
7 3
4 3 4 34 1

11111]?111 ‘}41@505 7 S
[=) —]112?%11}1 7%‘%% LD2 l B75 %@; ?*56

1 7
~ 2511 2 g?ﬁ 7772772367}2%§e
2 2
< - 292 2 2

11222%2311 , 7237;3;65 2 e%;gg% 14134 LD3 : j

Fig. 18: Scatterplot matrix for the first 3 canonica variates.

The singular values are the ratio of between to within group sums of squares, for the canonical variates in turn.
Clearly canonical variates after the third will have little if any discriminatory power. One can use
predict.1da() to get (among other information) scores on the first few canonical variates.

Where there are two groups, logistic regression is often effective. Perhaps the best source of code for handling
more general supervised classification problems is Hastie and Tibshirelai@nixture discriminant analysis)

library. There is a brief overview of this library in the Venables and Ripley "Complements’, referred to in
section 13.2..

7.4 Decision Tree models (Tree-based models)

We include tree-based classification here because it is a multivariate supervised classification, or discrimination,
method. A tree-based regression approach is available for use for regression problems. Tree-based methods

22 68

seem more suited to binary regression and classification than to regression with an ordinal or continuous
dependent variable.

Tree-based modelalso known as “Classification and Regression Trees” (CART), may be suitable for
regression and classification problems when there are extensive data. One advantage of such methods is that
they automatically handle non-linearity and interactions. Output includes a “decision tree” which is immediately
useful for prediction.

Tibrary(rpart)

data(fgl) # Forensic glass fragment data; from MASS Tlibrary
glass.tree <- rpart(type ~ RI+Na+Mg+Al+Si+K+Ca+Ba+Fe, data=fgl)
plot(glass.tree); text(glass.tree)

summary(glass.tree)

To use these models effectively, you also need to know about approaches to pruning trees, and about cross-
validation. Methods for reduction of tree complexity that are based on significance tests at each individual node
(i. e. branching point) typically choose trees that over-predict.

The Atkinson and Therneau RPART (recursive partitioning) library is closer to CART than is the S-PLUS tree
library. It integrates cross-validation with the algorithm for forming trees.

7.5 Exercises

1. Using the data spainters (MASSlibrary), apply principal components analysis to the scores for
composition, Drawing, Colour, andExpression. Examine the loadings on the first three principal
components. Plot a scatterplot matrix of the first three principal components, using different colours or symbols
to identify the different schools.

2. The data setars93 is in theMASSlibrary. Using the columns of continuous or ordinal data, determine

scores on the first and second principal components. Investigate the comparison between (i) USA and non-USA
cars, and (i) the six different typeby(pe) of car. Now create a new data set in which binary factors become
columns of 0/1 data, and include these in the principal components analysis.

3. Repeat the calculations of exercises 1 and 2, but this time using the fumtio) from theMASS library to
derive canonical discriminant scores, as in section 7.3.

4. The MASS library has th&i ds2 data set, containing de-identified data on the survival status of patients
diagnosed with AIDS before July 1 1991. Use tree-based classificapamrt ()) to identify major
influences on survival.

5. Investigate discrimination between plagiotropic and orthotropic species in the dleeaﬁehape3l.

7.6 References

Chambers, J. M. and Hastie, T. J. 1992. Statistical Models in S. Wadsworth and Brooks Cole Advanced Books
and Software, Pacific Grove CA.

Everitt, B. S. and Dunn, G. 1992. Applied Multivariate Data Analysis. Arnold, London.

Friedman, J., Hastie, T. and Tibshirani, R. (1998). Additive logistic regression: A statistical view of boosting.
Available from the internet.

Magidson, Jay 1996. SPSS for Windows CHAID Release 6. SPSS Inc., Chicago.
Ripley, B. D. 1996. Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge UK.

Therneau, T. M. and Atkinson, E. J. 1997. An Introduction to Recursive Partitioning Using the RPART
Routines. This is one of two documents included in:
http://ww. stats. ox.ac. uk/ pub/ SWn/rpartdoc. zip

31 These paper are discussed in the paper King. D. A.; Maindonald, J. H. 1999. Tree architecture in relation to
leaf dimensions and tree stature in temperate and tropical rain folegtsal of Ecology 87: 1012-1024.

22 69

Venables, W. N. and Ripley, B. D., 2nd edn 1997. Modern Applied Statistics with S-Plus. Springer, New York.

22 70

??

71

8. Useful Functions

8.1 Common Useful Functions

> print(Q # Prints a single R object

> cat(Q) # Prints multiple objects, one after the other

> length(Q) # Number of elements in a vector or of a list

> mean()

> median()

> range()

> unique() # Gives the vector of distinct values

> diffQ # Replace a vector by the vector of first differences
N. B. diff(x) has one less element than x

> sort() # sort elements into order, but omitting NAs

> order() # x[order(x)] orders elements of x, with NAs Tlast

> cumsum()

> cumprod()

> rev(Q) # reverse the order of vector elements

The functionsmean(), median(), range(), and a number of other functions, take the argument
na.rm=T; i. e.remove NAs, then proceed with the calculation.

By default,sort () omits any NAs. The functioarder () places NAs last. Hence:

> x <- c(1, 20, 2, NA, 22)
> order(x)

[1113254

> X[order(x)]

[1] 1 2 20 22 NA

> sort(x)

[1] 1 2 20 22

8.2 Making Tables

tabTe() makes a table of counts. Specify one vector of values (often a factor) for each table margin that is
required. Here are some examples

> table(isTlandcities$country) # islandcities accompanies these notes.
Australia Cuba Indonesia Japan Philippines Taiwan United Kingdom

3 1 4 6 2 1 2
>

> table(Barley$year,Barley$site) # Barley accompanies these notes
CDGRMUFW

193155 55 55

1932 55 55 55
>

WARNING: NAs are ignored unless you specify otherwise. The action neededNissgtbulated under a
separatdA category depends, annoyingly, on whether or not the vector is a factor. If the vector is not a factor,
specifyexclude=NULL. If the vector is a factor then you need to generate a new factor in iNAc¢his

included as a level. Specify <- factor(x,exclude=NULL)

> x_c(1,5,NA,8)

22 7?2

> X <- factor(x)

> X

[111 5 NA S8

Levels: 15 8

> factor(x,exclude=NULL)
[1]1 5 NA S8

Levels: 1 5 8 NA

8.3 Matching and Ordering

> match(<vecl>, <vec2>) ## For each element of <vecl>, returns the
position of the first occurrence in <vec2>

> order(<vector>) ## Returns the vector of subscripts giving
the order in which elements must be taken

so that <vector> will be sorted.
> rank(<vectors>) ## Returns the ranks of the successive elements.

Numeric vectors will be sorted in numerical order. Character vectors will be sorted in alphanumeric order.

The functioomatch () can be used in all sorts of clever ways to pick out subsets of data. For example:

> X <- rep(1:5,rep(3,5))
> X
[11111222333444555
> two4 <- match(x,c(2,4), nomatch=0)
> twod
[11000111000222000
> # We can use this to pick out the 2s and the 4s
> as.logical(two4)
[1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE
[13] FALSE FALSE FALSE
> x[as.logical(two4)]
[11 222444

8.4 String Functions

substring(<vector of text strings>, <first position>, <last position>)
nchar(<vector of text strings>)
Returns vector of number of characters in each element.

*8.4.1 Operations with Vectors of Text Strings — A Further Example

The following stores, imblank, the position of the first occurrence of a blank space in the calake in
the datasetars93 from theMASSlibrary.

nblank <- sapply(cars93$make, function(x){n <- nchar(x);
a <- substring(x, 1:n, 1:n); m <- match(" ", a,nomatch=1); m})

To extract the first part of the name, up to the first space, specify

car.brandnames <- substring(cars93$make, 1, nblank-1)
> car.brandnames[1:5]
[1] "Acura™ "Acura"™ "Audi™ "Audi™ "BMW"

22 73

8.5 Application of a Function to the Columns of an Array or Data Frame
apply(<array>, <dimension>, <function>)
lapply(<list>, <function>)
N. B. A dataframe is a Tist. oOutput is a Tist.

sapply(<list>, <function>)
As lapply(), but simplify (e. g. to a vector

or matrix), if possible.

The function sapply() can be useful for getting information about the columns of a data frame. We illustrate with
the data frameioths which accompanies these notes:

> sapply(moths,is.factor) # Determine which columns are factors
meters A P habitat
FALSE FALSE FALSE TRUE
> # How many Tlevels does each factor have?
> sapply(moths, function(x)if(!is.factor(x))return(0) else

Tength(levels(x)))
meters A P habitat
0 0 0 8

The functionsapply () often works most conveniently if we can ensure that the function we use returns just
one element for each column. We can reduce the 8 levdiaboirtat to one character string, with the levels
separated by spac€¥), by specifyingpaste(, collapse=" “)

> sapply(moths, function(x)if(!is.factor(x))return("") else
paste(levels(x),collapse=" "))
meters
A
P
habitat

"Bank Disturbed Lowerside NEsoak Nwsoak SEsoak Swsoak Upperside"

8.6 tapply()

The arguments are a variable, a list of factors, and a function which operates on a vector to return a single value.
For each combination of factor levels, the function is applied to corresponding values of the variable. The
output is an array with as many dimensions as there are factors. Where there are no data values for a particular
combination of factor levels, NA is returned.

Often one wishes to get back, not an array, but a data frame with one row for each combination of factor levels.
For example, we may have a data frame with two factors and a numeric variable, and want to create a new data
frame with all possible combinations of the factors, and the cell means as the response. Here is an example of
how to do it.

First, usetapp1y () to produce an array of cell means. The functidmnames (), applied to this array,

returns a list whose first element holds the row names (i. e. for the level names for the first factor), and whose
second element holds the column names. [Further dimensions are possible.] We pass this list (row names,
column names) texpand.grid(), which returns a data frame with all possible combinations of the factor
levels. Finally, stretch the array of means out into a vector, and append this to the data frame. Here is an
example using the data seitbbages from the MASS library.

> data(cabbages)

> names(cabbages)

[1] "cult" "Date" "Headwt" "vitcC"
> sapply(cabbages, levels)

?? 74

$cult
[1] l|c39ll l|c52l|

$Date
[1] Ild16ll Ild20ll Ild21ll

$Headwt
NULL

$vitc
NULL

> attach(cabbages)
> cabbages.tab <- tapply(Headwt, list(Cult, Date), mean)
> cabbages. tab # Two varieties by three planting dates
die d20 d21
c39 3.18 2.80 2.74
c52 2.26 3.11 1.47
> cabbages.nam <- dimnames(cabbages.tab)
> cabbages.nam # There are 2 dimensions, therefore 2 Tist elements
[[11]
[1] "c39" "c52"

[[2]1]
[1] Ild16ll IId20II IId21II
> ## We now stretch the array of means out into a vector, and create

> ## a new column of cabbages.df, named Means, that holds the means.
> cabbages.df <- expand.grid(cult=factor(cabbages.nam[[1]]),
+ Date=factor(cabbages.nam[[2]]))
> cabbages.df$Means <- as.vector(cabbages.tab)
> cabbages.df

Cult Date Means

1 c39 die 3.18
2 ¢52 die 2.26
3 c39 d20 2.80
4 c¢52 d20 3.11
5 c39 d21 2.74
6 ¢52 d21 1.47

In a case where there are no data for some combinations of factor levels, one might want to omit the
corresponding rows.

8.7 Breaking Vectors and Data Frames Down into Lists — sp(it
As an example,

split(cabbages$Headwt, cabbages$Date)
returns a list with three elements, the first named “d16” and containing valHeadfit whereDate has the
level d16, and similarly for the remaining lists with names “d20” and “d21”. You need tspib&t () in this
way in order to do side by side boxplots. The funchomplot () takes as its first element a list in which the
first list element is the vector of values for the first boxplot, the second list element is the vector of values for the
second boxplot, and so on.

22 75

You can use split to split up a data frame into a list of data frames. For example

split(cabbages[,-1], cabbages$pate) # Split remaining columns
by levels of Date

*8.8 Merging Data Frames

The data fram€ars93 (MASSlibrary) holds extensive information on data from 93 cars on sale in the USA in
1993. One of the variables, stored as a factdrype. | have created a data frarogpe . df which holds two
character abbreviations of each of the car types, suitable for use in plotting.

> type.df

Type abbrev
1 Compact co
2 Large L
3 Midsize
4 small Sm
5 Sporty Sp
6 van \%

As yet R does not havemerge () function, for merging data frames. Here however our demands are simple,
and we can proceed thus:
> subs <- match(cCars93$Type, type.df$Type, nomatch=0)
> Cars93$abbrev <- type.df$abbrev[subs]
This creates a data frame which has the abbreviations in the additional column withakdmrev”.
If there had been rows with missing valueggpe, these would have been omitted from the new data frame.

One can avoid this by making sure that Type has NA as one of its levels, in both data frabygee . dhf, one
would need to specify a value @bbrev corresponding to NA, perhaps “nk”.

8.9 Dates

There are two libraries for working with dates — tfaée library and thechron library.

We demonstrate the use of tiate library. The function adate () will convert a character string into a dates
object. By default, dates are stored using January 1 1960 as origin. This is important when you use
as.integer to convert a date into an integer value.

> as.date("1/1/60", order="dmy")

[1] 13Jan60

> as.date("1/12/60","dmy™)

[1] 1pec60

> as.date("1/12/60","dmy")-as.date("1/1/60","dmy™)
[1] 335

> as.date("31/12/60","dmy"™)

[1] 31Dec60

> as.date("31/12/60","dmy")-as.date("1/1/60","dmy™)
[1] 365

> as.integer(as.date("1/1/60","dmy"))

[1] O

> as.integer(as.date("1/1/2000","dmy"))
[1] 14610
> as.integer(as.date(29/2/2000","dmy"))
[1] 14669
> as.integer(as.date("1/3/2000","dmy"))

22 76

[1] 14670

A wide variety of different formats are possible. Among the legal formats are 8-31-2000 (or 31-8-2000 if you
specifyorder="dmy"”), 8/31/2000 (cf 31/8/2000), or August 31 2000.

Observe that one can subtract two dates and get the time between them in days. There are several functions
(includingdate.ddmmmyy ()) for printing out dates in various different formats.

8.10 Exercises

1.

??

For the data fram€ars93, get the information provided lgummary () for each level offype.
(Use sp1it(Q).)

Determine the number of cars, in the data fr@aes93, for eachOrigin andType.

In the data framelaims: (a) determine the number of rows of information for each age category

(age) and car typet{ype); (b) determine the total number of claims for each age category and car

type; (c) determine, for each age category and car type, the number of rows for which data are missing;
(d) determine, for each age category and car type, the total cost of claims.

Determine the number of days, according to R, between the following dates:
a) January 1 in the year 1700, and January 1 in the year 1800
b) January 1 in the year 1998, and January 1 in the year 2000

77

9. Writing Functions and other Code
We have already met several functions. Here is a function to convert Fahrenheit to Celsius:

> fahrenheit2celsius <- function(fahrenheit=32:40) (fahrenheit-32)*5/9
> # Now invoke the function

> fahrenheit2celsius(c(40,50,60))

[1] 4.444444 10.000000 15.555556

The function returns the valugahrenheit-32)*5/9. More generally, a function returns the value of the
last statement of the function. Unless the result from the function is assigned to a name, the result is printed.

Here is a function that prints out the mean and standard deviation of a set of humbers:

mean.and.sd <- function(x=1:10){
av <- mean(x)

sd <- sgrt(var(x))

c(mean=av, SD=sd)

}

Now invoke the function
mean.and.sd()

mean SD
5.500000 3.027650

vV V.V + 4+ + + V

> mean.and.sd(hil1s$cTimb)
mean SD
1815.314 1619.151

9.1 Syntax and Semantics

A function is created using an assignment. On the right hand side, the parameters appear within round brackets.
You can, if you wish, give a default. In the example above the default was x = 1:10, so that users can run the
function without specifying a parameter, just to see what it does.

Following the closing “)” the function body appears. Except where the function body consists of just one
statement, this is enclosed between curly braces ({}). The return value usually appears on the final line of the
function body. In the example above, this was the vector consisting of the two named elements mean and sd.

9.2 A Function that gives Data Frame Details

First we will define a function which accepts a veot@s its only argument. It will allow us to determine
whether x is a factor, and if a factor, how many levels it has. The built-in furidiohactor () will return T
if X is a factor, and otherwise F. The following functftaclev () usesis.factor() to test whethex is
a factor. It prints out O K is not a factor, and otherwise the number of levels of

> faclev <- function(xX)if(!is.factor(x))return(0) else
length(levels(x))

Earlier, we encountered the functisapply () which can be used to repeat a calculation on all columns of
a data frame. [More generally, the first argumergapply () may be a list.] To applfaclev() to all
columns of the data frameths we can specify

> sapply(moths, faclev)
We can alternatively give the definition Bac1ev directly as the second argumensafpp 1y, thus

> sapply(moths, function(x)if(!is.factor(x))return(0)

22 78

else length(levels(x))

Finally, we may want to do similar calculations on a number of different data frames. So we create a function
check.df () which encapsulates the calculations. Here is the definitichetk .df ().

check.df <- function(df=moths)

sapply(df, function(x)if(!is.factor(x))return(0) else
Tength(levels(x)))

9.3 Naming and Record-Keeping Issues

As far as possible, make code self-documenting. Use meaningful names for R objects. Ensure that the names
used reflect the hierarchies of files, data structures and code.

R allows the use of names for elements of vectors and lists, and for rows and columns of arrays and dataframes.
Consider the use of names rather than numbers when you pull out individual elements, columns etc. Thus
dead.tot[,”dead”] is more meaningful and safer thdead. tot[,2].

Structure computations so that it is easy to retrace them. For this reason substantial chunks of code should be
incorporated into functions sooner rather than later.

9.4 DataManagement

Where data, labelling etc must be pulled together from a number of sources, and especially where you may want
to retrace your steps some months later, take the same care over structuring data as over structuring code. Thus
if there is a factorial structure to the data files, choose file names that reflect it. You can then generate the file
names automatically, usippaste () to glue the separate portions of the name together.

Lists are a useful mechanism for grouping together all data and labelling information that one may wish to bring
together in a single set of computations. Use as the name of the list a unique and meaningful identification code.
Consider whether you should include objects as list items, or whether identification by name is preferable. Bear
in mind, also, the use a&fwitch (), with the identification code used to determine wdvat tch () should

pick out, to pull out specific information and data that is required for a particular run.

Concentrate in one function the task of pulling together data and labelling information, perhaps with some
subsequent manipulation, from a number of separate files. This structures the code, and makes the function a
source of documentation for the data.

Use user-defined data frame attributes to document your data. For example, given a data frame “roller”
containing roller weights and resulting lawn depressions, you might specify

attributes(rubber)$title <-
“Extent of stretch of band, and Resulting Distance”

9.5 Issues for the Writing and Use of Functions
There can be many functions. Choose the names for your own functions carefully, so that they are meaningful.

Choose meaningful names for arguments, even if this means that they are longer than you would like.
Remember that they can be abbreviated in actual use.

Settings that you may need to change in later use of the function should appear as default settings for parameters.
Use lists, where this seems appropriate, to group together parameters that belong together conceptually.

Where appropriate, provide a demonstration mode for functions. Such a mode will print out summary
information on the data and/or on the results of manipulations prior to analysis, with appropriate labelling. The
code needed to implement this feature has the side-effect of showing by example what the function does, and
may be useful for debugging.

Break your functions up into a small number of sub-functions or “primitives”. Re-use existing functions

wherever possible. Write any new “primitives” so that they can be re-used. This helps ensure that functions
contain well-tested and well-understood components. Watch s-news (section 1.9) for useful functions for routine
tasks.

22 79

If at all possible, give parameters sensible defaults. Often a good strategy is to use as defaults parameters that
will serve for a demonstration run of the function.

NULL is a useful default where the parameter mostly is not required, but where the parameter if it appears may
be any one of several types of data structure. Theité§t!is.nul11()) then determines whether one needs
to investigate that parameter further.

Structure code to avoid multiple entry of information.

9.6 Graphs

Use graphs freely to shed light both on computations and on data. One of R’s big pluses is its tight integration of
computation and graphics.

9.7 A Simulation Example

We would like to know how well such a student might do by random guessing, on a multiple choice test
consisting of 100 questions each with five alternatives. We can get an idea by using simulation. Each question
corresponds to an independent Bernoulli trial with probability of success equal to 0.2. We can simulate the
correctness of the student for each question by generating an independent uniform random number. If this
number is less than .2, we say that the student guessed correctly; otherwise, we say that the student guessed
incorrectly.

This will work, because the probability that a uniform random variable is less than .2 is exactly .2, while the
probability that a uniform random variable exceeds .2 is exactly .8, which is the same as the probability that the
student guesses incorrectly. Thus, the uniform random number generator is simulating the student. R can do this
as follows:

guesses<-runif(100)

correct.answers = 1*(guesses < .2)
The multiplication by 1 causdguesses<.2), which is calculated aBRUE or FALSE, to be coerced to 1
(TRUE) or O (FALSE). The vectorcorrect.answers thus contains the results of the student's guesses. A1
is recorded each time the student correctly guesses the answer, while a 0 is recorded each time the student is
wrong.

One can thus write an R function which simulates a student guessing at a True-False test consisting of some
arbitrary number of questions. We leave this as an exercise.

9.7.1 Poisson Random Numbers

You can think of the Poisson distribution as the distribution of the total for occurrences of rare events. For
example, the occurrence of an accident at an intersection on any one day should be a rare event. The total
number of accidents over the course of a year may well follow a distribution which is close to Poisson.

[However the total number of people injured is unlikely to follow a Poisson distribution. Why?] We can

generate Poisson random numbers usipgis (). Itis similar to thebinom function, but there is only one
parameter — the mean. Suppose for example traffic accidents occur at an intersection with a Poisson distribution
that has a mean rate of 3.7 per year. To simulate the annual number of accidents for a 10-year period, we can
specifyrpois(10,3.7).

We pursue the Poisson distribution in an exercise below.

9.8 Exercises

1. Use theround function together withrunif () to generate 100 random integers between 0 and 99. Now
look up the help fosample(), and use it for the same purpose.

2. Write a general function to carry out the calculations of section 8.6. More specifically, the function will take
as its arguments a list of response variables, a list of factors, a data frame, and a function. It will return a data
frame in which each value for each combination of factor levels is summarised in a single statistic, for example
the mean or the median.

22 80

3. Rewrite the function used for Fig. 8 (section 2.5.2) so that, given the name of a data frame and of any two of
its columns, it will plot the second named column against the first named column, showing alsoythe line

4. Write a function that prints, with their row and column labels, only those elements of a correlation matrix for
which abs(correlation) >= 0.9.

5. Write your own wrapper function for one-way analysis of variance which provides a side by side boxplot of
the distribution of values by groups. If no response variable is specified, the function will generate random
normal data (no difference between groups) and provide the analysis of variance and boxplot information for
that.

6. Write a function which adds a text string containing documentation information as an attribute to a dataframe.

7. Write a function that computes a moving average of order 2 of the values in a given vector. Apply the above
function to the data (in the data betron that accompanies these notes) for the levels of Lake Huron. Repeat
for a moving average of order 3.

8. Find a way of computing the moving averages in exercise 3 that does not involve the use of a for loop.

9. Create a function to compute the average, variance and standard deviation of 1000 randomly generated
uniform random numbers, on [0,1]. (Compare your results with the theoretical results: the expected value of a
uniform random variable on [0,1] is 0.5, and the variance of such a random variable is 0.0833.)

10. Write a function which generates 100 independent observations on a uniformly distributed random variable
on the interval [3.7, 5.8]. Find the mean, variance and standard deviation of such a uniform random variable.
Now modify the function so that you can specify an arbitrary interval.

11. Look up the help for theamp1e () function. Use it to generate 50 random integers between 0 and 99,
sampled without replacement. (This means that we do not allow any number to be sampled a second time.)
Now, generate 50 random integers between 0 and 9, with replacement.

12. Write an R function which simulates a student guessing at a True-False test consisting of 40 questions. Find
the mean and variance of the student's answers. Compare with the theoretical values of .5 and .25.

13. Write an R function which simulates a student guessing at a multiple choice test consisting of 40 questions,
where there is chance of 1 in 5 of getting the right answer to each question. Find the mean and variance of the
student's answers. Compare with the theoretical values of .2 and .16.

14. Write an R function which simulates the number of working light bulbs out of 500, where each bulb has a
probability .99 of working. Using simulation, estimate the expected value and variance of the random variable
X, which is 1 if the light bulb works and 0 if the light bulb does not work. What are the theoretical values?

15. Write a function that does an arbitrary nuntbef repeated simulations of the number of accidents in a
year, plotting the result in a suitable way. Assume that the number of accidents in a year follows a Poisson
distribution. Run the function assuming an average rate of 2.8 accidents per year.

16. Write a function which simulates the repeated calculation of the coefficient of variation (= the ratio of the
mean to the standard deviation), for independent random samples from a normal distribution.

17. Write a function which, for any sample, calculates the median of the absolute values of the deviations from
the sample median.

*18. Generate random samples from normal, exponential, t (2 d. f.), and t (1 d. f.), thus:
a) xn<-rnorm(100)
b) xe<-rexp(100)
c) xt2<-rt (100, df=2)
d) xt2<-rt (100, df=1)
Apply the function from exercise 17 to each sample. Compare with the standard deviation in each case.

*19. The vectoix consists of the frequencies
5, 3,1, 4, 6
The first element is the number of occurrences of level 1, the second is the number of occurrences of level 2, and

so on. Write a function which takes any such vector x as its input, and outputs the vector of factor lexdels, here
11112223 .

22 81

[You'll need the information that is provided by cumsum(x). Form a vector in which 1's appear whenever the
factor level is incremented, and is otherwise zero. . . .]

*20. Write a function which calculates the minimum of a quadratic, and the value of the function at the
minimum.

*21. A “between times” correlation matrix, has been calculated from data on heights of trees at times 1, 2, 3, 4, .
.. Write a function that calculates the average of the correlations for any given lag.

*22. Given data on trees at times 1, 2, 3, 4, . . ., write a function that calculates the matrix of “average” relative
growth rates over the several intervals. Apply your function to the data fratrgethat accompanies these
notes.

. . 1ldw _dlogw o
[The relative growth rate may be deflned—asa = T . Hence its is reasonable to calculate the
W
logw, —logw,

average over the interval fromtot, as

]

L

22 82

??

83

10. GLM, and General Non-linear Models

GLM models are Generalized Linear Models. They extend the multiple regression model. The GAM
(Generalized Additive Model) model is a further extension.

10.1 A Taxonomy of Extensions to the Linear Model

R allows a variety of extensions to the multiple linear regression model. In this chapter we describe the
alternative functional forms.

The basic model formulatidhis:

Observed value = Model Prediction + Statistical Error
Often it is assumed that the statistical error values (valuemdhe discussion below) are independently and
identically distributed as Normal. Generalized Linear Models, and the other extensions we describe, allow a

variety of non-normal distributions. In the discussion of this section, our focus is on the form of the model
prediction, and we leave until later sections the discussion of different possibilities for the “error” distribution.

Multiple regression model

Y=o+ B+ Pt .. Bt e

Use Tm() to fit multiple regression models. The various other models we describe are, in essence,
generalizations of this model.

Generalized Linear Model (e. g. logit model)
y=g(a+bx) +e
Hereg(.) is selected from one of a small number of options.
For logit models,y = 11 + £ , where
T
log——) =a+bx
1-m
HereTtis an expected proportion, and
T . .
Iog(l—) =logit(m) is log(odds).
-7

We can turn this model around, and write

exp@+hx) |
L+exp@+byx,)

Hereg(.) undoes the logit transformation.

y=g(a+bx)+e=

We can add more explanatory variabkes:byx; + . . . + BXp.

Useg1m() to fit generalized linear models.

32 This may begeneralized in various ways. Models which have this form may be nested within other models
which have this basic form. Thus there may be “predictions’ and “errors’ at different levels within the total
model.

?? 84

Additive Model
y = qa_l(xl) + ¢2(X2) Tt qop(xp) tE

Additive models are a generalisationlaf models. In 1 dimension

y=@(x)+e

Some 0fZy = @ (X)), Z, = @,(X;),---,Z, = @,(X,) may be smoothing functions, while others may be

the usual linear model terms. The constant term gets absorbed into one or mow@ sf the

Generalized Additive Model

y=9(@(x) +@,(X) + ...+ @,(X,)) +&

Generalized Additive Models are a generalisation of Generalized Linear Models. For exgmplay be the
function that undoes the logit transformation, as in a logistic regression model.

Some 0fZ, = @,(%,), Z, = @,(X,),--,Z, = @, (X,) may be smoothing functions, while others may be
the usual linear model terms.

We can transform to get the model
y=09(z+z+.z)+¢
Notice that even ip = 1, we may still want to retain bot} (.) andg(.), i. e.

y=9(@(x))+e

The reason is thay.) is a specific function, such as the inverse of the logit function. The fur@tioh does
any further necessary smoothing, in cgikis not quite the right transformation. One wagityto do as much
of possible of the task of transformation, wgh(.) giving the transformation any necessary additional
flourishes.

At the time of writing, R has no specific provision for generalized additive models. The fitting of &gk (
orns()) terms in a linear model or a generalized linear model will often do what is needed.

10.2 Logistic Regression

We will use a logistic regression model as a starting point for discussing Generalized Linear Models.

With proportions that range from less than 0.1 to 0.99, it is not reasonable to expect that the expected proportion
will be a linear function ok. Some such transformation (‘link’ function) as the logit is required. A good way to

think about logit models is that they work on a log(odds) scalgislf probability (e. g. that horse A will win
the race), then the corresponding oddsp4iep), and

log(odds) = Iog%p) =log(p) -log(1p)

The linear model predicts, npt but log). Fig. 19 shows the logit transformation

Gz 0

22 85

0001 01 05 09 099
o

0.999]
©-
) L
g <] 0.99 g,
g
; o~ I 0.9 < gi
= 0.75)
2 F0.25 5 3
g o 0.1 s
g .
S v 4
g r0.01 °
LIO,
-0.001 H
T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 6 -4 -2 0 2 4 6
Proportion logit(Proportion), i. e. log(Odds)

Fig. 19: The logit or log(odds) transformation. The left panel shows a plot of
log(odds) versus proportion, while the right panel shows a plot of proportion
versus log(odds). Notice how the range is stretched out at both ends.

The logit or log(odds) function turns expected proportions into values that may rangeoftorfre. It is not
satisfactory to use a linear model to predict proportions. The values from the linear model may well lie outside
the range from 0 to 1. It is however in order to use a linear model to predict logit(proportion). The logit
function is an example of a link function.

There are various other link functions that we can use with proportions. One of the commonest is the
complementary log-log function.

10.2.1 Anaesthetic Depth Example

Thirty patients were given an anaesthetic agent which was maintained at a pre-determined [alveolar]

concentration for 15 minutes before making an inciSlonit was then noted whether the patient moved, i. e.
jerked or twisted. The interest is in estimating how the probability of jerking or twisting varies with increasing
concentration of the anaesthetic agent.

The response is best taken as nomove, for reasons that will emerge later. There is a small number of
concentrations; so we begin by tabulating proportion that have the nomove outcome against concentration.

Alveolar Concentration

Nomove 0.8 1 1.2 14 1.6 2.5
0 6 4 2 2 0 0
1 1 1 4 4 4 2
Total 7 5 6 6 4 2

Table 1: Patients moving (0) and not moving (1), for each of
six different alveolar concentrations.

Fig. 20 then displays a plot of these proportions.

) am grateful to John EricksoAljesthesia and Critical Care, UniversityGificago) and to Alan Welsh
(Centre for Mathematics & its Applications, Australian National University) for allowing me use of these data.

22 86

S 4 20
[ee]
@]
6® 6°®
c 9
o o
i<
o
s
s
o ol
S 5*
7®
o
C)H T T T T
1.0 15 2.0 2.5
Concentration

Fig. 20: Plot, versus concentration, of proportion of
patients not moving. The dotted horizontal line is the
estimate of the proportion of moves one would expect
if the concentration had no effect.

We fit two models, the logit model and the complementary log-log model. We can fit the models either directly

to the 0/1 data, or to the proportions in Table 1. To understand the output, you need to know about “deviances”.
A deviance has a role very similar to a sum of squares in regression. Thus we have:

Regression Logistic regression
degrees of freedom degrees of freedom
sum of squares deviance
mean sum of squares mean deviance
(divide by d.f.) (divide by d.f.)

We prefer models with a small ~ We prefer models with a small
mean residual sum of squares. mean deviance.

If individuals respond independently, with the same probability, then we have Bernoulli trials. Justification for
assuming the same probability will arise from the way in which individuals are sampled. While individuals will
certainly be different in their response the notion is that, each time a new individual is taken, they are drawn at
random from some larger population. Here is the R code:

> anaes.logit <- glm(nomove ~ conc, family = binomial(link = logit),
+ data = anaesthetic)
The output summary is:

> summary(anaes.logit)

call: glm(formula = nomove ~ conc, family = binomial(link = Togit),
data = anaesthetic)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.77 -0.744 0.0341 0.687 2.07

”? 87

Coefficients:
value std. Error t value
(Intercept) -6.47 2.42 -2.68
conc 5.57 2.04 2.72

(Dispersion Parameter for Binomial family taken to be 1)
Null Deviance: 41.5 on 29 degrees of freedom
Residual Deviance: 27.8 on 28 degrees of freedom
Number of Fisher Scoring Iterations: 5
correlation of coefficients:
(Intercept)

conc -0.981

Fig. 21 is a graphical summary of the results:

Proportion
o o o
b 9 4

o
Oﬁ)

0.21 b

0.8 0.9 1.0 1.1 1.2 1.3 1.4
Concentration

Fig. 21: Plot, versus concentration, of logit(proportion)
of patients not moving. The line is the estimate of the
proportion of moves, based on the fitted logit model.

With such a small sample size it is impossible to do much that is useful to check the adequacy of the model.

You can also trpTot(anaes. logit) andplot.gam(anaes.logit).

10.3 glmmodels (Generalized Linear Regression Modelling)
In the above we had
anaes.logit <- glm(nomove ~ conc, family = binomial(link = logit),
data=anaesthetic)

The family parameter specifies the distribution for the dependent variable. There is an optional argument
which allows us to specify the link function. Below we give further examples.

22 88

10.3.2 Data in the form of counts

Data that are in the form of counts can often be analysed quite effectively assunpiog sls@n family. The
link that is commonly used hereli®g. Thelog link transforms from positive numbers to numbers in the
range e to +eo which a linear model may predict.

10.3.3 The gaussian family

If no family is specified, then the family is taken todmussian. The default link is then thiedentity, as
for anTm model. This way of formulating alm type model does however have the advantage that one is not
restricted to the identity link.

Data(airquality)

air.glm<-gIlm(ozoneA(1/3) ~ Solar.R + Wind + Temp, data = airquality)
Assumes gaussian family, i.e. normal errors model

summary(air.glim)

10.4 Models that Include Smooth Spline Terms

These make it possible to fit spline and other smooth transformations of explanatory variables. One can request
a “smooth’ b-spline or n-spline transformation of a column of the X matrix. In placersé specifiebs (x) or

ns(x). One can control the smoothness of the curve, but often the default works quite well. You need to

install thesplines library. R does not at present have a facility for plots that show the contribution of each term

to the model.

10.4.1 Dewpoint Data

The data sedlewpoint34 has columnsintemp, maxtemp anddewpoint. The dewpoint values are
averages, for each combination of mintemp and maxtemp, of monthly data from a number of different times and
locations. We fit the model:

dewpoint = mean odewpoint + smoothfiintemp) + smoothfiaxtemp)

Taking out the mean is a computational convenience. Also it provides a more helpful form of output. Here are
details of the calculations:

> dewpoint.Im <- Tm(dewpoint ~ bs(mintemp) + bs(maxtemp),
data = dewpoint)

> options(digits=3)

> summary (dewpoint.Tm)

10.5 Non-linear Models

You can us@1s () (non-linear least squares) to obtain a least squares fit to a non-linear function.

10.6 Model Summaries
Type in
?methods (summary)

to get a list of the summary methods that are available. You may want to mix and mastmeay:y . TmQ)
on an aov or gim object. The output may not be what you might expect. So be careful!

%) am grateful to Dr Edward Linacre, Visiting Fellow, Geography Department, Australian National University,
for making these data available.

22 89

10.7 Further Elaborations

Generalised Linear Models were developed in the 1970s. They unified a huge range of diverse methodology.
They have now become a stock-in-trade of statistical analysts. Their practical implementation built on the
powerful computational abilities which, by the 1970s, had been developed for handling linear model
calculations.

Practical data analysis demands further elaborations. An important elaboration is to the incorporation of more
than one term in the error structure. ThaTne library implements such extensions, both for linear models and
for a wide class of nonlinear models.

Each such new development builds on the theoretical and computational tools that have arisen from earlier
developments. Exciting new analysis tools will continue to appear for a long time yet. This is fortunate. Most
professional users of R will regularly encounter data where the methodology that the data ideally demands is not
yet available.

10.8 Exercises

1. Fit a Poisson regression model to the data in the data firatrhes that Accompanies these notes. Allow
different intercepts for different habitats. Use log(meters) as a covariate.

10.9 References
Dobson, A. J. 1983. An Introduction to Statistical Modelling. Chapman and Hall, London.

Hastie, T. J. and Tibshirani, R. J. 1990. Generalized Additive Models. Chapman and Hall, London.
McCullagh, P. and Nelder, J. A"2dn., 1989. Generalized Linear Models. Chapman and Hall.
Venables, W. N. and Ripley, B. D., 2nd edn 1997. Modern Applied Statistics with S-Plus. Springer, New York.

22 90

??

91

11. Multi-level Models, Time Series and Survival Analysis
Repeated measures models are a special case of multi-level models.

*11.1 Multi-Level Models, Including Repeated Measures Models

Models have both a fixed effects structure and an error structure. For example, in an inter-laboratory comparison
there may be variation between laboratories, between observers within laboratories, and between multiple
determinations made by the same observer on different samples. If we treat laboratories and observers as
random, the only fixed effect is the mean.

The functionslme () andnTme (), from the Pinheiro and Bates library, handle models in which a repeated
measures error structure is superimposed on a lihaa) ©r non-linear Tme) model. Version 3 of Ime,

which is currently irf3-test, is broadly comparable in its abilities to Proc Mixed which is available in the widely
used SAS statistical package. The funclioe has associated with it highly useful abilities for diagnostic
checking and for various insightful plots.

There is a strong link between a wide class of repeated measures models and time series models. In the time
series context there is usually just one realisation of the series, which may however be observed at a large
number of time points. In the repeated measures context there may be a large number of realisations of a series
which is typically quite short.

11.1.1 The Kiwifruit Shading Data, Again

Refer back to section 6.8.2 for details of these data. The fixed effett3@cé and treatmentshade). The
random effects arp1ock (though making block a random effect is optiongllot within bTock, and units
within each block/plot combination. Here is the analysis:

> Tibrary(nlme)
Loading required package: nls

> kiwishade.Tme<-Tme(yield~shade, random=~1|block/plot,
data=kiwishade)

> summary(kiwishade.Tme)
Linear mixed-effects model fit by REML
Data: kiwishade
AIC BIC TogLik
265.9663 278.4556 -125.9831

Random effects:
Formula: ~1 | block
(Intercept)
Stdbev: 2.019373

Formula: ~1 | plot %in% block
(Intercept) Residual
Stdpev: 1.478639 3.490378

Fixed effects: yield ~ shade

value Std.Error DF t-value p-value
(Intercept) 100.20250 1.761621 36 56.88086 <.0001
shadeAug2Dec 3.03083 1.867629 6 1.62282 0.1558
shadeDec2Feb -10.28167 1.867629 6 -5.50520 0.0015
shadeFeb2May -7.42833 1.867629 6 -3.97741 0.0073

22 92

Correlation:

(Intr) shdA2D shdD2F
shadeAug2Dec -0.53
shadebDec2Feb -0.53 0.50
shadeFeb2may -0.53 0.50 0.50

Standardized within-Group Residuals:
Min Ql Med Q3 Max
-2.4153887 -0.5981415 -0.0689948 0.7804597 1.5890938

Number of Observations: 48
Number of Groups:

block plot %in% block

3 12

> anova(kiwishade.Tme)

numDF denDF F-value p-value
(Intercept) 1 36 5190.552 <.0001
shade 3 6 22.211 0.0012

This was a balanced design, which is why in section 6.8.2 we couttbw€e for an analysis. We can get an
output summary that is helpful for showing how the error mean squares match up with standard deviation
information given above thus:

> intervals(kiwishade.1me)
Approximate 95% confidence intervals

Fixed effects:

Tower est. upper
(Intercept) 96.62977 100.202500 103.775232
shadeAug2Dec -1.53909 3.030833 7.600757
shadeDec2Feb -14.85159 -10.281667 -5.711743
shadeFeb2May -11.99826 -7.428333 -2.858410

Random Effects:
Level: block
Tower est. upper
sd((Intercept)) 0.5473014 2.019373 7.45086
Level: plot
Tower est. upper
sd((Intercept)) 0.3702555 1.478639 5.905037

within-group standard error:
Tower est. upper

2.770678 3.490378 4.397024

>

We are interested in the three estimates. By squaring the standard deviations and converting them to variances
we get the information in the following table:

Variance component| Notes
block 2.019 = 4.076 Three blocks
plot 1.479= 2.186 4 plots per block

22 93

residual (within group) | 3.496=12.180 4 vines (subplots) per plot

The above allows us to put together the information for an analysis of variance table. We have:

Variance Mean square for anova table d.f.
component
block 4.076| 12.180 + 4x 2.186 + 16x 4.076 | 2
= 86.14 (3-1)
plot 2.186| 12.180 + 4x 2.186 6
=20.92 (3-1) x(2-1)
residual (within group) 12.180| 12.18 3x4%(4-1)

Now find see where these same pieces of information appeared in the analysis of variance table of section 6.8.2:

> summary (kiwishade.aov)

Error: block:shade

Df Sum Sgq Mean Sq F value Pr(>F)
block 2 172.35 86.17 4.1176 0.074879
shade 3 1394.51 464.84 22.2112 0.001194
Residuals 6 125.57 20.93

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 36 438.58 12.18

11.1.2 The Michelson Speed of Light Data

Here is an example, using the Michelson speed of light data from the Venables andRRigHdiprary. The

model allows the determination to vary linearly whtian (from 1 to 20), with the slope varying randomly

between the five experiments of 20 runs each. We assume an autoregressive dependence structure of order 2.
We allow the variance to change from one experiment to another. Maximum likelihood tests suggest that one
needs at least this complexity in the variance and dependence structure to represent the data accurately. A model
which has neither fixed nor randdtaun effects seems all that is justified statistically. To test this, one needs to

fit models with and without these effects, settirgthod=""ML” in each case, and compare the likelihoods. (I

leave this as an exercise!) For purposes of doing this test, a first order autoregressive model would probably be
adequate. A model which ignores the sequential dependence entirely does give misleading results.

> michelson$Run <- as.numeric(michelson$Run) # Ensure Run is a variable
> mich.1me20 <- Tme(fixed = Speed ~ Run, data = michelson,
random = ~ Run| Expt, correlation = corARMA(form = ~ 1 | Expt,
p=2, g=0), weights = varident(form = ~ 1 | Expt))

> summary(mich.1me20)
Linear mixed-effects model fit by maximum T1ikelihood
Data: michelson
AIC BIC logLik
1117 1148 -546.4

Random effects:
Formula: ~ Run | EXpt
& its Applications, Australian National University) for allowing me use of these data.

},J) am grateful to Dr Edward Linacre, Visiting Fellow, Geography Department, Australian National Urb\frsity,
for making these data available.

Structure: General positive-definite
Stdbev Corr
(Intercept) 47.031 (Inter
Run 3.628 -1
Residual 121.930

Correlation Structure: ARMA(2,0)
Parameter estimate(s):
Phil Phi2
0.6321 -0.3106
variance function:
Structure: Different standard deviations per stratum
Formula: ~ 1 | Expt
Parameter estimates:
1 2 3 4 5
1 0.2993 0.6276 0.5678 0.4381
Fixed effects: Speed ~ Run
value Sstd.Error z-value p-value

(Intercept) 860.9 27.2 31.6 0.0
Run -1.6 2.1 -0.7 0.5
Correlation:
(Intr)
Run -0.962

Standardized within-Group Residuals:
Min Ql Med Q3 Max
-2.905 -0.6207 0.1222 0.7373 1.955

Number of Observations: 100
Number of Groups: 5
> # Now plot population residuals versus BLUP fitted values
> plot(mich.1me20, fitted(.) ~ Run | Expt,
between = 1list(x = 0.25, y = 0.25), type = "b")
NB R invokes plot.1me()
Plot BLUP fitted effects versus Run, to help explain previous plot
plot(mich.1me20, resid(., type = "p") ~
fitted(.) | Expt, between = 1list(x = 0.25, y = 0.25))

+ V VvV V

11.2 Time Series Models

The Rts (time series) package has a number of functions for manipulating and plotting time series, and for
calculating the autocorrelation function.

There are (at least) two types of method — time domain methods and frequency domain methods. In the time
domain models may be conventional “short memory” models where the autocorrelation function decays quite
rapidly to zero, or the relatively recently developed “long memory” time series models where the

autocorrelation function decays very slowly as observations move apart in time. A characteristic of “long
memory” models is that there is variation at all temporal scales. Thus in a study of wind speeds it may be
possible to characterise windy days, windy weeks, windy months, windy years, windy decades, and perhaps even
windy centuries. R does not yet have functions for fitting the more recently developed long memory models.

22 95

The functionst1 () decomposes a times series into a trend and seasonal components, etc. The &m@ions
(for “autoregressive” models) and associated functionsaaricha0 () (“autoregressive integrated moving
average models”) fit standard types of time domain short memory models.

The functionspectrum() and related functions is designed for frequency domain or “spectral” analysis.

11.3 Survival Analysis

For example times at which subjects were either lost to the study or died (“failed”) may be recorded for
individuals in each of several treatment groups. Engineering or business failures can be modelled using this same
methodology. The Rurvival5 library has state of the art abilities for survival analysis.

11.5 Exercises

1. Use the functioacf () to plot the autocorrelation function of lake levels in successive years in the data set
huron. Do the plots both witltype="correlation” and withtype="partial”.

11.4 References

Chambers, J. M. and Hastie, T. J. 1992. Statistical Models in S. Wadsworth and Brooks Cole Advanced Books
and Software, Pacific Grove CA.

Diggle, Liang & Zeger (1996). Analysis of Longitudinal Data. Clarendon Press, Oxford.
Everitt, B. S. and Dunn, G. 1992. Applied Multivariate Data Analysis. Arnold, London.
Hand, D. J. & Crowder, M. J. (1996). Practical longitudinal data analysis. Chapman and Hall, London.

Little, R. C., Milliken, G. A., Stroup, W. W. and Wolfinger, R. D. (1996). SAS Systems for Mixed Models.
SAS Institute Inc., Cary, New Carolina.

Pinheiro, J. C. and Bates, D. M. (1998). Mixed effects methods and classes for S and S-PLUS. Unpublished
manuscript.

Venables, W. N. and Ripley, B. D., 2nd edn 1997. Modern Applied Statistics with S-Plus. Springer, New York.

22 96

??

97

12. Advanced Programming Topics

12.1. Methods

R is an object-oriented language. Objects may have a “class”. For functions pudmag), summary (),

etc., the class of the object determines what action will be taken. Thus in responsatdx), R determines

the class attribute of, if one exists. If for example the class attribute is “factor”, then the function which finally
handles the printing isrint.factor(). The functiorprint.default() is used to print objects which
have not been assigned a class.

More generally, the class attribute of an object may be a vector of strings. If there are “ancestor” classes —
parent, grandparent, . . ., these are specified in order in subsequent elements of the class vector. For example,
ordered factors have the class “ordered”, which inherits from the class “factor”. Thus:

> fac<-ordered(1:3)
> class(fac)
[1] "ordered" "factor"

>
Herefac has the class “ordered”, which inherits from the parent class “factor”.

The functionprint.ordered(), which is the function that is called when you invphei nt () with an
ordered factor, makes use of the fact that “ordered” inherits from “factor”.

> print.ordered
function (x, quote = FALSE)

{
if (length(x) <= 0)
cat("ordered(0)\n")
else print(levels(x)[x], quote = quote)
cat("Levels: ", paste(levels(x), collapse = " < "), "\n")
invisible(x)
}

Note that it is a convenience fprint.ordered() to callprint.factor(). The function
print.gIm() does not calprint.Tm(), even though glm objects inherit from Im objects.

12.2 Extracting Arguments to Functiors
How, inside a function, can one extract the value assigned to a parameter when the function was called? Below
there is a functioextract.arg(). When itis called aextract.arg(a=xx), we want it to return
“xx”. When it is called aextract.arg(a=xy), we want it to returdi’xy”. Here is how it is done.
extract.arg <-
function (a)

{
S <- substitute(a)
as.character(s)

> extract.arg(a=xy)
[1] 1] Xy”

If the argument is a function, we may want to get at the arguments to the function. Here is how one can do it

deparse.args <-

22 98

function (a)

{
S <- substitute (a)
if(mode(s) == "call"){
the first element of a 'call' is the function called
so we don't deparse that, just the arguments.
print(paste(“The function 1is: “, s[1],”()”, collapse=""))
lapply (s[-1], function (x)
paste (deparse(x), collapse = "\n"))
}
else stop ("argument is not a function call")
}
For example:

> deparse.args(list(x+y, foo(bar)))
[1] "The function is: Tist O"
[[1]1]

[1] "x + y"

[[2]]
[1] "foo(bar)"

12.3 Parsing and Evaluation of Expressions
When you type in an expression sucimaan (x+y) or cbind(x,y) for R to evaluate, there are two steps:

1. The text string which you type in is parsed and turned into an expression, i. e. the syntax is checked and it is
turned into code which the R engine can more immediately evaluate.

2. The expression is evaluated.
If you type in

expression(mean(x+y))
the output is the unevaluated expressapression(mean(x+y)). By setting

my.exp <- expression(mean(x+y))
you can store this unevaluated expressiamyinexp . Actually what is actually stored my . exp is a little
different from what is printed out. R gives you as much information as it judges is (most of the time) helpful for
you to know.

Note thatexpression(mean(x+y)) is different fromexpression(“mean(x+y)”), asis obvious
when the expression is evaluated. A text string is a text string is a text string, unless you explicitly change it into
an expression or part of an expression.

Let's see how this works in practice

x <- 101:110

y <- 21:30

my.exp <- expression(mean(x+y))
my.txt <- expression("mean(x+y)")
eval(my.exp)

[1] 131

> eval(my.txt)

[1] "mean(x+y)"

>

V V.V V V

22 99

What if we already havémean (x+y) ” stored in a text string, and we want to turn it into an expression? The
answer is to use the functiparse () , but you must tell it that you are supplying text rather than the name of
a file. Thus

> parse(text="mean(x+y)")
expression(mean(x + y))
Let's store the expressiontiy . exp2, and then evaluate it

> my.exp2 <- parse(text="mean(x+y)")
> eval (my.exp2)

[1] 131

>

Here is a function that creates a new data frame from an arbitrary set of columns of an existing data frame. Once
in the function, we attach the data frame so that we can leave off the name of the data frame, and use only the
column names

make.new.df <- function(old.df = austpop, colnames = c("NSw", "ACT"))
{
attach(old.df)
on.exit(detach("old.df™"))
argtxt <- paste(colnames, collapse = ",")
exprtxt <- paste("data.frame(”, argtxt, ")", sep = "")
expr <- parse(text = exprtxt)
df <- eval(expr)
names(df) <- colnames
df
}

To verify that the function does what it should, type in

> make.new.dfQ
NSW ACT
1904 3
2402 8
2693 11
2985 17
3625 38
4295 103
5002 214
5617 265
9 6274 310

The function do.cal1() may be convenient if you want to keep the function name and the argument list in
separate text strings. Whdo . call is used it is only necessary to yserse () in generating the argument
list.

00 N O VA WN =

For example

make.new.df <-
function(old.df = austpop, colnames = c("NSwW", "ACT"))
{
attach(old.df)
on.exit(detach("old.df"))
argtxt <- paste(colnames, collapse = ",")
Tistexpr <- parse(text=paste("list(", argtxt, ")", sep = ""))
df <- do.call(“data.frame”, eval(listexpr))

27 10C

names(df) <- colnames
df

12.4 Searching R functions for a specified token.

A token is a syntactic entity; for example function names are tokens. For examearch all functions in the
working directory. The purpose of using1ist () in the code below is to changgfunc from a list into a
simple vector of characters

mygrep <-
function(str)

{

Assign the names of all objects in current R
working directory to the string vector tempobj
##

tempobj <- 1s(envir=sys.frame(-1))

objstring <- character(0)

for(i in tempobj) {

myfunc <- get(i)
if(is.function(myfunc))

if(length(grep(str,
deparse(myfunc))))
objstring <- c(objstring, i)
}
return(objstring)
}

27 101

13. R Resources

13.1 R Packages for Windows

To get information on R packages (libraries), go to:
http://cran.r-project.org

An Australian link is:

http://mirror.aarnet.edu.au/CRAN/
For Windows 95 etc binaries, look in

http://mirror.aarnet.edu.au/CRAN/windows/windows-9x/
Look in the directoryontrib for libraries.

New libraries are being added all the time. So it pays to check the CRAN site from time to time. Also, watch
for announcements on r-help and r-announce.

13.2 Literature written by expert users
Much literature that has been written for S-PLUS is highly relevant for R.
Burns, P. J. 1998. S Poetry.
This 439 page document is available from
http://www.seanet.com/~pburns/Spoetry/.
The style is leisurely. However this assumes some prior knowledge of computing language terms. It may be a
good book to work through once you have some initial knowledge of R.
Chambers, J. M. 1998. Programming with Data. A Guide to the S Language. Springer-Verlag, New York.

This is a book for specialists. It describes a new version of the S language, which is the basis for version 5 of R.
Version 5 of S-PLUS is so far available for Unix only.

Chambers, J. M. and Hastie, T. J. 1992. Statistical Models in S. Wadsworth and Brooks Cole Advanced Books
and Software, Pacific Grove CA.

This is the basic reference on R and S-PLUS model formulae and models.

Everitt, B. S. 1994. A Handbook of Statistical Analyses using S-PLUS. Chapman and Hall, London.
The choice of analysis methods may seem idiosyncratic. It has little on the more recently developed methods
which are S-PLUS'’s strength.

Harrell, F. 1997. An Introduction to S-PLUS and the Hmisc and Design Libraries.
The latest version of this manual is available from
http://heswebl.med.virginia.edu/biostat/s/index.html

Chapters 1-4 and 9-10 are a good introduction to S-PLUS, likely to be particularly helpful to anyone who comes
to R or S-PLUS from SAS. The examples in this manual are largely medical.

Krause, A. and Olsen, M. 1997. The Basics of S and S-PLUS. Springer 1997.

This is an introductory book, at about the same level as Spector.

R Development Core Team 1999. An Introduction to R. Notes on R: A Programming Environment for Data
Analysis and Graphics. [Available from the CRAN sites noted in section 13.1.]

This is derived from an original set of notes, written by Bill Venables and Dave Smith for the S and S-PLUS
environments.

Spector, P. 1994. An Introduction to S and S-PLUS. Duxbury Press.

This is a readable and compact beginner’s guide to the S-PLUS language. Copies are available from the ANU
Co-op bookshop.

Venables, W. N. and Ripley, B. D., 2nd edn 1997. Modern Applied Statistics with S-PLUS. Springer, New
York.

?? 10z

This has become a text book for the use of S-PLUS for applied statistical analysis. It assumes a fair level of

statistical sophistication. Explanation is careful, but often terse. Together with the ‘Complements’ it gives brief

introductions to extensive libraries of functions that have been written or adapted by Ripley, Venables, and a

number of other statisticians. Supplementary material (Complements’) is available from
http://www.stats.ox.ac.uk/pub/MASS2/.

The supplementary material is extensive, and is continually supplemented. The present version of the statistical
“Complements’ has extensive information on new libraries that have come from third party sources. There is
helpful information, additional to what is in the book, that is specific to the S-PLUS 4.0 and S-PLUS 4.5 releases
for Microsoft Windows.

R Development Core Team 1999. An Introduction to R.
This document is available from the CRAN sites noted in section 13.1.

13.3 The R-help electronic mail discussion list

To subscribe (or unsubscribe) to this list send a messagsubithcribe (orunsubscribe) in the body of
the message (not in the subject!) to

r-help-request@stat.math.ethz.ch
Information about the list can be obtained by sending an email with info as its contents to

r-help-request@stat.math.ethz.ch
To send a message to everyone on the r-help mailing list, send email to

r-help@stat.math.ethz.ch

Details on two further lists — r-announce and r-devel — are available from

http://cran.r-project.org
There is an archive of past discussion which you can search by going to the web page

http://www.ens.gu.edu.au/robertk/R/

13.4 Competing Systems — XLISP-STAT

XLISP-STAT is a lisp-based system that, like S-PLUS and R, allows a seamless extensibility. It is available
from

http://www.stat.umn.edu/~luke/x1s/x1sinfo/x1sinfo.html
See also the code designed to accompany Cook and Weisberg's book “Applied Regression Including Computing
and Graphics” (Wiley 1999), available from

http://www.stat.umn.edu/arc

14. Appendix 1

14.1 Data Sets Referred to in these Notes

Data sets accompanying these notes

Barley austpop beams dewpoint dolphins
elastic huron islandcities kiwishade leafshape
milk moths oddbooks orings possum
primates seedrates tint.st

Data Set from Library ts
LakeHuron

Data Sets from Library BASE
airquality attitude cars islands

Data Sets from Library MASS

Aids2 Animals Cars93 PlantGrowth Rubber
cement cpus fgl michelson mtcars
painters pressure ships

14.2 Answers to Selected Exercises

Section 1.6
1. plot(distance~stretch,data=elastic)
2. (i), (i), (iv)

plot(snow.cover ~ year, data = snow)

hist(snow$snow. cover)
hist(log(snow$snow.cover))

Section 2.8
1. The value of answer is (a) 12, (b) 22, (c) 600.

2.prod(c(10,3:5))

3(i) bigsum <- 0; for (i in 1:100) {bigsum <- bigsum+i }; bigsum
3(ii) sum(1:100)

4(i) bigprod <- 1; for (i in 1:50) {bigprod <- bigprod*i }; bigprod
4(ii) prod(1:50)

5.radius <- 3:20; volume <- 4*pi*radiusA3/3
sphere.data <- data.frame(radius=radius, volume=volume)

??

104

Section 3.9
1. x <- seq(101,112) orx <- 101:112
2. rep(c(4,6,3),4)
3. c(rep(4,8),rep(6,7),rep(3,9)) orrep(c(4,6,3),c(8,7,9)
4. rep(seq(1,9),seq(1,9)) orrep(1:9, 1:9)
5. Use summary(airquality) to get this information.
6(@)2 77 51212 4
6(b)2 98 6 17 15 7
7.airquality[airquality$ozone == max(airquality$ozone),]
airquality$wind[airquality$ozone > quantile(airquality$ozone, .75)]
8. mean(snow$snow.cover[seq(2,10,2)])
mean(snow$snow. cover[seq(1,9,2)]1)
9.sapply(claims, is.factor)
Jevels(cars93$Manufacturer), etc.
To check which are ordered factors, type in
sapply(claims, 1is.ordered)
10.summary(airquality); summary(attitude); summary(cpus)
Comment on ranges of values, whether distributions seem skew, etc.
11. mtcars6<-mtcars[mtcars$cyl==6,]
12. cars93[cars93$Type=="smal1”|Cars93$Type=="Sporty”,]
13. mat34 <- matrix(rep(c(4,6,3),4), nrow=3, ncol=4)
14. mat64 <- matrix(c(rep(4,8),rep(6,7),rep(3,9)), nrow=6, ncol=4)

Section 4.7

1. plot(Animals$body, Animals$brain, pch=1,
xlab="Body weight (kg)",ylab="Brain weight (g)")
2. plot(log(Animals$body),log(Animals$brain),pch=1,
xlab="Body weight (kg)", ylab="Brain weight (g)", axes=F)
brainaxis <- 10Aseq(-1,4)
bodyaxis <-10Aseq(-2,4)
axis(1l, at=log(bodyaxis), lab=bodyaxis)
axis(2, at=log(brainaxis), lab=brainaxis)
box ()
identify(Tog(Animals$body), log(Animals$brain), Tabels=row.names(Animals))

(See problem 4.)
3.par(mfrow = c(1,2)), etc.

Additional solutions will be included in later versions of this document.

?? 10¢

