
Quadratic Forms of Random Variables

1 Quadratic Forms

For a k × k symmetric matrix A = {aij } the quadratic function of k variables x = (x1, . . . , xn)′

defined by

Q(x) = x′Ax =

k∑
i=1

k∑
j=1

ai,jxixj

is called the quadratic form with matrix A.
If A is not symmetric, we can have an equivalent expression/quadratic form replacing A by

(A+A′)/2.

Definition 1. Q(x) and the matrix A are called positive definite if

Q(x) = x′Ax > 0, ∀x ∈ Rk, x 6= 0

and positive semi-definite if
Q(x) ≥ ∀x ∈ Rk

For negative definite and negative semi-definite, replace the > and ≥ in the above definitions
by < and ≤, respectively.

Theorem 1. A symmetric matrix A is positive definite if and only if it has a Cholesky decompo-
sition A = R′R with strictly positive diagonal elements in R, so that R−1 exists. (In practice this
means that none of the diagonal elements of R are very close to zero.)

Proof. The “if” part is proven by construction. The Cholesky decomposition, R, is constructed a
row at a time and the diagonal elements are evaluated as the square roots of expressions calculated
from the current row of A and previous rows of R. If the expression whose square root is to be
calculated is not positive then you can determine a non-zero x ∈ Rk for which x′Ax ≤ 0.

Suppose that A = R′R with R invertible. Then

x′Ax = x′R′Rx = ‖Rx‖2 ≥ 0

with equality only if Rx = 0. But if R−1 exists then x = R−10 must also be zero.
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Transformation of Quadratic Forms:

Theorem 2. Suppose that B is a k × k nonsingular matrix. Then the quadratic form Q∗(y) =
y′B′ABy is positive definite if and only if Q(x) = x′Ax is positive definite. Similar results hold
for positive semi-definite, negative definite and negative semi-definite.

Proof.

Q∗(y) = y′B′ABy = x′Ax > 0

where x = By 6= 0 because y 6= 0 and B is nonsingular.

Theorem 3. For any k × k symmetric matrix A the quadratic form defined by A can be written
using its spectral decomposition as

Q(x) = x′Ax =

k∑
i=1

λi‖q′ix‖2

where the eigendecomposition of of A is Q′ΛQ with Λ diagonal with diagonal elements λi, i =
1, . . . , k, Q is the orthogonal matrix with the eigenvectors, qi, i = 1, . . . , k as its columns. (Be
careful to distinguish the bold face Q, which is a matrix, from the unbolded Q(x), which is the
quadratic form.)

Proof. For any x ∈ Rk let y = Q′x = Q−1x. Then

Q(x) = tr(x′Ax) = tr(x′QΛQ′x) = tr(y′Λy) = tr(Λyy′) ==
k∑
i=1

λiy
2
i =

k∑
i=1

λi‖q′ix‖2

This proof uses a common “trick” of expressing the scalar Q(x) as the trace of a 1 × 1 matrix so 
we can reverse the order of some matrix multiplications.

Corollary 1. A symmetric matrix A is positive definite if and only if its eigenvalues are all positive, 
negative definite if and only if its eignevalues are all negative, and positive semi-definite if all its 
eigenvalues are non-negative.

Corollary 2. rank(A) = rank(Λ) hence rank(A) equals the number of non-zero eigenvalues of A

2 Idempotent Matrices

Definition 2 (Idempotent). The k × k matrix A, is idempotent if A2 = AA = A.

Definition 3 (Projection matrices). A symmetric, idempotent matrix A is a projection matrix. 
The effect of the mapping x → Ax is orthogonal projection of x onto col(A).

Theorem 4. All the eigenvalues of an idempotent matrix are either zero or one.

http://en.wikipedia.org/wiki/Projection_%28linear_algebra%29
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Proof. Suppose that λ is an eigenvalue of the idempotent matrix A. Then there exists a non-zero 
x such that Ax = λx. But Ax = AAx because A is idempotent. Thus

λx = Ax = AAx = A(λx) = λ(Ax) = λ2x

and

0 = λ2x − λx = λ(λ − 1)x

for some non-zero x, which implies that λ = 0 or λ = 1.

Corollary 3. The k ×k symmetric matrix A is idempotent of rank(A) = r iff A has r eigenvalues 
equal to 1 and k − r eigenvalues equal to 0

Proof. A matrix A with r eigenvalues of 1 and k − r eigenvalues of zero has r non-zero eigenvalues 
and hence rank(A) = r. Because A is symmetric its eigendecomposition is A = QΛQ′ for an 
orthogonal Q and a diagonal Λ. Because the eigenvalues of Λ are the same as those of A, they 
must be all zeros or ones. That is all the diagonal elements of Λ are zero or one. Hence Λ is 
idempotent, ΛΛ = Λ, and

AA = QΛQ′QΛQ′ = QΛQ′ = A
is also idempotent.

Corollary 4. For a symmetric idempotent matrix A, we have tr(A) = rank(A), which is the 
dimension of col(A), the space into which A projects.

3 Expected Values and Covariance Matrices of Random Vectors

An k-dimensional vector-valued random variable (or, more simply, a random vector), X , is a k-vector 
composed of k scalar random variables

X = (X1, . . . , Xk)′

If the expected values of the component random variables are µi = E(Xi), i = 1, . . . , k then

E(X ) = µX = (µ1, . . . , µk)′

Suppose that Y = (Y1, . . . , Ym)′ is an m-dimensional random vector, then the covariance of X 
and Y, written Cov(X , Y) is

ΣXY = Cov(X , Y) = E[(X − µX )(Y − µY )
′]

The variance-covariance matrix of X is

Var(X ) = ΣXX = E[(X − µX )(X − µ§)

Suppose that c is a constant m-vector, A is a constant m × k matrix and Z = ZX + c is a 
linear transformation of X . Then

E(Z) = AE(X ) + c
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and

Var(Z) = A Var(X )A′

If we let W = BY + d be a linear transformation of Y for suitably sized B and d then

Cov(Z, W) = A Cov(X , Y)B′

Theorem 5. The variance-covariance matrix ΣX ,X of X is a symmetric and positive semi-definite 
matrix

Proof. The result follows from the property that the variance of a scalar random variable is non-
negative. Suppose that b is any nonzero, constant k-vector. Then

0 ≤ Var(b′X ) = b′ΣXX b,  which is the positive, semi-definite condition.

4 Mean and Variance of Quadratic Forms

Theorem 6. Let X be a k-dimensional random vector and A be a constant k×k symmetric matrix. If 
E(X ) = µ and Var(X ) = Σ, then

E(X ′AX ) = tr(AΣ) + µ′Aµ

Proof.

E(X ′AX ) = tr(E(X ′AX ))

= E[tr(X ′AX )]

= E[tr(AXX ′)]
= tr(AE[XX ′])
= tr(A(Cov(X ) + µµ′))

= tr(AΣXX ) + tr(Aµµ′)

= tr(AΣXX ) + µ′Aµ

5 Distribution of Quadratic Forms in Normal Random Variables

Definition 4 (Non-Central χ2). If X is a (scalar) normal random variable with E(X ) = µ and
Var(X ) = 1, then the random variable V = X 2 is distributed as χ2

1(λ
2), which is called the noncentral 

χ2 distribution with 1 degree of freedom and non-centrality parameter λ2 = µ2. The mean and 
variance of V are

E[V] = 1 + λ2 and Var[V] = 2 + 4λ2

zongwu cai
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As described in the previous chapter, we are particularly interested in random n-vectors, Y ,
that have a spherical normal distribution.

Theorem 7. Let Y ∼ N (µ, σ2In) be an n-vector with a spherical normal distribution and A
be an n × n symmetric matrix. Then the ratio Y ′AY/σ2 will have a χ2

r(λ
2) distribution with

λ2 = µ′Aµ/σ2 if and only if A is idempotent with rank(A) = r

Proof. Suppose that A is idempotent (which, in combination with being symmetric, means that it
is a projection matrix) and has rank(A) = r. Its eigendecomposition, A = V ΛV ′, is such that
V is orthogonal and Λ is n × n diagonal with exactly r = rank(A) ones and n − r zeros on the
diagonal. Without loss of generality we can (and do) arrange the eigenvalues in decreasing order
so that λj = 1, j = 1, . . . , r and λj = 0, j = r + 1, . . . , n Let X = V ′Y

Y ′AY
σ2

=
Y ′V ΛV ′Y

σ2

=
X ′ΛX
σ2

=
n∑
j=1

λj
X 2
j

σ2

=
r∑
j=1

X 2
j

σ2

(Notice that the last sum is to j = r, not j = n.) However,
Xj

σ ∼ N (v′jµ/σ, 1) so
X 2

j

σ2 ∼
χ2
1((v

′
jµ/σ)2). Therefore

r∑
j=1

X 2
j

σ2
∼ χ2

(r)(λ
2) where λ2 =

µ′V ΛV ′µ

σ2
=
µ′Aµ

σ2

Corollary 5. For A a projection of rank r, (Y ′AY)/σ2 has a central χ2 distribution if and only if
Aµ = 0

Proof. The χ2
r distribution will be central if and only if

0 = µ′Aµ = µ′AAµ = µ′A′Aµ = ‖Aµ‖2

Corollary 6. In the full-rank Gaussian linear model, Y ∼ N (Xβ, σ2In), the residual sum of
squares, ‖y −Xβ̂‖2 has a central σ2χ2

n−r distribution.

zongwu cai
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Proof. In the full rank model with the QR decomposition of X given by

X =
[
Q1 Q2

] [R
0

]
and R invertible, the fitted values are Q1Q

′
1Y and the residuals are Q2Q2y so the residual sum

of squares is the quadratic form Y ′Q2Q
′
2Y. The matrix defining the quadratic form, Q2Q

′
2, is a

projection matrix. It is obviously symmetric and it is idempotent because Q2Q
′
2Q2Q

′
2 = Q2Q

′
2.

As

Q′2µ = Q′2Xβ0 = Q′2Q1Rβ0 = 0︸︷︷︸
(n−p)×n

Rβ0 = 0︸︷︷︸
(n−p)×p

β0 = 0n−p

the ratio
Y ′Q2Q

′
2Y

σ2
∼ χ2

n−p

and the RSS has a central σ2χ2
n−p distribution.

R Exercises: Let’s check some of these results by simulation. First we claim that if X ∼ N (µ, 1)
then X 2 ∼ χ2(λ2) where λ2 = µ2. First simulate from a standard normal distribution

> set.seed(1234) # reproducible "random" values

> X <- rnorm(100000) # standard normal values

> zapsmall(summary(V <- X^2)) # a very skew distribution

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.1026 0.4521 0.9989 1.3190 20.3300

> var(V)

[1] 1.992403

The mean and variance of the simulated values agree quite well with the theoretical values of 1 and 
2, respectively.

To check the form of the distribution we could plot an empirical density function but this 
distribution has its maximum density at 0 and is zero to the left of 0 so an empirical density is a 
poor indication of the actual shape of the density. Instead, in Fig. 1, we present the quantile-

quantile plot for this sample versus the (theoretical) quantiles of the χ2
1 distribution.

Now simulate a non-central χ2 with non-centrality parameter λ2 = 4

> V1 <- rnorm(100000, mean=2)^2

> zapsmall(summary(V1))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 1.773 3.994 5.003 7.144 39.050

> var(V1)
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Figure 1: A quantile-quantile plot of the squares of simulated N (0, 1) random variables versus

the quantiles of the χ2
1 distribution. The dashed line is a reference line through the origin with a 

slope of 1.

[1] 17.95924

The sample mean is close to the theoretical value of 5 = 1 + λ2 and the sample variance is close 
to the theoretical value of 2 + 4λ2 although perhaps not as close as one would hope in a sample of 
size 100,000.

A quantile-quantile plot versus the non-central distribution, χ2
1(4), (Fig. 2) and versus the central 

distribution, χ2
1, shows that the sample does follow the claimed distribution χ2

1(4) and is 
stochastically larger than the χ2

1 distribution.
More interesting, perhaps is the distribution of the residual sum of squares from a regression 

model. We simulate from our previously fitted model lm1

> lm1 <- lm(optden ~ carb, Formaldehyde)

> str(Ymat <- data.matrix(unname(simulate(lm1, 10000))))

num [1:6, 1:10000] 0.088 0.258 0.444 0.521 0.619 ...

- attr(*, "dimnames")=List of 2

..$ : chr [1:6] "1" "2" "3" "4" ...

..$ : NULL
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Figure 2: Quantile-quantile plots of a sample of squares of N (2, 1) random variables versus the 
quantiles of a χ2

1(4) non-central distribution (left panel) and a χ2
1 central distribution (right panel)

> str(RSS <- deviance(fits <- lm(Ymat ~ carb, Formaldehyde)))

num [1:10000] 0.000104 0.000547 0.00055 0.000429 0.000228 ...

> fits[["df.residual"]]

[1] 4

Here the Ymat matrix is 10,000 simulated response vectors from model lm1 using the estimated
parameters as the true values of β and σ2. Notice that we can fit the model to all 10,000 response
vectors in a single call to the lm() function.

The deviance() function applied to a model fit by lm() returns the residual sum of square,
which is not technically the deviance but is often the quantity of interest.

These simulated residual sums of squares should have a σ2χ2
4 distribution where σ2 is the residual

sum of squares in model lm1 divided by 4.

> (sigsq <- deviance(lm1)/4)

[1] 7.48e-05

> summary(RSS)

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.997e-07 1.461e-04 2.537e-04 3.026e-04 4.114e-04 1.675e-03
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Figure 2.3: Quantile-quantile plot of the scaled residual sum of squares, RSSsq, from simulated
responses versus the quantiles of a χ2

4 distribution (left panel) and the corresponding probability-
probability plot on the right panel.

We expect a mean of 4σ2 and a variance of 2 ·4(σ2)2. It is easier to see this if we divide these values
by σ2

> summary(RSSsc <- RSS/sigsq)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.009354 1.953000 3.392000 4.045000 5.500000 22.390000

> var(RSSsc)

[1] 8.000057

A quantile-quantile plot with respect to the χ2
4 distribution (Fig. 2.3) shows very good agreement

between the empirical and theoretical quantiles. Also shown in Fig. 2.3 is the probability-probability
plot. Instead of plotting the sample quantiles versus the theoretical quantiles we take equally spaced
values on the probability scale (function ppoints()), evaluate the sample quantiles and then apply
the theoretical cdf to the empirical quantiles. This should also produce a straight line. It has the
advantage that the points are equally spaced on the x-axis.

We could also plot the empirical density of these simulated values and overlay it with the
theoretical density (Fig. 2.4).
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Figure 2.4: Empirical density plot of the scaled residual sums of squares, RSSsq, from simulated
responses. The overlaid dashed line is the density of a χ2

4 random variable. The peak of the empirical
density gets shifted a bit to the right because of the way the empirical density if calculated. It uses
a symmetric kernel which is not a good choice for a skewed density like this.
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