(b) From the spectral decomposition

$$
A=\Gamma \Lambda \Gamma^{\prime}
$$

we obtain

$$
\operatorname{rank}(A)=\operatorname{rank}(\Lambda)=\operatorname{tr}(\Lambda)=r
$$

where r is the number of characteristic roots with value 1 .
(c) Let $\operatorname{rank}(A)=\operatorname{rank}(\Lambda)=n$, then $\Lambda=I_{n}$ and

$$
A=\Gamma \Lambda \Gamma^{\prime}=I_{n} .
$$

(a)-(c) follow from the definition of an idempotent matrix.

A. 12 Generalized Inverse

Definition A. 62 Let A be an $m \times n$-matrix. Then a matrix $A^{-}: n \times m$ is said to be a generalized inverse of A if

$$
A A^{-} A=A
$$

holds (see Rao (1973a, p. 24).
Theorem A. 63 A generalized inverse always exists although it is not unique in general.

Proof: Assume $\operatorname{rank}(A)=r$. According to the singular-value decomposition (Theorem A.32), we have

$$
\underset{m, n}{A}=\underset{m, r r, r r, n}{U} L V^{\prime}
$$

with $U^{\prime} U=I_{r}$ and $V^{\prime} V=I_{r}$ and

$$
L=\operatorname{diag}\left(l_{1}, \cdots, l_{r}\right), \quad l_{i}>0
$$

Then

$$
A^{-}=V\left(\begin{array}{cc}
L^{-1} & X \\
Y & Z
\end{array}\right) U^{\prime}
$$

(X, Y and Z are arbitrary matrices of suitable dimensions) is a g-inverse of A. Using Theorem A.33, namely,

$$
A=\left(\begin{array}{cc}
X & Y \\
Z & W
\end{array}\right)
$$

with X nonsingular, we have

$$
A^{-}=\left(\begin{array}{cc}
X^{-1} & 0 \\
0 & 0
\end{array}\right)
$$

as a special g-inverse.

Definition A. 64 (Moore-Penrose inverse) A matrix A^{+}satisfying the following conditions is called the Moore-Penrose inverse of A :
(i) $A A^{+} A=A$,
(ii) $A^{+} A A^{+}=A^{+}$,
(iii) $\left(A^{+} A\right)^{\prime}=A^{+} A$,
(iv) $\left(A A^{+}\right)^{\prime}=A A^{+}$.
A^{+}is unique.
Theorem A. 65 For any matrix $A: m \times n$ and any g-inverse $A^{-}: m \times n$, we have
(i) $A^{-} A$ and $A A^{-}$are idempotent.
(ii) $\operatorname{rank}(A)=\operatorname{rank}\left(A A^{-}\right)=\operatorname{rank}\left(A^{-} A\right)$.
(iii) $\operatorname{rank}(A) \leq \operatorname{rank}\left(A^{-}\right)$.

Proof:
(a) Using the definition of g-inverse,

$$
\left(A^{-} A\right)\left(A^{-} A\right)=A^{-}\left(A A^{-} A\right)=A^{-} A
$$

(b) According to Theorem A. 23 (iv), we get

$$
\operatorname{rank}(A)=\operatorname{rank}\left(A A^{-} A\right) \leq \operatorname{rank}\left(A^{-} A\right) \leq \operatorname{rank}(A)
$$

that is, $\operatorname{rank}\left(A^{-} A\right)=\operatorname{rank}(A)$. Analogously, we see that $\operatorname{rank}(A)=$ $\operatorname{rank}\left(A A^{-}\right)$.
(c) $\operatorname{rank}(A)=\operatorname{rank}\left(A A^{-} A\right) \leq \operatorname{rank}\left(A A^{-}\right) \leq \operatorname{rank}\left(A^{-}\right)$.

Theorem A. 66 Let A be an $m \times n$-matrix. Then
(i) A regular $\Rightarrow A^{+}=A^{-1}$.
(ii) $\left(A^{+}\right)^{+}=A$.
(iii) $\left(A^{+}\right)^{\prime}=\left(A^{\prime}\right)^{+}$.
(iv) $\operatorname{rank}(A)=\operatorname{rank}\left(A^{+}\right)=\operatorname{rank}\left(A^{+} A\right)=\operatorname{rank}\left(A A^{+}\right)$.
(v) A an orthogonal projector $\Rightarrow A^{+}=A$.
(vi) $\operatorname{rank}(A): m \times n=m \Rightarrow A^{+}=A^{\prime}\left(A A^{\prime}\right)^{-1}$ and $A A^{+}=I_{m}$.
(vii) $\operatorname{rank}(A): m \times n=n \Rightarrow A^{+}=\left(A^{\prime} A\right)^{-1} A^{\prime}$ and $A^{+} A=I_{n}$.
(viii) If $P: m \times m$ and $Q: n \times n$ are orthogonal $\Rightarrow(P A Q)^{+}=$ $Q^{-1} A^{+} P^{-1}$.
(ix) $\left(A^{\prime} A\right)^{+}=A^{+}\left(A^{\prime}\right)^{+} \quad$ and $\quad\left(A A^{\prime}\right)^{+}=\left(A^{\prime}\right)^{+} A^{+}$.
(x) $A^{+}=\left(A^{\prime} A\right)^{+} A^{\prime}=A^{\prime}\left(A A^{\prime}\right)^{+}$.

For further details see Rao and Mitra (1971).
Theorem A. 67 (Baksalary, Kala and Klaczynski (1983)) Let $M: n \times n \geq 0$ and $N: m \times n$ be any matrices. Then

$$
M-N^{\prime}\left(N M^{+} N^{\prime}\right)^{+} N \geq 0
$$

if and only if

$$
\mathcal{R}\left(N^{\prime} N M\right) \subset \mathcal{R}(M)
$$

Theorem A. 68 Let A be any square $n \times n$-matrix and a be an n-vector with $a \notin \mathcal{R}(A)$. Then a g-inverse of $A+a a^{\prime}$ is given by

$$
\begin{aligned}
\left(A+a a^{\prime}\right)^{-}= & A^{-}-\frac{A^{-} a a^{\prime} U^{\prime} U}{a^{\prime} U^{\prime} U a} \\
& -\frac{V V^{\prime} a a^{\prime} A^{-}}{a^{\prime} V V^{\prime} a}+\phi \frac{V V^{\prime} a a^{\prime} U^{\prime} U}{\left(a^{\prime} U^{\prime} U a\right)\left(a^{\prime} V V^{\prime} a\right)}
\end{aligned}
$$

with A^{-}any g-inverse of A and

$$
\phi=1+a^{\prime} A^{-} a, \quad U=I-A A^{-}, \quad V=I-A^{-} A
$$

Proof: Straightforward by checking $A A^{-} A=A$.
Theorem A. 69 Let A be a square $n \times n$-matrix. Then we have the following results:
(i) Assume a, b are vectors with $a, b \in \mathcal{R}(A)$, and let A be symmetric. Then the bilinear form $a^{\prime} A^{-} b$ is invariant to the choice of A^{-}.
(ii) $A\left(A^{\prime} A\right)^{-} A^{\prime}$ is invariant to the choice of $\left(A^{\prime} A\right)^{-}$.

Proof:
(a) $a, b \in \mathcal{R}(A) \Rightarrow a=A c$ and $b=A d$. Using the symmetry of A gives

$$
\begin{aligned}
a^{\prime} A^{-} b & =c^{\prime} A^{\prime} A^{-} A d \\
& =c^{\prime} A d
\end{aligned}
$$

(b) Using the rowwise representation of A as $A=\left(\begin{array}{c}a_{1}^{\prime} \\ \vdots \\ a_{n}^{\prime}\end{array}\right)$ gives

$$
A\left(A^{\prime} A\right)^{-} A^{\prime}=\left(a_{i}^{\prime}\left(A^{\prime} A\right)^{-} a_{j}\right)
$$

Since $A^{\prime} A$ is symmetric, we may conclude then (i) that all bilinear forms $a_{i}^{\prime}\left(A^{\prime} A\right) a_{j}$ are invariant to the choice of $\left(A^{\prime} A\right)^{-}$, and hence (ii) is proved.

Theorem A. 70 Let $A: n \times n$ be symmetric, $a \in \mathcal{R}(A), b \in \mathcal{R}(A)$, and assume $1+b^{\prime} A^{+} a \neq 0$. Then

$$
\left(A+a b^{\prime}\right)^{+}=A^{+}-\frac{A^{+} a b^{\prime} A^{+}}{1+b^{\prime} A^{+} a} .
$$

Proof: Straightforward, using Theorems A. 68 and A.69.
Theorem A. 71 Let $A: n \times n$ be symmetric, a be an n-vector, and $\alpha>0$ be any scalar. Then the following statements are equivalent:
(i) $\alpha A-a a^{\prime} \geq 0$.
(ii) $A \geq 0, a \in \mathcal{R}(A)$, and $a^{\prime} A^{-} a \leq \alpha$, with A^{-}being any g-inverse of A.

Proof:
(i) \Rightarrow (ii): $\alpha A-a a^{\prime} \geq 0 \Rightarrow \alpha A=\left(\alpha A-a a^{\prime}\right)+a a^{\prime} \geq 0 \Rightarrow A \geq 0$. Using Theorem A. 31 for $\alpha A-a a^{\prime} \geq 0$, we have $\alpha A-a a^{\prime}=B B$, and, hence,

$$
\begin{aligned}
& \alpha A=B B+a a^{\prime}=(B, a)(B, a)^{\prime} . \\
\Rightarrow \quad & \mathcal{R}(\alpha A)=\mathcal{R}(A)=\mathcal{R}(B, a) \\
\Rightarrow \quad & a \in \mathcal{R}(A) \\
\Rightarrow \quad & a=A c \quad \text { with } \quad c \in \mathbb{R}^{n} \\
\Rightarrow \quad & a^{\prime} A^{-} a=c^{\prime} A c .
\end{aligned}
$$

As $\alpha A-a a^{\prime} \geq 0 \quad \Rightarrow$

$$
x^{\prime}\left(\alpha A-a a^{\prime}\right) x \geq 0
$$

for any vector x, choosing $x=c$, we have

$$
\begin{aligned}
\alpha c^{\prime} A c-c^{\prime} a a^{\prime} c & =\alpha c^{\prime} A c-\left(c^{\prime} A c\right)^{2} \geq 0 \\
& \Rightarrow c^{\prime} A c \leq \alpha
\end{aligned}
$$

(ii) \Rightarrow (i): Let $x \in \mathbb{R}^{n}$ be any vector. Then, using Theorem A.54,

$$
\begin{aligned}
& x^{\prime}\left(\alpha A-a a^{\prime}\right) x=\alpha x^{\prime} A x-\left(x^{\prime} a\right)^{2} \\
&=\alpha x^{\prime} A x-\left(x^{\prime} A c\right)^{2} \\
& \geq \alpha x^{\prime} A x-\left(x^{\prime} A x\right)\left(c^{\prime} A c\right) \\
& \Rightarrow \quad x^{\prime}\left(\alpha A-a a^{\prime}\right) x \geq\left(x^{\prime} A x\right)\left(\alpha-c^{\prime} A c\right) .
\end{aligned}
$$

In (ii) we have assumed $A \geq 0$ and $c^{\prime} A c=a^{\prime} A^{-} a \leq \alpha$. Hence, $\alpha A-a a^{\prime} \geq 0$.

Note: This theorem is due to Baksalary and Kala (1983). The version given here and the proof are formulated by G. Trenkler.

Theorem A. 72 For any matrix A we have

$$
A^{\prime} A=0 \quad \text { if and only if } A=0
$$

Proof:
(a) $A=0 \Rightarrow A^{\prime} A=0$.
(b) Let $A^{\prime} A=0$, and let $A=\left(a_{(1)}, \cdots, a_{(n)}\right)$ be the columnwise presentation. Then

$$
A^{\prime} A=\left(a_{(i)}^{\prime} a_{(j)}\right)=0
$$

so that all the elements on the diagonal are zero: $a_{(i)}^{\prime} a_{(i)}=0 \Rightarrow a_{(i)}=0$ and $A=0$.

Theorem A. 73 Let $X \neq 0$ be an $m \times n$-matrix and A an $n \times n$-matrix. Then

$$
X^{\prime} X A X^{\prime} X=X^{\prime} X \quad \Rightarrow \quad X A X^{\prime} X=X \quad \text { and } \quad X^{\prime} X A X^{\prime}=X^{\prime}
$$

Proof: As $X \neq 0$ and $X^{\prime} X \neq 0$, we have

$$
\begin{gathered}
X^{\prime} X A X^{\prime} X-X^{\prime} X=\left(X^{\prime} X A-I\right) X^{\prime} X=0 \\
\Rightarrow\left(X^{\prime} X A-I\right)=0 \\
\Rightarrow 0=\left(X^{\prime} X A-I\right)\left(X^{\prime} X A X^{\prime} X-X^{\prime} X\right) \\
=\left(X^{\prime} X A X^{\prime}-X^{\prime}\right)\left(X A X^{\prime} X-X\right)=Y^{\prime} Y,
\end{gathered}
$$

so that (by Theorem A.72) $Y=0$, and, hence $X A X^{\prime} X=X$.
Corollary: Let $X \neq 0$ be an $m \times n$-matrix and A and $b n \times n$-matrices. Then

$$
A X^{\prime} X=B X^{\prime} X \quad \Leftrightarrow \quad A X^{\prime}=B X^{\prime}
$$

Theorem A. 74 (Albert's theorem)
Let $A=\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)$ be symmetric. Then
(i) $A \geq 0$ if and only if
(a) $A_{22} \geq 0$,
(b) $A_{21}=A_{22} A_{22}^{-} A_{21}$,
(c) $A_{11} \geq A_{12} A_{22}^{-} A_{21}$,
((b) and (c) are invariant of the choice of A_{22}^{-}).
(ii) $A>0$ if and only if
(a) $A_{22}>0$,
(b) $A_{11}>A_{12} A_{22}^{-1} A_{21}$.

Proof: Bekker and Neudecker (1989) :
(i) Assume $A \geq 0$.
(a) $A \geq 0 \quad \Rightarrow \quad x^{\prime} A x \geq 0$ for any x. Choosing $x^{\prime}=\left(0^{\prime}, x_{2}^{\prime}\right)$
$\Rightarrow x^{\prime} A x=x_{2}^{\prime} A_{22} x_{2} \geq 0$ for any $x_{2} \Rightarrow A_{22} \geq 0$.
(b) Let $B^{\prime}=\left(0, I-A_{22} A_{22}^{-}\right) \Rightarrow$

$$
\begin{aligned}
B^{\prime} A & =\left(\left(I-A_{22} A_{22}^{-}\right) A_{21}, A_{22}-A_{22} A_{22}^{-} A_{22}\right) \\
& =\left(\left(I-A_{22} A_{22}^{-}\right) A_{21}, 0\right)
\end{aligned}
$$

and $B^{\prime} A B=B^{\prime} A^{\frac{1}{2}} A^{\frac{1}{2}} B=0$. Hence, by Theorem A. 72 we get $B^{\prime} A^{\frac{1}{2}}=0$.

$$
\begin{aligned}
& \Rightarrow B^{\prime} A^{\frac{1}{2}} A^{\frac{1}{2}}=B^{\prime} A=0 \\
& \Rightarrow\left(I-A_{22} A_{22}^{-}\right) A_{21}=0
\end{aligned}
$$

This proves (b).
(c) Let $C^{\prime}=\left(I,-\left(A_{22}^{-} A_{21}\right)^{\prime}\right) . A \geq 0 \Rightarrow$

$$
\begin{aligned}
0 \leq C^{\prime} A C= & A_{11}-A_{12}\left(A_{22}^{-}\right)^{\prime} A_{21}-A_{12} A_{22}^{-} A_{21} \\
& +A_{12}\left(A_{22}^{-}\right)^{\prime} A_{22} A_{22}^{-} A_{21} \\
= & A_{11}-A_{12} A_{22}^{-} A_{21} .
\end{aligned}
$$

(Since A_{22} is symmetric, we have $\left(A_{22}^{-}\right)^{\prime}=A_{22}$.)
Now assume (a), (b), and (c). Then

$$
D=\left(\begin{array}{cc}
A_{11}-A_{12} A_{22}^{-} A_{21} & 0 \\
0 & A_{22}
\end{array}\right) \geq 0
$$

as the submatrices are n.n.d. by (a) and (b). Hence,

$$
A=\left(\begin{array}{cc}
I & A_{12}\left(A_{22}^{-}\right) \\
0 & I
\end{array}\right) D\left(\begin{array}{cc}
I & 0 \\
A_{22}^{-} A_{21} & I
\end{array}\right) \geq 0
$$

(ii) Proof as in (i) if A_{22}^{-}is replaced by A_{22}^{-1}.

Theorem A. 75 If $A: n \times n$ and $B: n \times n$ are symmetric, then
(i) $0 \leq B \leq A$ if and only if
(a) $A \geq 0$,
(b) $B=A A^{-} B$,
(c) $B \geq B A^{-} B$.
(ii) $0<B<A$ if and only if $0<A^{-1}<B^{-1}$.

Proof: Apply Theorem A. 74 to the matrix $\left(\begin{array}{cc}B & B \\ B & A\end{array}\right)$.

Theorem A. 76 Let A be symmetric and $c \in \mathcal{R}(A)$. Then the following statements are equivalent:
(i) $\operatorname{rank}\left(A+c c^{\prime}\right)=\operatorname{rank}(A)$.
(ii) $\mathcal{R}\left(A+c c^{\prime}\right)=\mathcal{R}(A)$.
(iii) $1+c^{\prime} A^{-} c \neq 0$.

Corollary 1: Assume (i) or (ii) or (iii) holds; then

$$
\left(A+c c^{\prime}\right)^{-}=A^{-}-\frac{A^{-} c c^{\prime} A^{-}}{1+c^{\prime} A^{-} c}
$$

for any choice of A^{-}.
Corollary 2: Assume (i) or (ii) or (iii) holds; then

$$
\begin{aligned}
c^{\prime}\left(A+c c^{\prime}\right)^{-} c & =c^{\prime} A^{-} c-\frac{\left(c^{\prime} A^{-} c\right)^{2}}{1+c^{\prime} A^{-} c} \\
& =1-\frac{1}{1+c^{\prime} A^{-} c}
\end{aligned}
$$

Moreover, as $c \in \mathcal{R}\left(A+c c^{\prime}\right)$, the results are invariant for any special choices of the g-inverses involved.

Proof: $c \in \mathcal{R}(A) \Leftrightarrow A A^{-} c=c \Rightarrow$

$$
\mathcal{R}\left(A+c c^{\prime}\right)=\mathcal{R}\left(A A^{-}\left(A+c c^{\prime}\right)\right) \subset \mathcal{R}(A)
$$

Hence, (i) and (ii) become equivalent. Proof of (iii): Consider the following product of matrices:

$$
\left(\begin{array}{cc}
1 & 0 \\
c & A+c c^{\prime}
\end{array}\right)\left(\begin{array}{cc}
1 & -c \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-A^{-} c & I
\end{array}\right)=\left(\begin{array}{cc}
1+c^{\prime} A^{-} c & -c \\
0 & A
\end{array}\right) .
$$

The left-hand side has the rank

$$
1+\operatorname{rank}\left(A+c c^{\prime}\right)=1+\operatorname{rank}(A)
$$

(see (i) or (ii)). The right-hand side has the $\operatorname{rank} 1+\operatorname{rank}(A)$ if and only if $1+c^{\prime} A^{-} c \neq 0$.

Theorem A. 77 Let $A: n \times n$ be a symmetric and nonsingular matrix and $c \notin \mathcal{R}(A)$. Then we have
(i) $c \in \mathcal{R}\left(A+c c^{\prime}\right)$.
(ii) $\mathcal{R}(A) \subset \mathcal{R}\left(A+c c^{\prime}\right)$.
(iii) $c^{\prime}\left(A+c c^{\prime}\right)^{-} c=1$.
(iv) $A\left(A+c c^{\prime}\right)^{-} A=A$.
(v) $A\left(A+c c^{\prime}\right)^{-} c=0$.

Proof: As A is assumed to be nonsingular, the equation $A l=0$ has a nontrivial solution $l \neq 0$, which may be standardized as $\left(c^{\prime} l\right)^{-1} l$ such that $c^{\prime} l=1$. Then we have $c=\left(A+c c^{\prime}\right) l \in \mathcal{R}\left(A+c c^{\prime}\right)$, and hence (i) is proved. Relation (ii) holds as $c \notin \mathcal{R}(A)$. Relation (i) is seen to be equivalent to

$$
\left(A+c c^{\prime}\right)\left(A+c c^{\prime}\right)^{-} c=c
$$

Then (iii) follows:

$$
\begin{aligned}
c^{\prime}\left(A+c c^{\prime}\right)^{-} c & =l^{\prime}\left(A+c c^{\prime}\right)\left(A+c c^{\prime}\right)^{-} c \\
& =l^{\prime} c=1,
\end{aligned}
$$

which proves (iii). From

$$
\begin{aligned}
c & =\left(A+c c^{\prime}\right)\left(A+c c^{\prime}\right)^{-} c \\
& =A\left(A+c c^{\prime}\right)^{-} c+c c^{\prime}\left(A+c c^{\prime}\right)^{-} c \\
& =A\left(A+c c^{\prime}\right)^{-} c+c,
\end{aligned}
$$

we have (v).
(iv) is a consequence of the general definition of a g-inverse and of (iii) and (iv):

$$
\begin{aligned}
A+c c^{\prime}= & \left(A+c c^{\prime}\right)\left(A+c c^{\prime}\right)^{-}\left(A+c c^{\prime}\right) \\
= & A\left(A+c c^{\prime}\right)^{-} A \\
& +c c^{\prime}\left(A+c c^{\prime}\right)^{-} c c^{\prime} \quad\left[=c c^{\prime} \text { using (iii) }\right] \\
& +A\left(A+c c^{\prime}\right)^{-} c c^{\prime} \quad[=0 \text { using (v) }] \\
& +c c^{\prime}\left(A+c c^{\prime}\right)^{-} A \quad[=0 \operatorname{using}(\mathrm{v})]
\end{aligned}
$$

Theorem A. 78 We have $A \geq 0$ if and only if
(i) $A+c c^{\prime} \geq 0$.
(ii) $\left(A+c c^{\prime}\right)\left(A+c c^{\prime}\right)^{-} c=c$.
(iii) $c^{\prime}\left(A+c c^{\prime}\right)^{-} c \leq 1$.

Assume $A \geq 0$; then
(a) $c=0 \Leftrightarrow c^{\prime}\left(A+c c^{\prime}\right)^{-} c=0$.
(b) $c \in \mathcal{R}(A) \Leftrightarrow c^{\prime}\left(A+c c^{\prime}\right)^{-} c<1$.
(c) $c \notin \mathcal{R}(A) \Leftrightarrow c^{\prime}\left(A+c c^{\prime}\right)^{-} c=1$.

Proof: $A \geq 0$ is equivalent to

$$
0 \leq c c^{\prime} \leq A+c c^{\prime}
$$

Straightforward application of Theorem A. 75 gives (i)-(iii).
Proof of (a): $A \geq 0 \Rightarrow A+c c^{\prime} \geq 0$. Assume

$$
c^{\prime}\left(A+c c^{\prime}\right)^{-} c=0,
$$

and replace c by (ii) \Rightarrow

$$
\begin{aligned}
& c^{\prime}\left(A+c c^{\prime}\right)^{-}\left(A+c c^{\prime}\right)\left(A+c c^{\prime}\right)^{-} c=0 \Rightarrow \\
& \left(A+c c^{\prime}\right)\left(A+c c^{\prime}\right)^{-} c=0
\end{aligned}
$$

as $\left(A+c c^{\prime}\right) \geq 0$. Assuming $c=0 \Rightarrow c^{\prime}\left(A+c c^{\prime}\right) c=0$.
Proof of (b): Assume $A \geq 0$ and $c \in \mathcal{R}(A)$, and use Theorem A. 76 (Corollary 2) \Rightarrow

$$
c^{\prime}\left(A+c c^{\prime}\right)^{-} c=1-\frac{1}{1+c^{\prime} A^{-} c}<1 .
$$

The opposite direction of (b) is a consequence of (c).
Proof of (c): Assume $A \geq 0$ and $c \notin \mathcal{R}(A)$, and use Theorem A. 77 (iii) \Rightarrow

$$
c^{\prime}\left(A+c c^{\prime}\right)^{-} c=1
$$

The opposite direction of (c) is a consequence of (b).
Note: The proofs of Theorems A.74-A.78 are given in Bekker and Neudecker (1989).

Theorem A. 79 The linear equation $A x=a$ has a solution if and only if

$$
a \in \mathcal{R}(A) \quad \text { or } \quad A A^{-} a=a
$$

for any g-inverse A.
If this condition holds, then all solutions are given by

$$
x=A^{-} a+\left(I-A^{-} A\right) w,
$$

where w is an arbitrary m-vector. Further, $q^{\prime} x$ has a unique value for all solutions of $A x=a$ if and only if $q^{\prime} A^{-} A=q^{\prime}$, or $q \in \mathcal{R}\left(A^{\prime}\right)$.

For a proof, see Rao (1973a, p. 25).

A. 13 Projectors

Consider the range space $\mathcal{R}(A)$ of the matrix $A: m \times n$ with rank r. Then there exists $\mathcal{R}(A)^{\perp}$, which is the orthogonal complement of $\mathcal{R}(A)$ with dimension $m-r$. Any vector $x \in \mathbb{R}^{m}$ has the unique decomposition

$$
x=x_{1}+x_{2}, \quad x_{1} \in \mathcal{R}(A), \quad \text { and } \quad x_{2} \in \mathcal{R}(A)^{\perp}
$$

of which the component x_{1} is called the orthogonal projection of x on $\mathcal{R}(A)$. The component x_{1} can be computed as $P x$, where

$$
P=A\left(A^{\prime} A\right)^{-} A^{\prime}
$$

which is called the projection operator on $\mathcal{R}(A)$. Note that P is unique for any choice of the g-inverse $\left(A^{\prime} A\right)^{-}$.

Theorem A. 80 For any $P: n \times n$, the following statements are equivalent:
(i) P is an orthogonal projection operator.
(ii) P is symmetric and idempotent.

For proofs and other details, the reader is referred to Rao (1973a) and Rao and Mitra (1971).
Theorem A. 81 Let X be a matrix of order $T \times K$ with rank $r<K$, and $U:(K-r) \times K$ be such that $\mathcal{R}\left(X^{\prime}\right) \cap \mathcal{R}\left(U^{\prime}\right)=\{0\}$. Then
(i) $X\left(X^{\prime} X+U^{\prime} U\right)^{-1} U^{\prime}=0$.
(ii) $X^{\prime} X\left(X^{\prime} X+U^{\prime} U\right)^{-1} X^{\prime} X=X^{\prime} X$; that is, $\left(X^{\prime} X+U^{\prime} U\right)^{-1}$ is a g inverse of $X^{\prime} X$.
(iii) $U^{\prime} U\left(X^{\prime} X+U^{\prime} U\right)^{-1} U^{\prime} U=U^{\prime} U$; that is, $\left(X^{\prime} X+U^{\prime} U\right)^{-1}$ is also a g-inverse of $U^{\prime} U$.
(iv) $U\left(X^{\prime} X+U^{\prime} U\right)^{-1} U^{\prime} u=u$ if $u \in \mathcal{R}(U)$.

Proof: Since $X^{\prime} X+U^{\prime} U$ is of full rank, there exists a matrix A such that

$$
\begin{aligned}
& \left(X^{\prime} X+U^{\prime} U\right) A=U^{\prime} \\
\Rightarrow \quad & X^{\prime} X A=U^{\prime}-U^{\prime} U A \Rightarrow X A=0 \text { and } U^{\prime}=U^{\prime} U A
\end{aligned}
$$

since $\mathcal{R}\left(X^{\prime}\right)$ and $\mathcal{R}\left(U^{\prime}\right)$ are disjoint.
Proof of (i):

$$
X\left(X^{\prime} X+U^{\prime} U\right)^{-1} U^{\prime}=X\left(X^{\prime} X+U^{\prime} U\right)^{-1}\left(X^{\prime} X+U^{\prime} U\right) A=X A=0
$$

Proof of (ii):

$$
\begin{aligned}
& X^{\prime} X\left(X^{\prime} X+U^{\prime} U\right)^{-1}\left(X^{\prime} X+U^{\prime} U-U^{\prime} U\right) \\
& \quad=\quad X^{\prime} X-X^{\prime} X\left(X^{\prime} X+U^{\prime} U\right)^{-1} U^{\prime} U=X^{\prime} X
\end{aligned}
$$

Result (iii) follows on the same lines as result (ii).
Proof of (iv):

$$
U\left(X^{\prime} X+U^{\prime} U\right)^{-1} U^{\prime} u=U\left(X^{\prime} X+U^{\prime} U\right)^{-1} U^{\prime} U a=U a=u
$$

since $u \in \mathcal{R}(U)$.

A. 14 Functions of Normally Distributed Variables

Let $x^{\prime}=\left(x_{1}, \cdots, x_{p}\right)$ be a p-dimensional random vector. Then x is said to have a p-dimensional normal distribution with expectation vector μ and covariance matrix $\Sigma>0$ if the joint density is

$$
f(x ; \mu, \Sigma)=\left\{(2 \pi)^{p}|\Sigma|\right\}^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right\}
$$

