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(b) From the spectral decomposition

A = ΓΛΓ′ ,

we obtain

rank(A) = rank(Λ) = tr(Λ) = r,

where r is the number of characteristic roots with value 1.

(c) Let rank(A) = rank(Λ) = n, then Λ = In and

A = ΓΛΓ′ = In .

(a)–(c) follow from the definition of an idempotent matrix.

A.12 Generalized Inverse

Definition A.62 Let A be an m × n-matrix. Then a matrix A− : n ×m is
said to be a generalized inverse of A if

AA−A = A

holds (see Rao (1973a, p. 24).

Theorem A.63 A generalized inverse always exists although it is not unique
in general.

Proof: Assume rank(A) = r. According to the singular-value decomposi-
tion (Theorem A.32), we have

A
m,n

= U
m,r

L
r,r
V ′
r,n

with U ′U = Ir and V ′V = Ir and

L = diag(l1, · · · , lr), li > 0.

Then

A− = V

(
L−1 X
Y Z

)
U ′

(X , Y and Z are arbitrary matrices of suitable dimensions) is a g-inverse
of A. Using Theorem A.33, namely,

A =
(
X Y
Z W

)

with X nonsingular, we have

A− =
(
X−1 0

0 0

)

as a special g-inverse.
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Definition A.64 (Moore-Penrose inverse) A matrix A+ satisfying the follow-
ing conditions is called the Moore-Penrose inverse of A:

(i) AA+A = A ,

(ii) A+AA+ = A+ ,

(iii) (A+A)′ = A+A ,

(iv) (AA+)′ = AA+ .

A+ is unique.

Theorem A.65 For any matrix A : m × n and any g-inverse A− : m × n,
we have

(i) A−A and AA− are idempotent.

(ii) rank(A) = rank(AA−) = rank(A−A).

(iii) rank(A) ≤ rank(A−).

Proof:

(a) Using the definition of g-inverse,

(A−A)(A−A) = A−(AA−A) = A−A.

(b) According to Theorem A.23 (iv), we get

rank(A) = rank(AA−A) ≤ rank(A−A) ≤ rank(A),

that is, rank(A−A) = rank(A). Analogously, we see that rank(A) =
rank(AA−).

(c) rank(A) = rank(AA−A) ≤ rank(AA−) ≤ rank(A−).

Theorem A.66 Let A be an m× n-matrix. Then

(i) A regular ⇒ A+ = A−1.

(ii) (A+)+ = A.

(iii) (A+)′ = (A′)+.

(iv) rank(A) = rank(A+) = rank(A+A) = rank(AA+).

(v) A an orthogonal projector ⇒ A+ = A.

(vi) rank(A) : m× n = m⇒ A+ = A′(AA′)−1 and AA+ = Im.

(vii) rank(A) : m× n = n⇒ A+ = (A′A)−1A′ and A+A = In.

(viii) If P : m × m and Q : n × n are orthogonal ⇒ (PAQ)+ =
Q−1A+P−1.

(ix) (A′A)+ = A+(A′)+ and (AA′)+ = (A′)+A+.
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(x) A+ = (A′A)+A′ = A′(AA′)+.

For further details see Rao and Mitra (1971).

Theorem A.67 (Baksalary, Kala and Klaczynski (1983)) Let M : n × n ≥ 0
and N : m× n be any matrices. Then

M −N ′(NM+N ′)+N ≥ 0

if and only if

R(N ′NM) ⊂ R(M).

Theorem A.68 Let A be any square n×n-matrix and a be an n-vector with
a �∈ R(A). Then a g-inverse of A+ aa′ is given by

(A+ aa′)− = A− − A−aa′U ′U
a′U ′Ua

− V V ′aa′A−

a′V V ′a
+ φ

V V ′aa′U ′U
(a′U ′Ua)(a′V V ′a)

,

with A− any g-inverse of A and

φ = 1 + a′A−a, U = I −AA−, V = I −A−A.

Proof: Straightforward by checking AA−A = A.

Theorem A.69 Let A be a square n×n-matrix. Then we have the following
results:

(i) Assume a, b are vectors with a, b ∈ R(A), and let A be symmetric.
Then the bilinear form a′A−b is invariant to the choice of A−.

(ii) A(A′A)−A′ is invariant to the choice of (A′A)−.

Proof:

(a) a, b ∈ R(A)⇒ a = Ac and b = Ad. Using the symmetry of A gives

a′A−b = c′A′A−Ad
= c′Ad.

(b) Using the rowwise representation of A as A =

⎛

⎜
⎝

a′1
...
a′n

⎞

⎟
⎠ gives

A(A′A)−A′ = (a′i(A
′A)−aj).

Since A′A is symmetric, we may conclude then (i) that all bilinear
forms a′i(A

′A)aj are invariant to the choice of (A′A)−, and hence (ii)
is proved.
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Theorem A.70 Let A : n × n be symmetric, a ∈ R(A), b ∈ R(A), and
assume 1 + b′A+a �= 0. Then

(A+ ab′)+ = A+ − A+ab′A+

1 + b′A+a
.

Proof: Straightforward, using Theorems A.68 and A.69.

Theorem A.71 Let A : n× n be symmetric, a be an n-vector, and α > 0 be
any scalar. Then the following statements are equivalent:

(i) αA− aa′ ≥ 0.

(ii) A ≥ 0, a ∈ R(A), and a′A−a ≤ α, with A− being any g-inverse of A.

Proof:

(i) ⇒ (ii): αA− aa′ ≥ 0 ⇒ αA = (αA− aa′)+ aa′ ≥ 0 ⇒ A ≥ 0. Using
Theorem A.31 for αA−aa′ ≥ 0, we have αA−aa′ = BB, and, hence,

αA = BB + aa′ = (B, a)(B, a)′.
⇒ R(αA) = R(A) = R(B, a)
⇒ a ∈ R(A)
⇒ a = Ac with c ∈ R

n

⇒ a′A−a = c′Ac.

As αA − aa′ ≥ 0 ⇒

x′(αA− aa′)x ≥ 0

for any vector x, choosing x = c, we have

αc′Ac− c′aa′c = αc′Ac− (c′Ac)2 ≥ 0,
⇒ c′Ac ≤ α.

(ii) ⇒ (i): Let x ∈ R

n be any vector. Then, using Theorem A.54,

x′(αA − aa′)x = αx′Ax− (x′a)2

= αx′Ax− (x′Ac)2

≥ αx′Ax− (x′Ax)(c′Ac)

⇒ x′(αA− aa′)x ≥ (x′Ax)(α − c′Ac).

In (ii) we have assumed A ≥ 0 and c′Ac = a′A−a ≤ α. Hence,
αA− aa′ ≥ 0.

Note: This theorem is due to Baksalary and Kala (1983). The version given
here and the proof are formulated by G. Trenkler.



512 Appendix A. Matrix Algebra

Theorem A.72 For any matrix A we have

A′A = 0 if and only if A = 0.

Proof:

(a) A = 0⇒ A′A = 0.

(b) Let A′A = 0, and let A = (a(1), · · · , a(n)) be the columnwise
presentation. Then

A′A = (a′(i)a(j)) = 0,

so that all the elements on the diagonal are zero: a′(i)a(i) = 0⇒ a(i) = 0
and A = 0.

Theorem A.73 Let X �= 0 be an m×n-matrix and A an n×n-matrix. Then

X ′XAX ′X = X ′X ⇒ XAX ′X = X and X ′XAX ′ = X ′ .

Proof: As X �= 0 and X ′X �= 0, we have

X ′XAX ′X −X ′X = (X ′XA− I)X ′X = 0
⇒ (X ′XA− I) = 0

⇒ 0 = (X ′XA− I)(X ′XAX ′X −X ′X)
= (X ′XAX ′ −X ′)(XAX ′X −X) = Y ′Y ,

so that (by Theorem A.72) Y = 0, and, hence XAX ′X = X .

Corollary: Let X �= 0 be an m × n-matrix and A and b n × n-matrices.
Then

AX ′X = BX ′X ⇔ AX ′ = BX ′ .

Theorem A.74 (Albert’s theorem)

Let A =
(
A11 A12

A21 A22

)
be symmetric. Then

(i) A ≥ 0 if and only if

(a) A22 ≥ 0,
(b) A21 = A22A

−
22A21,

(c) A11 ≥ A12A
−
22A21,

((b) and (c) are invariant of the choice of A−
22).

(ii) A > 0 if and only if

(a) A22 > 0,
(b) A11 > A12A

−1
22 A21.



A.12 Generalized Inverse 513

Proof: Bekker and Neudecker (1989) :

(i) Assume A ≥ 0.

(a) A ≥ 0 ⇒ x′Ax ≥ 0 for any x. Choosing x′ = (0′, x′2)
⇒ x′Ax = x′2A22x2 ≥ 0 for any x2 ⇒ A22 ≥ 0.

(b) Let B′ = (0, I −A22A
−
22)⇒

B′A =
(
(I −A22A

−
22)A21, A22 −A22A

−
22A22

)

=
(
(I −A22A

−
22)A21, 0

)

and B′AB = B′A
1
2A

1
2B = 0. Hence, by Theorem A.72 we get

B′A
1
2 = 0.

⇒ B′A
1
2A

1
2 = B′A = 0.

⇒ (I −A22A
−
22)A21 = 0.

This proves (b).
(c) Let C′ = (I,−(A−

22A21)′). A ≥ 0⇒

0 ≤ C′AC = A11 −A12(A−
22)

′A21 −A12A
−
22A21

+ A12(A−
22)

′A22A
−
22A21

= A11 −A12A
−
22A21 .

(Since A22 is symmetric, we have (A−
22)

′ = A22.)

Now assume (a), (b), and (c). Then

D =
(
A11 −A12A

−
22A21 0

0 A22

)
≥ 0,

as the submatrices are n.n.d. by (a) and (b). Hence,

A =
(
I A12(A−

22)
0 I

)
D

(
I 0

A−
22A21 I

)
≥ 0.

(ii) Proof as in (i) if A−
22 is replaced by A−1

22 .

Theorem A.75 If A : n× n and B : n× n are symmetric, then

(i) 0 ≤ B ≤ A if and only if

(a) A ≥ 0,
(b) B = AA−B,
(c) B ≥ BA−B.

(ii) 0 < B < A if and only if 0 < A−1 < B−1.

Proof: Apply Theorem A.74 to the matrix
(
B B
B A

)
.
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Theorem A.76 Let A be symmetric and c ∈ R(A). Then the following
statements are equivalent:

(i) rank(A+ cc′) = rank(A).

(ii) R(A+ cc′) = R(A).

(iii) 1 + c′A−c �= 0.

Corollary 1: Assume (i) or (ii) or (iii) holds; then

(A+ cc′)− = A− − A−cc′A−

1 + c′A−c

for any choice of A−.

Corollary 2: Assume (i) or (ii) or (iii) holds; then

c′(A+ cc′)−c = c′A−c− (c′A−c)2

1 + c′A−c

= 1− 1
1 + c′A−c

.

Moreover, as c ∈ R(A+cc′), the results are invariant for any special choices
of the g-inverses involved.

Proof: c ∈ R(A)⇔ AA−c = c⇒

R(A + cc′) = R(AA−(A+ cc′)) ⊂ R(A).

Hence, (i) and (ii) become equivalent. Proof of (iii): Consider the following
product of matrices:
(

1 0
c A+ cc′

)(
1 −c
0 I

)(
1 0

−A−c I

)
=
(

1 + c′A−c −c
0 A

)
.

The left-hand side has the rank

1 + rank(A+ cc′) = 1 + rank(A)

(see (i) or (ii)). The right-hand side has the rank 1 + rank(A) if and only
if 1 + c′A−c �= 0.

Theorem A.77 Let A : n × n be a symmetric and nonsingular matrix and
c �∈ R(A). Then we have

(i) c ∈ R(A + cc′).

(ii) R(A) ⊂ R(A+ cc′).

(iii) c′(A+ cc′)−c = 1.

(iv) A(A+ cc′)−A = A.

(v) A(A+ cc′)−c = 0.
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Proof: As A is assumed to be nonsingular, the equation Al = 0 has a
nontrivial solution l �= 0, which may be standardized as (c′l)−1l such that
c′l = 1. Then we have c = (A+ cc′)l ∈ R(A+ cc′), and hence (i) is proved.
Relation (ii) holds as c �∈ R(A). Relation (i) is seen to be equivalent to

(A+ cc′)(A+ cc′)−c = c.

Then (iii) follows:

c′(A+ cc′)−c = l′(A+ cc′)(A+ cc′)−c
= l′c = 1 ,

which proves (iii). From

c = (A+ cc′)(A + cc′)−c
= A(A+ cc′)−c+ cc′(A+ cc′)−c
= A(A+ cc′)−c+ c ,

we have (v).
(iv) is a consequence of the general definition of a g-inverse and of (iii)

and (iv):

A+ cc′ = (A+ cc′)(A+ cc′)−(A+ cc′)
= A(A+ cc′)−A

+ cc′(A+ cc′)−cc′ [= cc′ using (iii)]
+A(A+ cc′)−cc′ [= 0 using (v)]
+ cc′(A+ cc′)−A [= 0 using (v)].

Theorem A.78 We have A ≥ 0 if and only if

(i) A+ cc′ ≥ 0.

(ii) (A+ cc′)(A+ cc′)−c = c.

(iii) c′(A+ cc′)−c ≤ 1.

Assume A ≥ 0; then

(a) c = 0⇔ c′(A+ cc′)−c = 0.

(b) c ∈ R(A)⇔ c′(A+ cc′)−c < 1.

(c) c �∈ R(A)⇔ c′(A+ cc′)−c = 1.

Proof: A ≥ 0 is equivalent to

0 ≤ cc′ ≤ A+ cc′.

Straightforward application of Theorem A.75 gives (i)–(iii).
Proof of (a): A ≥ 0⇒ A+ cc′ ≥ 0. Assume

c′(A+ cc′)−c = 0 ,
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and replace c by (ii) ⇒

c′(A+ cc′)−(A+ cc′)(A+ cc′)−c = 0⇒
(A+ cc′)(A + cc′)−c = 0

as (A+ cc′) ≥ 0. Assuming c = 0⇒ c′(A+ cc′)c = 0.
Proof of (b): Assume A ≥ 0 and c ∈ R(A), and use Theorem A.76

(Corollary 2) ⇒

c′(A+ cc′)−c = 1− 1
1 + c′A−c

< 1.

The opposite direction of (b) is a consequence of (c).
Proof of (c): Assume A ≥ 0 and c �∈ R(A), and use Theorem A.77 (iii)⇒

c′(A+ cc′)−c = 1.

The opposite direction of (c) is a consequence of (b).

Note: The proofs of Theorems A.74–A.78 are given in Bekker and
Neudecker (1989).

Theorem A.79 The linear equation Ax = a has a solution if and only if

a ∈ R(A) or AA−a = a

for any g-inverse A.
If this condition holds, then all solutions are given by

x = A−a+ (I −A−A)w ,

where w is an arbitrary m-vector. Further, q′x has a unique value for all
solutions of Ax = a if and only if q′A−A = q′, or q ∈ R(A′).

For a proof, see Rao (1973a, p. 25).

A.13 Projectors

Consider the range space R(A) of the matrix A : m× n with rank r. Then
there exists R(A)⊥, which is the orthogonal complement of R(A) with
dimension m− r. Any vector x ∈ R

m has the unique decomposition

x = x1 + x2 , x1 ∈ R(A) , and x2 ∈ R(A)⊥ ,

of which the component x1 is called the orthogonal projection of x onR(A).
The component x1 can be computed as Px, where

P = A(A′A)−A′ ,

which is called the projection operator on R(A). Note that P is unique for
any choice of the g-inverse (A′A)−.
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Theorem A.80 For any P : n× n, the following statements are equivalent:

(i) P is an orthogonal projection operator.

(ii) P is symmetric and idempotent.

For proofs and other details, the reader is referred to Rao (1973a) and
Rao and Mitra (1971).

Theorem A.81 Let X be a matrix of order T × K with rank r < K, and
U : (K − r)×K be such that R(X ′) ∩R(U ′) = {0}. Then

(i) X(X ′X + U ′U)−1U ′ = 0.

(ii) X ′X(X ′X + U ′U)−1X ′X = X ′X; that is, (X ′X + U ′U)−1 is a g-
inverse of X ′X.

(iii) U ′U(X ′X + U ′U)−1U ′U = U ′U ; that is, (X ′X + U ′U)−1 is also a
g-inverse of U ′U .

(iv) U(X ′X + U ′U)−1U ′u = u if u ∈ R(U).

Proof: Since X ′X + U ′U is of full rank, there exists a matrix A such that

(X ′X + U ′U)A = U ′

⇒ X ′XA = U ′ − U ′UA ⇒ XA = 0 and U ′ = U ′UA

since R(X ′) and R(U ′) are disjoint.
Proof of (i):

X(X ′X + U ′U)−1U ′ = X(X ′X + U ′U)−1(X ′X + U ′U)A = XA = 0 .

Proof of (ii):

X ′X(X ′X + U ′U)−1(X ′X + U ′U − U ′U)
= X ′X −X ′X(X ′X + U ′U)−1U ′U = X ′X .

Result (iii) follows on the same lines as result (ii).
Proof of (iv):

U(X ′X + U ′U)−1U ′u = U(X ′X + U ′U)−1U ′Ua = Ua = u

since u ∈ R(U).

A.14 Functions of Normally Distributed Variables

Let x′ = (x1, · · · , xp) be a p-dimensional random vector. Then x is said
to have a p-dimensional normal distribution with expectation vector μ and
covariance matrix Σ > 0 if the joint density is

f(x;μ,Σ) = {(2π)p|Σ|}− 1
2 exp

{
−1

2
(x− μ)′Σ−1(x− μ)

}
.




