(b) From the spectral decomposition

$$A = \Gamma \Lambda \Gamma'$$

we obtain

$$\operatorname{rank}(A) = \operatorname{rank}(\Lambda) = \operatorname{tr}(\Lambda) = r,$$

where r is the number of characteristic roots with value 1.

(c) Let
$$\operatorname{rank}(A) = \operatorname{rank}(\Lambda) = n$$
, then $\Lambda = I_n$ and
 $A = \Gamma \Lambda \Gamma' = I_n$.

(a)–(c) follow from the definition of an idempotent matrix.

A.12 Generalized Inverse

Definition A.62 Let A be an $m \times n$ -matrix. Then a matrix $A^- : n \times m$ is said to be a generalized inverse of A if

$$AA^{-}A = A$$

holds (see Rao (1973a, p. 24).

Theorem A.63 A generalized inverse always exists although it is not unique in general.

Proof: Assume rank(A) = r. According to the singular-value decomposition (Theorem A.32), we have

$$A = \bigcup_{m,n} LV'_{m,rr,rr,n}$$

with $U'U = I_r$ and $V'V = I_r$ and

$$L = \operatorname{diag}(l_1, \cdots, l_r), \quad l_i > 0.$$

Then

$$A^{-} = V \left(\begin{array}{cc} L^{-1} & X \\ Y & Z \end{array} \right) U'$$

(X, Y and Z are arbitrary matrices of suitable dimensions) is a *g*-inverse of *A*. Using Theorem A.33, namely,

$$A = \left(\begin{array}{cc} X & Y \\ Z & W \end{array}\right)$$

with X nonsingular, we have

$$A^- = \left(\begin{array}{cc} X^{-1} & 0\\ 0 & 0 \end{array}\right)$$

as a special g-inverse.

Definition A.64 (Moore-Penrose inverse) A matrix A^+ satisfying the following conditions is called the Moore-Penrose inverse of A:

- (i) $AA^+A = A$,
- (ii) $A^+AA^+ = A^+$,
- (iii) $(A^+A)' = A^+A$,
- (iv) $(AA^+)' = AA^+$.

 A^+ is unique.

Theorem A.65 For any matrix $A : m \times n$ and any g-inverse $A^- : m \times n$, we have

- (i) A^-A and AA^- are idempotent.
- (ii) $\operatorname{rank}(A) = \operatorname{rank}(AA^{-}) = \operatorname{rank}(A^{-}A).$
- (iii) $\operatorname{rank}(A) \leq \operatorname{rank}(A^{-}).$

Proof:

(a) Using the definition of g-inverse,

$$(A^{-}A)(A^{-}A) = A^{-}(AA^{-}A) = A^{-}A.$$

(b) According to Theorem A.23 (iv), we get

 $\operatorname{rank}(A) = \operatorname{rank}(AA^{-}A) \le \operatorname{rank}(A^{-}A) \le \operatorname{rank}(A),$

that is, $\operatorname{rank}(A^{-}A) = \operatorname{rank}(A)$. Analogously, we see that $\operatorname{rank}(A) = \operatorname{rank}(AA^{-})$.

(c) $\operatorname{rank}(A) = \operatorname{rank}(AA^{-}A) \le \operatorname{rank}(AA^{-}) \le \operatorname{rank}(A^{-}).$

Theorem A.66 Let A be an $m \times n$ -matrix. Then

- (i) A regular $\Rightarrow A^+ = A^{-1}$.
- (ii) $(A^+)^+ = A$.
- (iii) $(A^+)' = (A')^+$.

(iv)
$$\operatorname{rank}(A) = \operatorname{rank}(A^+) = \operatorname{rank}(A^+A) = \operatorname{rank}(AA^+).$$

- (v) A an orthogonal projector $\Rightarrow A^+ = A$.
- (vi) rank(A): $m \times n = m \Rightarrow A^+ = A'(AA')^{-1}$ and $AA^+ = I_m$.
- (vii) $\operatorname{rank}(A): m \times n = n \Rightarrow A^+ = (A'A)^{-1}A' \text{ and } A^+A = I_n.$
- (viii) If $P : m \times m$ and $Q : n \times n$ are orthogonal \Rightarrow $(PAQ)^+ = Q^{-1}A^+P^{-1}$.

(ix)
$$(A'A)^+ = A^+(A')^+$$
 and $(AA')^+ = (A')^+A^+$.

(x)
$$A^+ = (A'A)^+A' = A'(AA')^+$$
.

For further details see Rao and Mitra (1971).

Theorem A.67 (Baksalary, Kala and Klaczynski (1983)) Let $M : n \times n \ge 0$ and $N : m \times n$ be any matrices. Then

$$M - N'(NM^+N')^+N \ge 0$$

if and only if

$$\mathcal{R}(N'NM) \subset \mathcal{R}(M).$$

Theorem A.68 Let A be any square $n \times n$ -matrix and a be an n-vector with $a \notin \mathcal{R}(A)$. Then a g-inverse of A + aa' is given by

$$(A + aa')^{-} = A^{-} - \frac{A^{-} aa'U'U}{a'U'Ua}$$
$$- \frac{VV'aa'A^{-}}{a'VV'a} + \phi \frac{VV'aa'U'U}{(a'U'Ua)(a'VV'a)},$$

with A^- any g-inverse of A and

$$\phi = 1 + a'A^{-}a, \quad U = I - AA^{-}, \quad V = I - A^{-}A$$

Proof: Straightforward by checking $AA^{-}A = A$.

Theorem A.69 Let A be a square $n \times n$ -matrix. Then we have the following results:

- (i) Assume a, b are vectors with a, b ∈ R(A), and let A be symmetric. Then the bilinear form a'A⁻b is invariant to the choice of A⁻.
- (ii) $A(A'A)^{-}A'$ is invariant to the choice of $(A'A)^{-}$.

Proof:

(a) $a, b \in \mathcal{R}(A) \Rightarrow a = Ac$ and b = Ad. Using the symmetry of A gives

$$a'A^{-}b = c'A'A^{-}Ad$$
$$= c'Ad.$$

(b) Using the rowwise representation of A as $A = \begin{pmatrix} a'_1 \\ \vdots \\ a'_n \end{pmatrix}$ gives

$$A(A'A)^{-}A' = (a'_{i}(A'A)^{-}a_{j}).$$

Since A'A is symmetric, we may conclude then (i) that all bilinear forms $a'_i(A'A)a_j$ are invariant to the choice of $(A'A)^-$, and hence (ii) is proved.

Theorem A.70 Let $A : n \times n$ be symmetric, $a \in \mathcal{R}(A)$, $b \in \mathcal{R}(A)$, and assume $1 + b'A^+a \neq 0$. Then

$$(A + ab')^{+} = A^{+} - \frac{A^{+}ab'A^{+}}{1 + b'A^{+}a}$$

Proof: Straightforward, using Theorems A.68 and A.69.

Theorem A.71 Let $A : n \times n$ be symmetric, a be an n-vector, and $\alpha > 0$ be any scalar. Then the following statements are equivalent:

(i) $\alpha A - aa' \ge 0$.

(ii)
$$A \ge 0$$
, $a \in \mathcal{R}(A)$, and $a'A^-a \le \alpha$, with A^- being any g-inverse of A.

Proof:

(i) \Rightarrow (ii): $\alpha A - aa' \ge 0 \Rightarrow \alpha A = (\alpha A - aa') + aa' \ge 0 \Rightarrow A \ge 0$. Using Theorem A.31 for $\alpha A - aa' \ge 0$, we have $\alpha A - aa' = BB$, and, hence,

$$\alpha A = BB + aa' = (B, a)(B, a)'$$

$$\Rightarrow \quad \mathcal{R}(\alpha A) = \mathcal{R}(A) = \mathcal{R}(B, a)$$

$$\Rightarrow \quad a \in \mathcal{R}(A)$$

$$\Rightarrow \quad a = Ac \quad \text{with} \quad c \in \mathbb{R}^{n}$$

$$\Rightarrow \quad a'A^{-}a = c'Ac.$$

As $\alpha A - aa' \ge 0 \quad \Rightarrow$

$$x'(\alpha A - aa')x \ge 0$$

for any vector x, choosing x = c, we have

$$\alpha c'Ac - c'aa'c = \alpha c'Ac - (c'Ac)^2 \ge 0,$$

$$\Rightarrow c'Ac < \alpha.$$

(ii) \Rightarrow (i): Let $x \in \mathbb{R}^n$ be any vector. Then, using Theorem A.54,

$$x'(\alpha A - aa')x = \alpha x'Ax - (x'a)^{2}$$

= $\alpha x'Ax - (x'Ac)^{2}$
 $\geq \alpha x'Ax - (x'Ax)(c'Ac)^{2}$
 $\Rightarrow x'(\alpha A - aa')x \geq (x'Ax)(\alpha - c'Ac).$

In (ii) we have assumed $A \ge 0$ and $c'Ac = a'A^{-}a \le \alpha$. Hence, $\alpha A - aa' \ge 0$.

Note: This theorem is due to Baksalary and Kala (1983). The version given here and the proof are formulated by G. Trenkler.

Theorem A.72 For any matrix A we have

A'A = 0 if and only if A = 0.

Proof:

- (a) $A = 0 \Rightarrow A'A = 0$.
- (b) Let A'A = 0, and let $A = (a_{(1)}, \cdots, a_{(n)})$ be the columnwise presentation. Then

$$A'A = (a'_{(i)}a_{(j)}) = 0,$$

so that all the elements on the diagonal are zero: $a'_{(i)}a_{(i)} = 0 \Rightarrow a_{(i)} = 0$ and A = 0.

Theorem A.73 Let $X \neq 0$ be an $m \times n$ -matrix and A an $n \times n$ -matrix. Then

$$X'XAX'X = X'X \Rightarrow XAX'X = X \text{ and } X'XAX' = X'$$

Proof: As $X \neq 0$ and $X'X \neq 0$, we have

$$X'XAX'X - X'X = (X'XA - I)X'X = 0$$

$$\Rightarrow (X'XA - I) = 0$$

$$\Rightarrow 0 = (X'XA - I)(X'XAX'X - X'X)$$
$$= (X'XAX' - X')(XAX'X - X) = Y'Y$$

so that (by Theorem A.72) Y = 0, and, hence XAX'X = X.

Corollary: Let $X \neq 0$ be an $m \times n$ -matrix and A and b $n \times n$ -matrices. Then

$$AX'X = BX'X \quad \Leftrightarrow \quad AX' = BX'.$$

Theorem A.74 (Albert's theorem)

- Let $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$ be symmetric. Then (i) $A \ge 0$ if and only if (a) $A_{22} \ge 0$, (b) $A_{21} = A_{22}A_{22}^{-}A_{21}$, (c) $A_{11} \ge A_{12}A_{22}^{-}A_{21}$, ((b) and (c) are invariant of the choice of A_{22}^{-}). (ii) A > 0 if and only if (a) $A_{22} > 0$,
 - (b) $A_{11} > A_{12}A_{22}^{-1}A_{21}$.

Proof: Bekker and Neudecker (1989) :

(i) Assume $A \ge 0$. (a) $A \ge 0 \Rightarrow x'Ax \ge 0$ for any x. Choosing $x' = (0', x'_2)$ $\Rightarrow x'Ax = x'_2A_{22}x_2 \ge 0$ for any $x_2 \Rightarrow A_{22} \ge 0$. (b) Let $B' = (0, I - A_{22}A_{22}^-) \Rightarrow$ $B'A = ((I - A_{22}A_{22}^-)A_{21}, A_{22} - A_{22}A_{22}^-A_{22})$ $= ((I - A_{22}A_{22}^-)A_{21}, 0)$ and $B'AB = B'A^{\frac{1}{2}}A^{\frac{1}{2}}B = 0$. Hence, by Theorem A.72 we get $B'A^{\frac{1}{2}} = 0$.

$$\Rightarrow B'A^{\frac{1}{2}}A^{\frac{1}{2}} = B'A = 0.$$

$$\Rightarrow (I - A_{22}A^{-}_{22})A_{21} = 0.$$

This proves (b).

(c) Let
$$C' = (I, -(A_{22}^-A_{21})')$$
. $A \ge 0 \Rightarrow$
 $0 \le C'AC = A_{11} - A_{12}(A_{22}^-)'A_{21} - A_{12}A_{22}^-A_{21}$
 $+ A_{12}(A_{22}^-)'A_{22}A_{22}^-A_{21}$
 $= A_{11} - A_{12}A_{22}^-A_{21}$.

(Since A_{22} is symmetric, we have $(A_{22}^-)' = A_{22}$.) Now assume (a), (b), and (c). Then

$$D = \begin{pmatrix} A_{11} - A_{12}A_{22}^{-}A_{21} & 0\\ 0 & A_{22} \end{pmatrix} \ge 0,$$

as the submatrices are n.n.d. by (a) and (b). Hence,

$$A = \begin{pmatrix} I & A_{12}(A_{22}^-) \\ 0 & I \end{pmatrix} D \begin{pmatrix} I & 0 \\ A_{22}^-A_{21} & I \end{pmatrix} \ge 0$$

(ii) Proof as in (i) if A_{22}^- is replaced by A_{22}^{-1} .

Theorem A.75 If $A: n \times n$ and $B: n \times n$ are symmetric, then

- (i) $0 \le B \le A$ if and only if (a) $A \ge 0$, (b) $B = AA^{-}B$,
 - (c) $B \ge BA^-B$.
- (ii) 0 < B < A if and only if $0 < A^{-1} < B^{-1}$.

Proof: Apply Theorem A.74 to the matrix $\begin{pmatrix} B & B \\ B & A \end{pmatrix}$.

Theorem A.76 Let A be symmetric and $c \in \mathcal{R}(A)$. Then the following statements are equivalent:

- (i) $\operatorname{rank}(A + cc') = \operatorname{rank}(A)$.
- (ii) $\mathcal{R}(A + cc') = \mathcal{R}(A)$.
- (iii) $1 + c'A^-c \neq 0$.

Corollary 1: Assume (i) or (ii) or (iii) holds; then

$$(A + cc')^{-} = A^{-} - \frac{A^{-}cc'A^{-}}{1 + c'A^{-}c}$$

for any choice of A^- .

Corollary 2: Assume (i) or (ii) or (iii) holds; then

$$c'(A + cc')^{-}c = c'A^{-}c - \frac{(c'A^{-}c)^{2}}{1 + c'A^{-}c}$$
$$= 1 - \frac{1}{1 + c'A^{-}c}.$$

Moreover, as $c \in \mathcal{R}(A+cc')$, the results are invariant for any special choices of the g-inverses involved.

Proof: $c \in \mathcal{R}(A) \Leftrightarrow AA^{-}c = c \Rightarrow$

$$\mathcal{R}(A + cc') = \mathcal{R}(AA^{-}(A + cc')) \subset \mathcal{R}(A).$$

Hence, (i) and (ii) become equivalent. Proof of (iii): Consider the following product of matrices:

$$\begin{pmatrix} 1 & 0 \\ c & A + cc' \end{pmatrix} \begin{pmatrix} 1 & -c \\ 0 & I \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -A^-c & I \end{pmatrix} = \begin{pmatrix} 1 + c'A^-c & -c \\ 0 & A \end{pmatrix}.$$

The left-hand side has the rank

$$1 + \operatorname{rank}(A + cc') = 1 + \operatorname{rank}(A)$$

(see (i) or (ii)). The right-hand side has the rank $1 + \operatorname{rank}(A)$ if and only if $1 + c'A^-c \neq 0$.

Theorem A.77 Let $A : n \times n$ be a symmetric and nonsingular matrix and $c \notin \mathcal{R}(A)$. Then we have

- (i) $c \in \mathcal{R}(A + cc')$.
- (ii) $\mathcal{R}(A) \subset \mathcal{R}(A + cc').$
- (iii) $c'(A + cc')^{-}c = 1.$
- (iv) $A(A + cc')^{-}A = A$.
- (v) $A(A + cc')^{-}c = 0.$

Proof: As A is assumed to be nonsingular, the equation Al = 0 has a nontrivial solution $l \neq 0$, which may be standardized as $(c'l)^{-1}l$ such that c'l = 1. Then we have $c = (A + cc')l \in \mathcal{R}(A + cc')$, and hence (i) is proved. Relation (ii) holds as $c \notin \mathcal{R}(A)$. Relation (i) is seen to be equivalent to

$$(A + cc')(A + cc')^{-}c = c.$$

Then (iii) follows:

$$c'(A + cc')^{-}c = l'(A + cc')(A + cc')^{-}c$$

= $l'c = 1$,

which proves (iii). From

$$c = (A + cc')(A + cc')^{-}c$$

= $A(A + cc')^{-}c + cc'(A + cc')^{-}c$
= $A(A + cc')^{-}c + c$,

we have (v).

(iv) is a consequence of the general definition of a g-inverse and of (iii) and (iv):

$$A + cc' = (A + cc')(A + cc')^{-}(A + cc')$$

= $A(A + cc')^{-}A$
+ $cc'(A + cc')^{-}cc'$ [= cc' using (iii)]
+ $A(A + cc')^{-}cc'$ [= 0 using (v)]
+ $cc'(A + cc')^{-}A$ [= 0 using (v)].

Theorem A.78 We have $A \ge 0$ if and only if

(i) $A + cc' \ge 0$. (ii) $(A + cc')(A + cc')^{-}c = c$. (iii) $c'(A + cc')^{-}c \le 1$.

Assume $A \ge 0$; then

(a)
$$c = 0 \Leftrightarrow c'(A + cc')^{-}c = 0.$$

- (b) $c \in \mathcal{R}(A) \Leftrightarrow c'(A + cc')^{-}c < 1.$
- (c) $c \notin \mathcal{R}(A) \Leftrightarrow c'(A + cc')^{-}c = 1.$

Proof: $A \ge 0$ is equivalent to

$$0 \le cc' \le A + cc'.$$

Straightforward application of Theorem A.75 gives (i)-(iii).

Proof of (a): $A \ge 0 \Rightarrow A + cc' \ge 0$. Assume

$$c'(A+cc')^{-}c=0\,,$$

and replace c by (ii) \Rightarrow

$$\begin{split} c'(A+cc')^-(A+cc')(A+cc')^-c &= 0 \Rightarrow \\ (A+cc')(A+cc')^-c &= 0 \end{split}$$

as $(A + cc') \ge 0$. Assuming $c = 0 \Rightarrow c'(A + cc')c = 0$.

Proof of (b): Assume $A \ge 0$ and $c \in \mathcal{R}(A)$, and use Theorem A.76 (Corollary 2) \Rightarrow

$$c'(A + cc')^{-}c = 1 - \frac{1}{1 + c'A^{-}c} < 1.$$

The opposite direction of (b) is a consequence of (c).

Proof of (c): Assume $A \ge 0$ and $c \notin \mathcal{R}(A)$, and use Theorem A.77 (iii) \Rightarrow

$$c'(A+cc')^{-}c=1.$$

The opposite direction of (c) is a consequence of (b).

Note: The proofs of Theorems A.74–A.78 are given in Bekker and Neudecker (1989).

Theorem A.79 The linear equation Ax = a has a solution if and only if

$$a \in \mathcal{R}(A)$$
 or $AA^{-}a = a$

for any g-inverse A.

If this condition holds, then all solutions are given by

$$x = A^- a + (I - A^- A)w,$$

where w is an arbitrary m-vector. Further, q'x has a unique value for all solutions of Ax = a if and only if $q'A^{-}A = q'$, or $q \in \mathcal{R}(A')$.

For a proof, see Rao (1973a, p. 25).

A.13 Projectors

Consider the range space $\mathcal{R}(A)$ of the matrix $A: m \times n$ with rank r. Then there exists $\mathcal{R}(A)^{\perp}$, which is the orthogonal complement of $\mathcal{R}(A)$ with dimension m - r. Any vector $x \in \mathbb{R}^m$ has the unique decomposition

$$x = x_1 + x_2$$
, $x_1 \in \mathcal{R}(A)$, and $x_2 \in \mathcal{R}(A)^{\perp}$,

of which the component x_1 is called the orthogonal projection of x on $\mathcal{R}(A)$. The component x_1 can be computed as Px, where

$$P = A(A'A)^{-}A',$$

which is called the projection operator on $\mathcal{R}(A)$. Note that P is unique for any choice of the g-inverse $(A'A)^-$.

Theorem A.80 For any $P: n \times n$, the following statements are equivalent:

- (i) P is an orthogonal projection operator.
- (ii) P is symmetric and idempotent.

For proofs and other details, the reader is referred to Rao (1973a) and Rao and Mitra (1971).

Theorem A.81 Let X be a matrix of order $T \times K$ with rank r < K, and $U: (K - r) \times K$ be such that $\mathcal{R}(X') \cap \mathcal{R}(U') = \{0\}$. Then

- (i) $X(X'X + U'U)^{-1}U' = 0.$
- (ii) $X'X(X'X + U'U)^{-1}X'X = X'X$; that is, $(X'X + U'U)^{-1}$ is a ginverse of X'X.
- (iii) $U'U(X'X + U'U)^{-1}U'U = U'U$; that is, $(X'X + U'U)^{-1}$ is also a g-inverse of U'U.

(iv)
$$U(X'X + U'U)^{-1}U'u = u$$
 if $u \in \mathcal{R}(U)$.

Proof: Since X'X + U'U is of full rank, there exists a matrix A such that

$$\begin{aligned} & (X'X+U'U)A=U' \\ \Rightarrow & X'XA=U'-U'UA \ \Rightarrow \ XA=0 \ \text{and} \ U'=U'UA \end{aligned}$$

since $\mathcal{R}(X')$ and $\mathcal{R}(U')$ are disjoint.

Proof of (i):

$$X(X'X + U'U)^{-1}U' = X(X'X + U'U)^{-1}(X'X + U'U)A = XA = 0.$$

Proof of (ii):

$$X'X(X'X + U'U)^{-1}(X'X + U'U - U'U)$$

= X'X - X'X(X'X + U'U)^{-1}U'U = X'X.

Result (iii) follows on the same lines as result (ii).

Proof of (iv):

$$U(X'X + U'U)^{-1}U'u = U(X'X + U'U)^{-1}U'Ua = Ua = u$$

since $u \in \mathcal{R}(U)$.

A.14 Functions of Normally Distributed Variables

Let $x' = (x_1, \dots, x_p)$ be a *p*-dimensional random vector. Then *x* is said to have a *p*-dimensional normal distribution with expectation vector μ and covariance matrix $\Sigma > 0$ if the joint density is

$$f(x;\mu,\Sigma) = \{(2\pi)^p |\Sigma|\}^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\right\}$$