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Empirical Likelihood Method and Generalized Empirical Likelihood

5.1 Empirical likelihood

The empirical likelihood (EL) is a nonparametric (though sometimes people viewed it as a semi-parametric)
approach for computing an estimator. The idea is to find a ‘maximum likelihood estimate’ (MLE) of the
distribution function F with some moment constraints. The main reference of EL is the following paper

[O1990] Owen, A. (1990). Empirical Likelihood Ratio Confidence Regions. The Annals of Statis-
tics, 18(1), 90-120.

Let X1, · · · , Xn ∼ F0, where F0 is the underlying distribution function. Suppose that we know the mean of
the distribution µ0 =

∫
xdF0(x) in advance. We want to compute the ‘MLE’ of the underlying distribution

subject to this constraint. Note that here we do not specify any parametric model of F .

We consider a PMF P such that
P (Xi) = F (Xi)− F (X−i ) = Wi.

Each P leads to a CDF F . Now we treat this PMF as if it is a multinomial distribution can consider the
likelihood function

Ln(P ) =

n∏
i=1

P (Xi)

or the log-likelihood function

`n(P ) =
n∑
i=1

logP (Xi) =
n∑
i=1

logWi. (5.1)

With this, we have specify a likelihood function of any PMF P . The idea of empirical likelihood is to find
P such that equation (5.1) is maximized and the constraint µ0 =

∫
xdF (x) =

∑n
i=1 P (Xi)Xi =

∑n
i=1WiXi

holds. Namely, we want to find

Ŵ = argmaxW1,··· ,Wn

n∑
i=1

logWi.

s.t. µ0 =
n∑
i=1

WiXi,
n∑
i=1

Wi = 1, Wi ≥ 0.

One can easily see that this procedure can be easily combined with any equation-type constraint. Specifically,
if the constraint is E(g(X)) = 0 for some given function g ∈ Rp, then the empirical likelihood will be

Ŵ = argmaxW1,··· ,Wn

n∑
i=1

logWi.

s.t. 0 =

n∑
i=1

Wig(Xi),

n∑
i=1

Wi = 1, Wi ≥ 0,
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2 Empirical likelihood method

where W = (W1, · · · ,Wn) and Ŵ = (Ŵ1, · · · , Ŵn).

Using the Lagrangian multiplier, we want to minimize the following quantity:

n∑
i=1

logWi − λT
n∑
i=1

Wig(Xi)− µ(
n∑
i=1

Wi − 1)

with respect to W1, · · · ,Wn, λ, µ. Taking derivative with respect to Wi, we obtain

1

Wi
= λT g(Xi) + µ

or equivalently,

Wi =
1

µ+ λT g(Xi)
.

To solve µ, the above equation implies 1 = Wi(µ+ λT g(Xi)) which further implies

n =
m∑
i=1

Wi(µ+ λT g(Xi)) = µ+ λT
n∑
i=1

Wig(Xi)︸ ︷︷ ︸
=0

= µ.

As a result, we obtain a closed-form solution as

Wi =
1

n+ λ̂T g(Xi)

and the multiplier λ̂ satisfies the constraint

0 =
n∑
i=1

g(Xi)

n+ λ̂T g(Xi)
.

Note that one can always absorb n into λ̂ and rewrite the above as

Wi =
1

1 + λ̂T g(Xi)
, 0 =

n∑
i=1

g(Xi)

1 + λ̂T g(Xi)
. (5.2)

5.1.1 Estimating equation

The empirical likelihood method can be applied to various problems. Here we will show how it can be used
to solve an estimating equation. We will briefly describe the procedure in

[QL1994] Qin, J., & Lawless, J. (1994). Empirical likelihood and general estimating equations.
the Annals of Statistics, 300-325.

Suppose that the parameter of interest β ∈ Rp is derived from solving the (population) estimating equation

β0 : 0 = E(g(X;β0)).

This implies that for any given β, we can try to find W = W (β) and λ̂ = λ̂(β) such that

Wi(β) =
1

1 + λ̂T g(Xi;β)
, 0 =

n∑
i=1

g(Xi;β)

1 + λ̂T (β)g(Xi;β)
. (5.3)
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Thus, the empirical log-likelihood as a function of β is

`n,EL(β) = −
n∑
i=1

log
(

1 + λ̂T (β)g(Xi;β)
)
.

So we can estimate β via maximizing the empirical log-likelihood or equivalently,

β̂EL = argminβ

n∑
i=1

log
(

1 + λ̂T (β)g(Xi;β)
)
. (5.4)

This is the maximum empirical likelihood estimator (MELE) described in [QL1994].

Interestingly, there is another way of expressing the MELE as a saddle point problem. Under smoothness
conditions, λ̂(β) can be expressed as

λ̂(β) = argmaxλ∈Λn(β)

n∑
i=1

log
(
1 + λT g(Xi;β)

)
,

where the feasible region
Λn(β) = {1 + λT g(Xi;β) ≥ 0 : i = 1, · · · , n}

is to ensure that the weight in equation (5.3) is non-negative. One can easily verify that the first-order

condition (gradient set to 0) leads to the usual constraint to define λ̂(β). As a result, we can rewrite
equation (5.4) as

β̂EL = argminβ sup
λ∈Λn(β)

n∑
i=1

log
(
1 + λT g(Xi;β)

)
. (5.5)

One can show that under appropriate conditions (β0 solves the population equation 0 = E(g(X;β0))),

√
n(β̂EL − β0)

D→ N(0, σ2),
√
n(λ̂(β̂EL)− 0)

D→ N(0, σ2
λ). (5.6)

This result can be found in Theorem 1 of [QL1994]. Moreover, (β̂EL, λ̂) converges jointly to a multivariate
normal distribution. So the usual inference on the parameter can be applied. Note that the population
version of λ̂(β̂EL) is 0 from equation (5.6); one can easily see this because in the population case, the
maximal value of E[log

(
1 + λT g(Xi;β)

)
] occurs when λ = 0. Also, the empirical likelihood value can also

be used to perform hypothesis test, see Theorem 2 of [QL1994].

5.2 Generalized empirical likelihood

Equation (5.5) shows an elegant form of writing an estimator in terms of a saddle point problem. This
form further motivates the generalized empirical likelihood method. The main reference of the generalized
empirical likelihood is the following paper:

[NS2004] Newey, W. K., & Smith, R. J. (2004). Higher order properties of GMM and generalized
empirical likelihood estimators. Econometrica, 72(1), 219-255.

To be consistent with the notation in above paper, we re-write equation (5.5) as

β̂EL = argminβ sup
λ∈Λn(β)

n∑
i=1

log
(
1− λT g(Xi;β)

)
. (5.7)
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Since we are taking the supremum over λ, this will lead to the same result. Now we define ρEL(λT g(Xi;β)) =
log
(
1− λT g(Xi;β)

)
. Then equation (5.7) can be written as

β̂EL = argminβ sup
λ∈Λn(β)

n∑
i=1

ρEL(λT g(Xi;β)). (5.8)

The function ρEL(x) has a feature that ρEL(0) = 0, ρ′EL(1) = ρ′′EL(0) = −1.

This form hints on the fact that we may replace ρEL by some other functions ρ satisfying

ρ(0) = 0, ρ′(1) = ρ′′(1) = −1, ρ is concave (5.9)

and ρ(s) is only defined on s ∈ (−∞, 1]. With a function satisfies the above constraint, we define the
generalized empirical likelihood (GEL) estimator of a generalized estimating equation as

β̂GEL = argminβ sup
λ∈Λn(β)

n∑
i=1

ρ(λT g(Xi;β)). (5.10)

Moreover, the fact that when using the empirical likelihood, the weights Wi can be expressed as (from
equation (5.3))

Wi =
(1 + λ̂T g(Xi))

−1∑n
j=1(1 + λ̂T g(Xj))−1

=
ρ′EL(λ̂T g(Xi))∑n
j=1 ρ

′
EL(λ̂T g(Xj))

.

So we can interpret

Wρ,i =
ρ′(λ̂T (β)g(Xi;β))∑n
j=1 ρ

′(λ̂T (β)g(Xj ;β))
, (5.11)

where

λ̂(β) = argmaxλ∈Λn(β)

n∑
j=1

ρ(λT g(Xj ;β)). (5.12)

Under suitable conditions, one can show the result similar to equation (5.13) as

√
n(β̂GEL − β0)

D→ N(0, σ2),
√
n(λ̂(β̂GEL)− 0)

D→ N(0, σ2
λ). (5.13)

This result can be found in Theorem 3.2 of [NS2004].

5.2.1 A brief derivation of the asymptotic normality

Here is a brief derivation of the asymptotic normality in equation (5.13). The formal assumptions and proofs
can be found in [NS2004] (Theorem 3.1 and 3.2). The key idea is that we choose ρ to be a smooth function

so that the minimum λ̂(β̂GEL) and the maximum β̂GEL satisfies the first order condition (gradient being 0).

Let G(x;β) = ∇βg(x;β) ∈ Rp×p be the derivative of g(x;β) with respect to β. Then λ̂(β̂GEL) and β̂GEL
satisfy

0 =
∂

∂β

1

n

n∑
i=1

ρ(λ̂T (β̂GEL)g(Xi; β̂GEL)) =
1

n

n∑
i=1

ρ′(λ̂T (β̂GEL)g(Xi; β̂GEL))G(Xi; β̂GEL)λ̂(β̂GEL),

0 =
∂

∂λ

1

n

n∑
i=1

ρ(λ̂T (β̂GEL)g(Xi; β̂GEL)) =
1

n

n∑
i=1

ρ′(λ̂T (β̂GEL)g(Xi; β̂GEL))g(Xi; β̂GEL).

(5.14)
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We will abbreviate the above two equations as 1
n

∑n
i=1 Ψ(β̂GEL, λ̂(β̂GEL)|Xi) = 0.

We will use the regular approach to derive the asymptotic normality–compare this to the ‘population version’
of β̂GEL, λ̂(β̂GEL). The population version of them will be (β0, λ0) = (β0, 0) with E(g(Xi;β0)) = 0. To see why
they solve the population version of the two equations, the population version of two first order equations
are

0 = E(ρ′(λT0 g(Xi;β0))G(Xi;β0)λ0),

0 = E(ρ′(λT0 g(Xi;β0))g(Xi;β0)).

When λ0 = 0, the first equation automatically satisfies and the second equation becomes (using ρ′(0) = −1)
−E(g(Xi;β0)) = 0 by the definition of β0. Thus, the choice (β0, λ0) = (β0, 0) satisfies the population first
order conditions. We abbreviate the population equations as Ψ0(β0, 0) = 0

By definition, one can easily see that

E(Ψ(β, λ|Xi)) = Ψ0(β, λ).

As a result, using the Taylor’s expansion and the fact that 1
n

∑n
i=1 Ψ(β̂GEL, λ̂(β̂GEL)|Xi) = 0:

1

n

n∑
i=1

Ψ(β0, λ0|Xi) =
1

n

n∑
i=1

Ψ(β0, λ0|Xi)− E(Ψ(β0, λ0|Xi))︸ ︷︷ ︸
=0

=
1

n

n∑
i=1

(
Ψ(β0, λ0|Xi)−Ψ(β̂GEL, λ̂(β̂GEL)|Xi)

)
≈ 1

n

n∑
i=1

[
∂

∂β
Ψ(β0, λ0|Xi)

]
(β0 − β̂GEL) +

[
∂

∂λ
Ψ(β0, λ0|Xi)

]
(λ0 − λ̂(β̂GEL)).

Thus, we conclude that the vector(
β0 − β̂GEL)

λ0 − λ̂(β̂GEL)

)
≈
[ 1
n

∑n
i=1

∂
∂βΨ(β0, λ0|Xi)

1
n

∑n
i=1

∂
∂λΨ(β0, λ0|Xi)

]−1
1

n

n∑
i=1

Ψ(β0, λ0|Xi).

Apparently, 1√
n

∑n
i=1 Ψ(β0, λ0|Xi) has asymptotic normality since it is the summation of IID random ele-

ments. Also, by the law of large number,

1

n

n∑
i=1

∂

∂β
Ψ(β0, λ0|Xi)

p→ E
[
∂

∂β
Ψ(β0, λ0|Xi)

]
1

n

n∑
i=1

∂

∂λ
Ψ(β0, λ0|Xi)

p→ E
[
∂

∂λ
Ψ(β0, λ0|Xi)

]
.

So we conclude that by the Slutsky’s theorem (and the fact that λ0 = 0),

√
n

(
β̂GEL)− β0

λ̂(β̂GEL)− 0

)
d→ N(0,Σ)

for some covariance matrix Σ.

For the completeness, we derive the closed-form of E
[
∂
∂βΨ(β0, λ0|Xi)

]
and E

[
∂
∂λΨ(β0, λ0|Xi)

]
. Note that

Ψ = (Φβ ,Φλ) = ( ∂
∂βΦ, ∂∂λΦ) consists of two functions in (5.14) and Φ(β, λ|x) = ρ(λT g(x;β)). Thus, denoting

Φa,b as the partial derivatives with respect to a and partial derivative with respect to b, we can express[
E
(
∂
∂βΨ(β0, λ0|Xi)

)
E
(
∂
∂λΨ(β0, λ0|Xi)

)] =

[
E[Φβ,β(β, λ|Xi)] E[Φβ,λ(β, λ|Xi)]
E[Φλ,β(β, λ|Xi)] E[Φλ,λ(β, λ|Xi)]

]
,
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and

Φβ,β(β0, λ0|Xi)] = 0 (since λ0 = 0)

Φβ,λ(β0, λ0|Xi)] = E [ρ′(0)G(Xi;β0)]

= −E [G(Xi;β0)]

Φλ,β(β0, λ0|Xi)] = Φβ,λ(β0, λ0|Xi)]

= −E [G(Xi;β0)]

Φλ,λ(β0, λ0|Xi)] = E
[
ρ′′(0)G(Xi;β0)GT (Xi;β0)

]
= −E

[
G(Xi;β0)GT (Xi;β0)

]

5.3 Calibration

The idea of GEL approach can also be applied to missing data and causal inference problems. In this case,
the idea is called calibaration. In what follows, we will describe how this idea is carried out in the missing
data problem. The main reference is the following paper

[CY2014] Chan, K. C. G., & Yam, S. C. P. (2014). Oracle, multiple robust and multipurpose
calibration in a missing response problem. Statistical Science, 29(3), 380-396.

The application of calibration in a causal inference problem can be seen in the following paper:

[CY2016] Chan, K. C. G., Yam, S. C. P., & Zhang, Z. (2016). Globally efficient non-parametric
inference of average treatment effects by empirical balancing calibration weighting. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 78(3), 673-700.

The calibration is a synthesis of GEL and the inverse probability weighting (IPW) approach and the regression
adjustment (RA) approach. Consider a simple missing data problem where the outcome Y ∈ R may be
missing and let R be the binary response pattern of Y in the sense that if R = 1, we observe Y and if R = 0,
we do not. In addition to these two variables, even individual has a covariate X that is always observed. We
assume the simple missing at random (MAR) condition that

Y ⊥ R|X.

Let π(X) = P (R = 1|X) be the probability of observing Y given X. Then one can easily see that if we want
to estimate the marginal mean of Y , we have

θ ≡ E(Y ) = E
(
Y R

π(X)

)
.

So a consistent estimator of θ (known as the IPW estimator) is

θ̂IPW =
1

n

n∑
i=1

YiRi
π̂(Xi)

,

where π̂ is an estimate of π.

The IPW estimator is often not an efficient estimator. The idea of calibration is an attempt to improve the
efficiency of the IPW estimator while preserving its beautiful form.
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The insight of calibration is from the observation that we can rewrite the IPW estimator as

θ̂IPW =
n∑
i=1

YiRiWi, (5.15)

where Wi is the weight distributed on the i-th observation. And since both IPW and RA estimator are
estimating the same quantity, we can adjust the weights using the idea of GEL so that

Before we formally introduce the idea of calibration, observe the fact that the MAR assumption implies

m1(x) = E(Y |X = x,R = 1) = E(Y |X = x,R = 0) = m0(x)

so we can estimate the same quantity using

θ ≡ E(Y ) = E(m1(X)), (5.16)

leading to the RA (regression adjustment) estimator

θ̂RA,1 =
1

n

n∑
i=1

m̂1(Xi),

where m̂1 is an estimate of m1.

In addition to the above form, one can show that we can combine the IPW and RA estimates as

θ ≡ E(Y ) = E
(
m1(X)R

π(X)

)
, (5.17)

leading to the estimator

θ̂RA,2 =
1

n

n∑
i=1

m̂1(Xi)Ri
π̂(Xi)

.

So the idea of calibration is: given that equations (5.16) and (5.17) are targeting at the same quantity, we
can choose W1, · · · ,Wn to satisfy the constraint that equations (5.16) and (5.17) are the same. Specifically,
we want to choose W such that

m̄1 ≡
1

n

n∑
i=1

m̂1(Xi) =

n∑
i=1

Wim̂1(Xi)Ri

⇔ 0 =
n∑
i=1

WiRi(m̂1(Xi)− m̄1).

(5.18)

Note that the equivalence follows from the fact that 1 =
∑n
i=1

Ri

π̂(Xi)
=
∑n
i=1WiRi.

To determine the weight, we use the expression in equations (5.11) and (5.12). First, the Lagrangian
multiplier will be chosen as

λ̂cal = argmaxλ∈Λn

n∑
i=1

Ri
π̂(Xi)

ρ(λ(m̂1(Xi)− m̄1)).

This is based on the IPW form of re-writing equation (5.12). One may be wondering why we use the IPW
form in the above; technically speaking, without the IPW terms (replacing Ri

π̂(Xi)
by 1), this quantity will be

estimating the same quantity. The major reason of writing it in this form is to focus on the weights for those
Ri = 1. Later when defining the calibration estimator (equation (5.20)), one will see that we only need the
weights for those Ri = 1, similar to the case of usual IPW estimator.



8 Empirical likelihood method

With this choice of λ, we then define the weights by generalizing (5.11):

Wi,ρ,cal =
π̂−1(Xi)ρ

′(λ̂cal(m̂1(Xi)− m̄1))∑n
j=1 π̂

−1(Xj)ρ′(λ̂cal(m̂1(Xj)− m̄1))
. (5.19)

With this result, the calibration estimator is

θ̂cal =
n∑
i=1

RiWi,ρ,calYi. (5.20)

In [CY2014], they proved that θ̂cal has asymptotic normality and achieve the semi-parametric efficient bound
(assuming that m̂1(x) and π̂(x) are using the correct model and converges at the

√
n rate). The technical

challenge of deriving the asymptotic normality is to bound λ̂cal = OP (n−1/2); see the proof of Lemma 1 of

[CY2014] . Note that similar to Section 5.2, the population quantity of λ̂cal is λ0 = 0.

5.3.1 Robustness against propensity score mis-specification

A powerful feature of the calibration estimator is its robustness against the mis-specification of the propensity
score. Suppose that π̂(x) is mis-specified so it converges to π0(x) 6= P (R = 1|X = x). We will argue that

θ̂cal is still a consistent estimator.

To see this, denote W̃ (Xi) =
π−1
0 (Xi)∑n

j=1 π
−1
0 (Xj)

. It is not hard to see that when n is large, Wi,ρ,IPW ≈ W̃ (Xi)

because λ̂cal
P→ 0 so the contribution from ρ′ disappears (using the fact that ρ′(0) = −1).

As a result, we rewrite equation (5.20) as

θ̂cal =
n∑
i=1

RiWi,ρ,calYi

=
n∑
i=1

RiWi,ρ,cal(Yi − m̂1(Xi)) +
n∑
i=1

RiWi,ρ,calm̂1(Xi)

≈
n∑
i=1

RiW̃ (Xi)(Yi − m̂1(Xi)) +
n∑
i=1

RiWi,ρ,calm̂1(Xi)

≈
n∑
i=1

RiW̃ (Xi)(Yi − m̂1(Xi)) +
n∑
i=1

RiWi,ρ,calm̂1(Xi).

Using the assumption that Y ⊥ R|X and the fact that m̂1(Xi) ≈ m1(Xi) (the outcome regression model is
correct), one can easily see that the first quantity will be approaching

n∑
i=1

RiW̃ (Xi)(Yi − m̂1(Xi)) ≈ E[Riπ
−1
0 (Xi)(m1(Xi)− m̂1(Xi))] ≈ 0.

For the second quantity, the calibration equation (5.18) implies that

n∑
i=1

RiWi,ρ,calm̂1(Xi) = m̄1 =
1

n

n∑
i=1

m̂1(Xi) ≈ E(m1(X)) = θ.

As a result, θ̂cal is still a consistent estimator as long as the outcome regression is correctly specified.
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5.3.2 Oracle property when outcome regression may be mis-specified

Another powerful property of θ̂cal is its oracle property when the outcome regression is mis-specified (propen-
sity score is correctly specified). We denote the propensity score as P (R = 1|X = x) = π(x) = π(x;β0),
where β0 is the true parameter of the propensity score.

In particular, suppose that we fit p distinct parametric models of the outcome regression, leading to

m1,1(x; γ1), · · ·m1,p(x; γp).

The calibration equation (5.18) will be a system of p equations, i.e.,

m̄1,` ≡
1

n

n∑
i=1

m1,`(Xi; γ̂`) =
n∑
i=1

Wim1,`(Xi; γ̂`)Ri (5.21)

for ` = 1, · · · , p and γ̂` is the estimator of the parameter of the `-th model. In this case, the Lagrangian
multiplier will be a vector of p element and the weights can be defined in a similar manner as equation (5.19).

Let γ0 = (γ1,0, · · · , γp,0) be the collection of parameter where γ̂` − γ`,0 = OP (1/
√
n). Namely, γ0 is the

quantity that the estimated parameter is converging to. We define the ‘best linear predictor’ of Y using
these p models as m∗(x; γ0)

m∗(x; γ0) = c∗0 +

p∑
`=1

c∗`m(x; γ`,0)

(c∗0, · · · , c∗p) = argmin(c0,··· ,cp)E

(Y − c0 − p∑
`=1

c`m(X; γ`,0)

)2
 .

The above least square property imply

E [m`(X; γ`,0)(Y −m∗(X; γ0))] = 0 (5.22)

for each ` = 1, · · · , p.

Then Lemma 1 of [CY2014] showed that

θ̂cal − θ =
1

n

n∑
i=1

(
Ri

π(Xi;β0)
(Yi −m∗(Xi; γ0)) + (m∗(Xi; γ0)− θ)

)
+ Ψn + oP (1/

√
n), (5.23)

where
√
nΨn is asymptotically normal (mean 0) and is from the estimation of the propensity score. The

power of equation (5.23) is that the first asymptotic linear term follows the usual doubly-robust form and is
centered at the outcome regression being specified as m∗(Xi; γ0), the best linear predictor.

Remark.

• Even if the outcome regression model is incorrect, the calibration estimator is still approximating the
best linear predictor. Moreover, as long as one of the outcome regression model is correct (this would
lead to other coefficients c∗` = 0 when ` is not the correct model), m∗(x; γ0) = m1(x) = E(Y |X =

x,A = 1) will be the correct outcome regression model and θ̂cal achieves semi-parametric efficiency.

• From equation (5.23), we see that the asymptotic behavior of the outcome regression does not directly

impact the asymptotic performance of θ̂cal. Here is a simple reason of why this occurs. Note that we
can rewrite

θ̂cal =
n∑
i=1

RiWi,ρ,calYi =
n∑
i=1

Ri
π−1(Xi; β̂)ρ′(λ̂Tcal(m(Xi; γ̂0)− m̄(γ̂0)))∑n
j=1 π

−1(Xj ; β̂)ρ′(λ̂Tcal(m(Xj ; γ̂0)− m̄(γ̂0)))
Yi.



10 Empirical likelihood method

We use the expression m(Xi; γ̂0) = (m1(Xi; γ̂1), · · · ,mp(Xi; γ̂p))
T ∈ Rp. When taking derivative with

respect to γ and evaluate at the convergence point (β0, γ0, λ0 = 0), one would notice that there will be

a λ0 term multiplying everything because θ̂cal depends on γ via

ρ′(λ̂Tcal(m(Xj ; γ̂0)− m̄(γ̂0))).

When evaluating at λ0 = 0, this term is gone. So the first derivative is asymptotically negligible, and
hence the asymptotic behavior of the outcome regression does not impact the asymptotic behavior of
θ̂cal.

• Some people may be wondering how does the best linear predictor comes in. It turns out that it will
cancel out the contribution from λ̂cal in the asymptotic behavior of θ̂cal. The rough idea is that when
taking derivative of θ̂cal with respect to λ and evaluate at (β0, γ0, λ0 = 0), it will be approaching

E [(m(X; γ0)− m̄(γ0))(Y −m∗(X; γ0))] ;

see the term A1 in page 18 of the supplementary material of [CY2014]. By the least square property

in equation (5.22), this term will be 0 so the contribution from λ̂cal will not be in the first order.
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